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Abstract. Optimizing radar observation strategies is one of the most important consideratiorfidltampaign periods.

This is especially true for isolated convective clouds that typically evolve faster than the observations captured by
operational radar netwks. This study investigates uncertainties in radar observations of the evolution of the microphysical
and dynamical properties of isolated deep convective clouds developing in clean and polluted environments. It aims to
optimize the radar observationatgy for deep convection through the use of high spatiotemporat@salding model
simulations, which resolve the evolution of individual convective cells every 1 minute, coupled with a radar simulator and
a cell tracking algorithm. The radar simulatieettings are based on the Tracking Aerosol Convection Interactions
ExpeRiment (TRACER) / Experiment of Sea Breeze Convection, Aerosols, Precipitation and Environment (ESCAPE) field
campaigns held in the Houston, TX area, but are generalizable to ahiercdimpaigns focusing on isolated deep
convection. Our analysis produces the following four outcomes. First, m 5' median difference in maximum updrafts

of tracked cellsis shown between the clean and polluted simulations in the early stagesobdutidifetimes. This
demonstrates the importance of obtaining accurate estimates of vertical velocity from observations if aerosol impacts are t
be properly resolved. Second, tracking of individual cells and using vertical cross section scanningrexergaptures

the evolution of precipitation particle number concentration and size represented by polarimetric observables better than thi
operational radar observations that update the volume scan eventgsiihis approach also improves the midoppler

radar updraft retrievals above 5 km above ground level for regions with updraft velocities greater thah Third,sve

propose an optimized strategy which is composelbfracking by quick (2 min) vertical cross section scans from more

than one radar in addition to the operational volume sdAfiesalso propose the use of a single rangight indicator updraft

retrieval technigue focells close to the radars, wheree tmultiDoppler radar retrievals are still challenging. Finally,

increasing thenumber of deep convective cells sampled by such observations better represents the median maximum updraf
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evolution with sample sizes of more than 10 deep cells, which decreases the error associated with sampling the tru

population to less than 3 st.

1 Introduction

The quality and performance of remote sensing measuremspesialy radar measurements, can strongly depend on
the siting of instruments relative to their targets and the associated sampling strategies (e.g., Bousquet et al.jr2008; Potv
et al., 2012b; Oue et al., 2019). This is especially true for convectiva systems that evolve rapidly over a range of
spatial and temporal scales. The limitations associated with observation strategies influence microphysical, dynamical, an
convectivecore property retrievals, resulting in a misinterpretation of the olttmmahdata and can limit our understanding
of storm processes. Some of these limitations can be addressed/iosialgand field Experiment data fusion (ModEXx)
concepts such athe optimization of experimental design using models and forward simulatdrgy tie ModEx
framework, one can appropriately determine optimal radar deployments and scan strategies, as well as quantitatively
understand the observational uncertainties arising from these strategies before field campaigns begin. As such, the goal
this study is to suggest optimal radar deployments and scan strategies for radar field campaigns targeting isolated convectiv
clouds.

The limitations in the radar observations that are mostly attributed to sampling strategy strongly impact-tzseadar
retrievals of geophysical quantities and cloud properties (e.g., Clark #880D; Given and Rai994; Collis et a].2010).
These sampling strategy choices include scanning time (scan rate) for a volume scan, spatial resolution (azimuth/elevatio
spacims and ranggate spacing), elevation angles for plan position indicator (PPI) volume scans, distance to the target
phenomena from the radars (this is also related to the spatial resolution), systematic variahilityigireess) in the
observables, amthta smoothing and interpolation for gridding the data. In particular, the sampling strategy can significantly
impact the uncertainties in vertical velocity retrievals (e.g., Oue,&Ml9), which are important for the analysis of cloud
microphysics ad dynamics. In addition, the retrievals include uncertainties attributed to assumptions in their algorithms;
for instance, some mulboppler radaibased vertical velocity retrievals must make assumptions for the particle fall speed
and mass continuity (@, North et al., 2017).

In operational radar networks (e.g., the Next Generation Weather Radar (NEXRAD) network), each radar performs
volume scans consisting of plan position indicator (PPI) scans with multiple elevation angles to prioritize coldeating
for large areas. The volume scan strategy (known as volume coverage pattern, VCP) takes approximately 5 minutes t
collect the 3D atmospheric data. While this operational scanning strategy is very valuable for performing surveillance and
collecting alarge number of cloud samples, it may not accurately captursdale, rapidlydeveloping cloud phenomena.
To increase our understanding of the links between convective cloud kinematic and microphysical processes, field
campaigns have recently starteddous on collecting observations at higher temporal and spatial resolutions to understand
fine-scale characteristics and phenomena including isolated convection, shallow cumulus clouds, plumes embedded ir

mesoscale systems, convective updrafts and doftsdf@g., Verification of the Origins of Rotation in Tornadoes
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Experiment 2 (VORTEX2), Wurman et al., 2012; Midlatitude Continental Convective Clouds Experiment (MC3E), Jensen
et al., 2016; CSU Convective Cloud Updraft and Downdraft ExperimeitQ@DEx), van den Heever et al., 2021;
Marinescu et al., 2020ndhigh-l at i t ude preci pitation (e.g., Light Preci
et al, 2010). Furthermore, in some of these field campaigns, physically tracking individual ceaydetnomena using
cuttingedge mechanically scanning radar systems was employed to prioritize high spatiotemporal sampling (e.g., The
Dynamical and Microphysical Evolution of Convective Storms (DYMECS), Stain et al., 2015; lowa Flood Studies
(IFloodS), Mshra et al.2016). The higkspatiotemporal resolution observations can also be achieved by complementing
the operational radar networks with adapting scan strategies refgiomal research radars that have been installed in local
areas(e.g., Distribtied Collaborative Adaptive Sensing (DCAS), McLaughlin et al., 2005; Malisor Agile Adaptive
Sampling (MAAS), Kollias et a]2020).

In recent years, as phased array weather radars (PARs) have become more commonly used for severe weath
observationsthe sophisticated tracking of atmospheric phenomena has become feasible (e.g., Kollias et al., 2022). The
PARs have a significant advantage of sampling rapidly evolving atmospheric phenomenderhpigial resolutions (e.g.,

Billam and Harvey1987; Heirselman and Torre2011; Mahre et 812018; Griffin et al.2019; Adachi and Mashiko, 2020;
Moroda et al.2021), thus allowing for sampling of the entire cloud volume and cloud lifecycle. The tracking observations
obtained by these rapid scanning radaPAR systems are, however, more sensitive than previous approaches to scan
strategies such as sampling time, azimuth/elevation spacings, and deployments (locations and the number of radars), all
which should be appropriately optimized depending onspaial scale and evolution speed of the target phenomena
(Kollias et al., 2020).

Several radar field campaigns aim at enhancing our understanding of the links between convective cloud kinematic anc
microphysical processes and life cycles (e.g., Trackergsol Convection Interactions ExpeRiment (TRACER), Jensen et
al., 2019; Experiment of Sea Breeze Convection, Aerosols, Precipitation and Environment (ESCAPE); Jensen et al., 2022
Atmospheric Radiation Measurements (ARM) Mobile Facility 3 (AMF3) SoutHg&sleployment, Kang et al., 2021). All
of these experimentsavedeployedor plan to deploynultiple mobile weather radars, cloud radars, requdn radars, and
phased array radars. In particular, TRACER and ESCAPE campaigns focus on observing isefatzhdective storms
with different aerosol environments. Optimizing the radar deployments and scan strategies while taking into account
campaign costs, deployment limitations, and sampling limitations (i.e., range, scan rate) is a large but ciléicgechal
Observing system simulation experiment (OSSE) is a powerful tool to investigate the impact of the limitations on the
observation analyses (Oue et aD20), and using higbpatiotemporal data is needed to reliably simulate the observations
accountng for the limitationsWhile the focus of this study has been on the TRACER/ESCAPE field campaigns, the results
are generalizable to other future campaigns focused on isolated deep convettios. paper we make use of OSSEs
focused on deep convectitmspecifically investigate the impacts of radar scan strategies on the cell tracking performance,
microphysical evolution, and dynamical retrievals of convective storms. Specifically, the impacts of varying the scan

elevation angles, the period for awole scan, and the locations of the radars are assessed.
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2 Method

Our OSSE approach is comprised of three parts: (1) the Regional Atmospheric Modeling System (RAMS; Cotton et al.,
2003; Saleeby and van den Heever, 2013); (2) the @ksamlving Radar Simator (CRSIM; Out et al., 2020); and (3) the
Tracking and ObjeeBased Analysis of Clouddopag Heikenfeld et al., 2019; Sokolowslet al., 2022). Figures 1k
show example snapshots from parts (1) and (2), and Figure 1d shows the tracking result from the part (3). RAMS mode
output from the AeroseCloud-Precipitaton-Climate (ACPC) model intercomparison project (MIP) (van den Heetal.,

2018; Marinescu et al., 2021), which foeasnthe development and occurrencasuflated convectiveells in the region
around Houston, TX, on June-29, 2013(Fig. 1a), forms the basis of this study. The convectiveldgment was initiated
both along the inland propagation of the sea breeze, and later in association with convective cold pools produced by th
earlier convection in the simulation. this study we focus othe time period from 2@4 UTC (1519 local time) during
which deep covective clouds developed, the dynamical processes of which have been extensively @helsinedcu et
al., 2021)Oneminutesimulated deep convective fieldseused as an input to C8IM to represent and evaluatee radar

observable fields (Fig. 1bJhe CRSIM radar observablewresubsequently used to track convective cells ugibgc

2.1CR-SIM

CR-SIM is a sophisticated radar forward operator developed to bridge the gap betweessabigtion cloud model
output and radar observations (Oue etZi20). CRSIM can be applied to the 3D model output produced by a variety of
cloudresolving models and largeddy simulation model&cluding RAMS, the Weatherdgearch anBorecasting (WRF,
Powers et al., 2017) model, the System for Atmospheric MagfiéiAM, Khairoutdinov and Randall, 2003), Cloivtbdel
1 (CM1, Bryan and Fritsch, 2002), and the Icosahedral Nonhydrostatiel ICON, Zangl et al., 2015). It emulates the
interaction between transmitted polarized radar waves and rotationally symmetdmieyeors and can simulate the power
(equivalent radar reflectivity factor), phase (Doppler velocity), and polarimetric (specific differential phase, differential
reflectivity, depolarization) variables with either a fixed elevation angle or varyingtelevangles with respect to a
specified radar location. GBIM outputs these variables on the same grid as the input model grid. The radar simulator has

been shown to be especially effective in OSSEs to investigate the uncertainties in observaticDakdettal(, 2019)

2.2tobac

tobacis a pythorbased software platform specifically developed for tracking atmospheric features, such as isolated
convective cells, in both model and observational datasétgchas been developed using a modular code structure with
data input, feature dettion and segmentation, and trajectory linking steps. It uses a watershed algorithm to detect and track

individual convective cells, and it has been extensively tested on the ACPC simulations (e.g., Heikenfeld et al., 2019;
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Marinescu et al., 2021). Forishstudy,tobacVersionl.2 is applied to CFSIM vertically integrated liquid (VIL; Fig. 1c),

which represents the total hydrometeor condensate within each vertical column and is similar to the approach used by Ht
et al. (2019)The CRSIM radar reflectiviy is converted int&/IL using the following equation:

®w00 B sgEpn ® O I'TQ Q TQa (1)

where Z is radar reflectivity factor (nfnm3), "Qis height (m),ds the vertical index, an@ax is theindex at the grid

domain top. We calculate VIL using the €3®M-simulated total reflectiwt greater than or equéd 0 dBZ at all vertical
levelsand, thus, ensure that wensiderall cloudy grid boxes in the tracking analysis. Although this variabteareed

6l iquid, 6 we use t Bimulatedhydomneteorsgeties toemulate tegl observations, antldding cloud
droplets, drizzl e, rain, cloud i ce, s n-osednanegw relergeaviLe s |
as this parametekVhen consideringhat clouds may have lower reflectivit< 0 dBZ)andthe radar minimum detectable
reflectivity increases with distance from the radar, the reflectivity threshold of 0 dBZ for the VIL calculation is abieasona
value touse indetecting cells in the entire domain regardless of the distance. We also performed the cell tracking using 10
and 40 dBZ thresholds at the height of 2 km above ground l&@&!)(to compare the performance of the use of VIL and

singlelevel reflectivity thresholds

2.3 RAMS

RAMS is a cloueresolving model that includes sophisticated microphysigabmical feedbacks, as well as aerosol
cloud interactions (Saleeby and van den Heever, 2013). RAMS, along with several other cloud resolving models from
around the world participated in the ACPC MIP, focuses on the effects of changing the concentrations of cloud condensatior
nuclei (CCN) on deep convective clouds (van den Heever et al., 2018). Case study simulations of a period of scatterec
convective cloudaear Houston, Texas were completed with relatively low and high concentrations of CCN that were based
on observations from the Houston area (see Figure 2 from Marinescu et al., 2021). -TH&Nosimulation is initialized
with 500 cm? of CCN in the bounalry layer (named CLN in this study), while the KGN simulation is initialized with
4000 cn? of CCN in the boundary layer (named POL in this study). The vertical aerosol profiles of both the CLN and POL
studies decrease linearly from the top of therlolawy layer to 150 crhat ~5 km AGL (the free troposphere), above which
they remain constant. RAMS allows for the advection, nucleation, wet and dry deposition, and regeneration of aerosol
particles via hydrometeor evaporation and sublimation. Theseaiond have been performed using a horizontal grid
resolution of 500m and R Admé&ndent bimemulating bulkmicrophysics scheme, which predicts the mass and
number of eight hydrometeor types. The model data are output at a frequennyiraftd. Additicmal details about the
RAMS model parameterizations and experimental setup used for these simulations can be found in Table 1 of Marinescu €
al. (2021).
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2.4 Observation gmulation processes

In this study, the cell tracking is applied to the-SR/-simulatel radar observation field (VIL) to detect and track
individual convective storm cells. Using the tracking results for all cells, we investigate the performance of theingll track
using VIL, the impact of the scan strategy on the VIL estimates (SecgtaBdthe statistical impact of aerosols on the cell
dynamical evolutiorfSect. 3.3). One of the tracked, isolated, deep convective cells with a single precipitation core is chosen
to investigate the following: 1) the impacts of the scan strategy on #meiation of polarimetric observables and related
microphysical studies (Sect. 3.2); and 2) the influences of different sets of the scan strategies onBoppheitvertical
velocity retrievals (Sect. 3.3The chosen cell is representative of isolatedp convective cells from the CLN simulation
(discussed irsect. 3.2).

2.4.1. Tracking convective cells

The tobac cell trackingis coupled with CRSIM radar observables obtained using the RAMS model ounpthe
following manner

1) TheRAMS model output from the ACPC MIP for an isolated convective case over the Houston area (Big. 1a)
used as inpub CR-SIM.

2) The radar observabléfds (Fig. 1bjyre simulated using GSIM and output on the same grid as the input model
grid.

3) The CRSIM simulated radar reflectivitys converted into VIL if the reflectivity exceeds 0 dBZ at all levels
(Fig.1c)

4) tobacis appliedto the VIL field to tack the conveaove cells(Fig. 1d).We used the VIL thresholds of 0, 0.1, 1.0,
and 5.0 kg n? to identify/track individual cells, including those embedded in larger precipitation areas

5) Steps 14 above are applied to the CLN and POL RAMS simulationsvesitigate the impact of aerosols on the

cell dynamical evolutions the entiresimulation domain

2.4.2. Emulating radar scan strategies

We emulate the radar scan strategies to account for observational limitations including scanning time for aaoJume sc
azimuth/elevation angle spacings, raiygge spacing, elevation angles for PPl volume scans, distance to the target
phenomena from the radars, and smoothness and interpolation for gridding process. This study tests the sensitivity of updra
retrievalsto four of these scanning strategy choiéescanning time, ii) elevation angle spacing, iii) distance to the targeted
convective cell, and iv) the number of radars used for the updraft retrievals. This section éxpletims scan strategies
are emulted using CRSIM.

The various radar scan strategies emulated in this study are listed in Table 1. We first emulate cell tracking using secto

rangeheight indicator (RHI) scans, each of which is composed of full elevation angles from 0.5° to 89.5° with a 1° increment
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in anazimuth sector and takes approximately 1 minutaifl RHI in Table 1). The-in RHI scan uses a snapshot of data
to complete a full elevation scan for a sector. For mechanically scanning radairs RHI may not be feasible due to
mechanical limitationge.g, overhead tim@eeded when chamg the antenna sweep directjpand those radars may need
more time to complete the sector scans (as disclststh this sectioi.

The second emulation of cell tracking is also a full elevation scan for anthzs@ctor similar to-inin RHI but takes
2 minutes using two continuous snapshotm@ SEC). To construct the cells observed by the sector scan that takes 2 min,
we use two consecutive model snapshots; the first snapshot at the earlier time is inseldt® the scan for angles from
0.5° to 44.5° over the elevation, and the other is used to simulate the scan for the angles from 45.5° to 89.5° over the
elevation (we intend this simulation to representmi2n A RHI 6 i n whi ch e auldibe usdd fotah e t
half of the azimuth sector for full elevation angles, however, for technical and computational reasons, we separate the
elevation angles into the two snapshots). Thisi2 SEC simulation is performed every 2 min.

The tracking cell by -inin RHI and 2min SEC is guided bipobacusing the VIL estimate from the model full grid every
1 minute.The azimuth sectors for-rhin RHI and 2min SEC are decideso thateach azimuth sector covethe 10km
width centerecround the individual cells defined bybac Therefore, the number of RHI sweeps for each cell varies as a
function of the distance between the radar and the target cell. The radar configuration for the RHI simulation is assumed tc
be a general scannimgdar such as the ARM precipitation radars. The angle range for an azimuth sector at the radar range
of 40 km is approximately 14°. With the radar beam width of 1°, the total beam for the sector scan is 90 (over elevation) x
14 (over azimuth) = 1260 beamsssuming that each beam uses ~96 radar pulse samples, the sector scan includes 120960
pulses in total. If the radar operates with 1.5 KHz pulse repetition frequency (PRF) (typical valdeafod €adars), then
the sector scan takes 80 sec; and if tharagerates with 2.5 kHz PRF (typical value foband radars), then the scan
takes 48 sec. These numbers (scans witki2nniin) are easy to get for phasaday radar observations. For a reflector
(mechanical scan) radar that needs 33% overhead time duedleration and deceleration of the antenna, these scan times
become 106 sec and 64 sec respectively.

The third strategy we investigate is thenth VCP. This strategy follows the standard NEXRAD VCP precipitation
mode (VCP 12https://www.weather.gov/jetstream/vcp_maxd is composed of 14 PPI scans. Since our model output is
every minute, for the-sin VCP simulation, a volume scan is composed of 5 snapshots frormnifrertodel outputs. A
single snapshot is used to create two or three PPl sweeps (two or three elevation angles).

Finally, for the fourth strategy, we evaluate an #fAi de
scans with a 1.0° increment over both elmraaind azimuth is performed withinmki n (ref erred t o as
This approach will be feasible when a network of rapid scan or electronically scanning radars is available. Although such
observations are not realistic, they can serve as agr lggundary in terms of observational capabilities and will be used
for an evaluation of VIL from %nin VCP in Section 3.1.

We use an ®and frequency for the-&in VCP simulation (emulating NEXRAD radars) and-d&hd frequency for
1-min RHI, 2min SEC, ad Full simulations (assuming thel@and Scanning ARM Precipitation Radar$BPR), or any
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equivalent performance radar). Since we use unattenuated radar observables in this study, the impacts of the radar frequen

on the simulation results should notdignificant.

2.4.3. Multi Doppler radar wind retrieval

For the investigation of the impacts of scan and deployment strategies coppter vertical velocity retrievals, this
study employs ¢ghreedimensional variational (3DVAR) muliboppler radar wid retrieval technique developed by North
et al. (2017). While this investigation focuses on uncertainties caused by scan and deployment,strdbegiest account
for other sources of errors such as attenuation, nor the particle fall speed assim&DMAR wind retrieval technique.
We use unattenuated radar reflectivity amflectivity-weighted fall speed calculated by €M in all present wind
retrieval simulationsThe details of the 3DVAR retrieval settings are presented in Oue et al. (28H®scribedn Oue et
al. (2019), he 3DVARwind retrieval technigue is applied to the gridded radar observable fields. The radar observables that
are resampled following the radar scan strategies in the previous sections aregtivaeckinto a Cartésn coordinate of
250 km x 250 km x 14 km domain with O-REn horizontal and vertical spacings using Barnes distdependent

weightings (Barnes, 1964).

3. Results

3.1 Evaluation of the tracking parameter

This study employs VIL as a tracking parameter and, as such, is similar to Hu et al. (2019). The use of VIL allows us
to consider hydrometeor condensate at all levels, whegmeagous convective celiracking studies have employed
reflectivity criteria ata given height (e.g., &her et al., 1995Shusse et al., 2006; Oue et al.12p Tracking based on
reflectivity at a single height may well define individual cells especially for embedded cells in stratiform regions, however
it canmiss some of the dg stages otonvective cell developmetitat initiate at different (typical lower) heights. In this
section, we evaluate VIL as a tracking parameter for the simulations used in this study. Figure 2a shows a comparison c
the durations ofobacdetected ad trackeccells in the CLN simulation as a function die use of VIL, as well as 10 and
40 dBZ thresholds at 2 km altitudehe time bin size used for Fig. 2 is 5 mite VIL-based tracking has the largest total
number of cells detected sintiee VIL better captures the presence of hydrometeor condensate throughout the vertical
columns and is not dependent on the presence of condensate at a specifid! lef/ghe frequency distributiongerhaps
unsurprisinglypeak at shorter durations for both CLN and R@kesThe VIL-based and HBZ-based tracking are more
comparable, althougthe VIL-based tracking has higher frequencies at even longer durations (> 9®@mpgred to the
10-dBZ-based trackingThe 48dBZ-based tracking generally has lower frequencies at all duration time bins compared to
the 16dBZ- and VIL-based tracking, but it is more similar to thedBZ-based tracking in the 280 minute time bins.

The frequency distributions of tracked cell lifetimes suggest that VIL can better capturelifinggelesof individual cells,
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including their initial development and decay stagke to its ability to include information about hydrometeors in the

entire cdumn.

The POL simulation (dashed line in Figure 2a) shows a similar tracked cell lifetime distribution to the CLN case.
However, there are some notable differences. The POL case has fewer cells detected (~15% fewer for VIL), which is
consistent with Maringcu et al. (2021), who also found fewer deep convective updrafts in the POL case using different
analyses (their Figure 7). When considering the relative frequency distribution (not shown), the POL case also has &
distribution shift towards relatively fewtonglived cells (lifetimes > 20 mins) and more frequent shived cells (lifetimes
< 20 mins), as compared to the CLN case. The relatively fewetlildy cells in the POL case are associated with deep
convection. There could be several reasonshdifference in cell lifetimes related to microphysigdghamical feedback
processes, such as those associated with cold pools (e.g., Grant and van den Heever, 2015). These differences between C
and POL are being examined in a separate manuscript. fiéereee use the CLN case to examine the effects of scan
strategy on the radar polarimetric observables and vertical velocity retrievals. The difference in the number of cadls detect
is consistent between the three tracking criteria. However, the difieir lifetime is clearest in VIL, being slightly evident
in 10-dBZ-based, but unclear in 4iBZ-based. This suggests thia¢ VIL -based tracking is more sensitivelie difference
in cell lifetimes between the CLN and POL simulaticarsd therefore, mayesuitable fortracking isolated convective cells
throughout their lifetimeandquantifying celllifetime statisticsThis may work for the cases where isolated cells dominate
in the domain with less stratiform or mesoscale precipitation.dreagchcasesthe features identified kpbacin the VIL

field well represent individual clouds (i,& single detected feature rarely includes more than one cells).

Since VIL integrates reflectivity from the surface to the observed echo togttér capture hydrometeor condensate
in the entire vertical column. This is especially effective for conventional VCP scanning that may miss cells at a specific
height if they are very close to the radar or far from the radar. On the other harmmhwéetional VCPshatdo notinclude
higher elevation angles or that have sparse elevation, sbarefore, ¢nd toproduce an underestimation of VIL. Moreover,
averaging inhomogeneities within large rasige volumes, which occur at distances far from the radar, cancalsse

uncertainties when using VIO o assesshese uncertainties, we investigate the VIL as a function of distance from the radar.

Figure 3 compares contoured frequency by distance distributions of VIL fromrttie 8CP and Full scan (from 0°
to 90° ower elevation) strategieAlthough we use the horizontal distance from the radar instead of altitude in constructing
our contoured frequency by altitude diagram, we use th
study.Overall, loth scans produce small differences in the frequency of less than 0.05 in the CFADs, except within the 30
km range from the radar. FBfrmin VCP, there is a shift to higher frequenciesmfller VIL values (red color at distance
< 30 km and <12 dB in Fg. 3b). At distances within 30 km of the radaoth radas have sufficient sensitivity (< dBZ).
This underestimatiois, therefore)ikely due to the fact that-fnin VCP does natbserve theipper parts of the clouds. The
smaller differences that occat distances > 90 km, which aleownin both scarstrategiesarelikely due tothe minimum
detectable reflectivitywhich increases with distance from the radar. It can be concluded thatrev& EXRAD VCP
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captures the VIL well except for distances less than 30 km from the radar and is, thus, very valuable for the surveillance o
convective cells and is also useful to detect and subsequently track targeted cells, as well as guide thimgelsirac

RHI measurements.

3.2 Evolution of polarimetric variables associated with microphysics

Polarimetric observables (e.qg., differential reflectiviggand differential propagation phasedKhave frequently been
used by past studies as an indicafan@rophysical and updraft evolutige.g., Kumjian and Ryzhkov, 2008; Kumijian et
al., 2014; Snyder et al., 2013). The NEXRAD polarimetric measurements are very important for capturing the precipitation
microphysical properties. However, its poor spatiggeral sampling (i.e., limited PPI elevation angles, time for volume
scan) provides only a limited view in convective storms (Fridlind et al., 2019). Here, we assess the impact of the NEXRAD
spatiotemporal sampling simulatng the polarimetric observalddrom the iminuteRHI tracking (¢min RHI in Table
1) and the Sminute conventional PPI volume scanni®n VCP in Table 1). We randomly select 12 cells from the 453 deep
convective cells tracked in the CLN simulation. These cells all eseémum radareflectivity exceeding 45 dBZ and 20
dBZ echo top heights greater than 8 km AGL during their lifetime th#a examine the evolution of microphysical and
dynamicalcharacteristics such as number concentratimdmean diametefor eachsimulatechydrometeospecies, as well
as the vertical velocityNine of the cells hae 46dBZ mean echo top heights that exceed the freezing level (approximately
5 km AGL) and attain 8 km altitude, which signify stronger conveciitrese 9 cellsshow similar ewvlution ofKpp, Zpg,
and maximum updrafts, all of which have magnitudes greater than Z0mtre middle of their lifetimes. Three of the
twelve cells do not have 4IBZ echo top heights extending above the freezing level. From the 9 vigorous, deep convective
cells,one representative cell is chosen for a detailed OSSE analysis based on its isolated nature and development near t
NEXRAD radar and other radar locationsedfor TRACER and ESCAPBNhile we focus on one cedinly, the results
can be extended the otherdeep isolated cellsigure 4 shows the evolution of the magsighted mean diameter {p
and number density for the rain and hail specieshiichosemeell. Large rairDm (> 1.5 mm) isevidentnear the freezing
level (dashed linedluring the later stage of the cell lifetime as the echo top height descitet2(:50 UTCin Fig. 4c)
Aroundthis time, the largestHfor hail is alscapparent (Fig. 4d)This indicates that the large hail melts as it falls thihoug
the freezing levelthereby producing large raindrops. The hail number concentration (Fig. 4f) is also strongly correlated
with updraft magnitude (Fig. 4b), thus, demonstrating the strong link between the updraft dynamics and hail formation.
Furthermorethe total hydrometeor mixing ratio (Fig. 4a) is consistent with the number concentrations from both rain and
hail (Figs. 4e and 4f).

Figures 5a,d,gleft column in Fig. 5show simulatedeflectivity, Zpgr, and Kop, respectively, averaged over ttegion
with reflectivity > 40 dBZfrom the original, cartesian model grithe evolution of raindrops as represented by rain D

(Fig. 4c) is evident by the large values in ths Held (Fig. 5d).The relatively large Kp and reflectivity values also seem
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to accurately represent the high number concentration afrogisin the early stage of the cell lifetime (Figs. 4e and 5a,0).

These characteristics of reflectivitype and kop are compared with those frothe different scan strateg: 1-min RHI

(middle column) and &nin VCP (right column). The RHI tracking reconstructs the magnitudes and evolution of the

polarimetric observables well iiS. 5e and 5h) so that they represtm hail D and cell evolution (Figs.4a,b,d.
Meanwhile, the conventional volume scan cannot capture thadamle structure and maitudesof thehail-rain evolution
observed bypr and Kop (Figs. 5fand 5) due to the coarse time resolution. The RHI tracking performs we#dptuing
the Kop enhancement and its streak as the raindrops fall (Fig.Sade thatthe NEXRAD Sband frequency (3.0 GHz) is

assumedor the 5min VCP simulationwhile C-band frequency (5.5 GHz) is assumed for the model and RHI simulation

Thereforethe Kop values in thidigure do include the frequency dependeritlye S-band Koe (Fig. 5i) is approximately
1.8 (5.5 GHz/3.0 GHz) times smaller than théa&hd Koe (Fig. 5h) This indicates that the g& measurements from the
shorterwavelength radar arenore sensitive to theKpp evolution and therefore, caprovide more insights othe

microphysical evolutin of precipitation

The region of relatively larg8pr > 1 dB extends to 6 km altitude, which is approximately 1 km above the environmental

0°Clevel (horizontal dashed k) at around 21:38 UTC (Figs. 5d and 5e). This seems to correspond tectikeddpr

column (e.g.Kumjian et al., 2014). Th&pr column signature shows more columnar structure in the vertical cross section

at 21:38 UTC (not shown). Thé&yr extension iglearly evident in the original model simulation (truth) (Fig. 5d) and the
RHI tracking (Fig. 5e), but it is not clear or is weak im VCP (Fig. 5f). The larg&pr values associated with raindrops
can bemaskeddy the presence of hail. Hail particles are assumed to be dry and mespheacal than raindrops following
Ryzhkov et al. (2011 CR-SIM anddominate the total reflectivity, producing smalfek. TheZpr extension is collocated
with large Kop > 1.8° km! shown in the original model simulation truth (Fig. 5g) and the RHI tracking (Fig. 5h).

3.3 Dynamical evolution

One of the benefits afell tracking using VILis that it can bettecapture the dynamical evolution of convective cells
over their lifetimegFig. 2) Figure 6 represents the maximum updrafts in the CLN and POL inditidcékdcells as a
function of their lifetime fordeep convective cellwith 20 dBZ echo top heights excéeglthe environmental 0°Cevel.
Many of the cells attain maximunpdrafts > 10 m-$within the first third of their lifetimesn both the CLN and POL

simulations. The peak occurrence for the POL simulation is found for updrafts that are approximatélgttongsr than

those of the CLN simulatigrsuggesting that stnger updrafts are more frequent in the POL than CLN convective cells in

the earlier stages of the cellsd | if ecyciphkase proc@ssescthas
finding is consistent with Marinescu et al. (2021), wharid stronger updrafts in the waiphase region of deep convective
updrafts, but not in the colphase region (i.e., above the freezing level) in the POL environffieatstronger updrafts

support the development lafrger hailproduced irthe POL simulatio (not shown). Tis result suggests that it is important

to estimate vertical velocity withtdgh level ofaccuracyif the impacbf aerosols on convective dynamics is to be properly
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resolved in observations. We use the CLN simulation oetputell as th individualCLN case deep convective cgliown

in Figs. 4 and 3o further investigatéhe uncertainties associated with the mDibippler radar vertical velocity retrievals

in this section. Figure §hows the maximum updraft velocity in the cell coluameach time as a function of the normalized
lifetime for the nine deep convective cells from the CLN simulation selected in the previous section. They all have peak
updrafts exceeding20m's whi ch mostl y occur lifetinmes. The blacK linerreptesertsate profie f  t
from the target cell analyzed for the OSSE in this section. It is clear from Figure 7 that the selected cell has a relatively
typical dynamical evolution when compared with the other nine cells, althodghstreach its maximum updraft velocity

a little earlier in its lifecycle.

Figure8 shows the impacts of sets of radar scan strategies forDagpler updraft retrievals for the selected convective
cell using a 3DVAR technique (North et al., 2017; Ouale 2019). Tis cell is the same cell examined in the previous
section (Figs. 4 and 5). We simulate different combinations of the scan strategies-osm&H| that scans around the
centerof the cell and 8nin VCP. Recall, Table 1 provides the detaif the scan strategies, gfigure 1 shows the locations
of the radars with these scan strategies and the targeted OSSHealets of radars for the medoppler wind retrieval
simulations are: 1) two radarsiéh usinga I-min RHI (red dot and cros in Fig. 1, called 2RHI); 2) two radars, each using
a 5min VCP (called 2VCP); 3) two radanmsith oneusing al-min RHI (red dot in Fig. 1and the other using arin VCP
(red cross in Fig. 1) (called RHIVCP); andtljee radars, with two usirigmin RHIs (red and blue dots in Fig. &phd one
using a5-min VCP (red cross in Fig. 1) (called 2RHIVCP). Table 2 represents the root mean square errors (RMSESs) of the
retrieved vertical velocity at four different heights, as well adl &éeights The 2VCP siralation (FigureBc; green in Figure
8f) significantly underestimates the updraftith the error exceeding 5 mtsibove 5 km AGL, where the cell produces
mean updrafts strongdran12 ms*. The 2VCP radar pair, wisevolume scan takes 5 minutes, doesrasolve the updraft
evolution well. We note that othstudies also found an underestimation of vertical velocity retrievals using-tmio 5
VCPs. For example, Marinescu et al. (2020) used twarbVCPs to estimate strong updrafts in supercells anddfann
underestimation in the region froral® km AGL when compared with radiosonde estimates of vertical veldtity.pair
of 5-min VCPs (2VCP) does, however, produce less error below AGmwhere the celproducesnveaker updrafts (< 5
m s') when compeed with the other sets of radar combinations. This suggests that the conventional PPI scans, which have
dense scans at low elevation angles, well capture thdelel horizontal inflow, and the mass continuity assumption is
well satisfied at the low lev® It is interesting that while-Biin VCPrepresent¥IL well for the distance > 30 km as shown
in Fig. 3, its limitations producsignificant uncertainties in the convective dynaahtetrieval of individual cloudabove

~5 km AGL even though the cell idserved at a distance > 30 km from the radar (Fig. 1)

With anRHI scan every minute, even when adding only one RHI, cell tracking improves the retrievals above 5 km altitude
(Figs. 8b,d,e; 2RHI, RHIVCP, and 2RHIVCRd, magenta, and blue, respectivielyFigure 8. The improvements are
particularly significant for regionis which the updraft velocities are stronger th@m s'. The RHIVCP simulation shows
the best estimate at the middle altitude (~6 km) among the four simulations, follo@&HBYCP, and thirdly 2RHI. The
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386 2RHI and 2RHIVCP simulations show RMSEs less than s? at all altitudes andbetterestimates than the other two
387  simulations at the higher altitudes (8 and 10 km AGL). The RHI scan has better sampling in the higher elevattons tha
388 min VCP, resulting in a better retrievatithese higher altitudes.

389 As the profile and Table 2 show, 2RHI and 2RHIVCP have the lowest RMSEs when considering all altitudes (Table 2,
390 bottom row). In addition, 2RHIVCP shows better results at altitudéskailthan 2RHI. This suggests that the conventional

391 5-min VCP scan can be used for further improvement of the iyl tracking retrievals for the low and middle altitudes.

392 Since the Gmin VCP has dense scans at lower elevations, this can help to providghedata covering the horizontal

393 domain of the cell, which may better represent thelwel horizontal wind convergence, thereby, better constraining the
394  cost functions in the 3DVAR.

395 We also investigatéhe impacts of the radar radial locations relative to the same céll Bigs. 4, 5 and 8. Radars

396  horizontally extendindgrom 10to 70 km (in 10 km increments) radially awayoim the cellare assessed. For this analysis,

397 we use the scan strategy with the Istverrors from our prior analysis, i.e., two radars performingjir2 SECs and one

398 radar performing Bnin VCP (e.g., Table 2, the tracking radars usair2 SEC rather than-thin RHI, We believe that-

399 min RHI can be feasible with electrical scan or meatelmapid scan radargiowever,2-min SEC can be more reasonable

400 when the cell is relatively close to the radbecausscanseed toextend tchigher elevations as discussed in Sect. 2.4.2).
401  Figure9ashows the radar locations for the seven simula@musFigure 9b demonstrates the vertical profiles of errors of
402 the retrieved updrafts averaged over a 20 km x 20 km box with reflectivity > 30 dBZ at 21:4FbfT&achretrieval the

403 largesterroris evident above an @lide of 9 km AGL where the stragerupdrafts are simulated by the model (Fig. 8a).

404  The largest error among the retrievals is foimtheretrievalwith the radars closest to the cell (red profile in Blg. This

405  occurs since thBPI volume scan does not cover the upper part of tharadbr the horizontal wind convergence at higher

406 elevation angles may not be retrieved from the RHI measurements accuratelyed@hexarhas a distance greater than

407  or equal to 20 km from the cell, the retrievals are improved-b§ b s between 50 11 km altitudes. The retrievals in

408  which the radar distances from the cell fall between 20 and 50 km show errors less thamélowsl1 km AGL. Such

409 accuracies in the retrievals may allow for resolving the aerosol impacts on updraft velocitiesnshigw@. The errors are

410 then found to increase again above 10 km AGL, especially for the radars located 60 and 70 km away fronT e cell.
411  investigation suggests that the radars shtaulget cells that are betwe2d-50 km from the radar fasptimalmulti-Doppler

412  radar retrievals. This finding is consistent with previous field campaigns usingDopitler radameasurementé.g.,

413  Wurman et al., 2012; Collis et al., 2011&nsen et al., 201&nd GSSE studies (e.g., Potvin et al., 2012a)

414 In the smulations above, the three radar locations are almost equidistant from the target cell. Now we explore the
415 impacts of having radars located at different distances from the tafgehove one of the three radars to a distance of 10
416  to 70 km at 10 km increemts (except 20 km which has already been tested) while keeping the other two radars as a fixed
417  distance of 20 km (blue dots in Fig. 9a). Similar to. Big, Figs. 10a and 10b showertical profiles of the errors of the

418  retrieved updrafts when moving therin SEC radar (at the northwest corner of the triangle) and-thia ¥CP radar (at
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the south corner), respectively. When moving threi@ SEC radar from distances between 30 and 70 km (Fig. 10a), the
retrievals show better profiles as the RMSESs range fto/ to 2.6 m's The RMSE increases when the radar is located at
10 km, which is consistent with the equidistance simulations (Fig. 9). Another notable point is that when the radar is locate
at distances from 50 to 70 ke errors below 1 km slightly increase, which is most likely because the radar coverage is
sparse at the lowest elevation due to the distance. Similarly, when movingith&/&P radar, the RMSE increases when
the radar is located at 10 km (Fig. 10M)e impact is significant above 5 km altitude. When the radar is located at 60 or 70
km the errors below 5 km increase. This also reflects the sparse radar coverage at the lower altitudes for the far distances
In nature, convective cells often do notalicevolve over pralefined multiDoppler regions and move outside the
region ofoptimal analysisTherefore, we also propose a sinBldl vertical velocity retrieval which can be used on a much
larger sample of convective cells in the vertical in thenitigiof the radar compared to fixed, muoppler platforms. The
singleRHI vertical velocity retrieval extracts the vertical air motion component from the radial velocity (Doppler velocity)
which is composed of the vertical air motion, horizontal aioei#y, and hydrometeor fall velocity (Lamer et al., 2014).
Figure 11a shows examples of Doppler velocity vectors (clear arrows) and the compbtienBoppler velocityncluding
horizontal wind along the RHI plane (yellow arrows), vertical velocity @edws), and hydrometeor fall velocity (blue
arrows) at two different points ([x,y]=[0 km, 5 km] and [7.5 km, 5 km]). These examples assume that each component at
the two points has the same value. At the radar distance equal to 0 km (x=0 km), thetdlaximohcomponent can be
ignored. At the radar distance greater than 0 km, the contribution of the horizontal wind component increases with
decreasing elevation angle (j.iecreasing the distance from the radar at a constant height). To apply thigtedareal
observations, horizontal velocity and hydrometeor fall velocity should be provided. Generally, the horizontal veloeity profil
can be provided from a velocigzimuth display (VAD) technique using PPl measurements or sounding measurements,
assiming that the horizontal wind is constant at each level. However, this assumption is a major source of the uncertainty
in the singleRHI vertical velocity retrieval technique, particularly at lower elevation angles. At these lower elevation angles,
the haizontal wind component dominates the radial velqgdityt the coverage of these lower elevation angles oftes do
not properly capture the variability in the horizontal wind, especially close to the Végdhereforginvestigate the impact
of the disance of the raddrom the cellon the singleRHI retrieval. In the simulations, we use the reflectivitgighted
hydrometeor fall velocity simulatdaly CR-SIM, similar to the present mulboppler retrieval simulations, #xcludethe
uncertainty relatetb the fall velocity estimates.
Figure11 showsthesimulated single RHI vertical velocity retrievabi the selected convective céfrofiles in Figs.
11c andll1d are retrieved verti¢aelocity at the convective core (distance = 0 km) and the ermvstfre truth, respectively.
We investigatethis technique for a profile at 21:42 UTaE the cell (same as Figs. 8f and 9b), where the strongest updraft
is simulatedThis singleRHI Doppler velocitytechnique works very well at the distance = 0 km (retigre the horizontal
wind component can be ignored, as evidenced by the error frefilg equato O at all altitudes (red line). Howeveglbw
6 km AGL, the error significantly increases with the radar distdrm® the core Interestingly, the charactstics of the

error distribution are opposite to those of the mDlbppler retrievals (Figs8f and 9b). We would, therefore, suggest the
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complementary use of the mulioppler wind retrieval and the singiRHI vertical velocity retrieval for better véral
velocity estimates of convective cells. For example, in a tracking strategkich two radars track a targeted cell, the
optimal scenari@anbe one in which the two radars track the cell with sector RHI/PPI s¢antervals of~2 min when
the digance of the cell from both raddassgreater tha®0 km. Fowever, vihen the disince of theell from one of the radars
is |l ess than 2 0sthenmyitchedit@ehemispliedacrRBlls s c an

This study highlights the importance of focusing on ksghatotemporal observations of individual convective cells
rather than utilizing conventional surveillance scans. Such-dpgliotemporal observations can be accomplished by
tracking cells using fast scan RHI measurements facilitated by-sapitlradars. Hower, it is not hard to anticipate that
the number of individual cells tracked successfully during a 4bort intensive observation period where such special scan
strategies are performed will also be limited. Therefore, we have investigated the sampfecsils needed to represent
the typical convective evolution of deep convective cells using the median maximum updraft metric shown in Fig. 6. This
specific analysis accounts for the error regarding cell sampling, but it does not account for thetrveinal uncertainty
from the scan strategy. Figures 12a and 12¢ show boxplots of the maximum vertical velocity as a function of the normalized
lifetime from all convective cells detected (910 tracked cells including deep and shallow cells) in the CaNdcaea
deep convective cells defined in Fig. 6a (453 tracked cells), respectively. These figures indicate high variability in the
maximum updraft magnitude as a function of time, and that potentially, one randomly sampled convective cell may not
represat the typical evolution of vertical velocity. Figure 12b depicts the relationship between the sample size and the
errors associated with estimating the full population median evolution of the maximum updraft magnitude. We randomly
sample convective cellsom all of thetobacdetected cells in the CLN simulation (910 tracked cells) and estimate the
median value of maximum updrafts at each time bin with different numbers of samples. Tée vages for the different
sample sizes are then compared to the median values from all deep convective cells(dbtegteds a black line in Fig.

64) to estimate RMSEs. Figure 12b suggests that increasing the sample size generally decreasestthéeBiMB&n 4.5

m st until a population of 10 cell samples is reached and converges to approximately 2f6rra sample size of 20 or

more samples. When focusing the analysis on deep convective cells only (Fig. 12d), the RMSE decreases to dpproximate
3 m st for 10 cell samples and converges to approximately 2 fars40 or more samples.

This study focuses on tracking isolated deep convective cells, each of which has a single core. Although we provide &
detailed investigation of one selected esding OSSEs, the result should be robust for the other cells that have a similar
vertical structure to that shown in Sect. 3.2. The error values presented in this study, however, may depend on cloud type
As the larger errors of the mulboppler radar wid retrievalsare shown to exist in the higher altitudes in this study, the
heights of convection could influence the observational uncertainties (i.e., height of maximum updraft). Moreover, in a
strong wind shear environment where storms advect quitidyintpact of the use of quick updates of RHI scans would be
more effective (e.g., Clark et al., 1980; Oue et al., 2019). Various convective cloud morphologies have been investigated ir
terms of uncertainties in observations, including mesoscale convegstems (e.g., Bousquet et al., 2008; Oue et al.,

2019), supercells (e.g., Potvin et al., 2012; Marinescu et al., 2020), and convection embedded in stratiform precipitation
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(e.g., Bousquet et al., 2008). However, the qualitative characteristics fouigstutty, such as the error profile trends, the
dependency on the radar locations, and the dependency on scan strategy, are likely to be common to those deep convect

cloud systems, as well.

4 Summary

Optimizing radar observation strategies teeen one of the most important topics in-fieéd-campaign periods,
especially when the focus is on atmospheric phenomena that rapidly evolve on timescales that standard operational rad:
networks cannot resolve. This study uses the Ctesdlving RadaiSimulator (CRSIM) and thetobac cloud object
tracking algorithm to investigate observational uncertainties of isolated deep convective clouds associatedxistingre
and planned radar deployments and strategies. The focus of this manuscriptimittedpe radar observation strategies
for the TRACER/ESCAPE field campaign, but the results are also generalizable for field campaigns that focus on isolated
deep convection using radar observations.

The following results and associated recommendatiegnmande:

0 The cell tracking algorithnwith the use of ViLbettercapture the difference in cell lifetimes between the {G&ZN
(CLN) and highCCN (POL) simulationsompared with the use of reflectivity thresholds at individual altitaahels
is suitableto detect and track more convective cells for longer time periods, including thedeadioping and
dissipating stages of isolated storms.

0 An analysis othe CLN and POL simulations, used to quantify the impact of aerosols on the convective dynamical
evoluion, show a 5 m st difference in maximum updraft at the early stages of convective development. This
suggests the importance of accurate vertical velocity estimates using the radar observations if the impact of aerosol
on convective updrafts is to besessed.

0 Fast scanning of the individual convective cells every minute captures the micrapleysiltitionbetter than the
operational radar observations that update the volume scan everylb particular, he tracking of cells using RHI
every minutebetter captures the evolution ofbKin the early stage ancbZ in the later stage, which are primarily
associated with the rain number concentration and hydrometeor particle (hail and rain) size, respectively.

0 Tracking using RHI improves the mulfioppler radar updraft retrievals above 5 km AGL, particularly for regions
with updraft velocities greater than 10 M. $he conventional -Bnin PPI volume scan can be used for further
improvement of the RHirackingonly retrievals.

0 The multiDoppler radar up@ft retrievals,even when using RHhre still challenging, especialfgr cells that are
close to the radars.€., within 10 km of the radar)This approacltanbe complemented by a single RHI updraft
retrieval technique.

0 Based on theseesults, he suggestestrategy to better capture microphysics and dynamics of deep convective cells

is tracking by frequent RHI scans from more than one radar (blue and red scans in Fig. 13), in addition to the
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operational PPI volume scans generally penfed by the NEXRAD radars (green scans in Fig. 13). We also suggest
a hybrid radar scan strategy which switches betwherRHI cell tracking and hemispheric RHI measurements
depending on the distance between the radar and the targetestcalid orangscans irFig. 13). Such RHI tracking
measurements would be possible with conventional mobile radars, but tsedasing Doppler radargurman,
2001, and/or phased array radars (Kollias et al., 2022) would have more advantages in faster bptatsuatial
resolution, and highequality datasets.

0 Increasing theumber of deep convective cells sampled by such observations better represents the population median
maximum updraft evolution. When increasing the number of deep cells sampled to nmmorththe RMSE
decreases to less than 3 ) and when increasing the sample size to more than 40, the RMSE further decreases to

less than 1 m's

For the strategy suggested above we have assumed that ttimeeze!l tracking will be guided by arfar algorithm
that will take advantage of surveillance scans by conventional radar nefearks. Multi Sensor Agile Adaptive Sampling
(MAAS) framework (Kollias et a].2020). The new MAAS has incorporated a -telcking algorithm using a watershed
technique (similar to tobac and the approach of Hu e28ll9) and predicts the future location of convective cells using
multiple sensors (e.g., NEXRAD radar at Houston, TX and GO&S

Finally, this study highlights the importance of using OSSEs inldpivegy radar strategies during giield campaign
periods. Current radar systems used for field campaigns, as well as operational radars, have more functions (e.g
polarimetry, Doppler, Doppler spectrum, and dual wavelength) and configurable paramgtepau(ge sampling, pulse
width, rangebin gate, azimuth, elevation spacings) than in the past. While this increased functionality makes the scan
strategies more sophisticated, it also makes the optimization of the scan strategy more complex. Althoyuh tvat the
results from this study can be applied to other field campaigns that focus on deep convection, for more qualitative analyses
the prefield campaign OSSEs should also be optimized for a specific field campaign thereby accounting foristiasacte
of the radar systems that will be used for the field campaigns. The use of a radar simulator in the OSSEs provides sever:
advantages including 1) facilitating instrument deployments, such as the radar locations and the number of radars require
and accounting for the radar characteristics and functions; 2) optimizing radar configurations such as the scan rate, elevatio
angles, update time of scans, and trafig; and 3) quantifying errors of the observables and retrievals. Effective OSSEs
can lead to successful, statd-the-art field campaigns and provide higlality, unique datasets that can allow for new

insights of the atmospheric phenomena.

Code availability The source code and user manual for the Cloud Resolving Model Radar SinZia&iiM) are available
at https://www.bnl.gov/CMAS/esim.php, last access: 21 April 2022, and thoséTlfacking and ObjeeBased Analysis
of Clouds fobaq are available at https://tobac.readthedocs.io/en/latest/
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Data availability, The ACPC model inteomparison project deep convection simulation data used for the input8fi\CR
are stored and can be accessed on the U.K. CEDA JASMIN supercomputer. Vdrtiegligited liquid (VIL) products
from CRSIM used for the convective cell tracking are avadabl Stony Brook University Academic Commons

(https://commons.library.stonybrook.edu/somasdatdéss access July 29, 2022).
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Table 1. Radar scan strategi@nugated in this study.

Full elevation scan for an ] . )
5-min volume coverage Full elevation/azimuth

Strategy azimuth sector tracking cells ]
) _ pattern (5min VCP) scan (Full)
(2-min RHI, 2min SEC)

Beam width 1.0° 0.9° 1.0°

0.48,0.88,1.32, 1.8, 2.42
) 3.12,4.0,5.1, 6.42, 8.0,

Elevation angles From 0.5° ta89.5° every 1° From 0° to 90° every 1
10.02, 12.48, 15.6, and
19.51°

14.5° at 40 km radar range
_ (Sector to cover a 1dm width | From 0° to 360° with a From 0° to 360° with a
Azimuth range o . i
centered around the individua| 0.5° increment 1.0° increment

cells with 1° spacing)

Time for volume ] ) . .
1 minute or 2 minutes* 5 minutes 1 minute
scan

*With the radar beam width of 1°, the total number of beams for the sector scan is 90 (over elevation) x 14 (over azimuth)
= 1260 beams. Assuming that each beam needs ~96 radar samples, the total number of pulses is 120960.-Zhis takes 1

min with typicalpulse repetition ratios (1-52.5 kHz) for G and X-band radars. See detailed discussion in Sect. 2.4.2

23



724
725

726

727

Table2. The rootmeansquare error (RMSE) of the retrieved updraft averaged over the regions with refléct0ityBZ

at four differentaltitudes a well asall heights for a variety of scan strategies for the entire lifetime.

1. Two Imin RHIs | 2. Two5-min 3. One imin RHI + one | 4. Two tmin RHIs + one
(2RHIs) VCPs (2VCPs) 5-min VCP (RHIVCP) 5-min VCP (2RHIVCP)
10 km 4.794 16.82 7.995 4.800
8 km 5.371 7.396 5.609 5.112
6 km 5.862 6.601 4.764 4.895
4 km 4.232 3.178 3.625 3.511
All heights 5.030 6.763 5.539 4.535
(a) Total hydrometeor mixing ratio  [9/kg]
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Fig. 1: (a) A snapshot of the RAMSsimulated total hydrometeor condensate field at 209 UTC at 5.5 km ASL; (b) CR-SIM
simulated radar reflectivity field at the same height and same time as (a); (@grtically integrated liquid (VIL) estimated from

the CR-SIM C-band total reflectivity (from total liquid and ice hydrometeor condensate) at the same time as (a); and (d) trask
of precipitati ng convectivecells detected between 20:00 an@%59 UTCusingtobacOn each panel , the red
of a radar performing 5-min VCP (i.e., NEXRAD KHGX), the red solid dot represents the location of a radar performing a
different 5-min VCP or RHI, and the blue solid dot represents the location of another radar performing RHI. The red rectangle

represents the tracked cell of interest used for mukDoppler radar retrieval and polarimetric evolution analysis.

107 ' ' : : 1 F ‘ : ' 1
(a ) CLN 1 level 10 dBZ N=812 | | (b) POL 1 level 10 dBZ N=569
CLN 1 level 40 dBZ N=384 | | POL 1 level 40 dBZ N=268
CLN VIL N=910 POL VIL N=770
----- POL VIL N=770

107

Qccurrence

», \ ‘
:“
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Cell duration time [min] Cell duration time [min]

Fig. 2: Frequencydistributions of cell duration time from the tobaccell tracking using VIL (red), 10 dBZ threshold at 2 km
height (blue), and 40 dBZ threshold at 2 km height (black) for (a) CLN and (b) POL cases. The legend displays the total
number of detected cells (Njor each tracking parameter utilized. Panel (a) also includeghe cell tracking using VIL for the

POL case shown as the red dashed lin€he time bin size for the frequency distribution plots is 5 min.
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(a) Original (no radar sampling) (b) NEXRAD 5-min VCP (c) Full elevation scan
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742 Figure 3: (a) Contoured frequency by distance (from tle radar) distribution of the VIL from the original, cartesian model grid
743  from the I-minute output over the 4hour analysis period;(b) difference between the VIL from the 5min VCP scan strategy and
744 (a); and (c) difference between the VIL from the Full scan strategy and (a). The VILs from the-fnin VCP and Full scan strategies
745 are estimated from the gridded reflectivity fields with 250 m horizontal and vertical spacing and-fninute output over the 4hour
746  period.
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749 Fig. 4: Height-versustime cross sections of the (aptal hydrometeor condensate content, (b) updraft, (@) the massweighted
750 mean diameter (Dn) for (c) rain and (d) hail, and the number density (N) for (e) rain and (f) hail, averaged for areas with
751 reflectivity > 40 dBZ of the selectecconvective cell from the CLN caseDashed line in each panel represents a 0°C isotherm
752 of domain-averaged temperature.
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Fig. 5: Time-height cross sections of &and radar reflectivity (top row), Zpr (middle row), and Kpp (bottom row), averaged for
areas with reflectivity > 40 dBZ for the selectedconvective cellfor (a,d,g) the model simulation truth, (b,e,h) simulated RHI
tracking strategy, and (c,f,i) simulated 5min volume scan strategy. The cell in this figure ithe same as that shown in the box
Fig. 4 and is from the CLN caseNote that the NEXRAD Sband frequency is assumed for the Bnin VCP simulation, while C-
band frequency is assumed for the model and RHI simulation. Therefore, thedt values in this figure include the frequency

dependencyDashed line in each panel represents a 0°C isotherm of domaaneraged temperature.
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