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Abstract. Wildfires and controlled hazard reduction burns produce smoke that contains pollutants including particulate matter. 45 

Particulate matter less than 2.5 µm in diameter (PM2.5) is harmful to human health, potentially causing cardiovascular and 

respiratory issues that can lead to premature deaths. PM2.5 levels depend on environmental conditions, fire behaviour and 

smoke dispersal patterns. It is important for forest-fire management agencies to understand and predict PM2.5 levels associated 

with a particular fire, so that pollution warnings can be sent to communities and/or hazard reduction burns can be timed to 

avoid the worst conditions for PM2.5 pollution. 50 

We modelled PM2.5, measured at air quality stations in NSW Australia, from 1500 historical individual fires as a function of 

fire and weather variables. Using VIIRS satellite hotspots, we identified days where one fire was burning within 150 km of 

one of 48 air quality station. We extracted ERA5 gridded weather data and fire area estimates from the hotspots for our 

modelling. We created random forest models for afternoon, night and morning PM2.5 to understand drivers of and predict 

PM2.5. 55 

Fire area and boundary layer height were important predictors across the models, with temperature, wind speed and relative 

humidity also important. There was a strong increase in PM2.5 modelled with decreasing distance, with a sharp increase when 

the fire was within 15 km. The models improve understanding of drivers of PM2.5 from individual fires and demonstrate a 

promising approach to PM2.5 model development. However, although the models predicted well overall, there were several 

large under-predictions of PM2.5 that mean further model development would be required for the models to be deployed 60 

operationally. 
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1 Introduction 75 

Smoke from forest fires produces pollutants harmful to human health, which have been estimated to cause ~300,000 deaths 

per year globally (Johnston et al., 2012). Particulates smaller than 2.5 µm (PM2.5) are of particular concern (Haikerwal et al., 

2016; Reid et al., 2016) and are criteria pollutants in the regulatory systems for air quality, for example, in the USA National 

Ambient Air Quality Standards and the Australian National Environment Protection (Ambient Air Quality) Measure.  

Hazard reduction burns (HRB; a.k.a prescribed or planned burns) and wildfires can both produce high levels of PM2.5. The 80 

impact of wildfire-produced PM2.5 on populations, including hospitalisations and premature deaths, varies yearly and spatially 

depending on wildfire occurrence (Matz et al., 2020; Jaffe et al., 2008), which is driven by droughts, high temperatures and 

strong winds. Health costs associated with the 2019-2020 wildfires in Australia was estimated to be around 2 billion dollars 

(Johnston et al., 2021). This fire season was associated with massive burnt area, including over 5 million ha burnt in NSW 

alone (Filkov et al., 2020). While wildfire ignitions and sizes are unpredictable, HRBs are planned, controlled fires conducted 85 

to reduce fuel and reduce the spread and intensity of future wildfires. There have been notable instances when HRBs caused 

poor air quality over large cities (Broome et al., 2016; He et al., 2016; Miller et al., 2019). Large areas of land can also be burnt 

under HRBs, for example, in Western Australia, 7 % of the forest is treated via HRBs each year (Bradshaw et al., 2018), while 

in Georgia, USA, 3-4 m ha is treated each year (Zeng et al., 2008). HRBs also typically occur closer to population centres 

(Price and Bradstock, 2013) and burn under calm, still weather conditions that may be more conducive to high pollution levels 90 

(Di Virgilio et al., 2018a). Borchers-Arriagada et al. (2021) found, by comparing population weighted PM2.5 exposure on days 

dominated by HRBs and wildfires, that HRBs in NSW Australia impose four-times higher health costs per hectare burnt than 

do wildfires. This may result from differences in fuel consumption rates (Price et al., in press), plume behaviour and/or weather. 

We need to better tools to help understand PM2.5 dispersal and impacts from individual fires. Improving the tools available to 

forest fire management agencies would improve pollution warnings and indicate changes that could be made to HRB strategies 95 

to reduce community PM2.5 exposure, e.g. identifying low pollution risk days to conduct HRBs. Attributes of an individual 

fire that could affect their PM2.5 output are their size, rate of heat and smoke production, proximity to human populations, and 

weather conditions including temperature, humidity, wind speed, wind direction, atmospheric stability and differences in 

weather between the HRB location and the PM2.5 monitor location. There is some knowledge about the influence of weather 

on pollution, but this has been investigated at a larger scale than individual fires. For example, it is known that days with HRBs 100 

are likely to have poorer air quality in Sydney when there is cool, stable conditions with light westerly winds (Di Virgilio et 

al., 2018a), while poor air quality, as measured by ozone levels, tends to occur with a high pressure system to the east of 

Sydney with light north-westerly winds and a sea-breeze (Hart et al., 2006). 

There are a variety of ways to improve our understanding PM2.5 from individual fires. Atmospheric dispersion models can 

predict the spread of particulates from fires based on modelled atmospheric dynamics and are routinely used in many countries 105 

to guide burning operations and community warnings for HRBs. However, while evaluations of such systems are rare, existing 
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evaluations indicate a poor to moderate agreement between predictions and observations (Yao et al., 2014; Saide et al., 2015), 

possibly because local effects of HRBs are poorly captured by the models.  

An alternative method is to relate air quality observations directly to real fires to calculate how far the smoke impact is likely 

to spread and under what conditions. This has been done using monitors stationed up to ~10 km from HRBs (Pearce et al., 110 

2012; Price and Forehead, 2021). Pearce et al. (2012) made 684 24-hour observations of PM2.5 by placing monitors around 55 

forest HRBs. They found that PM2.5 concentrations fell to near-background levels within 3 km of the fire perimeters. Price and 

Forehead (2021) made 5445 hourly observations of PM2.5 with a combination of fixed and mobile monitors around 18 forest 

HRBs. They also found that PM2.5 concentrations had largely fallen to background levels by 3 km but that this depended on 

weather conditions. One of the burns caused poor air quality at monitors more than 50 km away. These studies captured the 115 

local effects of the HRBs, but did not explain why HRBs occasionally cause impacts much further away.  

Deploying air quality monitors to wildfires is difficult due to the large size of wildfires, unpredictable ignition and spread and 

the safety risks of working near an active wildfire. However, large permanent air quality monitoring systems can be used to 

gather PM2.5 data for wildfires and HRBs, for example to NSW Air Quality Monitoring Network. Here, we use historical fire 

and air quality data to identify all of the occasions when a single fire was burning within 150 km of a monitor in the NSW Air 120 

Quality Monitoring Network from 2012 to 2021, and develop random forest models of PM2.5 concentrations at individual 

monitors as a function of fire area, distance and weather conditions. Our aims were: 

1) Improve understanding of the fire and weather conditions that influence smoke dispersal and PM2.5 levels. 
2) Develop a predictive model of PM2.5 output from forest individual fires, as a complement physical models, to 

improve warnings. 125 
3) Make inferences about potential changes in HRB burning protocols that could reduce PM2.5 impacts.  

2. Methods 

2.1 Fire Data 

Our study period was from February 2012 to September 2021 because this was when one of our fire data sets was available 

(see below). For the study period, we created a spatial dataset of forest fires that were actively burning within 150 km of air 130 

quality monitoring stations (AQS) maintained by the NSW Department of Planning, Industry and Environment (DPIE) (Fig. 

1). We assigned attributes of fire location, fire type (Hazard Reduction Burn (HRB) or Wildfire (WF)), date of fire activity 

and AQS name and location. Each fire had at least one active date and most burnt on several days. As a fire could be within a 

150 km buffer of multiple AQS, there was a separate row in our data for each fire and AQS combination. For our modelling, 

we used only cases where, for each AQS and day, only one fire was active within 150 km of the AQS. We did not analyse 135 

cases where multiple fires were burning on the same day near the same AQS as it was unclear which fire produced the smoke 

that reached the AQS. 

We relied on two data sources to identify fire locations, type and active dates: NSW fire history GIS polygons (NPWS, 2021), 

maintained by NSW National Parks and Wildlife Service (NPWS), and VIIRS SNPP hotspots, downloaded from NASA’s Fire 
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Information for Resource Management System (Schroeder et al., 2014; Nasa, 2021). VIIRS SNPP, which refers to the Visible 140 

Infrared Imaging Radiometer Suite - Suomi National Polar-orbiting Partnership, hotspots were available beginning 20 January 

2012. 

The fire history dataset is a spatial polygon dataset of the final burnt area of fires across NSW, which has attributes of fire 

identity (name and number), fire type (HRB or WF) and start and end dates. We did not rely solely on the fire history to identify 

fire locations and dates because initial inspection suggested some issues for our analysis. These included fires identifiable from 145 

VIIRS hotspots/images that were missing from the fire history; occasional errors in start and end date recording; the final fire 

polygon being the combination of separate fires that eventually merged; and the data identifying only fire start and end date, 

not whether a fire was actively burning on each day between those dates (e.g. fires may have extinguished then reignited on 

different days). Also, the data did not capture daily fire progression only final boundary, meaning the location of fire activity 

on the first day, perhaps a few hectares, is not well represented by the final fire polygon, perhaps tens or hundreds of thousands 150 

of hectares, which is particularly an issue for WF.   

We employed a process to map active fire dates and locations from clusters of VIIRS SNPP hotspots. We used VIIRS SNPP 

hotspots (from here “hotspots”) instead of MODIS as VIIRS are higher resolution (at nadir, 375 m vs. 1km for MODIS), thus 

can detect more hotspots per fire than MODIS, which reduces the chance that an active fire is missed (Schroeder et al., 2014). 

The process to create hotspot clusters for each day for each AQS was to: 155 

1. Extract all hotspots within 150 km of the AQS.  
2. Remove hotspots that were not in forest by removing hotspots with low foliage projective cover score (Gill et al., 

2017). We removed hotspots with foliage projective cover < 125.  
3. Buffer each hotspot by 2.5 km and dissolve overlapping buffers into a single polygon, thus creating hotspot cluster 

polygons (Fig. 2). 160 
4. Record the number and area of day and night hotspots in each cluster. Area of an individual hotspot was the VIIRS 

pixel width by height (i.e. “Scan” and “Track” attributes), which varies with scan angle, and the total area for a 
cluster was the sum of the individual hotspot areas. 

5. Remove clusters that did not have at least five day or night hotspots. This was our minimum threshold for fire 
activity, as we wanted to exclude small fires such as burning heaps on farmland that can be detected by VIIRS. We 165 
also tested three as a minimum threshold, which produced similar but less accurate models. 

6. Repeat process for each combination of date and AQS.  

Where a fire identified from the above process (a “VIIRS fire”) intersected a NPWS fire history polygon between its start and 

end date, we assigned the fire name, number and type (HRB or WF) to the VIIRS fire. If multiple VIIRS fires intersected the 

same fire history polygon, we merged them into a single fire with the same attributes for analysis. If a VIIRS fire intersected 170 

multiple fire history polygons, we assigned the attributes from the fire history polygon with the largest overlapping area. Fire 

history data were excluded from analysis if either the start or end date was still missing after all of the checks, or they had no 

matching intersecting VIIRS hotspots. If a VIIRS fire did not intersect a fire history polygon, we assigned the fire type based 

on date: from November to January (inclusive) were WF, all other months were HRB. For each fire identified we added 

attributes of distance and direction from AQS to fire centroid (Fig. 2), i.e. the arithmetic mean of the hotspot coordinates, with 175 

a separate row for each fire and AQS combination (within 150 km).  
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Figure 1: Map of study area (New South Wales, Australia) showing air quality monitoring stations (AQS, n=48), coloured by year 
of first PM2.5 record. Grey crosses are the locations of all fires used in analysis, with one cross per-fire per-day. 150 km buffer shown 180 
around Orange AQS as example (all AQS had 150 km buffers for analysis). 
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Figure 2: Example of creating clusters from VIIRS hotspots. Black are VIIRS SNPP hotspots, red asterisk is fire centroid, i.e. the 185 
arithmetic mean of the hotspot coordinates. The image has two separate fires. Each hotspot is buffered by 2.5 km, all overlapping 
buffers merged, and hotspots assigned to each separate buffer. Two separate fires are created here because of distinct fires where 
buffers don't overlap, i.e. greater than 2 buffer widths (5 km) apart. Fire 1 (grey) has > 50 hotspots, fire 2 (blue) has 5 hotspots. Fire 
area was calculated from hotspots pixel size, not buffer size. 

2.2 PM2.5 Data 190 

We modelled PM2.5, particulate matter < 2.5 µm diameter as micrograms per cubic metre of air (µgm-3), as a function of several 

environmental predictors. We downloaded all available PM2.5 data (hourly averages) from the NSW DPIE for the period 2012 

– 2021, which comprised of 48 AQS. Data are available free online at https://data.airquality.nsw.gov.au/docs/index.html. We 

calculated mean PM2.5 for each AQS for three six-hour time-periods: 

1. Afternoon: 1400 to 1900 AEST inclusive. This period covered peak burning conditions in the afternoon and after 195 
sunset, although sunset and fire ignition times varied. 

2. Night: 2100 to 0200 AEST inclusive. Covered the night period starting on the same day as the fire. 
3. Morning: 0500 to 1000 AEST inclusive, next day after fire day. Captured early next morning conditions after the 

main periods of fire activity are likely to have ended, although some fires may have burnt through the night and 
smoke may still have lingered.  200 

We chose these times to represent different periods in the daily cycle that may have distinct smoke, weather and fire behaviour 

characteristics. All fires identified in the hotspot analysis were matched to AQS summary PM2.5 for active days, when the fire 

was within 150 km. Not all AQS had records for all years, as some were not operational until later in the study period (Fig. 1).  

2.3 Predictor variables 
We sampled hourly weather variables at each AQS and each fire centroid from ERA5 weather grids, which is an atmospheric 205 

reanalysis product with multiple weather variables and atmospheric levels available at 30 km spatial and hourly temporal 
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resolution (Hersbach, 2021b, a) (Table 1). We calculated the mean weather values for both surface and upper atmospheric 

conditions (Table 1) for the afternoon, night and morning periods as described for PM2.5. We calculated additional variables 

describing the spatial relationship between the fire and each AQS. We used the AQS to fire direction and wind direction to 

calculate the percent of time-period where surface wind was blowing directly to the AQS, with directly meaning ±22.5 degrees 210 

of the AQS to fire bearing. We also calculated the sum of the hotspot day and night fire area as a predictor. We included the 

month of the active fire date in the modelling to account for account for seasonal variation in background PM2.5. Month was 

represented a cyclic variable, where the sine and cosine of the month (1-12) were both included in modelling. We included the 

latitude and longitude of the AQS to account for spatial dependence, and fire type as a factor variable to account for differences 

not captured by the weather/fire area variables. We also experimented with making separate models for each fire type (HRB 215 

model and WF model) for each time period, but found that resulting accuracy statistics on the training and test sets were 

similar, so instead just used one model for each time period including fire type as a factor variable.  
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Table 1: Predictor variables used for random forest modelling. Letters mean that for the random forest modelling, weather variables 240 
were sampled at the fire (F), at the AQS (A) or both (FA). MSLP and wind speed (850 hpa) at the AQS were excluded due to being 
highly correlated with the same variable at the fire. 

Type Name Units Details 

 

 

 

 

 

 

 

 

ERA 5 

weather 

 

PBLH – Planetary boundary 

Layer Height (FA) 

metres Mean height of planetary boundary layer from 

surface, from ERA 5 grids. 

MSLP – Mean Sea Level 

Pressure (F) 

hectopascal Mean sea level pressure of atmosphere on 

surface per unit area from ERA 5 grids. 

WS – Wind speed (FA) km h-1 Mean wind speed 10 m above surface calculated 

from U and V ERA5 wind component variables. 

RH – Relative humidity 

(FA) 

% Mean relative humidity calculated from 

temperature and dew-point ERA5 variables. 

Temperature (FA) Celsius Mean temperature 2 m above surface sampled 

from ERA5 grids. 

WS 850 hpa – Wind speed 

at 850 hpa (F) 

km h-1 Mean wind speed at 850 hpa calculated from U 

and V ERA5 pressure-levels wind component 

variables. 

Direct wind (FA) % Percent of hours during period where 10 m wind 

was blowing directly toward AQS, i.e. within 

22.5 degree arc either side. 

 

Fire 

 

Fire area hectares Hectares calculated from VIIRS hotspot pixel 

size (scan*track). Sum of day and night hectares. 

Fire Type WF or HRB Wildfire or hazard reduction burn 

 

Temporal 

 

Month 

sine, cosine Month included account for seasonal variation in 

background PM2.5. Included as cyclic variable: 

cosine and sine of integer month as separate 

variables. 

 

 

Geographic 

Distance km Kilometres from fire centroid, i.e. geometric 

centre of hotspots in a cluster, to the AQS 

AQS coordinates Latitude, 

Longitude 

Coordinates of air quality monitoring stations, to 

account for spatial dependence. 
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2.4 Random Forests Modelling 

Our data consisted of three tables (afternoon, night and morning data tables) each of 11187 rows with unique combinations of 245 

fire, AQS and date. We refer to these combinations as “fire-days”. For each fire, there could be multiple active dates and each 

fire could be within 150 km of multiple AQS. There were 48 AQS, 1429 dates and 1546 unique fire IDs in our dataset. There 

were 1883 different combinations of fire and date consisting of 727 fire-days that had VIIRS hotspots and a fire history record, 

and 1156 fire-days that had only VIIRS hotspots. The fire-days from VIIRS hotspots only were on average smaller than the 

fire-days with a matching NPWS fire history record (304 ha vs 1176 ha respectively). 1182 fire-days were from HRBs (mean 250 

area = 346 ha) and 701 were from WFs (mean area = 1137 ha). Each fire was observed at a minimum of one AQS, with a mean 

of six AQS and maximum of 35 AQS associated with a single fire. 

We trained a random forest model using the “ranger” package in R (Wright and Ziegler, 2017). We split our dataset into 

training (75 %) and test (25 %) sets for analysis, stratified by fire type so that an even number of HRBs and WFs appeared 

within each of the sets. We trained the models using the training set data and used out-of-bag (OOB) predictions vs observations 255 

for model accuracy checks. We used the model to predict to the test set to calculate test set accuracy statistics. Our accuracy 

statistics were the correlation coefficient (r), normalised mean error (NME) and normalised mean bias (NMB), as 

recommended in Emery et al. (2017) for assessing model performance. We ran three different models, one for each analysis 

period: 1) afternoon mean PM2.5, 2) night mean PM2.5, 3) morning mean PM2.5. Predictor variables were the weather variables 

in Table 1 sampled at both the AQS centroid and fire centroid, distance, fire area, month and AQS coordinates. As highly 260 

correlated variables can introduce bias into random forests variable importance calculations (Strobl et al., 2008), we removed 

variables from analysis where correlation was above 0.8: MSLP at AQS and wind speed 850 hpa at AQS were excluded, each 

of which we correlated with the version sampled at the fire.  

We assessed variable “permutation” importance using in the ranger package. Permutation importance is derived from a process 

where reduction in model accuracy on OOB predictions is calculated after randomly shuffling values for each variable, 265 

calculated for all trees and variables (Wright et al., 2016). We assessed predictor variable effects using partial dependence 

plots calculated in the “pdp” package in R (Greenwell, 2017), and by creating prediction plots where PM2.5 was predicted with 

all variables held at mean values except two variables of interest, which were each assigned three different levels to illustrate 

their effects. We also conducted a short descriptive analysis, using satellite images and hourly PM2.5 of large outliers in the 

models to understand potential reasons for inaccurate predictions. This is included as Appendix A. 270 

2.5 Limitations 

There are several limitations to our methods that should be considered when interpreting the results. Our process to identify 

active fires from VIIRS hotspots excluded hotspots that were outside the 150 km AQS buffer, even if they were part of a fire 

that straddled the buffer edge. There may be occasions where smoke from hotspots, and entire fires, from > 150 km reached 
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an AQS and influenced PM2.5, e.g. large WFs during the 2019-20 “Black Summer”. The effect of such fires was not captured 275 

in our methods.  

We set a minimum fire activity threshold of five hotspots (day or night). This may mean that days recorded as having only one 

fire may have had other smaller fires in the area that may have produced smoke that affected PM2.5. Relying on VIIRS had the 

advantage of being able to better detect when a fire was active, but our process may not have captured all fires on any given 

day due to cloud cover impeding VIIRS hotspot detection. This may be a form of bias in our analysis as the cloudiest days 280 

were selected against. Additionally, VIIRS SNPP hotspots are acquired early afternoon and early morning, meaning that total 

burnt area on a day is not measured, only active area at the time of VIIRs acquisitions. Fire area, or the number of fires, may 

have been underestimated if cloud was impeding hotspot detection. Our decision to analyse only days with one fire, to better 

understand distance and direction variables, means that there is a selection bias against the most active fire days (i.e. days with 

multiple fires). This may include the worst WF days, where multiple fires are more likely to ignite, particularly during 2019-285 

20. For days that are most suitable for HRBs, authorities are more likely to ignite multiple HRBs. Such days, which could 

include the worst pollution events, are not included in our analysis, but they are currently part of a separate research project. 

3. Results 

3.1 Variable summaries 

Plots of the distribution of PM2.5 and predictor variables are shown in Figure 3. PM2.5 was skewed toward low values 290 

(afternoon, night, morning mean = 8.1, 10.8, 10 µgm-3), with occasional very smoky periods (afternoon, night, morning 

maximum = 294.2, 394.8, 506.2 µgm-3). Most fires were between 75 and 150 km from the monitoring stations, and only 20 % 

of fires had their closest AQS within 50 km. Fire area derived from VIIRS hotspots was heavily skewed toward lower values 

(mean = 640 ha, 90thcentile = 993 ha). Maximum fire area was 56178 ha, < 1 % of fires (all WF) were over 10000 ha and 90 

% were less than 1000 ha. 295 

Afternoon conditions were generally hotter, less humid and had higher PBLH at both fire and AQS locations than were nights 

and mornings. Between WF and HRB, WF afternoons were hotter, drier and had higher PBLH (Fig. 3). MSLP was similar 

between afternoon, night and morning, but skewed lower for WF compared to HRB. The wind direction variables were 

clustered around zero, indicating that most of the time wind at the fire and at the AQS was not moving smoke directly from 

the fire to the AQS (Fig. 3). For example, only 5 % of rows in the afternoon data indicated that wind sampled at the AQS was 300 

coming directly from the fire for at least 3 of the 6 hours (50%). For wind sampled at the fire during the afternoon, this figure 

was 11 %.  
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Figure 3: Distribution of PM2.5 and predictor variables used in random forest modelling, excluding latitude, longitude, fire type and 
month. Distance and fire area are daily variables, so are identical for afternoon, night and morning model datasets. Distributions 305 
are from unique fire-day-AQS combinations. af=afternoon,  ni=night, mo=morning. AQS=Air Quality Station, RH=Relative 
Humidity, WS=Wind Speed, PBLH =Planetary Boundary Layer Height, MSLP=Mean Sea Level Pressure. 

3.2 Highest PM2.5 days 

Figure 4 shows the 20 highest mean PM2.5 values for each six-hour time-period for HRBs and WFs. The top PM2.5 values were 

much greater for WFs than for HRBs in the afternoon, night and morning (~150 to 200 µgm-3 greater for each). >= 80 % of 310 

the top 20 PM2.5 values for WF for afternoon, morning and night were associated with the 2019-2020 wildfires in NSW, many 

with the Gosper’s Mountain wildfire in the Blue Mountains (Boer et al., 2020).  
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The top seven afternoon peaks for WF were > 100 µgm-3 (max= 294 µgm-3) but only two of the afternoon HRB peaks were > 

100 µgm-3
. In the night and morning, there were fewer values > 100 µgm-3, but larger maximums were record for HRB and 

WF for each period (compared to the afternoon). For each rank position, WF values were greater than HRB values, except in 315 

the night model where from positions 3 to 20, the HRB values were higher. More information, including satellite images, 

weather plots and descriptions, on the conditions surrounding worst PM2.5 events for each time period for HRBs and WFs is 

included in Appendix A.  

 

 320 
Figure 4: Highest mean PM2.5 values for each six-hour time-period for HRBs and WFs. Only the top values for each date is shown. 
This means if the second highest value was over 100 for a particular date at another AQS, it is not included here. Dashed line 
indicates 50 µgm-3 for reference between the three plots. Note that our data only includes situations with one fire within 150 km of 
AQS for a particular date. 

https://doi.org/10.5194/egusphere-2022-345
Preprint. Discussion started: 10 June 2022
c© Author(s) 2022. CC BY 4.0 License.



14 
 

3.3 Model results 325 

Fire area, PBLH (fire and AQS), temperature and RH at the fire were among the most important variables in the three models 

(Fig. 5). Some variables were among the most important in only one or two of the models: wind speed at the fire was the 

second most important in the night model, but eighth most important in the afternoon model. The direct wind variables, distance 

to fire, AQS coordinates, MSLP, month and fire type were all of moderate to lower permutation importance in each model. 

Partial plots (Fig. 6) indicated that for all models, there was a sharp increase in predicted PM2.5 when the AQS was below ~ 330 

20 km from a fire, with the morning model displaying the sharpest rise in PM2.5 as the distance decreased. This effect is despite 

distance being of middle to lower permutation importance (Fig. 5). Partial plots indicated PM2.5 increased as fire area increased, 

particularly in the 0 to 2500 ha range, which is where most training observations were situated (Fig. 3). There was a very large 

PM2.5 increase above 10000 ha in the morning model, although there is uncertainty here due to small number of training 

observations > 10000 ha (Fig. 3). The shape of the PBLH effect differed for each model between the fire PBLH and AQS 335 

PBLH. At the AQS, there was a strong negative effect of PBLH (lower PBLH = higher PM2.5), particularly in the night and 

morning models. At the fire, each model had peak PM2.5 at low and high values of PBLH. For the night and morning models, 

PM2.5 peaked when fire PBLH was < ~ 200 m, with a smaller rise > ~ 800 m. For the afternoon model, the largest peak was 

when fire PBLH was high (> ~1500 m), with a smaller rise when < ~ 500 m. RH at the fire had an almost threshold effect in 

the morning and night models, where predicted PM2.5 below ~ 50 % RH was much higher than when RH was above 50 %, 340 

particularly for the morning model. For wind speed, effects varied between the fire and AQS, and time period: lower wind 

speed at the AQS was associated with higher PM2.5 in all models, but at the fire, low and high (particularly for the night model) 

wind speeds were associated with higher PM2.5. 

We calculated model accuracy statistics for the training set (OOB predictions) and the independent test set, and for HRB and 

WF subsets of each set. From the combined statistics, all correlations between predictions and observations (r) for training and 345 

test sets were > 0.7, except for test set predictions for the night model where r was 0.58 (Table 1, Fig. 7). The morning model 

produced the higher r on the training set and test sets (0.8 and 0.79). For the statistics by fire type, r was generally higher for 

WF than for HRB. For WF, r was >= 0.8 on the training set (max. = 0.86 for morning) and on the test set r was >= 0.75 expect 

for the night model, where r was 0.52. For HRBs, r was 0.58 to 0.63 on the training set, and 0.66 to 0.69 on the test set. NME 

for all combinations of training/test set and fire type ranged between 32 % and 40 %, but the best result was for the WF subset 350 

from the afternoon model, where NME was 33 % and 32.3 % for the training and test sets. The NBE error indicated that in 

generally there was a slight over-prediction bias that ranged from ~1 % to ~6 %, although the afternoon model had slight 

under-prediction bias on the test set.  

The models had large under-predictions for the largest PM2.5 values, but also some large over predictions (Fig. 7). NBE 

calculated on data that included only where observed PM2.5 was >= 20 was -32.5 % (training) and -34.2 % (test) for the 355 

afternoon model, -57.8 % and -51.9 % in the night model, and -24.8 % and -24.1 % in the morning model, indicating under 

prediction bias for the larger PM2.5 values. For predictions to the test set, in the afternoon model there were 13 observations 
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that were under-predicted by at least 30 µgm-3, 8 of which were WFs (6 of the 8 were from 2019-2020 bushfires). The maximum 

over-prediction was by 30 µgm-3. For the night model, there were 20 occasions where the model under-predicted to the test set 

by at least 30 µgm-3 (8 were WF and 12 were HRB), with the biggest under-prediction by 378 µgm-3 for a 2019-2020 WF (see 360 

Appendix A Fig. A1). The maximum over-prediction was by 57 µgm-3. The morning model had 15 under-predictions on the 

test set by at least 30 µgm-3, with the largest under-prediction by 74 µgm-3. The were 4 over-predictions by at least 30 µgm-3, 

with a maximum over-prediction by of 158 µgm-3. 

We explore the influence of distance and some selected variables with a series of prediction plots (Fig. 8). PM2.5 was predicted 

to increase substantially with decreasing distance within the first 15 km of the fire in all combinations fire area, PBLH, RH 365 

and temperature in Figure 8. Beyond ~ 30 km there was minimal to no effect of distance, except in the morning model with 

large fire area and low PBLH at the AQS (Fig. 8a). Note that these conditions were rare in the training data (Fig. 3). The effect 

of temperature at the fire differed between models, such that as temperate increased from 10 to 25 C, PM2.5 was predicted to 

decrease in the morning model but increase in the afternoon model. The plots also suggest there is generally a small difference 

between predicted mean PM2.5 for WF and HRB for each model once the other predictors including fire area are controlled 370 

for.  
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Figure 5: Variable importance for each model. A common x scale was assigned for clarity, which is the % of the total permutation 

importance attributable to each individual variable (i.e. importance/sum(importance)*100). 375 
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Figure 6: Partial dependence plots for the afternoon (red), night (blue) and morning (black) models. Dotted parts of lines are 380 
minimum to 5thcentile and 95thcentile to maximum values for each predictor variable, calculated from the training data. Where 
dotted parts are long, this indicates a large range of values with small number of observed points for model training.  

 

 

 385 
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Table 1: Accuracy statistics from random forest modelling for training and test sets (bold in brackets). Training set predictions are 390 
on out of bag samples during model fitting, test set predictions made to independent test set. Overall statistics, along with statistics 
on HRB and WF portions of the data are shown. r = pearson correlation, NME = Normalised mean error, NBE = Normalised bias 
error (Emery et al., 2017). 

  r NME % NBE % 

Combined 

Afternoon 0.75 (0.75) 35.8 (35.3) 1.37 (-1.5) 
Night  0.71 (0.58) 37.1 (38)  1.65 (1.63)  

Morning  0.8 (0.79) 37.6 (36.2)  2.15 (4.93)  

HRB 

Afternoon 0.58 (0.69) 38.1 (37.9) 1.76 (-0.15) 
Night  0.63 (0.66) 37.9 (37)  0.72 (1.1)  

Morning  0.59 (0.69) 38.5 (36.7)  1.8 (5.68)  

WF 
Afternoon  0.8 (0.75) 33 (32.3) 0.92 (-3.05) 

Night  0.8 (0.52) 35.4 (39.9)  3.52 (2.71)  
Morning  0.86 (0.83) 36.3 (35.4)  2.7 (3.86)  
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Figure 7: Predictions of each model to test set, with points coloured by fire type. Pearson correlation of predictions to observations 395 
by fire type shown in text (R). 
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Figure 8: Prediction effects plots of mean PM2.5. Colours are time periods, line types are fire types and grid squares are combinations 400 
of fire area and planetary boundary layer height at the monitoring station (a), and relative humidity and temperature at the fire (b).  

4. Discussion 
Using empirical fire and air quality monitoring station data, we identified important drivers of particulate pollution associated 

with individual forest fires. The results are important in the context of our first research aim, which was to improve 

understanding of the fire and weather conditions that influence smoke dispersal and PM2.5 levels. In our models, fire area, 405 

PBLH, relative humidity and temperature were all important drivers of PM2.5 from individual fires. The importance of these 

variables at the fire or at the AQS varied between models. Distance to fire generally had low permutation importance, possibly 
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due to the low number of AQS in the 0 to 50 km range (Fig. 3, Fig. 6). However, partial plots and prediction plots indicated a 

large influence on model predictions. For example, partial and prediction plots suggested that within 15 km of a fire, PM2.5 

levels rose steeply with decreasing distance. The effect of distance > 50 km was negligible in most cases, suggesting other 410 

factors are more important drivers at such distances, although under certain conditions there could be raised PM2.5 at long 

distances, such as with higher fire area and high PBLH in the morning model (Fig. 8). Note these conditions are likely 

associated with the worst wildfire conditions, given that high PBLH at the fire during the morning was rare and only associated 

with WF (Fig. 3). Based on Reisen et al. (2018), a 1000 ha prescribed burn will emit 160 tonnes of PM2.5, enough to fill to 

exceedance level a cylinder capped by a planetary boundary layer of 500m to a radius of 64 km. This means there are sufficient 415 

particulates available for a distance effect to occur should the weather conditions suit. Other authors have found similar 

variables to be important in modelling PM2.5, including fire size and distance when PM2.5 was measured within ~10 km of 

HRBs (Pearce et al., 2012; Price and Forehead, 2021). PBLH was also a consistent predictor of PM2.5 levels at multiple stations 

in Sydney during HRB days (Di Virgilio et al., 2018b). However, studies such as these have modelled PM2.5 over smaller 

scales than we did here or did not attempt to link individual fires to PM2.5 records. Our data included PM2.5 measurements up 420 

to 150 km from a fire, and we built PM2.5 models using a much larger dataset of fires and PM2.5 records, which here were from 

pre-installed permanent AQS. Therefore, the results from our study are more applicable to the individual fire and PM2.5 

relationship across large geographical areas than other studies.  

Our models suggest the area potentially affected by PM2.5 from fires is larger than in Price and Forehead (2021), where raised 

PM2.5 levels were mostly modelled to be within 5 km of HRBs. Here, our models suggested raised PM2.5 levels mostly within 425 

15 km of a fire. Our dataset includes a larger set of fires and includes WFs, which are likely to produce smoke that travels 

further. In some individual cases in our raw data, fires caused high PM2.5 levels > 100 km away (e.g. Appendix A Fig A3). 

Although relatively sparse, analysis using the more remote AQS network is more suited to detecting these longer-range effects 

than when monitors are placed only close to a fire. 

Our second aim was to develop a predictive model of PM2.5 output from individual forest fires, as a complement to physical 430 

models, to improve warnings. There was some success here: r on the test sets indicated moderate to good agreement between 

predictions and observations: 0.75, 0.58 and 0.79 for the afternoon, night and morning models respectively. The models fit 

better on the WF portion of the training data (r 0.8 to 0.86) than for HRBs (r 0.58 to 0.63). On the test data for the afternoon 

and morning, correlations were higher for WF than for HRB, but lower for WF than for HRB for the night model. The generally 

better results for WF suggests the models may be more applicable to WFs, e.g. for the issuance of pollution warnings due to 435 

WF smoke, rather than for assisting with HRB planning. An important consideration for using the models for prediction is 

their accuracy on the largest PM2.5 observations. Events with very high PM2.5 have the largest health impacts and are therefore 

most important to predict, for example to correctly issue warnings or defer HRBs due to high pollution risk. Our results suggest 

that, while some predictions for the largest PM2.5 observations were relatively accurate, the models did not consistently predict 

larger PM2.5 events, so may not be suitable for as an operational prediction tool without further development.  440 
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There are several possible reasons for the biggest outliers and limited accuracy. The AQS network is relatively sparse, being 

concentrated in greater Sydney, making the distance between any fire and AQS usually large. The mean distance to the closest 

AQS to each of our fires was 87 km (10thcentile = 31 km). This may partly explain why we did not detect wind direction 

effects. Price et al. (2012) also did not find significant effects of wind direction effect when modelling PM2.5 in relation to 

MODIS hotspots at similarly broad scales around Sydney and Perth. In contrast, two empirical studies that did detect clear 445 

wind direction effects from HRBs, Pearce et al. (2012) and Price and Forehead (2021), placed PM2.5 monitors close to HRBs, 

mostly within ~ 10 km. The large distances in our data mean smoke was subject to broader weather circulation patterns before 

reaching an AQS, such as shown in Appendix A. Broader circulation patterns in the Sydney basin can include westerly terrain-

related drainage flows, sea breezes and their interaction (Jiang et al., 2017). The large distances and sparse network also mean 

there was the low chance of any particular AQS being downwind from a fire. This is indicated by the wind direction variables 450 

being clustered around zero (i.e. smoke not blowing from fire to AQS, see Fig. 3) and in cases such as Appendix A Fig. A1, 

where only two from > 20 AQS detected the smoke from a WF. It may therefore be that the models were mostly optimising 

for non-smoke related PM2.5, so it is not surprising that peak events are under-predicted. Our approach is promising, however, 

and more data capturing single fires burning near monitoring stations is likely required to produce better models. More data 

could be gathered from the same AQS for another analysis in the future, or by increasing the density of PM2.5 monitors, either 455 

through installing more permanent AQS or via a short-term project that installs a network temporary AQS in a selected fire 

prone area (e.g. Blue Mountains) in times of high-expected fire activity. 

Some of the variables had interesting non-linear affects. For example, wind speed at the fire during the afternoon was associated 

with high PM2.5 both when wind speed was < ~ 7 km h-1 and > ~ 15 km h-1 (Fig. 6). Such relationship are due to complex 

factors. For example, it may be that low wind speeds increase PM2.5, because previously emitted smoke is more likely to linger, 460 

whereas high wind speeds mean that fires are more intense and produce more smoke and particulates. In other words, low 

wind speed increases smoke concentration at the receiver and high wind speed increases smoke production. The low wind 

speed effect may be more associated with HRBs, which are conducted in calm weather, and the high wind speed effect 

associated with WFs. Similar non-linear relationships also exist for other variables, to varying degrees, including PBLH, RH, 

temperature and MSLP (Fig. 6). Some variables differed in their effects substantially between the fire and AQS. For example, 465 

afternoon PBLH at the fire showed increases in PM2.5 at low and high levels, but at the AQS it was only low PBLH that 

increased PM2.5. The PBLH effect at the fire may be similar to wind: low PBLH traps smoke but high PBLH is associated with 

more active fire behaviour and greater smoke production. Note that there is uncertainty about the strength and directions of 

the effects at the extremes of the predictor variables, given the lower proportion of observations for model training, as indicated 

in Figure 6.  470 

Our models predict only small differences between PM2.5 depending on the fire type variable (HRB or WF), which also had 

low permutation importance in all three models. It is likely that the weather variables and fire area variables included in our 

model captured most the differences between HRBs and WFs (e.g. WF on average are larger and burn in hotter windier 

weather), making the fire type variable mostly redundant in the models. In this case, the models suggest that after accounting 
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for weather and fire size, there are no clear differences in WFs and HRBs in terms of PM2.5 output. However, other studies 475 

have indicated that fundamental differences may exist as WFs inject smoke higher into the atmosphere and consume more fuel 

per hectare than HRBs (Price et al., 2022; Price et al., 2018; Volkova et al., 2014), thus WF and HRB differences need more 

investigation. 

Our third aim was to make inferences about potential changes in HRB protocols that could reduce PM2.5 impacts. The 

models indicate the potential combinations of environmental and fire conditions where PM2.5 is likely to be higher and fire 480 

managers must carefully consider whether to undertake HRBs due to PM2.5 pollution risk. For example, a large HRB < 15 km 

from a town where PBLH < 250 m during the night and morning (at both fire and receiver site) and < 1000 m during the 

afternoon. When HRBs are > 50 km from a town, high PM2.5 impact is much less likely, although certainly still possible 

(Appendix A). In addition, fire area should be a strong consideration as PM2.5 is predicted to increase as fire area increases 

between 0 and 2500 hectares, most steeply between 1500 and 2500 ha, although there is uncertainty at larger fire area because 485 

few fires in our data were > 2500 ha (most were < 1000 ha). Note that our fire areas may be an underestimate of total HRB 

size, as these areas are calculated from VIIRS hotspots, thus is based on active fire area at VIIRS overpass time (2 per day), 

not total area burnt in a day. 

While the models indicate that certain combinations of weather increase PM2.5, this must be weighed with the fact that aspects 

of HRB implementation cannot always be changed. For example, HRBs are already conducted within the narrow set of weather 490 

conditions that allow for ignition and controllable fire spread, and often need to be conducted close to populations to have the 

greatest house protection effect (Clarke et al., 2019). Due to the complex effects and lower predictive accuracy for HRBs, it is 

difficult to make precise predictions from the models for individual fires. A more detailed model would be required to identify 

the weather conditions that would both allow a HRB to be safely conducted and also for PM2.5 to be low. An assessment that 

combines predictions from our model of lower risk PM2.5 days with a model that predicts occurrence of within-prescription 495 

HRB burning days (Clarke et al., 2019) may be useful to assess the number of overlapping days, i.e. HRB days with low PM2.5 

risk. The effects of different burning strategies, such as breaking a large burn up into multiple blocks, are unknown and could 

potentially worsen PM2.5. Here we did not assess different strategies, and only analysed cases where one fire was burning at a 

time, not when multiple fires were burning around the same AQS at once. This is a significant limitation of the study, as the 

smokiest HRB days likely occur when multiple fires are burning at once and/or fires burn for longer periods. Price and 500 

Forehead (2021) also suggested overnight burning may have led to the largest PM2.5 exceedances that they recorded using low 

cost monitors near HRBs. Pearce et al. (2012) found burn duration to be important predictor from work also monitoring PM2.5 

close to HRBs. The effect of total fire load in a region, i.e. total area of all fires, and regional weather conditions is currently 

the subject of separate research. 
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5. Conclusion  505 

Understanding how individual fires, both wildfires and hazard reduction burns, influence ambient PM2.5 concentrations is 

important to allow for proper risk analysis, burn scheduling and issuance of warnings. Our models provide important insights 

into the influence of weather and fire variables on PM2.5 concentration from individual fires. We found that fire area, PBLH, 

temperature and RH all have strong influences, with the effects of the variables varying depending on whether it is measured 

at the fire site or the receiver location (here, the AQS). The models improve our understanding and may have a place during 510 

operational predictions. However, accuracy is similar to existing models, so could be used as a complement. Further 

development to improve accuracy would benefit operational deployment of the models, particularly given the lower 

correlations between observations and predictions for HRBs. However, our approach is promising and would likely produce 

better models with a larger set of data, where more cases of single fires near AQS could be found. Increasing the density of 

PM2.5 monitors (permanent or temporary during fire seasons) would also provide better data to improve the resulting models. 515 

Producing broader scale models of regional level PM2.5 from regional level fire and weather may be a useful next step to 

produce a predictive PM2.5 model for operational use.  
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6. Appendix A 
This appendix contains case studies of large PM2.5 exceedance events present in the data used for modelling in the main text. 

The purpose is to detail specific events and highlight factors that may have influenced PM2.5 patterns across the different AQS. 

The appendix is organised as seven panel figure of seven different events that each have images and a description. The events 540 

selected are the six highest mean 6-hour values from the combinations of fire type (WF, HRB) and period (afternoon, evening, 

morning), and also the second highest value for afternoon WF, which is included to highlight interesting coastal wind 

behaviour. Note that the values used in modelling are from AQS data for which only one fire was active within 150 km of the 

AQS for that day. Higher values were recorded on days with multiple fires, but these are not analysed in this paper. Each figure 

contains:  545 

• Panel (a) in each figure has a background Himawari 8 satellite image for one single hour (time in black text at top) 
during the relevant time period, with the fire centroid also indicated by an orange circle and general fire area in blue 
polygon. The background image is overlaid with wind speed (red numbers and red arrow length) and wind direction 
(red arrow direction) from Bureau of Meteorology weather stations and PM2.5 recorded at all AQS within the image 
extent at that hour (black circles and white text, larger PM2.5 value means large circle). The AQS with the highest 550 
mean six-hour value is indicated by red star (same AQS as general location map). AQS that had multiple fires 
nearby are not included. Note one extra Himawari image is included for WF night to aid in the description (panel e). 
Himawari images are provided by Japan Aerospace Exploration Agency (JAXA) and were downloaded the JAXA 
P-Tree System (https://www.eorc.jaxa.jp/ptree/terms.html). 

• Panel (b) in each figure is a map of the general fire location, represented by an orange circle around the fire 555 
centroid, with circles representing AQS locations coloured by their mean PM2.5 value for that six-hour period. The 
highest station values are indicated by the red text and red star.  

• Panels (c) and (d) in each figure are 10 m and 700 hpa gridded wind speed and direction for the same hour as the 
Himawari image, sampled from ERA5 gridded reanalysis data. Black arrows indicate wind speed and direction, 
with longer/larger arrows indicating higher wind speed. The orange fire circle is also in these images for reference. 560 
Black solid line is the Australian coastline.  
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