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Abstract. Wildfires and controlled hazard reduction burns produce smoke that contains pollutants including particulate matter. 45 

Particulate matter less than 2.5 µm in diameter (PM2.5) is harmful to human health, potentially causing cardiovascular and 

respiratory issues that can lead to premature deaths. PM2.5 levels depend on environmental conditions, fire behaviour and 

smoke dispersal patterns. Fire management agencies need to understand and predict PM2.5 levels associated with a particular 

fire so that pollution warnings can be sent to communities and/or hazard reduction burns can be timed to avoid the worst 

conditions for PM2.5 pollution. 50 

We modelled PM2.5, measured at air quality stations in New South Wales (Australia) from ~1400 days where individual fires 

were burning near air quality stations, as a function of fire and weather variables. Using VIIRS satellite hotspots, we identified 

days where one fire was burning within 150 km of at least one of 48 air quality stations. We extracted ERA5 gridded weather 

data and daily active fire area estimates from the hotspots for our modelling. We created random forest models for afternoon, 

night and morning PM2.5 levels to understand drivers of and predict PM2.5. 55 

Fire area and boundary layer height were important predictors across the models, with temperature, wind speed and relative 

humidity also important. There was a strong increase in PM2.5 with decreasing distance, with a sharp increase when the fire 

was within 20 km. The models improve our understanding of the drivers of PM2.5 from individual fires and demonstrate a 

promising approach to PM2.5 model development. However, although the models predicted well overall, there were several 

large under-predictions of PM2.5 that mean further model development would be required for the models to be deployed 60 

operationally. 
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1 Introduction 75 

Smoke from forest fires produces pollutants harmful to human health, which have been linked to tens or hundreds of thousands 

of deaths per year globally (Chen et al., 2021; Johnston et al., 2012). Particulates smaller than 2.5 µm, i.e. PM2.5 measured as 

micrograms per cubic metre of air (µgm-3), are of particular concern (Haikerwal et al., 2016; Reid et al., 2016). PM2.5 is a 

criteria pollutant in regulatory systems for air quality, for example, in the USA National Ambient Air Quality Standards and 

the Australian National Environment Protection (Ambient Air Quality) Measure.  80 

Hazard reduction burns (HRB; a.k.a prescribed or planned burns) and wildfires can both produce high levels of PM2.5. The 

impact of wildfire-produced PM2.5 on populations, including hospitalisations and premature deaths, varies yearly and spatially 

depending on wildfire occurrence (Matz et al., 2020; Jaffe et al., 2008), which is driven by droughts, high temperatures and 

strong winds. Health costs associated with the 2019-2020 wildfires in eastern Australia were estimated to be around 2 billion 

dollars (Johnston et al., 2021). Massive areas burnt, including over 5 million ha burnt in the state of New South Wales alone 85 

(Filkov et al., 2020), predominantly in eucalypt forests in the mountains and coastal areas between 28 and 38 degrees south of 

the equator. While wildfire ignitions and sizes are unpredictable, HRBs are controlled fires that are conducted to limit the 

spread and intensity of future wildfires by reducing fuel amounts. There have been notable instances when HRBs caused poor 

air quality in large cities (Broome et al., 2016; He et al., 2016; Miller et al., 2019). Large areas of land can be burnt under 

HRBs, for example, in Western Australia, ~7 % of the forest is treated via HRBs each year (Bradshaw et al., 2018), while in 90 

Georgia, USA, 3-4 million ha are treated each year (Zeng et al., 2008). HRBs also typically occur closer to population centres 

(Price and Bradstock, 2013) and burn under calm, still weather conditions that may be more conducive to high pollution levels 

(Di Virgilio et al., 2018). Borchers-Arriagada et al. (2021) found, by comparing population-weighted PM2.5 exposure on days 

dominated by HRBs or wildfires, that HRBs in New South Wales (NSW) Australia imposed higher health costs per hectare 

burnt than wildfires. Further research is required but differences may stem from different fuel consumption rates (Price et al., 95 

2022), plume behaviour and/or weather. 

 

We need better tools to help understand PM2.5 dispersal and air quality impacts from individual fires. Improving the tools 

available to forest fire management agencies would improve pollution warnings and indicate changes that could be made to 

HRB strategies to reduce community PM2.5 exposure, e.g. identifying low pollution risk days to conduct HRBs. Attributes of 100 

an individual fire that could affect their PM2.5 output and/or exposure of people to PM2.5 are fire size, rate of heat and smoke 

production, fire proximity to human populations, and weather conditions including temperature, humidity, wind speed, wind 

direction, atmospheric stability and differences in weather between the HRB location and the PM2.5 monitor location (Price 

and Forehead, 2021; Reisen et al., 2015). There is some knowledge about the influence of weather on pollution but this has 

been investigated at a larger scale than individual fires. For example, days with HRBs are likely to have poorer air quality in 105 

Sydney when there are cool, stable conditions with light westerly winds (Di Virgilio et al., 2018), while poor air quality, as 
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measured by ozone levels, tends to occur with a high-pressure system to the east of Sydney with light north-westerly winds 

and a sea-breeze (Hart et al., 2006). 

There are a variety of ways to improve our understanding of PM2.5 from individual fires. Atmospheric dispersion models can 

predict the spread of particulates from fires based on modelled atmospheric dynamics and are routinely used in many countries 110 

to guide burning operations and community warnings for HRBs. However, while evaluations of such systems are rare, existing 

evaluations indicate a poor to moderate agreement between predictions and observations (Yao et al., 2014; Saide et al., 2015), 

possibly because the local effects of HRBs are poorly captured by the models.  

An alternative method is to relate air quality observations directly to real fires to calculate how far the smoke impact is likely 

to spread and under what conditions. Air quality measurements can be from ground-based stations or via satellite-based 115 

measurements, e.g. aerosol optical thickness (Gupta et al., 2007). For ground-based measurements, studies have been done 

using monitors mostly stationed within ~10 km from HRBs (Pearce et al., 2012; Price and Forehead, 2021). Pearce et al. (2012) 

made 684 24-hour observations of PM2.5 by placing monitors around 55 forest HRBs. They found that PM2.5 concentrations 

fell to near-background levels within 3 km of the fire perimeters. Price and Forehead (2021) made 5445 hourly observations 

of PM2.5 with a combination of fixed and mobile monitors around 18 forest HRBs. They also found that PM2.5 concentrations 120 

had largely fallen to background levels by 3 km but this depended on weather conditions. One of the HRBs caused poor air 

quality at monitors more than 30 km away. These studies captured the local effects of the HRBs but did not explain why HRBs 

can impact air quality much further away.  

Deploying air quality monitors to wildfires is difficult due to the large size of wildfires, unpredictable ignition and spread and 

the safety risks of working near an active wildfire. However, large permanent air quality monitoring systems can be used to 125 

gather PM2.5 data for wildfires and HRBs, for example, the NSW Air Quality Monitoring Network. Here, we used historical 

fire and air quality data to identify the occasions when an individual fire was burning within 150 km of a monitor in the NSW 

Air Quality Monitoring Network from 2012 to 2021, and developed random forest models of PM2.5 concentrations at individual 

monitors as a function of fire area, distance and weather conditions. Our aims were: 

1) Improve understanding of the fire and weather conditions that influence smoke dispersal and PM2.5 levels. 130 
2) Develop predictive models of PM2.5 output from individual forest fires, as a complement to physical models, to 

improve warnings. 
3) Make inferences about potential changes in HRB protocols that could reduce PM2.5 impacts.  

2. Methods 

2.1 Fire Data 135 

Our study period was from February 2012 to September 2021 because this was when our main fire data set was available (see 

below). For the study period, we created a spatial dataset of forest fires that were actively burning within 150 km of air quality 

monitoring stations (AQS) maintained by the NSW Department of Planning and Environment (DPE) (Fig. 1). 150 km captures 

most of the eucalypt-dominated Blue Mountains that is subject to the majority of fire activity near Sydney. We assigned 
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attributes of fire location, fire type (Hazard Reduction Burn (HRB) or Wildfire (WF)), date of fire activity and AQS name and 140 

location. Each fire had at least one active date and most burnt on several days. As a fire could be within a 150 km buffer of 

multiple AQS, there was a separate row in our data for each fire and AQS combination. For our modelling, we used only cases 

where, for each AQS and day, only one fire was active within 150 km of the AQS. We did not analyse cases where multiple 

fires were burning on the same day near the same AQS as it was unclear which fire produced the smoke that reached the AQS. 

We relied on two data sources to identify fire locations, type and active dates: NSW fire history GIS polygons (NPWS Fire 145 

History - Wildfires and Prescribed Burns, 2022), maintained by NSW National Parks and Wildlife Service (NPWS), and VIIRS 

SNPP hotspots, downloaded from NASA’s Fire Information for Resource Management System (Schroeder et al., 2014; Fire 

Information for Resource Management System (FIRMS)). VIIRS SNPP, which refers to the Visible Infrared Imaging 

Radiometer Suite - Suomi National Polar-orbiting Partnership, hotspots were available beginning 20 January 2012. 

The fire history dataset is a spatial polygon dataset of the final burnt area of fires across NSW, which has attributes of fire 150 

identity (name and number), fire type (HRB or WF) and start and end dates. We did not rely solely on the fire history to identify 

fire locations and dates because an initial inspection suggested some issues for our analysis. These included fires identifiable 

from VIIRS hotspots/images that were missing from the fire history; occasional errors in the start and end date recording; the 

final fire polygon being the combination of separate fires that eventually merged; and the data identifying only fire start and 

end date, not whether a fire was actively burning on each day between those dates (e.g. fires may have extinguished then 155 

reignited on different days). Also, the data did not capture daily fire progression only the final boundary, meaning the location 

of fire activity on the first day (perhaps a few hectares) was not well represented by the final fire polygon (perhaps tens or 

hundreds of thousands of hectares), which was particularly an issue for WF.   

We employed a process to map active fire dates and locations from clusters of VIIRS SNPP hotspots. We used VIIRS SNPP 

hotspots instead of MODIS as VIIRS are higher resolution (at nadir, 375 m vs. 1km for MODIS), thus can detect more hotspots 160 

per fire than MODIS, which reduces the chance that an active fire is missed (Schroeder et al., 2014). The process to create 

hotspot clusters for each day for each AQS was to: 

1. Extract all hotspots within 150 km of the AQS.  
2. To focus on forest fires, remove hotspots that were in grassland or open woodland by removing hotspots with low 

foliage projective cover score (Gill, 2012; Gill et al., 2017). This measure of canopy density is equal to the 165 
proportion of ground that the vertically projected area of the green foliage covers. We removed hotspots with a 
cover fraction of less than 0.25 so that our analysis only included dense woodlands, open forests and closed forest 
types (Specht and Specht, 1999).  

3. Buffer each hotspot by 2.5 km and dissolve overlapping buffers into a single polygon, thus creating hotspot cluster 
polygons (Fig. 2).  170 

4. Remove clusters that did not have at least five day or night hotspots. This was our minimum threshold for fire 
activity, as we wanted to exclude small fires such as burning heaps on farmland that can be detected by VIIRS. We 
also tested three as a minimum threshold, which produced similar but slightly less accurate models. 

5. For each cluster, calculate the daily active fire area by intersecting the hotspot points with a 500m x 500 m grid (25 
ha cells). The area assigned to each cluster was the number of unique intersecting cells x 25 ha. 175 

6. Repeat the process for each combination of date and AQS.  
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Where a fire identified from the above process (a “VIIRS fire”) intersected an NPWS fire history polygon between its start 

and end date, we assigned the fire name, number and type (HRB or WF) to the VIIRS fire. If multiple VIIRS fires intersected 

the same fire history polygon, we merged them into a single fire with the same attributes for analysis. If a VIIRS fire intersected 

multiple fire history polygons, we assigned the attributes from the fire history polygon with the largest overlapping area. NPWS 180 

fire history polygons were excluded from analysis if either the start or end date was missing or a polygon had no intersecting 

VIIRS hotspots. If a VIIRS fire did not intersect a fire history polygon, we assigned the fire type based on the date: from 

October to February (inclusive) were WF and all other months were HRB. For each fire identified we added attributes of 

distance and direction from AQS to fire centroid (Fig. 2), i.e. the arithmetic mean of the hotspot coordinates, with a separate 

row for each fire and AQS combination (within 150 km).  185 

 

 
Figure 1: Map of the study area (New South Wales, Australia) showing air quality monitoring stations (AQS, n=48), coloured by 
year of first PM2.5 record. Grey crosses are the locations of all fires used in analysis, with one cross per fire per day. 150 km buffer 
shown around Orange AQS as an example (all AQS had 150 km buffers for analysis). 190 
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Figure 2: Example of creating clusters from VIIRS SNPP hotspots. Black dots are hotspots, red asterisks are fire centroids, i.e. the 
arithmetic mean of the hotspot coordinates. The image has two separate fires. Each hotspot is buffered by 2.5 km, with all 195 
overlapping buffers merged and hotspots given separate identity numbers based on which final buffer they fell within. Two separate 
fires are created here because of distinct fires where buffers don't overlap, i.e. greater than 2 buffer widths (5 km) apart. Fire 1 
(grey) has > 50 hotspots, fire 2 (blue) has 5 hotspots. Note that fire area used in analysis was calculated via an intersection with a 500 
m x 500 m grid, not buffer size (see methods). 

2.2 PM2.5 Data 200 

We modelled PM2.5 (µgm-3) as a function of several environmental predictors. We downloaded all available PM2.5 data (hourly 

averages) from the NSW DPE for the period 2012 – 2021, which comprised 48 AQS. Data were available free online at 

https://data.airquality.nsw.gov.au/docs/index.html. We calculated mean PM2.5 for each AQS for three six-hour periods: 

1. Afternoon: 1400 to 1900 AEST inclusive. This period covered peak burning conditions in the afternoon and after 
sunset, although sunset and fire ignition times varied. 205 

2. Night: 2100 to 0200 AEST inclusive. Covered the night period starting on the same day as the fire. 
3. Morning: 0500 to 1000 AEST inclusive, next day after fire day. Captured early next morning conditions after the 

main periods of fire activity are likely to have ended, although some fires may have burnt through the night and 
smoke may still have lingered.  

Note that there were some missing PM2.5 values in the data, which meant some summary afternoon/night/morning values had 210 
< six records. However, > 98 % of records were summarised from >= four hourly PM2.5 values. 

We chose these times to represent different periods in the daily cycle that may have distinct smoke, weather and fire behaviour 

characteristics. All fires identified in the hotspot analysis were matched to AQS summary PM2.5 for active days when the fire 

https://data.airquality.nsw.gov.au/docs/index.html
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was within 150 km. Not all AQS had records for all years, as some were not operational until later in the study period (Fig. 1). 

Note that we modelled PM2.5 observed at air quality stations, which would include primary and secondary PM2.5. Secondary 215 

PM2.5 can be formed via atmospheric chemistry processes that transform emitted gases into particulates, with the processes 

influenced by factors including season, solar radiation, temperature and relative humidity (Cope et al., 2014; Fine et al., 2008). 

 

2.3 Predictor variables 
We sampled hourly weather variables at each AQS and each fire centroid from ERA5 weather grids, which is an atmospheric 220 

reanalysis product with multiple weather variables and atmospheric levels available at 30 km spatial and hourly temporal 

resolution (Hersbach et al., 2018b, a) (Table 1). We calculated the mean weather values for both surface and upper atmospheric 

conditions (Table 1) for the afternoon, night and morning periods as described for PM2.5. We calculated additional variables 

describing the spatial relationship between the fire and each AQS. We used the AQS-to-fire direction and wind direction to 

calculate the percent of time-period where the surface wind was blowing directly to the AQS, with directly meaning ±22.5 225 

degrees of the AQS-to-fire bearing. We also used the daily active fire area based on the intersection of hotspots and a 500 m 

by 500 m grid (area = N intersecting cells x 25 ha), as a predictor. We included a month variable (i.e. month of the active fire 

date) as a predictor variable to account for any seasonal variation in background PM2.5 levels. Month was represented as a 

cyclic variable, where the sine and cosine of the month (1-12) were both included in the modelling. We included the latitude 

and longitude of the AQS to account for spatial dependence, and fire type as a factor variable to account for differences not 230 

captured by the weather/fire area variables. We also experimented with making separate models for each fire type (HRB model 

and WF model) for each time period but found that resulting accuracy statistics on the training and test sets were similar, so 

instead just used one model for each time period with fire type as a factor variable.  

 

 235 
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Table 1: Predictor variables used for random forest modelling. Letters mean that for the random forest modelling, weather variables 
were sampled at the fire (F), at the AQS (A) or both (FA). MSLP and wind speed (850 hPa) at the AQS were excluded due to being 
highly correlated with the same variable at the fire. 

Type Name Units Details 

 

 

 

 

 

 

 

 

ERA5 

weather 

 

PBLH – Planetary boundary 

Layer Height (FA) 

metres Mean height of planetary boundary layer from 

surface, from ERA5 grids. 

MSLP – Mean Sea Level 

Pressure (F) 

hectopascal Mean sea level pressure of atmosphere on 

surface per unit area from ERA5 grids. 

WS – Wind speed (FA) km h-1 Mean wind speed 10 m above surface calculated 

from U and V ERA5 wind component variables. 

RH – Relative humidity 

(FA) 

% Mean relative humidity calculated from 

temperature and dew-point ERA5 variables. 

Temperature (FA) celsius Mean temperature 2 m above surface sampled 

from ERA5 grids. 

WS 850 hPa – Wind speed 

at 850 hPa (F) 

km h-1 Mean wind speed at 850 hPa calculated from U 

and V ERA5 pressure-levels wind component 

variables. 

Direct wind (FA) % Percent of hours during a period (afternoon etc.) 

where 10 m wind was blowing directly toward 

AQS, i.e. within a 22.5-degree arc either side. 

 

Fire 

 

Fire area hectares Daily active hectares for a fire calculated from 

the intersection of VIIRS hotspots (day and 

night) with a 500 m by 500 m grid (N 

intersecting cells x 25 ha). 

Fire Type WF or HRB Wildfire or hazard reduction burn 



10 
 

 

Temporal 

 

Month 

sine, cosine Month included to account for seasonal variation 

in background PM2.5. Included as a cyclic 

variable: cosine and sine of integer month as 

separate variables. 

 

 

Geographic 

Distance km Kilometres from the fire centroid (i.e. geometric 

centre of a hotspot cluster) to the AQS 

AQS coordinates Latitude, 

Longitude 

Coordinates of air quality monitoring stations, to 

account for spatial dependence. 

 

2.4 Random Forests Modelling 260 

Our data consisted of three separate tables (afternoon, night and morning data tables) for three models. In each table, there 

were 11187 rows with unique combinations of fire, AQS and date. For each fire, there could be multiple active dates and each 

fire could be associated with more than one AQS (i.e. it was within 150 km of multiple AQS). Our data had 48 different AQS 

and 1429 different days with at least one active fire near an AQS. There were 1883 different combinations of fire and day (we 

refer to these combinations as “fire-days”) consisting of 727 fire-days that had VIIRS hotspots and a fire history record and 265 

1156 fire-days that had only VIIRS hotspots. The fire-days from solely VIIRS hotspots were on average smaller than the fire-

days with a matching NPWS fire history record (209 ha vs 854 ha respectively). 1182 fire-days were from HRBs (mean daily 

active fire area = 254 ha) and 701 were from WFs (mean daily active fire area = 802 ha). Each fire was observed at a minimum 

of one AQS, with a mean of six AQS and a maximum of 35 AQS associated with a single fire. 

We trained a random forest model using the “ranger” package in R (Wright and Ziegler, 2017). Random forests are robust and 270 

efficient machine learning algorithms that involve fitting and averaging of randomized decision trees and have been applied 

to a range of environmental research problems including fire and emissions (Biau and Scornet, 2016; Hu et al., 2017; Shah et 

al., 2022). We chose random forests due to several advantages that include high accuracy, fast computation times, easy 

implementation, robustness and greater interpretability (compared to “black-box” methods) via simple methods to extract 

variable importance and partial dependence (Rodriguez-Galiano et al., 2015; Biau and Scornet, 2016; Wright and Ziegler, 275 

2017). 

We split each of our datasets into training (75 %) and test (25 %) sets for analysis, stratified by fire type so that an even 

proportion of HRBs and WFs appeared within each of the sets. We trained the models using the training set data and used out-

of-bag (OOB) predictions vs observations for model accuracy checks and we predicted to the test set to calculate test set 

accuracy statistics. Our accuracy statistics were the correlation coefficient (r), normalised mean error (NME) and normalised 280 

mean bias (NMB), as recommended by Emery et al. (2017) for assessing model performance. We ran three different models, 

one for each analysis period: 1) afternoon mean PM2.5, 2) night mean PM2.5, and 3) morning mean PM2.5. Predictor variables 

were the weather variables in Table 1 sampled at both the AQS centroid and fire centroid, distance, daily active fire area, 
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month and AQS coordinates. As highly correlated variables can introduce bias into random forests variable importance 

calculations (Strobl et al., 2008), we removed variables from analysis where the Pearson correlation was above 0.8: MSLP at 285 

AQS and wind speed 850 hPa at AQS were excluded, each of which was correlated with the version sampled at the fire.  

We assessed the variable “permutation” importance using the ranger package. Permutation importance is derived from a 

process where reduction in model accuracy on OOB predictions is calculated after randomly shuffling values for each variable, 

calculated for all trees and variables (Wright et al., 2016). We assessed predictor variable effects using partial dependence 

plots calculated in the “pdp” package in R (Greenwell, 2017), and by creating prediction plots where PM2.5 was predicted with 290 

all variables held at mean values except two variables of interest, which were each assigned three different levels to illustrate 

their effects. We also conducted a short descriptive analysis, using satellite images and hourly PM2.5 of large outliers in the 

models to understand potential reasons for inaccurate predictions. This is included in Appendix A. 

2.5 Limitations 

There are several limitations to our methods that should be considered when interpreting the results. Our process to identify 295 

active fires from VIIRS hotspots excluded hotspots that were outside the 150 km AQS buffer, even if they were part of a fire 

that straddled the buffer edge. There may be occasions where smoke from hotspots, and entire fires, from > 150 km reached 

an AQS and influenced PM2.5, e.g. large WFs during the 2019-20 “Black Summer”. The effect of such fires was not captured 

in our methods.  

We set a minimum fire activity threshold of five hotspots (day or night). This may mean that days recorded as having only one 300 

fire may have had other smaller fires in the area that may have produced smoke that affected PM2.5. Relying on VIIRS had the 

advantage of being able to better detect when a fire was active, but our process may not have captured all fires on any given 

day due to cloud cover impeding VIIRS hotspot detection. This may be a form of bias in our analysis as the cloudiest days 

were selected against. Additionally, VIIRS SNPP hotspots are acquired early afternoon and early morning, meaning that the 

total burnt area on a day is not measured, only the active area at the time of VIIRS acquisitions. Fire area, or the number of 305 

fires, may have been underestimated if clouds were impeding hotspot detection. Our decision to analyse only days with one 

fire, to better understand distance and direction variables, means that there is a selection bias against the most active fire days 

(i.e. days with multiple fires). This may include the worst WF days, where multiple fires were more likely to ignite, particularly 

during 2019-2020. For days that are most suitable for HRBs, authorities are more likely to ignite multiple HRBs. Such days, 

which could include the worst pollution events, were not included in our analysis but were the subject of separate research 310 

(Storey and Price, 2022). 

Note that in our VIIRS hotspots clustering process, we used a buffer of 2.5 km to provide a broad “search” area in which to 

group hotspots: any hotspots within 5 km of each other (two buffer widths) or less would be grouped. This may have meant 

that on some occasions, separate small fires were grouped. However, we deemed it reasonable to treat these as one fire for our 

purposes given the similar location meant smoke would be travelling along the same general bearing towards an AQS, which 315 

was important for the direct wind variable (Table 1). For example, two fires 5 km apart would have a ~3 degree difference in 
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bearing to an AQS 100 km away (~5 degrees at 50 km). Smaller or larger buffers may have produced different results. Note 

that if more than one hotspot cluster intersected the same NPWS fire history polygon, we also treated these as the same fire. 

3. Results 

3.1 Variable summaries 320 

Plots of the distribution of PM2.5 and predictor variables are shown in Figure 3. PM2.5 was skewed toward low values 

(afternoon, night, morning mean = 8.1, 10.7, 10 µgm-3), with occasional very smoky periods (afternoon, night, morning 

maximum = 294.2, 394.8, 506.2 µgm-3). Most fires were between 75 and 150 km from AQS and only 20 % of fires had their 

closest AQS within 50 km. Daily active fire area derived from VIIRS hotspots was heavily skewed toward lower values (mean 

= 458 ha, 95thcentile = 1175 ha). The maximum fire area was 31800 ha, < 1 % of fires (all WF) were over 10000 ha and 94 % 325 

were less than 1000 ha. 

Afternoon conditions were generally hotter, less humid and had higher PBLH at both fire and AQS locations than nights and 

mornings. Between WF and HRB, WF afternoons were hotter, drier and had higher PBLH (Fig. 3). MSLP was similar between 

afternoon, night and morning, but skewed lower for WF compared to HRB. The wind direction variables were clustered around 

zero, indicating that most of the time wind at the fire and at the AQS was not moving smoke directly from the fire to the AQS 330 

(Fig. 3). For example, only 5 % of rows in the afternoon data indicated that wind sampled at the AQS was coming directly 

from the fire for at least 3 of the 6 hours. For wind sampled at the fire, this figure was 11 %.  
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Figure 3: Distribution of PM2.5 and predictor variables used in random forest modelling, excluding latitude, longitude, fire type and 335 
month. Distance and daily active fire area are daily variables, so are identical for afternoon, night and morning model datasets. 
Distributions for at-fire variables are from unique fire-day combinations, at-AQS variable values are from unique AQS-day 
combinations. af=afternoon,  ni=night, mo=morning. AQS=Air Quality Station, RH=Relative Humidity, WS=Wind Speed, 
PBLH=Planetary Boundary Layer Height, MSLP=Mean Sea Level Pressure. 

3.2 Highest PM2.5 days 340 

Figure 4 shows the 20 highest mean PM2.5 values for each six-hour period for HRBs and WFs. The top PM2.5 values were 

much greater for WFs than for HRBs in the afternoon, night and morning (~150 to 200 µgm-3 greater for each). >= 80 % of 
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the top 20 PM2.5 values for WF for afternoon, morning and night were associated with the 2019-2020 wildfires in NSW, many 

with the Gosper’s Mountain wildfire in the Blue Mountains (Boer et al., 2020).  

The top seven afternoon peaks for WF were > 100 µgm-3 (max= 294 µgm-3) but only two of the afternoon HRB peaks were > 345 

100 µgm-3
. In the night and morning, there were fewer values > 100 µgm-3, but larger maximums were recorded for HRB and 

WF for each period (compared to the afternoon). For each rank position, WF values were greater than HRB values, except in 

the night model where from positions 3 to 20, the HRB values were higher. More information, including satellite images, 

weather plots and descriptions, on the conditions surrounding the worst PM2.5 events for each time period for HRBs and WFs 

is included in Appendix A.  350 

 

 
Figure 4: Highest mean PM2.5 values for each six-hour time period for HRBs and WFs. For each date, only the single top value from 
all AQS values is shown (i.e. 2nd highest for each date is not shown). The dashed line indicates 50 µgm-3 for reference between the 
three plots. Note that our data only includes situations with one fire within 150 km of an AQS for a particular date. 355 
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3.3 Model results 

Daily active fire area, PBLH (fire and AQS), temperature and RH at the fire were among the most important variables in the 

three models (Fig. 5). Some variables were among the most important in only one or two of the models: wind speed at the fire 

was the fourth and fifth most important in the night and afternoon models but ninth most important in the morning model. The 

direct wind variables, distance to fire, AQS coordinates, MSLP, month and fire type were all of moderate to lower permutation 360 

importance in each model. 

Partial dependence plots (Fig. 6) indicated that for all models, there was a sharp increase in predicted PM2.5 when the AQS-to-

fire distance was below ~20 km, with the morning model displaying the sharpest rise in PM2.5 as the distance decreased. This 

effect is despite distance being of middle to lower permutation importance (Fig. 5). Partial plots indicated PM2.5 increased as 

fire area increased, particularly in the 0 to 2500 ha range, which is where most training observations were situated (Fig. 3). 365 

There was a very large PM2.5 increase above 10000 ha in the morning and afternoon models, although there is uncertainty here 

due to a small number of training observations > 10000 ha (Fig. 3). The shape of the PBLH effect differed for each model 

between the fire PBLH and AQS PBLH. At the AQS, there was a strong negative effect of PBLH (lower PBLH = higher 

PM2.5), particularly in the night and morning models < 500 m. At the fire, each model had peak PM2.5 at low and high values 

of PBLH. For the night and morning models, PM2.5 peaked when fire PBLH was < ~200 m, with a smaller rise > ~800 m. For 370 

the afternoon model, the largest peak was when fire PBLH was high (> ~1500 m), with a smaller rise when < ~500 m. For RH 

at the fire, predicted PM2.5 below ~50 % RH was much higher than when RH was above 50 % in the morning and night models. 

For wind speed, effects varied between the fire and AQS and with the time period: lower wind speed at the AQS was associated 

with higher PM2.5 in all models but at the fire low and high (particularly for the night model) wind speeds were associated with 

higher PM2.5. 375 

We calculated model accuracy statistics for the training set (OOB predictions) and the independent test sets and for HRB and 

WF subsets of each. From the combined statistics, Pearson correlations between predictions and observations (r) for training 

and test sets ranged from 0.67 to 0.83 (Table 2, Fig. 7). For the statistics by fire type, r was higher for WF than for HRB. For 

WF, r was 0.7 to 0.88 on the training and test sets. For HRBs, r was 0.59 to 0.69 on the training and test sets. NME for all 

combinations of training/test set and fire type ranged between 33 % and 39 %, with the lowest NME for the WF subset from 380 

the afternoon model (~33 % for training and test set). The NBE indicated that generally there was a slight over-prediction bias 

that ranged from ~1 % to ~2 %, with a maximum of 6.95 % for WF for the night model test set. The night model had under-

prediction bias for HRBs on the test set (Table 2, Fig. 7).  

The models had large under-predictions for the largest PM2.5 values and a few large over-predictions (Fig. 7). NBE calculated 

on data that included only where observed PM2.5 was >= 20 µgm-3 was -30.9 % (training) and -32.8 % (test) for the afternoon 385 

model, -34.5 % and -35.8 % in the night model and -29.6 % and -32.3 % in the morning model, indicating under-prediction 

bias for the larger PM2.5 values. For predictions to the test set, in the afternoon model 9 observations were under-predicted by 

at least 30 µgm-3; 4 from WF and 5 from HRB. The maximum over-prediction was by 36 µgm-3. For the night model, there 
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were 15 occasions where the model under-predicted in the test set by at least 30 µgm-3 (12 were HRB). The maximum over-

prediction was by 57 µgm-3. The morning model had 14 under-predictions on the test set by at least 30 µgm-3, with the largest 390 

under-prediction by 175 µgm-3 for a 2019-2020 WF, although the model correctly predicted this morning as having the highest 

PM2.5 in the test set (observed=390 µgm-3, predicted=215 µgm-3). There were 3 over-predictions by at least 30 µgm-3. 

We explored the influence of distance and some selected variables with a series of prediction plots (Fig. 8). PM2.5 was predicted 

to increase substantially with decreasing distance within the first 20 km of the fire in all combinations of area, PBLH, RH and 

temperature in Figure 8. Beyond ~30 km there was minimal to no effect of distance, except in the morning model with a large 395 

fire area (Fig. 8a). The effect of temperature at the fire differed between models, such that as temperate increased from 10 to 

25 C, PM2.5 was predicted to decrease in the morning model but increase in the afternoon model. The plots also suggest there 

is generally a small difference between predicted mean PM2.5 for WF and HRB for each model once the other predictors 

including fire area are controlled for.  
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 400 
Figure 5: Variable importance for each model. A common x scale was assigned, which is the % of the total permutation 

importance attributable to each variable (i.e. importance/sum(importance)*100). 
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 405 

 
Figure 6: Partial dependence plots for the afternoon (red), night (blue) and morning (black) models. Dotted parts of lines are 
minimum to 5thcentile and 95thcentile to maximum values for each predictor variable, calculated from the training data. Where 
dotted parts are long, this indicates a large range of values with a small number of observed points for model training.  

 410 
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 415 

 
Table 2: Accuracy statistics from random forest modelling for training (bold) and test (in brackets) sets. Training set predictions 
are on out-of-bag samples during model fitting and test set predictions were made to the independent test set. Overall statistics, 
along with statistics on HRB and WF portions of the data are shown. r = Pearson correlation, NME = Normalised mean error, NBE 
= Normalised bias error (Emery et al., 2017). 420 

  r NME % NBE % 

Combined 

Afternoon 0.75 (0.78) 35.5 (36) 1.34 (1.06) 
Night  0.67 (0.70) 37.3 (36.5)  1.51 (0.62)  

Morning  0.76 (0.83) 37.4 (37.6)  2 (1.9)  

HRB 

Afternoon 0.60 (0.69) 37.6 (38.6) 1.81 (1.53) 
Night  0.63 (0.68) 38.1 (36)  0.81 (-2.25)  

Morning  0.59 (0.65) 37.9 (38.5)  2 (2.4)  

WF 
Afternoon  0.79 (0.81) 33.1 (32.9) 0.78 (0.51) 

Night  0.7 (0.76) 36 (37.5)  2.86 (6.95)  
Morning  0.82 (0.88) 36.6 (36.2)  2 (1.2)  
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Figure 7: Predictions of each model to test set, with points coloured by fire type. Pearson correlation of predictions to observations 
by fire type shown in text (r). 
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 425 

 
Figure 8: Predicted effects of selected variables on mean PM2.5. Colours are time periods, line types are fire types and grid squares 
are combinations of the daily active fire area and planetary boundary layer height at the air quality monitoring station (a) and 
relative humidity and temperature at the fire (b).  

4. Discussion 430 
Using empirical fire and air quality monitoring station data, we identified important drivers of particulate pollution associated 

with individual forest fires. The results are important in the context of our first research aim, which was to improve 

understanding of the fire and weather conditions that influence smoke dispersal and PM2.5 levels. In our models, daily active 

fire area, PBLH, temperature, relative humidity and wind speed were all important drivers of PM2.5 from individual fires. The 

importance of these variables at the fire or at the AQS varied between models. Distance to fire generally had low permutation 435 

importance, possibly due to the low number of AQS in the 0 to 50 km range (Fig. 3, Fig. 6). However, partial plots and 
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prediction plots indicated a large influence on model predictions. For example, partial and prediction plots suggested that 

within 20 km of a fire, PM2.5 levels rose steeply with decreasing distance. The effect of distance > 50 km was negligible in 

most cases, suggesting other factors are more important drivers at such distances, although under certain conditions there could 

be raised PM2.5 at long distances, such as with higher fire area in the morning model (Fig. 8). Based on Reisen et al. (2018), a 440 

1000 ha prescribed burn will emit 160 tonnes of PM2.5, enough to fill to exceedance level a cylinder capped by a planetary 

boundary layer of 500 m to a radius of 64 km. This means there are sufficient particulates available for a distance effect to 

occur should the weather conditions suit. Other authors have found similar variables to be important in modelling PM2.5, 

including fire size and distance when PM2.5 was measured within ~10 km of HRBs (Pearce et al., 2012; Price and Forehead, 

2021). PBLH was also a consistent predictor of PM2.5 levels at multiple stations in Sydney during HRB days (Di Virgilio et 445 

al., 2018). However, studies such as these have modelled PM2.5 over smaller scales than we did here or did not attempt to link 

individual fires to PM2.5 records. Our data included PM2.5 measurements up to 150 km from a fire and we built PM2.5 models 

using a much larger dataset of fires and PM2.5 records, which here were from pre-installed permanent AQS. Therefore, the 

results from our study are more applicable to the individual fire and PM2.5 relationship across large geographical areas than 

other studies.  450 

Our models suggest the area potentially affected by PM2.5 from fires is larger than in Price and Forehead (2021), where raised 

PM2.5 levels were mostly modelled to be within 5 km of HRBs. Here, our models suggested that raised PM2.5 levels mostly 

occurred within 20 km of a fire. Our dataset includes a larger set of fires and includes WFs, which are likely to produce smoke 

that travels further. In some individual cases in our raw data, fires caused high PM2.5 levels > 100 km away (e.g. Appendix A 

Fig A3). Although relatively sparse, analysis using the more remote AQS network is more suited to detecting these longer-455 

range effects than when monitors are placed only close to a fire. 

Our second aim was to develop predictive models of PM2.5 output from individual forest fires, as a complement to physical 

models, to improve warnings. There was some success here: r on the test sets indicated moderate to good agreement between 

predictions and observations: 0.78, 0.70 and 0.83 for the afternoon, night and morning models respectively. The models fit 

better on the WF portion of the test data (r 0.76 to 0.88) than for HRBs (r 0.65 to 0.69). The better results for WF suggest the 460 

models may be more applicable to WFs, e.g. for the issuance of pollution warnings due to WF smoke. An important 

consideration for using the models for prediction is their accuracy on the largest PM2.5 observations. Events with very high 

PM2.5 have the largest health impacts and are therefore the most important to predict, for example, to correctly issue warnings 

or defer HRBs due to high pollution risk. Our results suggest that, while some predictions for the largest PM2.5 observations 

were relatively accurate, the models did not consistently predict larger PM2.5 events, so may not be suitable as an operational 465 

prediction tool without further development.  

There are several possible reasons for the biggest outliers and limited accuracy. The AQS network is relatively sparse, being 

concentrated in greater Sydney, making the distance between any fire and AQS usually large. The mean distance to the closest 

AQS for each fire-day was 88 km (10thcentile = 31 km). This may partly explain why we did not detect wind direction effects. 

Price et al. (2012) also did not find significant effects of wind direction when modelling PM2.5 in relation to MODIS hotspots 470 
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at similarly broad scales around Sydney and Perth. In contrast, two empirical studies that did detect clear wind direction effects 

from HRBs, Pearce et al. (2012) and Price and Forehead (2021), placed PM2.5 monitors close to HRBs, mostly within ~10 km. 

The large distances in our data mean smoke was subject to broader weather circulation patterns before reaching an AQS, such 

as shown in Appendix A. This could create a varying lagged pollution effect that we did not completely account for in our 

modelling, because smoke may take different amounts of time to reach an AQS depending on circulation patterns. Although 475 

we did not focus exclusively on coastal areas, many AQS were in coastal areas, so may have been affected by complex wind 

patterns. The Sydney basin, for example, can be affected by westerly terrain-related drainage flows, sea breezes and their 

interaction (Jiang et al., 2017). Differences between land and sea temperatures can influence local wind patterns in coastal 

areas, creating situations where pollutants emitted overnight or in the morning and blown out to sea are recirculated back over 

(or near) the source area with a developing sea breeze (Yimin and Lyons, 2003; Levy et al., 2008). Such effects were not 480 

accounted for in our study but have been the focus of other research that has used recirculation metrics (Di Bernardino et al., 

2022; Wang et al., 2022). 

 The large distances and sparse network in our data also means that there was a low chance of any particular AQS being 

downwind from a fire. This is indicated by the wind direction variables being clustered closer to zero (i.e. smoke not blowing 

from fire to AQS, see Fig. 3) and in cases such as Appendix A Fig. A3, where only two from > 20 AQS detected the smoke 485 

from a WF. It may therefore be that the models were mostly optimising for non-smoke-related PM2.5, so it is not surprising 

that peak events are under-predicted. Our approach is promising, however, more data capturing individual fires burning near 

monitoring stations is likely required to produce better models. More data could be gathered from the same AQS for another 

analysis in the future, or by increasing the density of PM2.5 monitors, either through installing more permanent AQS or via a 

short-term project that installs a network of temporary AQS in a selected fire-prone area (e.g. Blue Mountains) in times of 490 

high-expected fire activity. 

Some of the variables had interesting non-linear effects. For example, wind speed at the fire during the afternoon was associated 

with high PM2.5 both when wind speed was < ~7 km h-1 and > ~15 km h-1 (Fig. 6). Such relationships are due to complex 

factors. For example, it may be that low wind speeds increase PM2.5 because previously emitted smoke is more likely to linger, 

whereas high wind speeds mean that fires are more intense and produce more smoke and particulates. In other words, low 495 

wind speed increases smoke concentration at the receiver and high wind speed increases smoke production. The low wind 

speed effect may be more associated with HRBs, which are conducted in calm weather, and the high wind speed effect 

associated with WFs. Similar non-linear relationships also exist for other variables, to varying degrees, including PBLH, RH, 

temperature and MSLP (Fig. 6). Some variables differed in their effects substantially between the fire and AQS. For example, 

afternoon PBLH at the fire showed increases in PM2.5 at low and high levels, but at the AQS it was only low PBLH that 500 

increased PM2.5. The PBLH effect at the fire may be similar to the wind effect: low PBLH traps smoke but high PBLH is 

associated with more active fire behaviour and greater smoke production. Note that there is uncertainty about the strength and 

directions of the effects at the extremes of the predictor variables, given the lower proportion of observations for model training, 

as indicated in Figure 6.  
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Our models predict only small differences between PM2.5 depending on the fire type variable (HRB or WF), which also had 505 

low permutation importance in all three models. Likely, the weather variables and fire area variables included in our model 

captured most of the differences between HRBs and WFs (e.g. WF on average are larger and burn in hotter windier weather), 

making the fire type variable mostly redundant in the models. In this case, the models suggest that after accounting for weather 

and fire size, there are no clear differences in WFs and HRBs in terms of PM2.5 output. However, other studies have indicated 

that fundamental differences may exist as WFs inject smoke higher into the atmosphere and consume more fuel per hectare 510 

than HRBs (Price et al., 2022, 2018; Volkova et al., 2014), thus WF and HRB differences need more investigation. 

Our third aim was to make inferences about potential changes in HRB protocols that could reduce PM2.5 impacts. The 

models indicate the potential combinations of environmental and fire conditions where PM2.5 is likely to be higher and fire 

managers must carefully consider whether to undertake HRBs due to PM2.5 pollution risk. For example, a large HRB < 20 km 

from a town where PBLH < 300 m during the night and morning (at both fire and receiver site) and < 800 m during the 515 

afternoon. When HRBs are > 50 km from a town, a high PM2.5 impact is much less likely, although certainly still possible 

(Appendix A). In addition, the HRB area should be a strong consideration as PM2.5 is predicted to increase as daily active fire 

area increases between 0 and 2500 ha, although there is uncertainty at larger fire areas because few fires in our data were > 

2500 ha (most were < 1000 ha). Note that our fire areas may be an underestimate of total HRB size, as these areas are calculated 

from VIIRS hotspots, thus based on active fire area at VIIRS overpass times (early afternoon and early mornings), not the total 520 

area burnt in a day. 

While the models indicate that certain combinations of weather increase PM2.5, this must be weighed with the fact that aspects 

of HRB implementation cannot always be changed. For example, HRBs are already conducted within the narrow set of weather 

conditions that allow for ignition and controllable fire spread and often need to be conducted close to populations to have the 

greatest house protection effect (Clarke et al., 2019). Due to the complex effects and lower predictive accuracy for HRBs, it is 525 

difficult to make precise predictions from the models for individual fires. A more detailed model would be required to identify 

the weather conditions that would allow an HRB to be safely conducted and also for PM2.5 to be low. An assessment that 

combines predictions from our model of lower-risk PM2.5 days with a model that predicts the occurrence of within-prescription 

HRB burning days (Clarke et al., 2019) may be useful to assess the number of overlapping days, i.e. HRB days with low PM2.5 

risk. The effects of different burning strategies, such as breaking a large burn up into multiple blocks, are unknown and could 530 

potentially worsen PM2.5. Here we did not assess different strategies, and only analysed cases where one fire was burning at a 

time, not when multiple fires were burning around the same AQS at once. This is a significant limitation of the study, as the 

smokiest HRB days likely occur when multiple fires are burning at once and/or fires burn for longer periods. Price and 

Forehead (2021) also suggested overnight burning may have led to the largest PM2.5 exceedances that they recorded using low-

cost monitors near HRBs. Pearce et al. (2012) found burn duration to be an important predictor during their work also 535 

monitoring PM2.5 close to HRBs. The effect of total fire load in a region, i.e. total area of all fires, and regional weather 

conditions was the subject of separate research (Storey and Price, 2022). 
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5. Conclusion  

Understanding how individual fires, both wildfires and hazard reduction burns, influence ambient PM2.5 concentrations is 

important to allow for proper risk analysis, burn scheduling and issuance of warnings. Our models provide important insights 540 

into the influence of weather and fire variables on PM2.5 concentration from individual fires. We found that daily active fire 

area, PBLH, temperature and RH all have strong influences, with the effects of the variables varying depending on whether it 

is measured at the fire site or the receiver location (here, the AQS). The models improve our understanding and may have a 

place during operational predictions. However, accuracy is similar to existing models, so could be used as a complement. 

Further development to improve accuracy would benefit the operational deployment of the models, particularly given the lower 545 

correlations between observations and predictions for HRBs. However, our approach is promising and would likely produce 

better models with a larger set of data, where more cases of single fires near AQS could be found. Increasing the density of 

PM2.5 monitors (permanent or temporary during fire seasons) would also provide better data to improve the resulting models. 

Producing broader scale models of regional level PM2.5 from regional level fire and weather may be a useful alternative 

approach for producing operational models.  550 
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6. Appendix A 570 
This appendix contains case studies of large PM2.5 exceedance events present in the data used for modelling in the main text. 

The purpose is to detail specific events and highlight factors that may have influenced PM2.5 patterns across the different AQS. 

The appendix is organised as seven panel figures of seven different events that each have images and a description. The events 

selected are the six highest mean 6-hour values from the combinations of fire type (WF, HRB) and period (afternoon, evening, 

morning), and also the second highest value for afternoon WF, which is included to highlight interesting coastal wind 575 

behaviour. Note that the values used in modelling are from AQS data for which only one fire was active within 150 km of the 

AQS for that day. Higher values were recorded on days with multiple fires, but these are not analysed in this paper. Each figure 

contains:  

• Panel (a) in each figure has a background Himawari 8 satellite image for one single hour (time in black text at top) 
during the relevant time period, with the fire centroid also indicated by an orange circle and general fire area in blue 580 
polygon. The background image is overlaid with wind speed (red numbers and red arrow length) and wind direction 
(red arrow direction) from Bureau of Meteorology weather stations and PM2.5 recorded at all AQS within the image 
extent at that hour (black circles and white text, larger PM2.5 value means large circle). The AQS with the highest 
mean six-hour value is indicated by a red star (same AQS as general location map in panel b). AQS that had 
multiple fires nearby are not included. Note one extra Himawari image is included for WF night to aid in the 585 
description (panel e). Himawari images are provided by Japan Aerospace Exploration Agency (JAXA) and were 
downloaded from the JAXA P-Tree System (https://www.eorc.jaxa.jp/ptree/terms.html). 

• Panel (b) in each figure is a map of the general fire location, represented by an orange circle around the fire 
centroid, with circles representing AQS locations coloured by their mean PM2.5 value (µgm-3) for that six-hour 
period. The highest station values are indicated by the red text and red star.  590 

• Panels (c) and (d) in each figure are 10 m and 700 hPa gridded wind speed and direction for the same hour as the 
Himawari image, sampled from ERA5 gridded reanalysis data. Black arrows indicate wind speed and direction, 
with longer/larger arrows indicating higher wind speed. The orange fire circle is also in these images for reference. 
The black solid line is the Australian coastline.  

 595 
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