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Abstract. Riverbank erosion occurs along many of the Earth’s river systems, affecting riverine populations by destroying 

agricultural land and housing. In this study, we detected past events of riverbank erosion along the Jamuna River in 

Bangladesh using time series of Sentinel-1 satellite radar imagery, ground range detected (GRD) data with a 12-day revisit 10 

cycle, available in the Google Earth Engine (GEE). Eroded land is detected by performing a land cover classification and 

by detecting land cover changes from vegetated areas before the monsoon to sand or water after the monsoon. Further, 

settlements are detected as persistent scatterers, and classified as eroded if they are located on eroded land. We found that 

with Sentinel-1 data, erosion locations can be determined already one month after the end of the monsoon, and hence 

potentially earlier than using optical satellite images which depend on cloud-free daylight conditions. Further, we 15 

developed an interactive GEE-based online tool allowing the user to explore where riverbank erosion has destroyed land 

and settlements along the Jamuna in five monsoon seasons (2015-2019). The source code of our implementation is 

publicly available, providing the opportunity to reproduce the results, to adapt the algorithm and to transfer our results to 

assess riverbank erosion in other geographical settings. 

 20 

1 Introduction 

In Bangladesh, located in one of the largest river deltas of the world (Misachi, 2017), riverbank erosion is among the most 

drastic environmental processes in terms of yearly damage. Around 20 out of 64 districts in Bangladesh are prone to 

riverbank erosion, which consumes around 8.700 ha of land each year and thereby affects around 200.000 people by 

destroying their house and/or their agricultural land (Alam, 2017). Large-scale erosion – whereby several hundred square 25 

meters of land can collapse into the river within short time – mainly happens during the rainy monsoon season typically 

from June to October. Such erosion events occur primarily in a limited number of hotspot areas along the three major 

streams of Bangladesh, Jamuna, Ganges and Meghna.  

In this study, we focus on the Jamuna River since first, it is one of the most dynamic river systems in the world, eroding 

several square kilometers of land each year (Oberhagemann et al., 2020; Hassan et al., 2017; Khan et al., 2022; Pahlowan 30 

and Hossain, 2015). The Jamuna is among the largest braided river systems in the world, forming various channels at a 

total width of around 12 km (Sarker et al., 2014). Since the 1970s, its bank line has shifted by around 20 km, continuously 

eroding the riverbank and creating new land, mainly in the form of islands (Dixon et al., 2018; Mount et al., 2013). 

Second, from a societal point of view, this large-scale erosion has significant impacts on the livelihoods of the populations 

living along the river, leading to economic hardship and human displacement (Alam et al., 2019; Alam, 2017; Ferdous et 35 

al., 2019). Hence, advancing the available tools to assess erosion along the Jamuna appears of utmost importance. 

Each year, the Bangladesh Water Development Board (BWDB) commissions an assessment of last year’s erosion based 

on optical satellite imagery (e.g. CEGIS, 2018). This report is usually available only a few weeks before the beginning of 
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the monsoon season, that is in May. This is due to the dependence of the analysis on cloud-free optical images, which are 

available in November/December for certain years, but only in January for other years. There is, thus, a need to establish 40 

an erosion assessment that is independent of cloud conditions and potentially available earlier, which would give 

communities along the rivers more time to prepare for the upcoming monsoon season.  

In general, two distinct approaches exist to assess riverbank erosion quantitatively. First, the river system can be simulated 

using morphological numerical models. The capacities of such models increased significantly with the development of 

more powerful computers in the 2000s (Williams et al., 2016; Langendoen and Simon, 2008; Luppi et al., 2009). 45 

Computing power is necessary since fluvial systems are highly complex due to the large number of processes, scales and 

dimensions involved. Applying a numerical model to a river system as complicated as a braided river, however, would 

be extremely difficult, if not impossible. Indeed, one study that modelled erosion along the Jamuna River numerically did 

so for only 8 out of the 250 kilometers total length (Islam and Matin, 2022).  

The second approach to assess erosion at the large spatial scale of entire river systems is remote sensing, using either 50 

passive or active systems. Passive optical systems are widely used and serve a variety of purposes. One important 

application is the classification of land cover (Trianni et al., 2014; Du et al., 2016; Rishikeshan and Ramesh, 2018; 

Donovan et al., 2019; Immitzer et al., 2016). A second field of application is the monitoring of earth system processes, 

such as quantifying and mapping riverbank erosion and accretion along the Ganges (Hossain et al., 2013), the Yellow 

River (Chu et al., 2006), the Mekong (Kummu et al., 2008), and the Jamuna and Padma Rivers in Bangladesh (Islam, 55 

2009). Lastly, they can also help to generate hazard and risk maps, for instance, for landslide hazard (Joyce et al., 2009) 

or flood risk (El-Behaedi and Ghoneim, 2018).  

Passive optical systems rely on receiving reflected sunlight from the Earth’s surface which leads to a significant drawback: 

They cannot image the Earth’s surface at night or under cloudy conditions. While the former is problematic mainly for 

rapidly occurring events such as floods or storms, the latter can affect any application, especially in cloud-prone regions. 60 

For land cover classification or monitoring of slowly occurring phenomena such as glacier movement or land cover 

change, cloud coverage of individual images can usually be compensated by information from cloud-free images obtained 

at earlier or later times. Yet, this strategy does not work if cloud coverage is continuous for a prolonged period. This is 

the case in Bangladesh, where cloud coverage is high during the monsoon season lasting for months.  

Active microwave sensors such as lidar and radar emit a signal themselves and measure the radiation that is reflected 65 

from the target. Today, the most important imaging radar technology used in remote sensing applications is Synthetic 

Aperture Radar (SAR) which provides high-resolution two-dimensional images independent from daylight, cloud 

coverage and weather conditions (Moreira et al., 2013).  

Similar to optical systems, radar systems are employed in a wide range of applications. Examples include the extraction 

of shorelines (Al Fugura et al., 2011) and rivers (Sghaier et al., 2017), mapping of open water bodies (Santoro and 70 

Wegmuller, 2014), or land cover classification (Cable et al., 2014). On the topic of natural disasters, extensive research 

has investigated the use of radar for mapping the extent and depth of floods, for instance in the Amazon (Martinez and 

Le Toan, 2007), the USA (Townsend, 2001), Taiwan (Chung et al., 2015), as well as for monsoon flooding in Bangladesh 

(Imhoff et al., 1987). Further, several studies used SAR data for fully automated flood detection to provide near-real time 

disaster information (Martinis et al., 2009; Martinis et al., 2015; Twele et al., 2016). Thus, time series of spaceborne SAR 75 

images are potentially suitable to detect riverbank erosion and are, with Sentinel-1, available with short temporal sampling 

(6- or 12-days repeat-pass) on a continental to global scale. 
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In this paper, we present a feasibility study on riverbank erosion assessment based on time series of Sentinel-1 SAR 

imagery. Our study area is the Jamuna River in Bangladesh, for which a large-scale erosion assessment based on radar – 

and hence independent of cloud or weather conditions – has not been done yet. Given the severe impacts that riverbank 80 

erosion has each year on populations residing along the Jamuna, advancing the available tools to assess erosion appears 

important not only from an academic, but also from a practical perspective. We employ a radar backscatter based detection 

of specific locations affected by riverbank erosion and we quantify their spatial extent for both eroded farmland and 

eroded settlements. The quality of the classification is evaluated with cloud-free Sentinel-2 optical data. We also assess 

1) the “time to detection” after the monsoon and 2) the spatial resolution of the erosion detection, both of which are crucial 85 

parameters for potential emergency response and damage assessments. Given that the algorithm developed in this study 

is publicly available, it can potentially be transferred and adapted to other geographical settings at comparatively low 

effort and cost.  

2 Methods and Data 

2.1 The Google Earth Engine 90 

A free and thus very attractive platform for analyzing remote sensing data is the Google Earth Engine (GEE). The GEE 

is a cloud-based platform providing access to a wide range of publicly available remote sensing data in connection with 

Google’s massive cloud computing resources (Gorelick et al., 2017). The platform can be accessed free of charge by 

scientists, practitioners and other non-commercial users. Since its introduction in 2017, the GEE has been used for many 

remote sensing based (research) projects including applications close to the topical focus (e.g. mapping floods (Liu et al., 95 

2018) or wetland dynamics (Muro et al., 2019)) or geographic focus of this work (e.g. monitoring rice growth in West 

Bengal (Mandal et al., 2018) or Bangladesh (Singha et al., 2019)).  

Using the GEE is appealing since it gives simple access to a vast amount of remote sensing data, which do not have to be 

downloaded locally, but are processed in the cloud. Further, the GEE is relatively easy to use and does not require special 

software on the user side. Therefore, it can be applied in operational settings with limited resources, be it in terms of 100 

finances or trained personnel. GEE code can be shared conveniently via one link. The algorithm developed in this study 

can thus be easily accessed and adapted by research institutes or government authorities in Bangladesh. For all these 

advantages, this study used the GEE for all analyses.  

Due to its computing architecture, the GEE can process only the amplitude, but not the phase information of radar images. 

The amplitude value corresponds to the reflectivity of an area, such that targets with high backscatter appear as bright 105 

spots in the radar image and flat smooth surfaces as dark (Moreira et al., 2013). As such, amplitude values can for instance 

be used to classify land cover. Due to this limitation of the GEE, the method presented subsequently works with 

backscatter coefficients only. 

2.2 Data and pre-processing 

This study used publicly available satellite imagery from the European Space Agency’s (ESA) Sentinel mission (for more 110 

details see ESA, 2020b), launched in 2014, which collects C-band SAR images of the entire Earth’s surface with a 6- to 

12-day revisit cycle. Optical images were obtained from ESA’s Sentinel-2 mission launched in 2015 with a 2- to 3-day 

revisit cycle at mid-latitudes (ESA, 2020c).  

The Copernicus Sentinel-1 SAR data [2014-2021] used in this study was accessed through the GEE. The level-1 ground-

range detected (GRD) scenes available in the GEE have already been pre-processed by the GEE following the steps from 115 
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ESA’s Sentinel-1 toolbox (Veci et al., 2014; Google Developers, 2020). Since Sentinel-1 collects SAR data at a variety 

of modes, polarizations and resolutions, the pre-processed images provided by the GEE were filtered before the analysis 

to create a homogenous subset of data: 

- Acquisition mode: Interferometric Wide Swath (IW) mode was selected since it is the primary conflict-free mode 

providing the 6- to 12-day revisit cycle over land (ESA, 2020a).  120 

- Resolution: The IW images were filtered to keep only high-resolution images (pixel spacing of 10x10 m). 

- Incidence angle: To reduce backscatter variation, only images with a look angle between 30° and 45° were kept.  

- Look direction (ascending/descending): The influence of both look directions was tested for the detection of 

settlements. For the land cover classification, the ascending orbit was chosen. The relative orbit number of all 

ascending and descending images was 114 and 150, respectively, ensuring identical imaging geometry for all 125 

images of a certain look direction. Per look direction, the revisit cycle was 12 days. 

- Polarization: For the IW mode, VV and VH polarizations are available. Since VH is available only from 2017 

on, all analyses were performed on VV images. 

Figure 1 gives an overview of the steps taken to develop the erosion detection algorithm. Methodological details are 

explained in the following sections. The full code used to develop the classifiers for land cover and settlements is 130 

referenced in the section “Code availability”.  

 

Figure 1: Overview of the analytical strategy to develop an algorithm detecting eroded farmland and settlement. 

2.3 Land cover classification 

To get a visual impression of the backscattering characteristics of different land cover types, the average backscatter 135 

coefficient of five classes (settlement, trees, fields, sand and water) was plotted for the period from January 2018 to 
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February 2020. For each of the four land cover classes water, sand, trees and agricultural fields, ten patches of size 

100x100 m were chosen based on visual inspection of the optical satellite images provided by the GEE. For each class, 

the ten patches were distributed along the length of the Jamuna River. The locations of the patches are shown in Fig. A1.  

The speckle inherent in SAR images can be reduced by temporal averaging (maintaining spatial resolution, but requiring 140 

several images) or by spatial filtering (requiring only one image, but reducing spatial resolution). There exists, thus, a 

tradeoff between keeping full spatial resolution and using only a few images. To assess riverbank erosion in Bangladesh, 

it would be ideal to use only a few images (to obtain the assessment as early as possible after the end of the monsoon 

season) while maintaining spatial resolution (to have a precise estimate of the erosion extent). Therefore, a compromise 

has to be found between sampling duration and spatial resolution. We tested the influence of these two parameters for a 145 

range of configurations: 

- Eight sampling durations: two weeks; 1 month; 2, 3, 4, 5, 6, 7 months. Each of these eight periods started on 01 

November 2018. All images within the respective period were averaged temporally before the subsequent 

analysis.  

- Seven spatial filters: no filter; 3x3 refined Lee filter; 3x3, 5x5, 7x7, 25x25 and 50x50 boxcar filter (Lee, 1981; 150 

Lee et al., 2009). The filters were applied to the absolute backscatter values.  

For a certain imaging configuration (sampling duration and filter type), the mean backscatter as well as the standard 

deviation of the pixels within each patch were calculated. Subsequently, these ten patch-specific mean and standard 

deviation values were averaged to yield one mean backscatter and one standard deviation value per land cover class and 

imaging configuration.  155 

To classify pixels into one of the four classes, thresholds were defined between water/sand, sand/fields and fields/trees. 

The thresholds were calculated as 0.5 ∗  [(𝑚𝑒𝑎𝑛𝑖 + 𝑛 ∗ 𝜎𝑖) + (𝑚𝑒𝑎𝑛𝑗 − 𝑛 ∗ 𝜎𝑗)] where i and j indicate the class with the 

lower and higher mean backscatter, respectively. n was chosen as the largest natural number such that (𝑚𝑒𝑎𝑛𝑖 + 𝑛 ∗ 𝜎𝑖) 

and (𝑚𝑒𝑎𝑛𝑗 − 𝑛 ∗ 𝜎𝑗) would not overlap. n could thus be different for each pair of classes. For trees, an additional upper 

threshold was set at -2 dB to distinguish them from settlements. Pixels were classified according to their backscatter value 160 

with respect to these thresholds. For instance, a pixel with a backscatter value larger than the threshold water/sand, but 

smaller than the threshold sand/fields was classified as “sand”. The quality of the classification was assessed visually 

using optical Sentinel-2 images.  

2.4 Settlement detection 

Since houses in rural Bangladesh are typically surrounded by trees, they are not fully visible on satellite images. Moreover, 165 

they cover only small areas compared to water, sand or farmland. Therefore, they cannot be well detected with the 

classification approach presented in Sect. 2.3, which involves spatial averaging.  

To detect houses, we exploit the fact that unlike vegetation, houses do not move or change substantially over time. Due 

to this low temporal decorrelation, houses are treated as persistent scatterers (PS) (Ferretti et al., 1999). Detecting PS 

candidates in radar images usually implies analyzing phase coherence, which cannot be done in GEE where only 170 

amplitude information is available. However, Ferretti et al. (2001) show that phase dispersion can be estimated from the 

amplitude dispersion index 𝜎𝐴/𝑚𝐴 where mA and σA are the mean and the standard deviation of the amplitude values, 

respectively. PS can then be selected by computing the dispersion index of each pixel from a stack of several SAR images 

of the same scene and keeping only those pixels exhibiting a low dispersion index. The typical range of threshold values 

for the dispersion index goes from 0.25 (Ferretti et al., 2001) to 0.4 (van Leijen, 2014).  175 
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Houses are not the only structures than can have a low dispersion index. Bare surfaces, for instance, might also be 

relatively stable over time. Therefore, we combine the dispersion criterion with an amplitude threshold: Pixels are selected 

as PS candidates and hence houses if they show a low dispersion index and a high absolute backscatter over a series of 

radar acquisitions. Two implementations of the amplitude threshold were compared: First, following Kampes and Adam 

(2004), a pixel is selected as PS candidate if its normalized cross section σ0 is above a threshold N2 in at least N1 images. 180 

These authors propose thresholds of -2 dB for N2 and 0.65K for N1, where K is the number of radar acquisitions. Second, 

the amplitude threshold was applied to the mean of all SAR images in the stack, instead of the individual images.  

The sensitivity of the settlement detection was tested for the following parameters: 

- Thresholds: For the dispersion index, threshold values of 0.25 and 0.4 were tested. For the amplitude threshold, 

-4 dB, -2 dB and 0 dB were analyzed. These analyses were done for a sampling duration of six months starting 185 

01 November 2019.  

- Look direction: Since the roofs of buildings typically have a specific orientation, they are likely to have a stronger 

backscatter for one of the two look directions “ascending” or “descending”. Therefore, these two types were 

compared.  

2.5 Erosion detection 190 

In examining the impact of riverbank erosion on human livelihoods along the Jamuna River, we are interested in two 

effects, which are treated separately: erosion of land (farmland or trees) and erosion of houses. Land was identified as 

eroded in one specific monsoon season if it was classified as “field” or “trees” before the monsoon season and as “sand” 

or “water” afterwards. Erosion to sand and erosion to water were not differentiated further since in both cases, the land 

cannot be used for agriculture anymore, which is the main effect we are interested in in this application.  195 

For classifying the land, a sampling duration of six months (November to April) was used for all years from 2014/15 to 

2018/19. For 2019/20, only the images from November 2019 were used to simulate the case that the erosion detection 

has to be performed already in December after the end of the monsoon. A 7x7 boxcar filter was applied to create smooth 

and continuous erosion bands. The threshold discriminating sand/water from fields/trees was -13.2 dB and -12.7 dB for 

the case where six months and one month of data were used, respectively (Table B1 and Table B2). To detect eroded 200 

settlements, a similar strategy was followed: A pixel was selected as settlement eroded during a specific monsoon season 

if it was classified as “settlement” before the monsoon and as “sand” or “water” afterwards. The final algorithm to detect 

eroded farmland and settlement is schematized in Fig. 2. 
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Figure 2: Flow chart of the final implementation to detect eroded farmland and settlement. THR = threshold. 205 

2.6 Accuracy assessment 

Since our study area is large (spanning more than 200 km from north to south), it was not feasible to collect sufficient 

ground-truth data to validate our land cover classification algorithm. To still be able to judge its accuracy, we compared 

the SAR-based classification to an independently conducted classification based on optical Sentinel-2 imagery, performed 

in the GEE.  210 

Classification of Sentinel-2 images was based on the Normalized Difference Vegetation Index (NDVI). The NDVI takes 

on values between -1 and 1. In terms of the land cover classes relevant for our study, water bodies typically exhibit NDVI 

values below 0, bare ground between 0 and 0.1, and cultivated land above 0.1 (DeFries and Townshend, 1994; Huang et 

al., 2020).  

Since the detection of eroded farmland relies only on the threshold between sand and vegetation (cf. Sect. 2.5), we 215 

differentiated only two landcover classes in the Sentinel-2 classification: sand/water (corresponding to all pixels 

exhibiting an NDVI value < 0.1) and vegetation/trees (corresponding to all pixels exhibiting an NDVI value > 0.1). While 

this is a large simplification, it serves the purposes of this study where we try to detect land that changes from vegetated 

before the monsoon to sand or water after the monsoon.  

The pixel-level accuracy of the SAR-based classification was assessed for one site by counting all pixels which were a) 220 

identically classified as vegetation by both methods, b) “false positives” (classified as vegetation by the SAR-based 

method, and as sand/water by the Sentinel-2 based method), and c) “false negatives” (classified as sand/water by the 

SAR-based method, and as vegetation by the Sentinel-2 based method), respectively. 

The quality of Sentinel-2 images depends on cloud cover. In Bangladesh, cloud cover varies seasonally, with highest 

values occurring during the monsoon (June to September) and lowest values in the dry season (November to March) (Fig. 225 

A2). Therefore, the accuracy assessment was performed for the two months with the lowest cloud cover (November and 
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March), using the one-month median NDVI value, respectively. For both November and March, the accuracy assessment 

was repeated for three consecutive years (2018/19 to 2020/21). The code for the Sentinel-2 based assessment is contained 

in the GEE code referenced in Sect. 2.2.  

3 Results 230 

3.1 Determination of thresholds for land cover classification 

The average monthly backscatter of seven patches is shown as a time series in Fig. 3. The settlement and tree patch are 

the most stable since they are neither affected by (rapid) vegetation growth nor by monsoon flooding. The river patch has 

mostly the lowest coefficient, which increases during the monsoon, potentially due to wind and rain disturbing the flat 

water surface. While fields generally have a backscatter coefficient close to that of trees, they can be seasonally flooded 235 

during the monsoon (field 2) or completely eroded (field 3). From the behavior of field 2, the dry season can be defined 

as the period between November and June of the following year (indicated by the vertical lines). The sand patch lies in 

between water and fields.   

 

Figure 3: Mean monthly backscatter of different land cover types (one patch per type; the location of the patches is shown in 240 
Fig. A1) between January 2018 and February 2020, obtained from C-band of Sentinel-1. Per month, between one and six images 

are averaged. 

The average backscatter of the ten sand patches is shown in Fig. 4a as a function of different sampling durations and filter 

configurations. For a given filter, there is no significant variation of the backscatter value with increasing sampling 

duration. For a given sampling duration, the average backscatter increases slightly with increasing filter size. However, 245 

this increase becomes statistically significant at the 95 % level only for the largest filters (25x25 and 50x50 pixels). For 

such large filters (50x50 pixels corresponds to 500x500 meters), this is probably caused by other land cover classes with 

a higher backscatter value (e.g. fields) being included into the filter window. 
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 250 

Figure 4: Average backscatter (panel (a)) and average standard deviation (panel (b)) of the pixels within ten patches of sand 

for different sampling durations and filter sizes. Bars indicate the 95 % confidence interval. Lee – Lee filter. Box – boxcar 

filter. 

Figure 4b presents the standard deviation of all pixels within one patch, averaged over the ten sand patches. For a given 

filter, the standard deviation decreases with increasing sampling duration. For a given sampling duration, it decreases 255 

with increasing filter size. These observations correspond to the two mechanisms for speckle reduction outlined in Sect. 

2.3, namely temporal averaging and spatial filtering. The other three land cover classes “water”, “fields” and “trees” show 

similar tendencies for filter size and sampling duration, both for average backscatter values and standard deviations (Fig. 

A3).  

These findings allow defining thresholds to separate the four classes in the land cover classification. As discussed in Sect. 260 

2.3, each combination of sampling duration and filter size has a certain advantage and a certain disadvantage. To illustrate 

this tradeoff, two extreme combinations are compared in Fig. A4. In practice, a compromise between these two extremes 

seems more likely, meaning that some spatial resolution has to be given up when a slightly longer sampling duration is 

used. One example for such a compromise is presented in Fig. 5, for which images from one month have been filtered 

with a 3x3 boxcar filter.  265 

 

Figure 5: Average backscatter for four land cover classes for a sampling duration of one month and a 3x3 boxcar filter. Bars 

indicate the mean ± 2 standard deviations. Horizontal lines indicate the thresholds between the respective classes.  

The determination of the thresholds is illustrated in Table 1 for the case of one month sampling duration and a 3x3 boxcar 

filter. As can be seen in Fig. 5, the bars of fields and trees overlap if two standard deviations are used. However, they do 270 

not overlap if only one standard deviation is used. Hence, intervals with one standard deviation are used to determine the 

threshold between fields and trees. For water/sand and sand/fields, the intervals do not overlap even if three standard 

deviations are considered. Therefore, three standard deviations are used to calculate the respective thresholds. The 

thresholds for the two configurations from Fig. A4 are contained in Table B3 and Table B4. The average backscatter 
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values shown in Table 1, Table B3 and Table B4 compare reasonably well to reference values from the literature (Table 275 

B5). 

Table 1: Determination of thresholds for a sampling duration of one month and a 3x3 boxcar filter. Values in bold are those 

that have been used to calculate the threshold indicated in the last column. All values are in dB. µ – mean. σ – standard 

deviation. 

  µ σ µ+σ µ-σ µ+2*σ µ-2*σ µ+3*σ µ-3*σ Threshold 

Water -24.4 0.9 -23.6   -22.7   -21.8     

Sand -17.4 1.2 -16.2 -18.6 -15.0 -19.9 -13.8 -21.1 -21.5 

Fields -9.5 0.8 -8.8 -10.3 -8.0 -11.0 -7.2 -11.8 -12.8 

Trees -6.1 1.7   -7.8   -9.4   -11.1 -8.3 

 280 

Assuming the backscatter values in each class to be distributed normally around the mean, this approach allows an 

estimation of the accuracy of the resulting classification. In a normal distribution, 68 %, 95 % and 99.7 % of all values 

lie within “mean ± one, two and three standard deviations”, respectively. As the thresholds “water-sand” and “sand-fields” 

are based on the interval with three standard deviations, we thus expect less than 0.15 % of all water pixels to be incorrectly 

classified as sand pixels. The same percentage applies for sand pixels being incorrectly classified as water/field pixels 285 

and for field pixels being misclassified as sand pixels. For “fields-trees”, only one standard deviation has been used, and 

hence 16 % of all field/tree pixels are expected to be falsely classified as tree/field pixels, respectively.  

Trees and fields can thus not be well distinguished in this setup, This shortcoming is, however, negligible in the context 

of studying riverbank erosion. Here, the focus is on land covered by fields or trees being eroded and appearing as sand or 

water afterwards. Therefore, the most important threshold is the one between sand and fields, which yields higher 290 

accuracy. 

The classification resulting from these three imaging configurations is depicted in Fig. 6 with an optical Sentinel-2 image 

as the baseline. If only two weeks are sampled with a 25x25 boxcar filter, the spatial resolution is largely lost (top right). 

If, by contrast, no filter is applied and six months are sampled, the classification remains very fine-grained (bottom left). 

However, the distinction between sand and water is not very accurate. The compromise – one month sampling duration 295 

and a 3x3 boxcar filter (bottom right) – manages to preserve a large degree of spatial resolution while distinguishing well 

between the four classes. It thus seems the most appropriate of these three imaging configurations.  
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Figure 6: (a) Sentinel-2 image of a stretch of the eastern riverbank of Jamuna River, taken in November 2019. Image 

dimensions: ca. 4.5x6 km. (b), (c) and (d) Classification result for a sampling duration of two weeks/25x25 boxcar filter, six 300 
months/no filter and one month/3x3 boxcar filter, respectively. Blue – water, sand – sand, light green – fields, dark green – 

trees. Source of optical background image: Sentinel-2. The location of the patch is shown in Fig. A1 (patch 1). Coordinates in 

this and all other maps are in “Gulshan 303 Bangladesh TM” (EPSG 3106). 
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3.2 Detection of settlement as persistent scatterers 

Figure A5a illustrates the need to apply an amplitude threshold in addition to the dispersion index. If only the dispersion 305 

index is used to classify settlements, many vegetation pixels that happen to be stable over the sampled time window are 

misclassified as settlements. The influence of the dispersion index threshold and the amplitude threshold is shown in 

Fig. 7. For the dispersion index, a threshold of 0.25 (panel (b)) selects only very stable pixels as PS candidates. 

Accordingly, less pixels are selected than for a threshold of 0.4 (panel (a)). For the amplitude threshold, the effect is the 

opposite: Applying a threshold of -4 dB (red) selects more pixels as PS candidates than for -2 dB (blue) or 0 dB (orange). 310 

While the threshold of -4 dB thus seems to select more settlement pixels (e.g. upper left corner of panel (a)), also the risk 

of misclassifying tree pixels as settlements rises.  

For our application, however, we are rather interested in detecting the rough location of settlements than in precisely 

distinguishing settlement and tree pixels. In fact, trees are often planted around houses, making them good indicators of 

settlements. As too few settlement pixels are detected in panel (b), we suggest a threshold combination of 0.4 and -4 dB 315 

for the dispersion index and the amplitude, respectively. Still, it is important to note that even with this combination (red 

pixels in panel (a)), several pixels that appear as houses in the optical image are not detected. We should thus keep in 

mind that what the algorithm classifies as settlement is most likely indeed a settlement, but that it cannot detect all 

settlements, especially if they are covered by trees.  

The influence of the look direction is illustrated in Fig. A5b. The overlap between the ascending and descending orbit is 320 

small. This corresponds to the fact that each building has a specific orientation of its roof. Therefore, some roofs have a 

stronger backscatter in the descending orbit, while others reflect more in the ascending orbit. Similar effects can be 

expected if persistent scatterers are located on walls or in corners of buildings. For maximum settlement detection, it is 

thus recommended to use SAR images of both look directions. To conclude, the recommended set of parameters to detect 

settlements is to use an amplitude and dispersion index threshold of -4 dB and 0.4, respectively, using images of both 325 

ascending and descending orbit.  

  

Figure 7: Influence of classification thresholds on settlement detection. Shown are dispersion index thresholds of 0.4 (panel (a)) 

and 0.25 (panel (b)) – the lower the threshold, the more stable a pixel has to be for it to be classified as a PS candidate. Colors 

correspond to different values of the amplitude threshold: -4 dB (red), -2 dB (blue), 0 dB (orange) – the lower the threshold, 330 
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the higher the chance of classifying tree pixels as settlement pixels. Source of optical background image: Google, ©2020 Maxar 

Technologies, CNES/Airbus. 

3.3 Detection of eroded farmland and settlements 

Figure 9 illustrates the result of the erosion detection (both farmland and settlements) for one specific site for the monsoon 

seasons 2018 and 2019. To evaluate the quality of the erosion detection, the detected erosion patches are mapped on 335 

optical images from before and after the monsoon. The results of the overall validation of the land cover classification 

are contained in Sect. 3.4.  

The focus of the project is on erosion occurring on the outer riverbanks of the Jamuna. Therefore, erosion happening on 

the sandbanks and islands in the river is omitted in the following discussion, which focuses exclusively on the long strip 

of eroded land on the outer riverbank. For both years, all that has been detected as eroded land has entirely been land 340 

before the monsoon (left column) and completely water after the monsoon (right column). For these examples, there is 

thus no type I error, i.e. classifying land as eroded when it is not.  

There is, however, a type II error, i.e. eroded land that is not classified as such. This error tends to be small and thus 

negligible for the overall purpose of detecting sites where erosion occurred to a significant extent. Lastly, the algorithm 

can distinguish well between eroded farmland and eroded sand, as can be seen in the lower left corner of the 2019 image 345 

before the monsoon. Regarding the patches detected as eroded settlements (bright red), by far not all of the eroded 

settlement is detected. Again, this type II error is negligible given the purpose of detecting those sites that have seen 

erosion of settlement in general. For this, it is not necessary to detect every single house that has been eroded.  

The erosion detection works for the monsoon seasons from 2015 to 2019, since Sentinel-1 images are only available from 

October 2014 onwards. Figure 9a shows the sequential nature of erosion, which does not occur at random locations, but 350 

typically in sites which have already experienced erosion during the previous monsoon season(s). We can also see the 

highly dynamic nature of land accretion and erosion. For instance, an island had formed at the place where land had been 

before the 2015 monsoon. Part of this island has been eroded again in the 2019 monsoon season (orange patch overlaying 

the dark brown 2015 erosion band). Further, settlements have been eroded in all five monsoon seasons (blue dots). Figure 

9b shows where land was eroded in the 2019 monsoon along a larger section of the Jamuna River. Erosion occurred 355 

within, but to a large extent also outside of the hotspot areas predicted by CEGIS (2018). 
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Figure 8: Validation of erosion detection. Shown are eroded land (orange) and eroded settlements (red) for 2018 ((a) and (b)) 

and 2019 ((c) and (d)). Baseline: optical Sentinel-2 images from before ((a) and (c)) and after the monsoon ((b) and (d)). The 360 
location of the patch is shown in Fig. A1 (patch 3). 
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Figure 9: (a) Detected erosion for the monsoon seasons 2015 (dark red) to 2019 (light red). Blue: eroded settlements. (b) 

Locations of land eroded during the 2019 monsoon (orange). The red rectangles are the locations for which CEGIS (2018) 365 
predicted severe erosion. Source of optical background images: Sentinel-2. 

3.4 Accuracy assessment 

A confusion matrix of vegetation versus sand/water was calculated for six different months (Table B6). The accuracy 

metrics were averaged over three consecutive years for both November and March (Table 2). The classification showed 

a satisfactory accuracy over 87 %. The observed errors might be introduced by the cloud mask which is applied to the 370 

Sentinel-2 images and potentially leads to misclassified pixels. 

Table 2: Accuracy assessment of the SAR-based classification for two months. Indicated are the accuracy values averaged for 

November/March over three consecutive years, respectively. 

Month Class User's accuracy [%] Producer's accuracy [%] Overall accuracy [%] 

November 
Sand/water  94.7 83.1 

87.5 
Vegetation 80.1 93.8 

March 
Sand/water  87.5 93.6 

90.6 
Vegetation 93.7 88.1 

 

As mentioned in Sect. 2.6, a validation based on ground-truth data was not possible due to the large size of our study area. 375 

Readers and users are, however, invited to access the source code in the GEE and compare the SAR-based land cover 

classification to optical imagery for specific sites of interest. 

3.5 Final implementation 

Finally, the results from Sect. 3.1 to 3.3 were implemented in a GEE-based analysis tool that allows the user to explore 

where erosion of farmland and settlement has occurred during the five monsoon seasons from 2015 to 2019. The tool 380 

contains the following information:  
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- Five layers for land eroded in the five monsoon seasons, 2015 to 2019 

- Five layers for settlements eroded in the five monsoon seasons, 2015 to 2019 

- One layer for the settlement detected in the beginning of 2020 

- Three optical images from January 2018, 2019 and 2020 as a visual baseline 385 

- The 14 “erosion hotspots” identified by CEGIS in their 2019 erosion prediction (cf. Sect. 1) 

The GEE-based tool to assess riverbank erosion using Sentinel-1 data, as well as a short video tutorial to introduce users 

who are unfamiliar with the GEE into the application of this tool are referenced in the section “Code availability”.  

4 Discussion 

Various studies have investigated riverbank erosion along the Jamuna applying remote sensing approaches (Hassan et al., 390 

2017; Khan et al., 2022; Pahlowan and Hossain, 2015; Islam, 2009). All of them, however, used optical images, which 

are available only at cloudfree daylight conditions. Our study is the first to assess riverbank erosion along the Jamuna 

using radar satellite images, which are independent of daylight or weather conditions. Hence, they are more readily 

available after the end of the monsoon season and thus better suited to inform practitioners who are supporting local 

communities to prepare for the upcoming monsoon and erosion season. In terms of accuracy, our algorithm performed 395 

satisfactorily when compared to an approach based on optical images (see Sect. 3.4). 

Still, different limitations might affect the results of this study. First, as outlined in Sect. 2.1, the GEE contains only the 

amplitude, but not the phase values of radar images. The phase value contains information on the distance between the 

sensor and the ground, accurate to a small fraction of the radar wavelength. One powerful technique employing the phase 

value is SAR interferometry which compares for one scene the phase of two or more radar images acquired from different 400 

positions or at different times (Moreira et al., 2013). Accessing the phase information could thus open up alternative 

strategies to detect eroded land, for instance from phase decorrelation. SAR interferometry, however, requires special 

software, which might not be available in resource-constrained settings. The GEE, by contrast, is easy and free to use, 

making the developed algorithm accessible to authorities and researchers in Bangladesh.  

Second, our study used only radar data. Combining optical and SAR data generally yields an improved performance 405 

compared to using any of the two alone. Examples using both data types include land cover classification (Carrasco et 

al., 2019; Miettinen et al., 2019; Poortinga et al., 2019; Zhang et al., 2018), change detection (Canty and Nielsen, 2017; 

Celik, 2018; Shimizu et al., 2019) and the derivation of river discharge for the Upper Brahmaputra River (Huang et al., 

2018). The GEE facilitates the combination of optical and SAR data. Such a combination would thus be another strategy 

to further improve the results of this study. 410 

Third, we have developed the algorithm to detect riverbank erosion for one specific case study. As it is usually the case 

for case study research, it is not evident how well our findings can be transferred to other contexts beyond Bangladesh. 

Given, however, that the basic mechanism of riverbank erosion (vegetated/settlement land turning into sand/water) is 

identical irrespective of where erosion occurs, we believe that it is possible to apply our erosion detection approach to 

other contexts at relatively low effort (e.g. by adapting classification thresholds to local vegetation/soil types). We invite 415 

interested readers – both from research and from practice – to access our algorithm and to apply it to other geographical 

settings.  
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5 Conclusions 

We have implemented and applied a GEE-based method to quantitively assess riverbank erosion along the Jamuna River 

in Bangladesh based on Sentinel-1 GRD intensity data. Timely detection of riverbank erosion is an essential element of 420 

disaster risk management, yet especially challenging in resource-limited settings.  

We investigated whether the locations of past erosion events can be extracted from Sentinel-1 SAR imagery. We 

developed an algorithm to classify land cover, identify settlements and detect eroded farmland and settlements along the 

Jamuna River. The SAR-based classification approach can provide information on where land and settlements have been 

eroded during the last monsoon already one month after the end of the monsoon season, and hence potentially earlier or 425 

at least more reliably than using optical satellite images, which depend on cloud-free conditions. This erosion detection 

can be achieved at sufficiently high spatial resolution. We could thus demonstrate the suitability of radar imagery to assess 

past erosion events. 

The analysis was performed using the GEE which gives access to Google’s cloud computing infrastructure as well as to 

massive amounts of satellite imagery, including time series of Sentinel-1 GRD backscatter data and Sentinel-2 optical 430 

data on a global scale. A limitation of using the GEE is that it contains only the amplitude-, and not the phase-values of 

the radar images. Landcover-change classification approaches using interferometric coherence can thus not be 

implemented in the GEE. However, the GEE facilitates sharing and re-using algorithms, making the results of this study 

accessible and useable for government agencies or NGOs in Bangladesh. To share our results, we developed an interactive 

online tool allowing the user to explore where farmland and settlement have eroded along the Jamuna River in the 435 

monsoon seasons 2015 to 2019. This online tool as well as the underlying source code can be accessed and adapted free 

of charge, making it an attractive tool to use in resource-constrained settings.  

Spatio-temporally consistent sequences of progressive riverbank erosion give valuable insights on where erosion will 

likely occur in the following monsoon season. Such information can be used to alert potentially affected residents 

accordingly. Likewise, the results of our study can be used to inform researchers or NGOs working on the adaptation of 440 

the population living along the Jamuna to the riverbank erosion. As such, the tool developed in this study might be of 

interest to both policymakers and practitioners working in the fields of disaster risk management and communication. 

Since riverbank erosion is a phenomenon occurring along many of the world’s major rivers (e.g. Mekong River, Yellow 

River, Mississippi River or Danube River), the relevance of our tool extends beyond the specific case study of Bangladesh. 

Likewise, it might be applicable to coastal erosion – another environmental hazard that is bound to increase in the age of 445 

climate change. 
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Appendix A: Additional figures 

 450 

Figure A1: (a) Locations of the patches shown in Fig. 3 (symbols are larger than the patches). (b) Locations of the patches 

analyzed for the development of the land cover classification (symbols are larger than the patches). (c) Locations of the patches 

used to validate the land cover classification (patch 1), the settlement detection (patch 2) and the erosion detection (patch 3). 

Exact coordinates for all patches are contained in the GEE source code. Source of optical background image: Sentinel-2. 
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 455 

Figure A2: Mean cloudy pixel percentage of all Sentinel-2 images taken over the assessment site during the respective month. 

For each month, five consecutive years were analysed. The plotted values represent the average of these five years. 

 

Figure A3: Average backscatter (panels (a), (c) and (e)) and average standard deviation (panels (b), (d) and (f)) of the pixels 

within ten patches of water (panels (a) and (b)), fields (panels (c) and (d)) and trees (panels (e) and (f)) for different sampling 460 
durations and filter sizes. Bars indicate the 95 % confidence interval. Lee – Lee filter. Box – boxcar filter. 
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Figure A4: Average backscatter for four land cover classes (a) for a sampling duration of 0.5 months and a 25x25 boxcar filter 

and (b) for a sampling duration of 7 months and no filter. Bars indicate the mean ± 2 standard deviations. If images are available 

only from two weeks, strong spatial filtering (25x25 pixels) reduces the standard deviation enough to separate all four classes 465 
even at the level of two standard deviations around the mean (panel  (a)). If, by contrast, images are available from seven 

months, water, sand and fields can be separated even if no spatial filter is applied (panel (b)). In this setting, fields and trees 

can be distinguished only at the level of one standard deviation around the mean (not shown in the graph).  

 

Figure A5: (a) Classification of settlements using the dispersion index only (blue) or the combination of dispersion index and 470 
amplitude threshold (orange). Thresholds: 0.25 (dispersion index), -2 dB (amplitude). (b) Settlement detection for ascending 

(orange) and descending (blue) orbit. Thresholds: 0.4 (dispersion index), -4 dB (amplitude). Sampling duration for both panels: 

six months. The location of the patch is shown in Fig. A1 (patch 2). Source of optical background image: Google, ©2020 Maxar 

Technologies, CNES/Airbus. 

  475 
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Appendix B: Additional tables 

Table B1: Determination of thresholds for a sampling duration of six months and a 7x7 boxcar filter. Values in bold are those 

that have been used to calculate the threshold indicated in the last column. All values are in dB. µ – mean. σ – standard 

deviation. 

  µ σ µ+σ µ-σ µ+2*σ µ-2*σ µ+3*σ µ-3*σ Threshold 

Water -23.0 0.1 -22.8   -22.7   -22.5     

Sand -16.9 0.4 -16.5 -17.3 -16.0 -17.7 -15.6 -18.2 -20.4 

Fields -10.3 0.2 -10.1 -10.5 -9.9 -10.6 -9.7 -10.8 -13.2 

Trees -6.0 0.9   -6.9   -7.8   -8.7 -9.2 

 480 

Table B2: Determination of thresholds for a sampling duration of one month and a 7x7 boxcar filter. Values in bold are those 

that have been used to calculate the threshold indicated in the last column. All values are in dB. µ – mean. σ – standard 

deviation. 

  µ σ µ+σ µ-σ µ+2*σ µ-2*σ µ+3*σ µ-3*σ Threshold 

Water -24.2 0.3 -23.9   -23.5   -23.2     

Sand -17.1 0.7 -16.3 -17.8 -15.6 -18.5 -14.9 -19.2 -21.2 

Fields -9.4 0.4 -9.0 -9.8 -8.7 -10.2 -8.3 -10.6 -12.7 

Trees -5.9 1.0   -6.9   -8.0   -9.0 -8.3 

 

Table B3: Determination of thresholds for a sampling duration of two weeks and a 25x25 boxcar filter. Values in bold are those 485 
that have been used to calculate the threshold indicated in the last column. All values are in dB. µ – mean. σ – standard 

deviation. 

  µ σ µ+σ µ-σ µ+2*σ µ-2*σ µ+3*σ µ-3*σ Threshold 

Water -23.9 0.1 -23.7   -23.6   -23.4     

Sand -16.5 0.3 -16.2 -16.8 -15.9 -17.1 -15.5 -17.4 -20.4 

Fields -8.8 0.3 -8.5 -9.2 -8.2 -9.5 -7.9 -9.8 -12.7 

Trees -6.0 0.3   -6.4   -6.7   -7.0 -7.4 

 

Table B4: Determination of thresholds for a sampling duration of seven months, unfiltered. Values in bold are those that have 

been used to calculate the threshold indicated in the last column. All values are in dB. µ – mean. σ – standard deviation. 490 

  µ σ µ+σ µ-σ µ+2*σ µ-2*σ µ+3*σ µ-3*σ Threshold 

Water -22.8 0.7 -22.1   -21.4   -20.7     

Sand -17.4 1.0 -16.4 -18.5 -15.4 -19.5 -14.4 -20.5 -20.6 

Fields -10.5 0.5 -10.0 -11.1 -9.5 -11.6 -8.9 -12.1 -13.2 

Trees -6.6 2.0   -8.6   -10.6   -12.7 -9.3 

 

Table B5: Average backscatter values from Ulaby and Dobson (1989) for C-band at VV polarization for look angles of 30° and 

45°. 

 30° 45° 

Soil and rock -10.3 -13.3 

Grasses -10.7 -14.5 

Shrubs -9.7 -11.0 

Short vegetation -10.0 -13.2 
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Trees -10.8 (for 20°) -2.3 

 

Table B6: Confusion matrix of resultant land cover classification as obtained from SAR versus Sentinel-2 (S2) for six 495 
different months. 

Month Class Sand/water 

(SAR) [km2] 

Vegetation 

(SAR) [km2] 

User's accuracy 

[%] 

Producer's 

accuracy [%] 

Overall 

accuracy [%] 

Nov 18 
Sand/water (S2) 10.79 1.39 93.8 88.6 

91.3 
Vegetation (S2) 0.71 11.13 88.9 94.0 

Nov 19 
Sand/water (S2) 11.78 2.06 96.4 85.1 

89.6 
Vegetation (S2) 0.44 9.78 82.6 95.7 

Nov 20 
Sand/water (S2) 11.49 3.69 93.9 75.7 

81.6 
Vegetation (S2) 0.74 8.11 68.7 91.6 

Mar 19 
Sand/water (S2) 9.97 0.48 85.8 95.4 

91.1 
Vegetation (S2) 1.65 11.94 96.1 87.9 

Mar 20 
Sand/water (S2) 11.02 0.82 87.7 93.1 

90.2 
Vegetation (S2) 1.54 10.67 92.9 87.4 

Mar 21 
Sand/water (S2) 10.92 0.92 89.1 92.2 

90.6 
Vegetation (S2) 1.34 10.85 92.2 89.0 

 

Code availability 

The GEE code underlying the analyses of this paper is publicly available: doi:10.5281/zenodo.7253121 (or directly in the 

GEE: https://code.earthengine.google.com/a2a7614af421261a4b639a1abbb609c6).  500 

The interactive online tool implementing the findings of this paper can be accessed here: doi:10.5281/zenodo.7252970 

(or directly in the GEE: https://code.earthengine.google.com/b1ba16d48320a3501e89135679d97492?hideCode=true).  

To introduce users who are unfamiliar with the GEE into the application of this tool, we have recorded a short tutorial: 

doi:10.5281/zenodo.7249809 (or directly: youtu.be/_b9AAPDw7Wk). 
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