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Abstract. Satellite observations have been widely used to examine afforestation effects on local surface temperature at large 

spatial scales. Different approaches, which potentially lead to differing definitions of the afforestation effect, have been used 

in previous studies. Despite their large differences, the results of these studies have been used in climate model validation and 

cited in climate synthesis reports. Such differences have been simply treated as observational uncertainty, which can be an 15 

order of magnitude bigger than the signal itself. Although the fraction of the satellite pixel actually afforested has been noted 

to influence the magnitude of afforestation effect, it remains unknown whether it is a key factor which can reconcile the 

different approaches. Here, we provide a synthesis of three influential approaches (one estimates the actual effect and the other 

two the potential effect) and use large-scale afforestation over China as a test case to examine whether the different approaches 

can be reconciled. We found that the actual effect (ΔTa) often relates to incomplete afforestation over a medium resolution 20 

satellite pixel (1km). ΔTa increased with the afforestation fraction, which explained 89% of its variation. One potential effect 

approach quantifies the impact of quasi-full afforestation (ΔTp1), whereas the other quantifies the potential impact of full 

afforestation (ΔTp2) by assuming a shift from 100% openland to 100% forest coverage. An initial paired-samples t-test shows 

that ΔTa < ΔTp1 < ΔTp2 for the cooling effect of afforestation ranging from 0.07K to 1.16K. But when all three methods are 

normalized for full afforestation, the observed range in surface cooling becomes much smaller (0.79K to 1.16K). Potential 25 

cooling effects have a value in academic studies where they can be used to establish an envelope of effects, but their realization 

at large scales is challenging given its nature of scale dependency. The reconciliation of the different approaches demonstrated 

in this study highlights the fact that the afforestation fraction should be accounted for in order to bridge different estimates of 

surface cooling effects in policy evaluation. 
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1 Introduction 30 

Afforestation has been and is still proposed as an effective strategy to mitigate climate change because forest ecosystems are 

able to sequester large amounts of carbon in their biomass and soil, slowing the increase of atmospheric CO2 concentration 

(Fang et al., 2014; Pan et al., 2011). Additionally, forests regulate the exchange of energy and water between the land surface 

and the lower atmosphere through various biophysical effects, including radiative processes such as surface reflectance, and 

non-radiative processes such as evapotranspiration and sensible heat flux (Bonan, 2008; Juang et al., 2007). As the net result 35 

of the surface energy balance, land surface temperature (LST) is widely used to measure the local climatic impact of 

afforestation (Li et al., 2015; Winckler et al., 2019a).  

 

Climate model simulations and site-level observations have been utilized to explore the impact of forest dynamics on land 

surface temperature (Lee et al., 2011; Pitman et al., 2009; Swann et al., 2012). However, afforestation impacts on local LST 40 

derived from models tend to be highly uncertain as they are limited by the coarse spatial resolution of models and uncertainties 

in model parameters and processes (Oleson et al., 2013; Pitman et al., 2011), while insights from site-level assessments cannot 

be extrapolated to large spatial domains (Lee et al., 2011). Alternatively, remote sensing-based LST products enable the 

assessment of local LST changes due to forest dynamics on large spatial scales (Li et al., 2015; Shen et al., 2019). 

 45 

A number of studies investigated the surface temperature impact of afforestation based on satellite observations and they have 

been cited in high-level climate science synthesis reports (e.g., IPCC Special Report on Climate and Land authored by Jia et 

al., 2019), even though there are large differences in afforestation impacts on LST between different methods. For example, 

Alkama and Cescatti (2016), found a cooling effect of about 0.02K from afforestation in temperate regions, while Li et al. 

(2015) reported a 0.27±0.03K ‘potential’ cooling from afforestation in the northern temperate zone (20–50° N) based on the 50 

‘space-for-time’ method. In contrast, Duveiller et al. (2018) found a much stronger ‘potential’ cooling effect of 2.75K for 

afforestation in the northern temperate region. While such differences were acknowledged in a recent modelling study 

(Winckler et al., 2019b), they were simply treated as observational uncertainty for climate model evaluation, with the 

uncertainty range being as big as, or even an order of magnitude larger than, the afforestation effect. It remains unclear whether 

the differences arising from these different methods can be reconciled. 55 

 

Until now, studies using satellite data to investigate afforestation impact on surface temperature have mainly focused on three 

methods. The first method, termed the ‘space-and-time’ approach (Fig. 1, red box), aims to examine the actual, realized effect 

of afforestation (‘actual effect’) by isolating the forest cover change effect from the gross temperature change over time in 

places where forest cover change actually occurred (Alkama and Cescatti, 2016; Li et al., 2016a). The second method, termed 60 

the ‘space-for-time’ approach (Fig. 1, orange box), compares the surface temperature of forest with adjacent ‘openland’ (i.e., 

cropland or grassland) under similar environmental conditions (e.g., background climate and topography) and estimates the 

https://www.zotero.org/google-docs/?63eCVn
https://www.zotero.org/google-docs/?b1KFPz
https://www.zotero.org/google-docs/?W5ZhmO
https://www.zotero.org/google-docs/?296Vnv
https://www.zotero.org/google-docs/?OfzadS
https://www.zotero.org/google-docs/?cTdTxm
https://www.zotero.org/google-docs/?rhfJL9
https://www.zotero.org/google-docs/?broken=HfqhdI


3 

 

‘potential effect’ of afforestation if afforestation were to occur (Ge et al., 2019; Li et al., 2015; Peng et al., 2014). Note that 

such effects are often quantified using medium-resolution land-cover datasets (typical resolution = 1km), which do not 

necessarily represent 100% ground coverage, and we therefore term such a potential effect a ‘mixed potential effect’.  65 

 

The third method, recently used by Duveiller et al. (2018), uses the ‘singular value decomposition’ technique (Fig. 1 green 

box), which is claimed to extract the hypothetical LST for different land-cover types by assuming a 100% coverage of the 

target cover type. The afforestation effect on LST is then quantified as the difference between the LST of a pixel with a 

hypothetical 100% forest coverage and the LST of an adjacent pixel with 100% openland coverage. As with the second method, 70 

such an approach quantifies the ‘potential effect’ of afforestation, but in this case, it quantifies the ‘full potential effect’ by 

assuming transitions between land-cover types with 100% complete ground coverage. 

 

Previous studies have revealed the fraction of forest change as an important factor determining the magnitude of the 

afforestation effect. Alkama and Cescatti (2016) indicated that the actual temperature effect is fraction-dependent, and Li et al. 75 

(2016a) pointed out that use of a higher threshold to define forest change resulted in a stronger potential effect. Nonetheless, 

whether the fraction of forest change can explain the differences in the afforestation effect produced by different methods, e.g., 

whether the ‘potential’ effect can be ‘actualized’, has not been demonstrated. Testing the role of afforestation fraction in 

reconciling the afforestation effects produced by different methods can help clarify potential confusion and contribute to 

appropriate policy evaluation.  80 

 

This study develops detailed conceptual and methodological descriptions for each of the three approaches and uses large-scale 

afforestation over China as a case study to compare the three approaches. We tested the following hypotheses: (1) The actual 

effect on LST increases with the area that has actually been afforested, defined as afforestation intensity (or Faff). (2) The actual 

effect is smaller than the potential effects. (3) When extending Faff to a hypothetical value of 100%, the actual effect approaches 85 

the potential effect. If proven, this third hypothesis implies that the LST impacts from different approaches could be reconciled 

given the same boundary condition of full afforestation. In that case, we then have a fourth hypothesis (4) stating that changes 

in underlying biophysical processes including radiation, sensible and latent heat fluxes that drive LST changes should also be 

reconciled among different methods. To keep the focus on reconciling methodological differences, only changes in the daytime 

surface temperature were considered in this study. Nevertheless, similar conclusions regarding the different approaches are 90 

expected for nighttime surface temperature.  

 

https://www.zotero.org/google-docs/?Q25L01
https://www.zotero.org/google-docs/?uHwPLi
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2 Method 

2.1 Three Approaches to Quantifying the Impacts of Afforestation on LST 

2.1.1 Actual Effect of Afforestation (ΔTa) 95 

The ‘space-and-time’ approach assumes that the gross change in land surface temperature (ΔT) over a given time period during 

which afforestation occurred, contains both signals of temperature change due to afforestation (ΔTa) and background 

temperature variation (ΔTres) due to changes in large-scale circulation patterns (Alkama and Cescatti, 2016; Li et al., 2016a): 

 
a res

ΔT = ΔT +ΔT  (1) 

where ΔT is the gross temperature change during the period from t1 to t2 for the pixel under study. ΔT can be calculated as the 100 

difference between LSTt2 and LSTt1, with LSTt2 being the surface temperature after afforestation and LSTt1 being that before 

afforestation. It thus follows that 

 
a res

ΔT  = ΔT - ΔT  (2) 

ΔTres can be approximated by averaging changes in surface temperature for those pixels adjacent to the target afforestation 

pixel for which the forest cover remained constant between t1 and t2 (i.e., Faff =0%; section 2.2.3). Here, pixels with Faff > 0% 105 

were defined as afforestation target pixels. A searching window of 11 km by 11 km was established, centered on the 

afforestation pixel. Within this window, pixels with Faff =0% were defined as control pixels and were used to derive ΔTres. 

Afforestation pixels and adjacent control pixels were both determined based on the net forest change between t1 and t2 using 

Global Forest Change (GFC) data (Fig. 2; Section 2.2.3).  

2.1.2 Mixed Potential Effect (ΔTp1) 110 

The ‘space-for-time’ method relies on the ‘space-substitute-for-time’ assumption to obtain the potential impact of afforestation 

on local temperature (Zhao and Jackson, 2014). By assuming that forest and openland share the same environmental conditions 

(background climate, topography, etc.) within a small spatial domain, the potential temperature effect of afforestation is 

examined using the search window method with a window size of up to 40km×40km (Ge et al., 2019; Li et al., 2015; Peng et 

al., 2014). Here, to be consistent with our ‘actual effect’ approach, a more conservative window size of 11km×11km was used, 115 

smaller than that used in the majority of previous studies (Ge et al., 2019; Li et al., 2015; Peng et al., 2014). In most previous 

studies, existing medium resolution (1km) land-cover maps were used directly. Such land-cover products rely on certain 

thresholds to classify satellite pixels into discrete land-cover types. Given the widespread spatial heterogeneity in land-cover 

distribution, it is to be expected that only in rare cases will these medium-resolution pixels have 100% coverage of a given 

land-cover type. Therefore, when determined in this way, the potential effect of afforestation has been named the ‘mixed 120 

https://www.zotero.org/google-docs/?SHI2uO
https://www.zotero.org/google-docs/?5Az7Ya
https://www.zotero.org/google-docs/?2Gc81D
https://www.zotero.org/google-docs/?2Gc81D
https://www.zotero.org/google-docs/?lJnq8w
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potential effect’, in contrast to the ‘full potential effect’, on which we will focus in the next section, which assumes a potential 

transition between land-cover types of 100% coverage. 

 

To ensure consistency with the land-cover data used in the ‘full potential effect’ approach (i.e., the SVD method), the 

GlobeLand30 land-cover map was aggregated from its original resolution (30m) to 1km resolution. The land-cover type 125 

assigned to a given 1km pixel during aggregation was based on the land-cover type with an area fraction >50% within that 

pixel, to be consistent with the rationale behind the generation of medium-resolution land-cover products (Section 2.2.3). A 

1km forest pixel was then chosen as the target pixel and put at the center of a search window with dimensions 11km×11km. 

The ‘mixed potential effect’ of afforestation (ΔTp1) was defined as the difference between the temperature of the target pixel 

(LSTF) and the average temperature of all the surrounding openland pixels within the window ( '
LST

O
): 130 

 '

p1
ΔT=ΔT -LST

O  (3) 

where LSTF is the surface temperature of the target forest pixel at t2, and 'LSTO represents the elevation-corrected surface 

temperature of openland pixels at t2 within the search window. Given our search window size, ΔTp1 could be biased by the 

elevation difference between the target forest pixel and surrounding openland pixels. Therefore, a linear relationship was first 

fitted between the observed openland temperature, LSTO, and the elevation of the openland pixel (EleO). This fitted temperature 135 

lapse rate (k) was then used to derive elevation-corrected openland temperature '
LST

O
: 

 
'

-
LST  = LST e+ ΔEl

O F OO
k   (4) 

where ΔEleF-O is the elevation difference between forest and openland pixels. The elevation is available from NASA’s Shuttle 

Radar Topography Mission (SRTM) data (https://lpdaac.usgs.gov/products/srtmgl1v003/).  

2.1.3 Full Potential Effect (ΔTp2) 140 

The full potential effect represents the temperature change due to hypothesizing a shift from 100% openland to 100% forest 

coverage, and was determined here by employing the singular value decomposition (SVD) method used in Duveiller et al. 

(2018). The SVD technique assumes that the temperature observed for a pixel at 1km scale is a linear composition of the 

temperatures of different land-cover types at a finer resolution (in our study at a 30m resolution). For each 1km pixel, the 

observed temperature can be written as the composition of the temperature of each component land-cover type and its 145 

corresponding fraction, based on the land-cover fractions derived from the 30m-resolution GlobeLand30 map (Section 2.2.3). 

The temperature of each type of land cover was assumed constant within a search window of 11km × 11km. For each given 

search window, the following equations can be obtained: 

https://lpdaac.usgs.gov/products/srtmgl1v003/
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 (5) 

where n is the total number of 1km pixels within the window, after accounting for the elevation difference (thus the maximum 150 

value of n is 121 given our 11km × 11km search window), m is the number of land-cover types, 
ij

x refers to the fraction of 

land-cover type j in pixel i, 
i

 refers to the temperature of land cover type i. To minimize elevation impacts, the linear 

regression relationship for a given 1km pixel was included only when the elevation difference between this pixel and the 

central pixel of the search window was smaller than 100m. Using matrix notation, Eq. (5) can be simplified to: 

  = Xy   (6) 155 

where the matrix X contains land-cover fraction for the n 1km pixels as an explanatory variable, the response variable y 

contains n LST observations, and the coefficient vector, β, contains the regression coefficients which show temperatures of 

different land-cover types. Note that this linear equation system cannot be easily solved because the matrix X is ‘closed’, i.e., 

by definition, the elements in each row of the matrix X add to 1. After removing the mean of each column (Zhang et al., 2007), 

the matrix X was transformed, by applying the SVD technique, to another matrix, Z, of reduced dimension (more details in 160 

Duveiller et al., 2018). After this transformation, we have the following: 

 '
 = Zy   +  (7) 

in which the 
'

  coefficient can be obtained from equation (8): 

 ( )
1

'
 = Z Z

t t
y

−

  (8) 

However, the 
'

 vector calculated from the transformed matrix Z cannot directly provide surface temperatures for 165 

corresponding land-cover types. To obtain temperatures for each land-cover type by assuming 100% ground coverage, an 

identity matrix Y with its dimension equal to the number of land-cover types must be constructed to represent the hypothetical 

case in which each 1km pixel was 100% covered by a single land-cover type. The same transformation as applied to the matrix 

X was then applied to Y, to obtain a transformed matrix '
Z . Finally, the predicted temperature (

'

100%
LST ) for each land-cover 

type assuming a 100% coverage is calculated as: 170 

 
' ' '

100%
LST  = Z   (9) 

For the central pixel of the local search window, ΔTp2 is defined as the difference between the predicted 
'

100%
LST  for forest 

(
'

100%
LST

F
) and openland (

'

100%
LST

O
). 
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' '

p2 100% 100%
ΔT = LST LST- 

F O  (10) 

More details, including an illustration of the SVD method, can be found in Fig. 7 in Duveiller et al. (2018). 175 

 

At the scale of the searching windows used in this analysis (11km×11km), any nonlocal effects cancel out when comparing 

temperature differences over neighboring areas because the effects of advection and atmospheric circulation have been 

reported to be similar for adjacent areas (Pongratz et al., 2021; Winckler et al., 2019a). Hence the quantified afforestation 

effect for each of the three methods can be considered to be the local effect only. 180 

2.2 Dataset and Processing 

2.2.1 The Test Case: Large-scale Afforestation over China 

China was selected as the test case for addressing the important methodological issues in quantifying land surface impacts of 

afforestation because afforestation is a key national strategy for sustainable development and climate mitigation (Bryan et al., 

2018; Qi et al., 2013). According to the 8th National Forest Inventory conducted in 2013, China’s afforestation area has reached 185 

6.9×103 million ha, accounting for 33% of the total global afforestation area (Chen et al., 2019). Afforestation in China during 

2000–2012 occurred mainly in regions with more than 400 mm of precipitation per year (Fig. 3a), which is considered a 

threshold below which there is a high risk of afforestation failing due to water limitation (Mátyás et al., 2013). China covers a 

wide range of latitude from 3.9° N to 53.6° N and its forest ecosystems cover an elevation range of 100m to 4000m. This wide 

range of climate zones, from tropical/subtropical to temperate and boreal, make it highly suitable for our methodological 190 

analysis because the impact of afforestation on LST might differ with latitude and background climate (Lee et al., 2011; 

Alkama and Cescatti, 2016). Further justification for using China as a test case comes from the strongly diverging published 

LST impacts of afforestation there, which range from an actual effect of -0.0036K decade-1 by Li et al. (2020) to a potential 

effect of -1.1K by Peng et al. (2014). 

2.2.2 MODIS Dataset and Preparation 195 

In this study, the actual effect was estimated by combining the actual satellite-derived afforestation for 2000 to 2012 (see 

Section 2.2.3) with satellite-based estimates of biophysical variables for the periods 2002–2004 (t1) and 2010–2014 (t2). 

MODIS remote sensing products for land surface temperature (MOD11A2), albedo (MCD43B3) and evapotranspiration 

(MOD16A2) were used to characterize the biophysical effects (Table 1). The datasets were regridded to harmonize with spatial 

(1km) and temporal (annual) resolutions (Table 1).  200 

 

The MOD11A2 product provides 8-day land surface temperature for 10:30 AM and 22:30 PM from the Terra satellite, but 

here we focused on daytime surface temperature. Only valid LST observations from the original data were used to compute 

https://www.zotero.org/google-docs/?VHWlqJ
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the average daily values for a given year. Years for which more than 40% of daily data are missing were excluded from the 

analysis. Annual data were then aggregated to obtain the average annual temperature for periods t1 and t2. 205 

 

The MCD43B3 product provides white-sky and black-sky shortwave albedo at 16-day temporal resolution (Table1). The 

observed white-sky albedo was used as the daytime albedo (Peng et al., 2014). For evapotranspiration (ET), we used the ET 

band in MOD16A2, which includes water fluxes from soil evaporation, wet canopy evaporation and plant transpiration. To 

calculate the mean annual albedo and evapotranspiration for 2002–2004 (t1) and 2010–2014 (t2) we used the same approach 210 

as used for LST. 

2.2.3 Land-Cover Datasets and Processing 

Two land-cover datasets were used in this study: the ‘actual effect’ approach was based on the Global Forest Change (GFC) 

dataset, while the ‘mixed potential effect’ and ‘full potential effect’ used the GlobeLand30 land-cover data (Table 1).  

 215 

The SVD technique, used in the ‘full potential effect’ approach, requires a land-cover map with a higher spatial resolution than 

the 1km spatial resolution of the LST data. The GlobeLand30 product, which is based on Landsat images, provides land-cover 

information for China at a 30m resolution for the years 2000 and 2010 (Chen et al., 2015). Cultivated land and grassland in 

GlobeLand30 were classified as openland. Discrete land-cover type information at 30m resolution in 2010 was aggregated to 

obtain the area fractions of the different land-cover types at 1km resolution, which were then used to construct matrix X in Eq. 220 

(5) (Fig. 2). Furthermore, land-cover type information at the 1km scale was extracted, based on the vegetation type with area 

fraction >50% for every 1km×1km window. This data was then applied in the ‘space-for-time’ method to identify forest and 

openland (Fig. 2). 

 

GlobeLand30 data is not suitable for detecting forest change (Zeng et al., 2021). The Global Forest Change (GFC) data, 225 

however, provides forest gain and forest loss at a spatial resolution of 30m between 2000 and 2012 and has been used for 

mapping global forest change (Hansen et al., 2013). This product shows an overall accuracy of greater than 99% for areas of 

forest gain at the global scale when compared with statistical data reported in Forest Resource Assessment (FRA), LiDAR 

detection (Geoscience Laser Altimetry System), and MODIS NDVI time series (Hansen et al., 2013), and thus has been 

recommended for use in forest and forest-change estimates (Chen et al., 2020; Zeng et al., 2021). Using this dataset, forest loss 230 

events were identified for each year between 2000 and 2012, but forest gain was only identified for the whole period, simply 

because forest loss is an abrupt change which can be effectively identified over short time periods, whereas forest gain is a 

gradual change which can only be confidently identified over longer time spans. Here, forest losses and gains from GFC were 

aggregated at a 1km resolution to obtain net forest change (defined as forest gain minus forest loss) during this period (Fig. 2). 

A positive net change indicates afforestation and the area percentage of afforestation for the 1km pixel area was defined as Faff. 235 

https://www.zotero.org/google-docs/?BzWVOl
https://www.zotero.org/google-docs/?qJiEYq
https://www.zotero.org/google-docs/?X1vAgD
https://www.zotero.org/google-docs/?X1vAgD
https://www.zotero.org/google-docs/?X1vAgD
https://www.zotero.org/google-docs/?X1vAgD
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The land-cover type of pixels with Faff = 0% was considered to be stable. This net forest-change information was then used in 

the calculation of the actual afforestation-induced temperature effect (ΔTa)(Fig. 2). 

2.3 Decomposition of Changes in Surface Temperature 

Changes in surface temperature following forest-cover change are the net result of changes in underlying fluxes that 

collectively determine the land surface energy balance: 240 

 in out in out
- - GΔSW ΔSW +ΔLW ΔLW =ΔH +ΔLE +Δ  (11) 

where ΔSWin, ΔSWout, ΔLWin, ΔLWout are the changes in incoming and outgoing shortwave and longwave radiation, 

respectively, and ΔH, ΔLE, and ΔG are changes in sensible heat flux, latent heat flux and ground heat flux, respectively. All 

the terms of Eq. (11) are expressed in W m-2. 

 245 

Firstly, it can be reasonably assumed that ΔSWin≈0 and ΔLWin≈0, given that all three approaches consider only local effects 

on surface temperature by following a comparison of target pixels with surrounding control pixels, thus excluding feedbacks 

from, e.g., cloud formation (Duveiller et al., 2018). Changes in reflected shortwave radiation can be derived as: 

 out in
ΔSW = SW ×Δα  (12) 

where SWin is available from the CERES EBAF-Surface Product Ed 4.1 (Kato et al., 2018; Liu et al., 2018) (Table 1), and Δα 250 

is the surface albedo change. To approximate ΔLWout, we used its first order differential equation: 

 
3 4

out B B
ΔLW = σ(4 T ΔT+Δ T )   (13) 

where σ is Stefan-Boltzmann’s constant (5.67×10−8 W m−2 K−4), T is daytime surface temperature and ΔT is the afforestation 

impact on surface temperature. Surface broadband emissivity, εB, is usually obtained from an empirical relationship (Zhang et 

al., 2019): 255 

 B 29 31 32
=0.2122 +0.3859 +0.4029     (14) 

where ε29, ε31 and ε32 are obtained from the estimated emissivity for bands 29 (8,400–8,700 nm), 31 (10,780–11,280 nm) and 

32 (11,770–12,270 nm) in the MOD11C3 data (Duveiller et al., 2018).  

 

Latent heat flux change (ΔLE) refers to changes in the energy used for evapotranspiration (ET, unit: mm d-1), which can be 260 

obtained from the change in evapotranspiration (ΔET): 

 -2 -1
)ΔLE =ΔET 28.94 W m /(mm d  (15) 
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Therefore, the sum of sensible heat change and ground heat change (ΔH+ΔG) can be calculated as the difference between net 

radiation change and latent heat flux change (ΔLE) based on Eq. (11). The afforestation effects on albedo (Δα), εB (ΔεB) and 

ET (ΔET) needed in the above equations were calculated in a similar way to ΔT for each of the three different approaches as 265 

described in Section 2.1.  

2.4 Statistical Analysis 

The spatial distributions of original samples for the three methods are different because of the different land-cover maps used 

(Fig. 2 and Fig. A1) and, therefore, the statistical analysis was limited to those pixels shared by all three approaches: 96,058 

sample pixels at 1km resolution. The distribution of these shared sample pixels retained the characteristics of the spatial 270 

distribution of the original samples (Fig. A2).  

 

Differences in the afforestation effects on LST of the three approaches were tested by performing paired-samples t-tests 

between pairs of approaches. The paired-samples t-test was used, rather than a normal t-test, to avoid the bias due to strong 

spatial heterogeneity in the LST effects of afforestation that could occur if the values of all pixels had been pooled together 275 

for a normal t-test. The test was made using the ‘ttest_rel’ method from the ‘scipy.stats’ package in Python. The Bonferroni 

correction was applied to adjust the significance level (p-value) to mitigate the increasing Type I error when making multiple 

paired-samples t-test, which in our case involves three pairs (Lee and Lee, 2018; UC Berkely, 2008). The Bonferroni correction 

sets the significance cut-off at α/k (with α as the p-value before correction and k as number of pairs). In this study, with 3 

hypotheses tests (i.e., 3 pairs) and an original significance level α = 0.05, the adjusted p-value is 0.0167. In order to investigate 280 

ΔTa in relation to the afforestation intensity, a linear regression was performed between ΔTa and Faff using the ordinary least 

squares method. 

3 Results 

3.1 Spatial Distribution of Afforestation and its Effect on Land Surface Temperature 

In China, afforestation areas are mainly located in the northeast, southwest and south, where sufficient precipitation is available 285 

(Fig. 3a) and largely driven by afforestation of former cropland or abandoned cropland, with a relatively small contribution 

from forest regeneration or replanting following natural disturbance or timber harvest. One prominent feature of afforestation 

in China is its small afforestation patch, with most afforested pixels (1km2) having an afforestation fraction of less than 30% 

(Fig. 3b). Pixels with an afforestation intensity below 10% account for 93% of the total number of pixels (Fig. 3b), representing 

0.14 Mha, more than half (55.6%) of the total afforestation area (Fig. 3b).  290 

 

Although all three approaches result in similar spatial and latitudinal patterns regarding afforestation effects on LST (Fig. 4), 

their magnitudes differ substantially. The actual effect has the lowest temperature change, followed by the mixed potential 
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effect, with the full potential effect showing the greatest temperature change (Fig. 4a–c). For the latitude range of 20–36° N 

where afforestation effects show a dominant cooling effect, the full potential effect (ΔTp2) reaches -1.75±0.01K, while the 295 

mixed potential effect (ΔTp1) was smaller at -0.96±0.00K, but both of them were much larger than the actual effect (ΔTa) of -

0.09±0.00K. Similarly, the full potential effect (ΔTp2) showed the strongest warming effect (0.35±0.01K) in the area north of 

48° N, stronger than the mixed potential effect (0.22±0.01K), and again the actual effect is the smallest (0.07±0.01K). However, 

regarding the latitude where the effects change from a warming to cooling effect, the three approaches largely converge (Fig. 

4d). Between 40° N and 48° N, the afforestation effects are largely neutral, with the mean temperature change for the three 300 

approaches being 0.07±0.01K (ΔTa=-0.01±0.01K; ΔTp1=0.11±0.01K; ΔTp2=0.12±0.01K).  

3.2 Reconciling Temperature Effects of Afforestation  

Even though the observed land surface temperature is assumed to be uniform for the 1km afforested satellite pixel, the 

underlying afforestation intensity varies substantially (Fig. 3a). This leads to our first hypothesis that for a 1km pixel, ΔTa 

should be influenced by the area fraction that has been afforested within the pixel (i.e., afforestation intensity or Faff). Indeed, 305 

the actual daytime surface cooling increases significantly with afforestation intensity (Fig. 5), with a 0.079±0.017K (mean ± 

std) increase for each ten percent increase in Faff.  

 

The afforestation effects obtained from the three approaches were compared for each Faff interval (Fig. 6). When afforestation 

intensity is less than 60%, significant differences exist in the temperature change obtained by the three approaches, with ΔTa 310 

< ΔTp1 < ΔTp2. This result confirms our second hypothesis that the actual effect is expected to be smaller than potential effects. 

However, for pixels with relatively low Faff, the mixed potential effect is found to be smaller than the full potential effect, 

which is reasonable, but to our knowledge, has not been reported before. When the afforestation intensity is greater than 60%, 

the significant difference in cooling effect between the different approaches disappears, likely because afforestation intensity, 

and the associated forest coverage at 1km resolution, reach values high enough to allow the ‘potential’ effects to be realized.  315 

 

When considering the overall differences in ΔT for the three approaches, irrespective of the afforestation intensity, ΔTa (-

0.07±0.00K) over China was significantly lower than ΔTp1 (-0.63±0.00K), which is further significantly lower than ΔTp2 (-

1.16±0.01K) (p < 0.05, paired-samples t-test, n= 96,058), once again confirming our second hypothesis (Fig. 7). Moreover, 

extrapolation of the relationship shown in Fig. 5 suggests that ΔTa would reach -0.79±0.17K (mean ± std) if a 1km pixel was 320 

100% afforested, which is conceptually comparable to the potential effects. ΔTa was indeed found to be higher than ΔTp1 but 

lower than ΔTp2. This result confirms our third hypothesis and demonstrates that the potential cooling effect could indeed be 

reached when a pixel is fully afforested. 
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3.3 Reconciling Changes in Surface Energy Fluxes by Afforestation 

In order to investigate whether the underlying surface energy fluxes could be reconciled following the reconciliation of the 325 

LST changes, changes in surface energy fluxes due to afforestation were quantified using each of the three approaches, under 

the same boundary conditions as for full afforestation (i.e., changes following the ‘actual effect’ approach were extended for 

Faff = 100%). As illustrated in Fig. 8, changes in all the relevant surface energy fluxes under the three different approaches 

have the same direction, with similar magnitudes, confirming the reconciliation of the different approaches in terms of surface 

energy fluxes. More specifically, the three approaches converge on a reduction in reflected shortwave radiation (ΔSWout) of 330 

0.56~1.23 W m-2 due to the lower albedo of forest compared to openland (Fig. A3). Emitted longwave radiation (ΔLWout) was 

reduced by 1.03~3.10 W m-2 and sensible and ground heat fluxes (ΔH+ΔG) reduced by 4.84~6.14 W m-2. All these reduced 

fluxes were offset by an increased latent heat flux of 7.99~8.41 W m-2 (ΔLE), the single energy flux leading to surface cooling. 

4 Discussion 

The three approaches (Li et al., 2015; Alkama and Cescatti, 2016; Duveiller et al., 2018) used to quantify local surface 335 

temperature change following forest-cover change and presented with details in this study, have been cited over 919 times in 

research papers (Web of Science, December 2021) and in high-level climate science synthesis reports. Despite the apparently 

large differences in temperature effect among them, to our knowledge, no studies have examined whether these differences 

can be reconciled. This study fills that gap by comparing the three approaches for a single study case, i.e., large-scale 

afforestation in China. China is highly suitable for the purpose of this study as the size of an afforestation patch is, in general, 340 

smaller than the spatial resolution (1km) at which the temperature effects of afforestation were conducted in the previous 

studies describing the three approaches (Li et al., 2015; Alkama and Cescatti, 2016; Duveiller et al., 2018). Hence, the 

difference between the actual and potential temperature effects is expected to be large.  

 

Indeed, we found surface cooling following afforestation was much less when estimated as the actual effect (ΔTa) compared 345 

to the potential effects (ΔTp1 and ΔTp2). This lower ΔTa has been attributed to incomplete afforestation at a 1km resolution, at 

which potential effects are quantified by assuming complete afforestation (i.e., a complete shift from openland to forest). 

Consistent with our first hypothesis, the afforestation fraction at a 1km resolution explained 89% of the variation in ΔTa, 

making it a key determinant of the surface cooling following afforestation (Fig. 5). This result is consistent with the fact that 

the observed temperature for a mixed surface is determined by the area fractions of its respective components, with each 350 

component having a unique temperature. This fact also forms the theoretical foundation for the SVD technique used to derive 

the full potential effect (Duveiller et al., 2018).  

 

Modelling (Li et al., 2016b) and satellite-based (Alkama and Cescatti, 2016) studies have found that temperature change after 

afforestation (or deforestation) is highly sensitive to the fraction of the model grid cell or satellite pixel that is subjected to 355 

https://www.zotero.org/google-docs/?l02F73
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afforestation (or deforestation), echoing our finding that ΔTa significantly changes with Faff. In addition, we provide strong 

evidence in support of our third hypothesis that when Faff reaches 100%, the expected actual effect is comparable to the 

potential effects (Fig. 7). This finding shows that the three approaches compared here are consistent when the same boundary 

condition, i.e., full afforestation, is applied, and demonstrates that all three methods are mutually compatible. It is, therefore, 

the basis of the reconciliation of the three approaches. It also highlights the fact that the actual afforestation area must be 360 

considered when evaluating the climate mitigation effects of afforestation. 

 

Our results also show that the mixed potential effect (ΔTp1) is smaller than the full potential effect (ΔTp2) (Fig. 6, Fig. 7). We 

suspect that this phenomenon likely also relates to the incomplete forest coverage for the identified forest pixels at the 1km 

scale used in the ‘space-for-time’ analysis, because a threshold value of 50% forest cover was used when upscaling the 30m 365 

land-cover map to 1km resolution. This threshold, however, is consistent with the commonly applied value in land-cover 

classification based on medium resolution satellite images, such as MCD12Q1, which uses a tree coverage value of 60% to 

identify forest pixels (Sulla-Menashe and Friedl, 2018). For the purpose of comparison, we also calculated the mixed potential 

effect based on the MCD12Q1 land-cover map but using the same LST data. The result shows that potential effects derived 

using MCD12Q1 data versus those derived using spatially upscaled GlobeLand30 data are almost identical (Fig. A5), lending 370 

credibility to our estimated ΔTp1 in comparison to previous studies using MODIS land-cover data (Li et al., 2015). 

Progressively increasing the forest-cover threshold from 50% to 90% steadily increases ΔTp1 from -0.62±0.02K to -0.75±0.02K 

(Fig. A6). Further increasing the thresholds used to identify 1km-resolution openland pixels from 50% to 90% increases ΔTp1 

from -0.63±0.00K to -1.10±0.02K (Fig. A7), bringing ΔTp1 even closer to ΔTp2 (-1.16±0.01K). This is consistent with the 

finding of a previous study on the dependence of the temperature effect on the forest cover change thresholds that were used 375 

to define afforestation: the higher the threshold, the stronger the impact on temperature (Li et al., 2016). Our results add further 

support to the compatibility of the three approaches given the same boundary condition, i.e., the complete transformation from 

full openland to full forest coverage. 

 

Several factors may contribute to the remaining differences in the temperature effects produced by different methods even 380 

after reconciliation. As described in the Method section, there are discrepancies in the assumptions of the three approaches, 

which lead to differences in the control pixels (i.e., adjacent comparison pixels). For instance, for the ‘pure potential effect’ it 

is assumed that the LSTs for pixels with the same land cover type are uniform and forest pixels are compared with openland 

pixels, whereas the in the ‘mixed potential impact’ approach the central target forest pixel is compared with the mean value of 

non-forest pixels within the searching window. Moreover, space-for-time is an assumption that cannot be verified (Chen et al., 385 

2016), and which will inevitably result in differences in the estimated actual and potential effects, although the consistency 

between ‘potential’ and ‘actual’ effects after reconciliation in our study does illustrate the broad validity of this assumption.  

 

https://www.zotero.org/google-docs/?teicJt
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Differences between the actual and potential temperature effects can also arise from influences of both the timing of the 

afforestation and the time period elapsed following afforestation. However, such influences are expected to be small in our 390 

study. We argue that such influences should be more pronounced in the case of deforestation than afforestation. The 

temperature effect caused by deforestation is considered to be instant (Liu et al., 2018). As a result, if deforestation occurred 

in one specific year of our starting time window (i.e., 2002–2004), using the time-averaging LST over the whole time window 

to represent the LST before deforestation will greatly bias the quantified ΔT. In contrast, afforestation-driven surface 

temperature change can only gradually increase with forest development. The LST effect depends on different stages of forest 395 

development and is expected to saturate only when the forest canopy stabilizes (Zhang et al., 2021; Windisch et al., 2021). 

Observation studies show that closed dense-canopy old forests can exert greater cooling effect than the open-canopy young 

forests (Zhang et al., 2021; Windisch et al., 2021). Hence, given the gradual nature of the afforestation effect on LST, when 

we quantify the afforestation effect by comparing the time-averaging LST before and after afforestation, the influence of the 

specific ‘timing of afforestation’ is expected to be small. Furthermore, the GFC dataset used in this analysis defined forest gain 400 

using the condition of successful detection of a stable closed forest canopy that is clearly different from a non-forest state 

(Hansen et al., 2013), which enhances the chance of temperature change saturation following afforestation. But, given a 

maximum stand age of 12 years inferred from the GFC dataset, differences in surface temperatures may still exist between 

newly established forests and the mature existing forests that were used in the ‘potential effect’ approaches. Thus, we cannot 

exclude the possible contribution of time period elapsed following afforestation to the difference between the actual and 405 

potential effects, which failed to be reconciled. 

 

Previous analyses have documented latitudinal patterns of surface temperature change induced by afforestation (Alkama and 

Cescatti, 2016; Li et al., 2015, 2016a; Peng et al., 2014). When comparing the three approaches for a single case study, 

consistent latitudinal patterns of local surface temperature effects following afforestation are observed (Fig. 4). Notably, all 410 

three approaches show a warming effect in the northern high latitudes and an opposite cooling effect in the southern low 

latitudes, with a largely neutral effect in the 40–48° N latitude band, providing further evidence that the three approaches are 

compatible. In particular, although the three approaches used different land-cover maps, they derived consistent LST impacts 

following afforestation, which highlights that fact that the reconciliation provided in this study is rather robust and unlikely to 

be dependent on the land cover datasets used. 415 

 

In addition to the reconciliation of the land surface temperature change, we checked and confirmed that the changes in surface 

energy fluxes that underlie and drive the changes in surface temperature are compatible under the boundary condition of full 

afforestation. This finding confirms the inherent consistency in the three approaches and clarifies the reasons behind the 

apparent discrepancies in existing studies as discussed in the introduction. Nonetheless, when it comes to the biophysical 420 

impacts of afforestation in the real world, our findings have far-reaching implications. Full afforestation is often possible at 

small spatial scales but becomes challenging at large scale. Therefore, the realization of the full potential effect by afforestation 

https://www.zotero.org/google-docs/?kYuIMS
https://www.zotero.org/google-docs/?kYuIMS
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is scale-dependent. For example, a complete afforestation of the semi-arid Loess Plateau in the northwest of China is predicted 

to generate a surface cooling effect of 2.40±0.07K, but substantial afforestation efforts over the past 4 decades in that region 

have only realized a cooling of 0.11±0.01K as measured by the ‘actual effect’. Because of greater water consumption by forest 425 

compared to openland and the need to maintain land area for food production, achieving the full cooling potential may not be 

feasible (Huang et al., 2018; Liu and She, 2012; Liang et al., 2019).  

 

Potential cooling effects have a value in that they can serve to establish the envelope of effects and measure possible outcomes 

given the condition of full afforestation. However, given the challenge of full afforestation at large spatial scales, potential 430 

effects should be converted into a more realistic estimate (i.e., actual effects), by taking into account the intensity of 

afforestation, to better represent policy ambitions. The analog could also be made for the effects of the surface energy impacts 

of afforestation. Taking 10% as the afforestation intensity threshold to compare the cumulative surface energy effect between 

the actual and potential approaches, actual cumulative biophysical changes (5.06 EJ) for 2000–2012 are much smaller than 

mixed potential changes (20.13 EJ) and full potential change (19.02 EJ) (methods in Text A1; Fig. A8). Again, this shows that 435 

simply using the potential effects for policy making or evaluation risks greatly overestimating the biophysical effects of 

afforestation. 

5 Conclusions 

In this study we provided a synthesis of the three influential methods used to quantify afforestation impact on surface 

temperature change and provided evidence that these different methods could in fact be reconciled. The actual effect of surface 440 

temperature change following afforestation was highly dependent on the intensity of afforestation (Faff), which explained 89% 

of the variation in ΔTa. With the common boundary condition of full afforestation being applied, differences in afforestation 

impacts on LST reported by the three methods in previous studies greatly reduced, showing that simply treating these 

differences as uncertainty is incorrect and could greatly overestimate the uncertainty. In other words, when full afforestation 

is assumed, the actual effect approaches the potential effect, demonstrating the effectiveness of the ‘space-for-time’ approach 445 

and that the potential cooling effect of afforestation could indeed be realized. Potential cooling effects have a value in academic 

studies where they can be used to establish an envelope of effects, but their realization at large scales is challenging given the 

scale dependency. The reconciliation of the different approaches demonstrated here stresses that the afforestation fraction 

should be accounted for in order to bridge different estimates of surface cooling effects in policy evaluation. 

 450 
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Appendix A 

Figure A1. The distributions of the original sample pixels (at a 1km resolution) for (a) the actual effect and (b) the two potential effects. 
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Figure A2. (a) Histogram of ΔΤa of all pixels based on the GFC dataset (b) Histogram of ΔΤa for samples used for the statistical test. (c) 455 
Histogram of ΔΤp1 of all pixels based on GFC dataset (d) Histogram of ΔΤp1 for samples used for the statistical test. 
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Figure A3. Spatial distribution of afforestation-induced changes in albedo (α) over China from three approaches: (a) Actual albedo change 460 
following afforestation based on ‘space-and-time’ method (Δαa), (b) mixed potential albedo change using medium-resolution land-cover 

maps based on ‘space-for-time’ approach (Δαp1) and (c) full potential effect (Δαp2) based on SVD approach. 
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Figure A4. Changes of actual effect in (a) ΔLW, (b) ΔSW, (c) ΔH+ΔG and (d) ΔLE (W m-2) as a function of afforestation intensity (Faff) 465 
following the ‘actual effect’ approach. Error bars indicate the standard error within each ten percent bin of Faff. The solid black lines represent 

the fitted linear regression line between each energy flux variable and Faff. 
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Figure A5. The mixed potential effects (ΔTp1) obtained based on MODIS land-cover data (MCD12Q1) and the land-cover distribution map 

defined at the threshold of 50% GlobeLand30 at 1 km resolution. 

 470 

Figure A6. The influence of the forest-cover threshold applied to the land-cover map underlying the estimation of the mixed potential effect 

(ΔTp1).  
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475 

Figure A7. The influence of the openland-cover threshold used to identify a 1km pixel as openland in the estimation of the mixed potential 

effect (ΔTp1). 

Figure A8. Afforestation-induced cumulative changes in surface energy fluxes (exaJoules) in China for the period 2000–2012 following the 

approaches of (a) actual effect, (b) mixed potential effect and (c) full potential effect (methods in Appendix Text A1). 480 

 

Text A1. 

The cumulative surface energy effect (fcum) in Figure A8 refers to the sum of the flux change (J) from all the samples, while at 

the same time accounting for the forest change area (m2). More specifically, the cumulative surface energy change (fcum) can 

be calculated from equation (A1): 485 

 
1
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i n

cum i i

i

f Farea
=

=
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where Fi is the flux change per unit area (W m-2) for pixel i, n is the total number of samples, and areai is the forest change area 

in pixel i.  

Data availability 

All datasets used in this study are summarized in Table 1 and are openly available. Albedo, transpiration and surface 490 

temperature data can be accessed at (https://modis.gsfc.nasa.gov/data/). The Global Forest Change data is available from 

https://earthenginepartners.appspot.com/science-2013-global-forest/. The land-cover type dataset (GlobeLand30) can be 

downloaded from http://www.globallandcover.com/. Incoming shortwave radiation data can be accessed at 

https://ceres.larc.nasa.gov/data/. The elevation data is available from NASA’s Shuttle Radar Topography Mission (SRTM) 

data (https://lpdaac.usgs.gov/products/srtmgl1v003/). Intermediate data and scripts used to generate the results in this study 495 

are available from the corresponding author upon reasonable request. 

Author contributions 

Chao Yue and Sebastiaan Luyssaert designed the study. Huanhuan Wang conducted the analysis. All three authors contributed 

to writing and revision of the text. 

Competing interests  500 

The authors have the following competing interests: At least one of the (co-)authors is a member of the editorial board of 

Biogeosciences. 

Acknowledgments 

This study was supported by the National Natural Science Foundation of China (grant no. 41971132) and by the Strategic 

Priority Research Program of the Chinese Academy of Sciences (grant no. XDB40000000). 505 

References 

Alkama, R. and Cescatti, A.: Biophysical climate impacts of recent changes in global forest cover, Science, 351, 600–604, 

https://doi.org/10.1126/science.aac8083, 2016. 

Bonan, G. B.: Forests and climate change: forcings, feedbacks, and the climate benefits of forests, Science, 320, 1444–1449, 

https://doi.org/10.1126/science.1155121, 2008. 510 



23 

 

Bryan, B. A., Gao, L., Ye, Y., Sun, X., Connor, J. D., Crossman, N. D., Stafford-Smith, M., Wu, J., He, C., Yu, D., Liu, Z., 

Li, A., Huang, Q., Ren, H., Deng, X., Zheng, H., Niu, J., Han, G., and Hou, X.: China’s response to a national land-system 

sustainability emergency, Nature, 559, 193–204, https://doi.org/10.1038/s41586-018-0280-2, 2018. 

Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R. K., Fuchs, R., Brovkin, V., Ciais, P., Fensholt, R., Tømmervik, 

H., Bala, G., Zhu, Z., Nemani, R. R., and Myneni, R. B.: China and India lead in greening of the world through land-use 515 

management, Nature Sustainability, 2, 122–129, https://doi.org/10.1038/s41893-019-0220-7, 2019. 

Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., and Lu, M.: Global land cover mapping at 

30 m resolution: A POK-based operational approach, ISPRS Journal of Photogrammetry and Remote Sensing, 103, 7–27, 

https://doi.org/10.1016/j.isprsjprs.2014.09.002, 2015. 

Chen, L. and Dirmeyer, P. A.: Adapting observationally based metrics of biogeophysical feedbacks from land cover/land use 520 

change to climate modeling, Environmental Research Letters, 11, 034002, https://doi.org/10.1088/1748-9326/11/3/034002, 

2016. 

Chen, H., Zeng, Z., Wu, J., Peng, L., Lakshmi, V., Yang, H., and Liu, J.: Large Uncertainty on Forest Area Change in the 

Early 21st Century among Widely Used Global Land Cover Datasets, Remote Sensing, 12, 3502, 

https://doi.org/10.3390/rs12213502, 2020. 525 

Cs, M., G, S., and Y, Z.: Afforestation and forests at the dryland edges: lessons learned and future outlooks. In: Chen J, Wan 

S, Henebry G, Qi J, Gutman G, Sun G, Kappas M (szerk.) Dryland East Asia: Land dynamics amid social and climate change. 

HEP &Gruyter, 2013, 245–264, https://doi.org/10.13140/RG.2.1.4325.4487, 2013. 

Duveiller, G., Hooker, J., and Cescatti, A.: The mark of vegetation change on Earth’s surface energy balance, Nature 

Communications, 9, 679, https://doi.org/10.1038/s41467-017-02810-8, 2018. 530 

Duveiller, G., Caporaso, L., Abad-Viñas, R., Perugini, L., Grassi, G., Arneth, A., and Cescatti, A.: Local biophysical effects 

of land use and land cover change: towards an assessment tool for policy makers, Land Use Policy, 91, 104382, 

https://doi.org/10.1016/j.landusepol.2019.104382, 2020. 

Fang, J., Guo, Z., Hu, H., Kato, T., Muraoka, H., and Son, Y.: Forest biomass carbon sinks in East Asia, with special reference 

to the relative contributions of forest expansion and forest growth, Global Change Biology, 20, 2019–2030, 535 

https://doi.org/10.1111/gcb.12512, 2014. 



24 

 

Ge, J., Guo, W., Pitman, A. J., De Kauwe, M. G., Chen, X., and Fu, C.: The Nonradiative Effect Dominates Local Surface 

Temperature Change Caused by Afforestation in China, Journal of Climate, 32, 4445–4471, https://doi.org/10.1175/JCLI-D-

18-0772.1, 2019. 

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, 540 

S. J., and Loveland, T. R.: High-resolution global maps of 21st-century forest cover change, Science, 342, 850–853, 

https://doi.org/10.1126/science.1244693, 2013. 

Huang, L., Zhai, J., Liu, J., and Sun, C.: The moderating or amplifying biophysical effects of afforestation on CO2-induced 

cooling depend on the local background climate regimes in China, Agricultural and Forest Meteorology, 260–261, 193–203, 

https://doi.org/10.1016/j.agrformet.2018.05.020, 2018. 545 

Jia, G., Shevliakova, E., Artaxo, P., Noblet-Ducoudré, N. D., Houghton, R., Anderegg, W., Bastos, A., Bernsten, T. K., Cai, 

P., Calvin, K., Klein, C. D., Humpenöder, F., Kanter, D., McDermid, S., Peñuelas, J., Pradhan, P., Quesada, B., Roe, S., Bernier, 

P., Espinoza, J. C., Semenov, S., and Xu, X.: Climate Change and Land: an IPCC Special Report on Climate Change, 

Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial 

Ecosystems. 2019.  550 

Juang, J.-Y., Katul, G., Siqueira, M., Stoy, P., and Novick, K.: Separating the effects of albedo from eco-physiological changes 

on surface temperature along a successional chronosequence in the southeastern United States, Geophys. Res. Lett., 34, 21, 

https://doi.org/10.1029/2007GL031296, 2007. 

Kato, S., Rose, F. G., Rutan, D. A., Thorsen, T. J., Loeb, N. G., Doelling, D. R., Huang, X., Smith, W. L., Su, W., and Ham, 

S.-H.: Surface Irradiances of Edition 4.0 Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled 555 

(EBAF) Data Product, 31, 4501–4527, https://doi.org/10.1175/JCLI-D-17-0523.1, 2018. 

Lee, X., Goulden, M. L., Hollinger, D. Y., Barr, A., Black, T. A., Bohrer, G., Bracho, R., Drake, B., Goldstein, A., Gu, L., 

Katul, G., Kolb, T., Law, B. E., Margolis, H., Meyers, T., Monson, R., Munger, W., Oren, R., Paw U, K. T., Richardson, A. 

D., Schmid, H. P., Staebler, R., Wofsy, S., and Zhao, L.: Observed increase in local cooling effect of deforestation at higher 

latitudes, Nature, 479, 384–387, https://doi.org/10.1038/nature10588, 2011. 560 

Lee, S. and Lee, D. K.: What is the proper way to apply the multiple comparison test?, Korean J Anesthesiol, 71, 353–360, 

https://doi.org/10.4097/kja.d.18.00242, 2018. 

Li, Y., Zhao, M., Motesharrei, S., Mu, Q., Kalnay, E., and Li, S.: Local cooling and warming effects of forests based on satellite 

observations, Nature Communications, 6, 6603, https://doi.org/10.1038/ncomms7603, 2015. 



25 

 

Li, Y., Zhao, M., Mildrexler, D. J., Motesharrei, S., Mu, Q., Kalnay, E., Zhao, F., Li, S., and Wang, K.: Potential and Actual 565 

impacts of deforestation and afforestation on land surface temperature, J. Geophys. Res. Atmos., 121, 14,372-14,386, 

https://doi.org/10.1002/2016JD024969, 2016a. 

Li, Y., De Noblet-Ducoudré, N., Davin, E. L., Motesharrei, S., Zeng, N., Li, S., and Kalnay, E.: The role of spatial scale and 

background climate in the latitudinal temperature response to deforestation, Earth Syst. Dynam., 7, 167–181, 

https://doi.org/10.5194/esd-7-167-2016, 2016b. 570 

Li, Y., Piao, S., Chen, A., Ciais, P., and Li, L. Z. X.: Local and teleconnected temperature effects of afforestation and vegetation 

greening in China, National Science Review, 7, 897–912, https://doi.org/10.1093/nsr/nwz132, 2020. 

Liang, W., Fu, B., Wang, S., Zhang, W., Jin, Z., Feng, X., Yan, J., Liu, Y., and Zhou, S.: Quantification of the ecosystem 

carrying capacity on China’s Loess Plateau, Ecological Indicators, 101, 192–202, 

https://doi.org/10.1016/j.ecolind.2019.01.020, 2019. 575 

Liu, Y.: China’s forest resource dynamics based on allometric scaling relationship between forest area and total stocking 

volume, Afr. J. Agric. Res., 7, https://doi.org/10.5897/AJAR12.216, 2012. 

Liu, Z., Ballantyne, A. P., and Cooper, L. A.: Increases in Land Surface Temperature in Response to Fire in Siberian Boreal 

Forests and Their Attribution to Biophysical Processes, Geophysical Research Letters, 45, 6485–6494, 

https://doi.org/10.1029/2018GL078283, 2018. 580 

Oleson, K., Lawrence, D., Bonan, G., Drewniak, B., Huang, M., Koven, C., Levis, S., Li, F., Riley, W., Subin, Z., Swenson, 

S., Thornton, P., Bozbiyik, A., Fisher, R., Heald, C., Kluzek, E., Lamarque, J.-F., Lawrence, P., Leung, L., and Yang, Z.-L.: 

Technical description of version 4.5 of the Community Land Model (CLM), https://doi.org/10.5065/D6RR1W7M, 2013. 

Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., 

Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., and Hayes, D.: A 585 

Large and Persistent Carbon Sink in the World’s Forests, Science, 333, 988–993, https://doi.org/10.1126/science.1201609, 

2011. 

Peng, S.-S., Piao, S., Zeng, Z., Ciais, P., Zhou, L., Li, L. Z. X., Myneni, R. B., Yin, Y., and Zeng, H.: Afforestation in China 

cools local land surface temperature, Proceedings of the National Academy of Sciences, 111, 2915–2919, 

https://doi.org/10.1073/pnas.1315126111, 2014. 590 



26 

 

Pongratz, J., Schwingshackl, C., Bultan, S., Obermeier, W., Havermann, F., and Guo, S.: Land Use Effects on Climate: Current 

State, Recent Progress, and Emerging Topics, Current Climate Change Reports, 7, 99–120, https://doi.org/10.1007/s40641-

021-00178-y, 2021. 

Pitman, A. J., de Noblet-Ducoudré, N., Cruz, F. T., Davin, E. L., Bonan, G. B., Brovkin, V., Claussen, M., Delire, C., 

Ganzeveld, L., and Gayler, V.: Uncertainties in climate responses to past land cover change: First results from the LUCID 595 

intercomparison study, Geophysical Research Letters, 36, https://doi.org/10.1029/2009GL039076, 2009. 

Pitman, A. J., Avila, F. B., Abramowitz, G., Wang, Y. P., Phipps, S. J., and de Noblet-Ducoudré, N.: Importance of background 

climate in determining impact of land-cover change on regional climate, Nature Climate Change, 1, 472–475, 

https://doi.org/10.1038/nclimate1294, 2011. 

Qi, Y. and Wu, T.: The politics of climate change in China, Wiley Interdisciplinary Reviews: Climate Change, 4, 301–313, 600 

https://doi.org/10.1002/wcc.221, 2013. 

Shen, W., Li, M., Huang, C., He, T., Tao, X., and Wei, A.: Local land surface temperature change induced by afforestation 

based on satellite observations in Guangdong plantation forests in China, Agricultural and Forest Meteorology, 276–277, 

107641, https://doi.org/10.1016/j.agrformet.2019.107641, 2019. 

Sulla-Menashe, D. and Friedl, M. A.: User guide to collection 6 MODIS land cover (MCD12Q1 and MCD12C1) product, 1–605 

18, 2018. 

Swann, A. L., Fung, I. Y., and Chiang, J. C.: Mid-latitude afforestation shifts general circulation and tropical precipitation, 

Proceedings of the National Academy of Sciences, 109, 712–716, https://doi.org/10.1073/pnas.1116706108, 2012. 

UC Berkely. Spring 2008 - Stat C141/ Bioeng C141 - Statistics for Bioinformatics 

Winckler, J., Reick, C. H., Bright, R. M., and Pongratz, J.: Importance of Surface Roughness for the Local Biogeophysical 610 

Effects of Deforestation, J. Geophys. Res. Atmos., 124, 8605–8618, https://doi.org/10.1029/2018JD030127, 2019a. 

Winckler, J., Lejeune, Q., Reick, C. H., and Pongratz, J.: Nonlocal Effects Dominate the Global Mean Surface Temperature 

Response to the Biogeophysical Effects of Deforestation, Geophysical Research Letters, 46, 745–755, 

https://doi.org/10.1029/2018GL080211, 2019b. 

Windisch, M. G., Davin, E. L., and Seneviratne, S. I.: Prioritizing forestation based on biogeochemical and local 615 

biogeophysical impacts, Nature Climate Change, 11, 867–871, https://doi.org/10.1038/s41558-021-01161-z, 2021. 



27 

 

Zeng, Z., Wang, D., Yang, L., Wu, J., Ziegler, A. D., Liu, M., Ciais, P., Searchinger, T. D., Yang, Z.-L., Chen, D., Chen, A., 

Li, L. Z. X., Piao, S., Taylor, D., Cai, X., Pan, M., Peng, L., Lin, P., Gower, D., Feng, Y., Zheng, C., Guan, K., Lian, X., Wang, 

T., Wang, L., Jeong, S.-J., Wei, Z., Sheffield, J., Caylor, K., and Wood, E. F.: Deforestation-induced warming over tropical 

mountain regions regulated by elevation, Nature Geoscience, 14, 23–29, https://doi.org/10.1038/s41561-020-00666-0, 2021. 620 

Zhang, L., Marron, J. S., Shen, H., and Zhu, Z.: Singular Value Decomposition and Its Visualization, Journal of Computational 

and Graphical Statistics, 16, 833–854, https://doi.org/10.1198/106186007X256080, 2007. 

Zhang, Y., Chen, Y., Li, J., and Chen, X.: A Simple Method for Converting 1-km Resolution Daily Clear-Sky LST into Real 

LST, Remote Sensing, 12, 1641, https://doi.org/10.3390/rs12101641, 2020. 

Zhao, K. and Jackson, R. B.: Biophysical forcings of land-use changes from potential forestry activities in North America, 625 

Ecological Monographs, 84, 329–353, https://doi.org/10.1890/12-1705.1, 2014. 

Zhang, Z., Zhang, F., Wang, L., Lin, A., and Zhao, L.: Biophysical climate impact of forests with different age classes in mid- 

and high-latitude North America, Forest Ecology and Management, 494, 119327, 

https://doi.org/10.1016/j.foreco.2021.119327, 2021. 

 630 

 

 

 

 

 635 

 

 

 

 



28 

 

 640 

Table 1. Summary of the datasets and their main characteristics 

Type Dataset Selected band Resolution Projection Timespan 

Forest change 
Global Forest 

Change 

Forest gain; 

Loss year 
30m, annual WGS84 2000–2012 

Land-cover type GlobeLand 30 Land-cover type 30m, — UTM 2000; 2010 

Land surface 

Temperature 
MOD11A2 

Daytime 

temperature  
1km, 8days sinusoidal 

2002–2004; 

2010–2014 

Albedo MCD43B3 
Albedo WSA 

shortwave 
1km, 16days sinusoidal 

2002–2004; 

2010–2014 

Incoming shortwave 

radiation  
CERES 

sfc_sw_down_al

l_mon 
1°, monthly WGS84 

2002–2004; 

2010–2014 

Surface broadband 

emissivity 
MOD11C3 

Emis_29; 

Emis_31; 

Emis_32 

0.05°, monthly sinusoidal 
2002–2004; 

2010–2014 

Evapotranspiration MOD16A2 ET_500m 500m, 8days sinusoidal 
2002–2004; 

2010–2014 

Elevation SRTM30 Be75 30m, —  WGS84 — 
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Figure 1. Illustration of the three approaches to quantifying the local surface temperature effect of afforestation. (a) and (b) represent two 

nearby pixels, both classified as openland at time t1 by medium-resolution satellites (1km spatial resolution), with one of them classified as 

forest at time t2 (i.e., having experienced afforestation) and the other unchanged. Note, neither of these pixels will have 100% complete 655 
coverage of either openland (i.e., grassland or cropland) or forest, but they will have been classified as either openland or forest by medium-

resolution satellite products. (c) and (d) represent pixels with 100% forest or 100% openland coverage whose temperature can be derived 

from pixels of mixed land cover types by using the singular value decomposition (SVD) technique (Duveiller et al., 2018). The red dotted 

box describes the quantification of the ‘actual effect’ of afforestation (ΔTa) occurring from t1 to t2 by the ‘space-and-time’ method. The 

orange box represents the ‘mixed potential effect’ determined by hypothesizing potential shifts between openland and forest based on the 660 
‘space-for-time’ approach (ΔTp1). The green box represents the ‘full potential effect’ of afforestation (ΔTp2) derived by hypothesizing a 

transition from 100% complete openland coverage to 100% complete forest coverage.  
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Figure 2. Schematic overview of the processing steps. The different output results correspond to actual effect (ΔTa), mixed potential effect 

(ΔTp1) and full potential effect of afforestation (ΔTp2). 665 
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Figure 3. (a) Spatial distribution of afforestation intensity (Faff) in China during 2000–2012. The solid black line crossing China is the 

400mm annual precipitation isoline. (b) Frequency distribution of Faff and cumulative afforestation area with the increase in Faff. The red 685 
dashed line represents the cumulative afforestation area corresponding to Faff =10%.  
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Figure 4. Afforestation effects on LST quantified by three approaches: (a) actual effect based on a ‘space-and-time’ approach (ΔTa), (b) 

mixed potential effect based on a ‘space-for-time’ approach (ΔTp1) and (c) full potential effect assuming a transition from 100% openland 705 
coverage to 100% forest coverage using the SVD method (ΔTp2). The solid black line crossing China is the 400mm precipitation isoline. (d) 

Zonal averages of the annual mean daytime LST change within 2° latitudinal bins, with shaded areas representing the standard errors (SE). 

Note that in panel (d), ΔTa corresponds to the vertical axis on the left; ΔTp1 and ΔTp2 correspond to the vertical axis on the right. 
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 720 
Figure 5. Changes in ΔTa as a function of afforestation intensity (Faff), defined as the fraction of afforested area to the total pixel area at a 1-

km resolution. Error bars indicate the standard error of ΔTa within each ten percent bin of Faff. The red line represents the fitted linear 

regression line between ΔTa and Faff. 
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Figure 6. Comparison of ΔT for the three approaches for bins of afforestation intensity. Error bars are given as the standard error and 745 
different letters indicate that ΔT calculated by the two approaches concerned are significantly different using the adjusted p-value after 

applying the Bonferroni correction for multiple paired-samples t-tests. 
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Figure 7. Comparison of ΔT for the three approaches, irrespective of the afforestation intensity. Error bars are given as the standard error 

and different letters indicate ΔT being significantly different (p = 0.0167, paired-samples t-test, n = 96,058). For comparison, the predicted 

ΔTa with Faff reaching 100%, which is conceptually comparable with ΔTp1 and ΔTp2, is also shown. 
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Figure 8. Afforestation-induced changes in surface energy fluxes (Wm-2) following the three approaches: (a) actual effect based on a ‘space-

and-time’ approach, (b) mixed potential effect using medium-resolution land cover maps based on a ‘space-for-time’ approach and (c) full 

potential effect assuming a transition from 100% openland coverage to 100% forest coverage using the SVD method. For each approach, 

changes were calculated for the reflected shortwave radiation (SWout), outgoing longwave radiation (LWout), latent heat flux (LE) and the 785 
combination of sensible and ground heat fluxes (H+G). No changes were assumed for incoming shortwave and longwave radiation. Changes 

in energy fluxes for the ‘actual effect’ approach have been adjusted to the condition of full afforestation (i.e., Faff = 100%) in a similar way 

as for the ‘predicted ΔTa’ in Fig. 7, by fitting linear regressions between energy flux variables and Faff (Fig. A4). 
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