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Abstract 16 

Satellite observations have been widely used to examine afforestation effects on local surface 17 

temperature at large spatial scales. Different approaches, which potentially lead to differing 18 

definitions of the afforestation effect, have been used in previous studies. Despite their large 19 

differences, the results of these studies have been used in climate model validation and cited in 20 

climate synthesis reports. Such differences have been simply treated as observational 21 

uncertainty, which can be an order of magnitude bigger than the signal itself. Although the 22 

fraction of the satellite pixel actually afforested has been noted to influence the magnitude of 23 

afforestation effect, it remains unknown whether it is a key factor which can reconcile the 24 

different approaches. Here, we provide a synthesis of three influential approaches (one 25 
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estimates the actual effect and the other two the potential effect) and use large-scale 26 

afforestation over China as a test case to examine whether the different approaches can be 27 

reconciled. We found that the actual effect (ΔTa) often relates to incomplete afforestation over 28 

a medium resolution satellite pixel (1km). ΔTa increased with the afforestation fraction, which 29 

explained 89% of its variation. One potential effect approach quantifies the impact of quasi-full 30 

afforestation (ΔTp1), whereas the other quantifies the potential impact of full afforestation (ΔTp2) 31 

by assuming a shift from 100% openland to 100% forest coverage. An initial paired-samples t-32 

test shows that ΔTa < ΔTp1 < ΔTp2 for the cooling effect of afforestation ranging from 0.07K to 33 

1.16K. But when all three methods are normalized for full afforestation, the observed range in 34 

surface cooling becomes much smaller (0.79K to 1.16K). Potential cooling effects have a value 35 

in academic studies where they can be used to establish an envelope of effects, but their 36 

realization at large scales is challenging given its nature of scale dependency. The reconciliation 37 

of the different approaches demonstrated in this study highlights the fact that the afforestation 38 

fraction should be accounted for in order to bridge different estimates of surface cooling effects 39 

in policy evaluation. 40 

 41 

Keywords: surface temperature change, afforestation, actual effect, potential effect, 42 

reconciliation, surface energy balance, China 43 

 44 

1 Introduction 45 

 46 

Afforestation has been and is still proposed as an effective strategy to mitigate climate change 47 

because forest ecosystems are able to sequester large amounts of carbon in their biomass and 48 

soil, slowing the increase of atmospheric CO2 concentration (Fang et al., 2014; Pan et al., 2011). 49 

Additionally, forests regulate the exchange of energy and water between the land surface and 50 
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the lower atmosphere through various biophysical effects, including radiative processes such 51 

as surface reflectance, and non-radiative processes such as evapotranspiration and sensible heat 52 

flux (Bonan, 2008; Juang et al., 2007). As the net result of the surface energy balance, land 53 

surface temperature (LST) is widely used to measure the local climatic impact of afforestation 54 

(Li et al., 2015; Winckler et al., 2019a).  55 

 56 

Climate model simulations and site-level observations have been utilized to explore the impact 57 

of forest dynamics on land surface temperature (Lee et al., 2011; Pitman et al., 2009; Swann et 58 

al., 2012). However, afforestation impacts on local LST derived from models tend to be highly 59 

uncertain as they are limited by the coarse spatial resolution of models and uncertainties in 60 

model parameters and processes (Oleson et al., 2013; Pitman et al., 2011), while insights from 61 

site-level assessments cannot be extrapolated to large spatial domains (Lee et al., 2011). 62 

Alternatively, remote sensing-based LST products enable the assessment of local LST changes 63 

due to forest dynamics on large spatial scales (Li et al., 2015; Shen et al., 2020). 64 

 65 

A number of studies investigated the surface temperature impact of afforestation based on 66 

satellite observations and they have been cited in high-level climate science synthesis reports 67 

(e.g., IPCC Special Report on Climate and Land authored by Jia et al., 2019), even though there 68 

are large differences in afforestation impacts on LST between different methods. For example, 69 

Alkama and Cescatti (2016), found a cooling effect of about 0.02K from afforestation in 70 

temperate regions, while Li et al. (2015) reported a 0.27±0.03K ‘potential’ cooling from 71 

afforestation in the northern temperate zone (20–50° N) based on the ‘space-for-time’ method. 72 

In contrast, Duveiller et al. (2018) found a much stronger ‘potential’ cooling effect of 2.75K 73 

for afforestation in the northern temperate region. While such differences were acknowledged 74 

in a recent modelling study (Winckler et al., 2019b), they were simply treated as observational 75 

https://www.zotero.org/google-docs/?b1KFPz
https://www.zotero.org/google-docs/?W5ZhmO
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uncertainty for climate model evaluation, with the uncertainty range being as big as, or even an 76 

order of magnitude larger than, the afforestation effect. It remains unclear whether the 77 

differences arising from these different methods can be reconciled. 78 

 79 

Until now, studies using satellite data to investigate afforestation impact on surface temperature 80 

have mainly focused on three methods. The first method, termed the ‘space-and-time’ approach 81 

(Fig. 1, red box), aims to examine the actual, realized effect of afforestation (‘actual effect’) by 82 

isolating the forest cover change effect from the gross temperature change over time in places 83 

where forest cover change actually occurred (Alkama and Cescatti, 2016; Li et al., 2016a). The 84 

second method, termed the ‘space-for-time’ approach (Fig. 1, orange box), compares the 85 

surface temperature of forest with adjacent ‘openland’ (i.e., cropland or grassland) under similar 86 

environmental conditions (e.g., background climate and topography) and estimates the 87 

‘potential effect’ of afforestation if afforestation were to occur (Ge et al., 2019; Li et al., 2015; 88 

Peng et al., 2014). Note that such effects are often quantified using medium-resolution land-89 

cover datasets (typical resolution = 1km), which do not necessarily represent 100% ground 90 

coverage, and we therefore term such a potential effect a ‘mixed potential effect’.  91 

 92 

The third method, recently used by Duveiller et al. (2018), uses the ‘singular value 93 

decomposition’ technique (Fig. 1 green box), which is claimed to extract the hypothetical LST 94 

for different land-cover types by assuming a 100% coverage of the target cover type. The 95 

afforestation effect on LST is then quantified as the difference between the LST of a pixel with 96 

a hypothetical 100% forest coverage and the LST of an adjacent pixel with 100% openland 97 

coverage. As with the second method, such an approach quantifies the ‘potential effect’ of 98 

afforestation, but in this case, it quantifies the ‘full potential effect’ by assuming transitions 99 

between land-cover types with 100% complete ground coverage. 100 

https://www.zotero.org/google-docs/?broken=HfqhdI
https://www.zotero.org/google-docs/?Q25L01
https://www.zotero.org/google-docs/?Q25L01
https://www.zotero.org/google-docs/?uHwPLi
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Previous studies have revealed the fraction of forest change as an important factor determining 101 

the magnitude of the afforestation effect. Alkama and Cescatti (2016) indicated that the actual 102 

temperature effect is fraction-dependent, and Li et al. (2016a) pointed out that use of a higher 103 

threshold to define forest change resulted in a stronger potential effect. Nonetheless, whether 104 

the fraction of forest change can explain the differences in the afforestation effect produced by 105 

different methods, e.g., whether the ‘potential’ effect can be ‘actualized’, has not been 106 

demonstrated. Testing the role of afforestation fraction in reconciling the afforestation effects 107 

produced by different methods can help clarify potential confusion and contribute to appropriate 108 

policy evaluation.  109 

 110 

This study develops detailed conceptual and methodological descriptions for each of the three 111 

approaches and uses large-scale afforestation over China as a case study to compare the three 112 

approaches. We tested the following hypotheses: (1) The actual effect on LST increases with 113 

the area that has actually been afforested, defined as afforestation intensity (or Faff). (2) The 114 

actual effect is smaller than the potential effects. (3) When extending Faff to a hypothetical value 115 

of 100%, the actual effect approaches the potential effect. If proven, this third hypothesis 116 

implies that the LST impacts from different approaches could be reconciled given the same 117 

boundary condition of full afforestation. In that case, we then have a fourth hypothesis (4) 118 

stating that changes in underlying biophysical processes including radiation, sensible and latent 119 

heat fluxes that drive LST changes should also be reconciled among different methods. To keep 120 

the focus on reconciling methodological differences, only changes in the daytime surface 121 

temperature were considered in this study. Nevertheless, similar conclusions regarding the 122 

different approaches are expected for nighttime surface temperature.  123 

 124 
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 125 

Figure 1. Illustration of the three approaches to quantifying the local surface temperature effect 126 

of afforestation. (a) and (b) represent two nearby pixels, both classified as openland at time t1 127 

by medium-resolution satellites (1km spatial resolution), with one of them classified as forest 128 

at time t2 (i.e., having experienced afforestation) and the other unchanged. Note, neither of these 129 

pixels will have 100% complete coverage of either openland (i.e., grassland or cropland) or 130 

forest, but they will have been classified as either openland or forest by medium-resolution 131 

satellite products. (c) and (d) represent pixels with 100% forest or 100% openland coverage 132 

whose temperature can be derived from pixels of mixed land cover types by using the singular 133 

value decomposition (SVD) technique (Duveiller et al., 2018). The red dotted box describes the 134 

quantification of the ‘actual effect’ of afforestation (ΔTa) occurring from t1 to t2 by the ‘space-135 

and-time’ method. The orange box represents the ‘mixed potential effect’ determined by 136 

hypothesizing potential shifts between openland and forest based on the ‘space-for-time’ 137 

approach (ΔTp1). The green box represents the ‘full potential effect’ of afforestation (ΔTp2) 138 
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derived by hypothesizing a transition from 100% complete openland coverage to 100% 139 

complete forest coverage.  140 

 141 

2 Methods 142 

2.1 Three Approaches to Quantifying the Impacts of Afforestation on LST 143 

144 

Figure 2. Schematic overview of the processing steps. The different output results correspond 145 

to actual effect (ΔTa), mixed potential effect (ΔTp1) and full potential effect of afforestation 146 

(ΔTp2). 147 

 148 

2.1.1 Actual Effect of Afforestation (ΔTa) 149 

 150 

The ‘space-and-time’ approach assumes that the gross change in land surface temperature (ΔT) 151 

over a given time period during which afforestation occurred, contains both signals of 152 

temperature change due to afforestation (ΔTa) and background temperature variation (ΔTres) 153 

due to changes in large-scale circulation patterns (Alkama and Cescatti, 2016; Li et al., 2016a): 154 

https://www.zotero.org/google-docs/?SHI2uO
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a res

ΔT = ΔT +ΔT  (1)155 

where ΔT is the gross temperature change during the period from t1 to t2 for the pixel under 156 

study. ΔT can be calculated as the difference between LSTt2 and LSTt1, with LSTt2 being the 157 

surface temperature after afforestation and LSTt1 being that before afforestation. It thus follows 158 

that 159 

 
a res

ΔT  = ΔT - ΔT  (2) 160 

ΔTres can be approximated by averaging changes in surface temperature for those pixels 161 

adjacent to the target afforestation pixel for which the forest cover remained constant between 162 

t1 and t2 (i.e., Faff =0%; section 2.2.2). Here, pixels with Faff > 0% were defined as afforestation 163 

target pixels. A searching window of 11 km by 11 km was established, centered on the 164 

afforestation pixel. Within this window, pixels with Faff =0% were defined as control pixels and 165 

were used to derive ΔTres. Afforestation pixels and adjacent control pixels were both determined 166 

based on the net forest change between t1 and t2 using Global Forest Change (GFC) data (Fig. 167 

2; Section 2.2.2).  168 

 169 

2.1.2 Mixed Potential Effect (ΔTp1) 170 

 171 

The ‘space-for-time’ method relies on the ‘space-substitute-for-time’ assumption to obtain the 172 

potential impact of afforestation on local temperature (Zhao and Jackson, 2014). By assuming 173 

that forest and openland share the same environmental conditions (background climate, 174 

topography, etc.) within a small spatial domain, the potential temperature effect of afforestation 175 

is examined using the search window method with a window size of up to 40km×40km (Ge et 176 

al., 2019; Li et al., 2015; Peng et al., 2014). Here, to be consistent with our ‘actual effect’ 177 

approach, a more conservative window size of 11km×11km was used, smaller than that used in 178 

the majority of previous studies (Ge et al., 2019; Li et al., 2015; Peng et al., 2014). In most 179 

https://www.zotero.org/google-docs/?5Az7Ya
https://www.zotero.org/google-docs/?2Gc81D
https://www.zotero.org/google-docs/?2Gc81D
https://www.zotero.org/google-docs/?lJnq8w
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previous studies, existing medium resolution (1km) land-cover maps were used directly. Such 180 

land-cover products rely on certain thresholds to classify satellite pixels into discrete land-cover 181 

types. Given the widespread spatial heterogeneity in land-cover distribution, it is to be expected 182 

that only in rare cases will these medium-resolution pixels have 100% coverage of a given land-183 

cover type. Therefore, when determined in this way, the potential effect of afforestation has 184 

been named the ‘mixed potential effect’, in contrast to the ‘full potential effect’, on which we 185 

will focus in the next section, which assumes a potential transition between land-cover types of 186 

100% coverage. 187 

 188 

To ensure consistency with the land-cover data used in the ‘full potential effect’ approach (i.e., 189 

the SVD method), the GlobeLand30 land-cover map was aggregated from its original resolution 190 

(30m) to 1km resolution. The land-cover type assigned to a given 1km pixel during aggregation 191 

was based on the land-cover type with an area fraction >50% within that pixel, to be consistent 192 

with the rationale behind the generation of medium-resolution land-cover products (Section 193 

2.2.2). A 1km forest pixel was then chosen as the target pixel and put at the center of a search 194 

window with dimensions 11km×11km. The ‘mixed potential effect’ of afforestation (ΔTp1) was 195 

defined as the difference between the temperature of the target pixel (LSTF) and the average 196 

temperature of all the surrounding openland pixels within the window ( '

O
LST ): 197 

 
'

p1 F OΔT  = LST -LST  (3) 198 

where LSTF is the surface temperature of the target forest pixel at t2, and '

OLST represents the 199 

elevation-corrected surface temperature of openland pixels at t2 within the search window. 200 

Given our search window size, ΔTp1 could be biased by the elevation difference between the 201 

target forest pixel and surrounding openland pixels. Therefore, a linear relationship was first 202 

fitted between the observed openland temperature, LSTO, and the elevation of the openland 203 



10 
 

pixel (EleO). This fitted temperature lapse rate was then used to derive elevation-corrected 204 

openland temperature '

O
LST : 205 

 
OO

'

O F-
L +ST  = L l kST ΔE e  (4) 206 

where ΔEleF-O is the elevation difference between forest and openland pixels. The elevation is 207 

available from NASA’s Shuttle Radar Topography Mission (SRTM) data 208 

(https://lpdaac.usgs.gov/products/srtmgl1v003/).  209 

 210 

2.1.3 Full Potential Effect (ΔTp2) 211 

 212 

The full potential effect represents the temperature change due to hypothesizing a shift from 213 

100% openland to 100% forest coverage, and was determined here by employing the singular 214 

value decomposition (SVD) method used in Duveiller et al. (2018). The SVD technique 215 

assumes that the temperature observed for a pixel at 1km scale is a linear composition of the 216 

temperatures of different land-cover types at a finer resolution (in our study at a 30m resolution). 217 

For each 1km pixel, the observed temperature can be written as the composition of the 218 

temperature of each component land-cover type and its corresponding fraction, based on the 219 

land-cover fractions derived from the 30m-resolution GlobeLand30 map (Section 2.2). The 220 

temperature of each type of land cover was assumed constant within a search window of 11km 221 

× 11km. For each given search window, the following equations can be obtained: 222 

 

1 111 1

1

= 

m

n n nm m

y x x

y x x







    
    
    

    
    

 (5) 223 

where n is the total number of 1km pixels within the window, after accounting for the elevation 224 

difference (thus the maximum value of n is 121 given our 11km × 11km search window), m is 225 

the number of land-cover types, 
ij

x refers to the fraction of land-cover type j in pixel i, β
i
refers 226 

https://lpdaac.usgs.gov/products/srtmgl1v003/
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to the temperature of land cover type i. To minimize elevation impacts, the linear regression 227 

relationship for a given 1km pixel was included only when the elevation difference between 228 

this pixel and the central pixel of the search window was smaller than 100m. Using matrix 229 

notation, Eq. (5) can be simplified to: 230 

 y = X β  (6) 231 

where the matrix X contains land-cover fraction for the n 1km pixels as an explanatory variable, 232 

the response variable y contains n LST observations, and the coefficient vector, β, contains the 233 

regression coefficients which show temperatures of different land-cover types. Note that this 234 

linear equation system cannot be easily solved because the matrix X is ‘closed’, i.e., by 235 

definition, the elements in each row of the matrix X add to 1. After removing the mean of each 236 

column (Zhang et al., 2007), the matrix X was transformed, by applying the SVD technique, to 237 

another matrix, Z, of reduced dimension (more details in Duveiller et al., 2018). After this 238 

transformation, we have the following: 239 

 '
y = Z β +ε  (7) 240 

in which the β’ coefficient can be obtained from equation (8): 241 

 ( )
1

'
 = Z Z y

t t
−

   (8) 242 

However, the β’ vector calculated from the transformed matrix Z cannot directly provide 243 

surface temperatures for corresponding land-cover types. To obtain temperatures for each land-244 

cover type by assuming 100% ground coverage, an identity matrix Y with its dimension equal 245 

to the number of land-cover types must be constructed to represent the hypothetical case in 246 

which each 1km pixel was 100% covered by a single land-cover type. The same transformation 247 

as applied to the matrix X was then applied to Y, to obtain a transformed matrix Z’. Finally, the 248 

predicted temperature ( '

100%
LST ) for each land-cover type assuming a 100% coverage is 249 

calculated as: 250 
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 ' ' '

100%
LST  = Z    (9) 251 

For the central pixel of the local search window, ΔTp2 is defined as the difference between the 252 

predicted '

100%
LST  for forest ( '

100%F
LST ) and openland ( '

100%O
LST ). 253 

 ' '

p2 100%F 100%O
ΔT = LST ST-L  (10) 254 

More details, including an illustration of the SVD method, can be found in Fig. 7 in Duveiller 255 

et al. (2018). 256 

 257 

At the scale of the searching windows used in this analysis (11km×11km), any nonlocal effects 258 

cancel out when comparing temperature differences over neighboring areas because the effects 259 

of advection and atmospheric circulation have been reported to be similar for adjacent areas 260 

(Pongratz et al., 2021; Winckler et al., 2019a). Hence the quantified afforestation effect for each 261 

of the three methods can be considered to be the local effect only. 262 

 263 

2.2 Dataset and Processing 264 

2.2.1 The Test Case: Large-scale Afforestation over China 265 

 266 

China was selected as the test case for addressing the important methodological issues in 267 

quantifying land surface impacts of afforestation because afforestation is a key national strategy 268 

for sustainable development and climate mitigation (Bryan et al., 2018; Qi et al., 2013). 269 

According to the 8th National Forest Inventory conducted in 2013, China’s afforestation area 270 

has reached 6.9×103 million ha, accounting for 33% of the total global afforestation area (Chen 271 

et al., 2019). Afforestation in China during 2000–2012 occurred mainly in regions with more 272 

than 400 mm of precipitation per year (Fig. 3a), which is considered a threshold below which 273 

there is a high risk of afforestation failing due to water limitation (Mátyás et al., 2013). China 274 

covers a wide range of latitude from 3.9° N to 53.6° N and its forest ecosystems cover an 275 

https://www.zotero.org/google-docs/?VHWlqJ
https://www.zotero.org/google-docs/?VHWlqJ
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elevation range of 100m to 4000m. This wide range of climate zones, from tropical/subtropical 276 

to temperate and boreal, make it highly suitable for our methodological analysis because the 277 

impact of afforestation on LST might differ with latitude and background climate (Lee et al., 278 

2011; Alkama and Cescatti, 2016). Further justification for using China as a test case comes 279 

from the strongly diverging published LST impacts of afforestation there, which range from an 280 

actual effect of -0.0036K decade-1 by Li et al. (2020) to a potential effect of -1.1K by Peng et 281 

al. (2014). 282 

 283 

2.2.2 MODIS Dataset and Preparation 284 

 285 

In this study, the actual effect was estimated by combining the actual satellite-derived 286 

afforestation for 2000 to 2012 (see Section 2.2.2) with satellite-based estimates of biophysical 287 

variables for the periods 2002–2004 (t1) and 2010–2014 (t2). MODIS remote sensing products 288 

for land surface temperature (MOD11A2), albedo (MCD43B3) and evapotranspiration 289 

(MOD16A2) were used to characterize the biophysical effects (Table 1). The datasets were 290 

regridded to harmonize with spatial (1km) and temporal (annual) resolutions (Table 1).  291 

 292 

The MOD11A2 product provides 8-day land surface temperature for 10:30 AM and 22:30 PM 293 

from the Terra satellite, but here we focused on daytime surface temperature. Only valid LST 294 

observations from the original data were used to compute the average daily values for a given 295 

year. Years for which more than 40% of daily data are missing were excluded from the analysis. 296 

Annual data were then aggregated to obtain the average annual temperature for periods t1 and 297 

t2. 298 

 299 
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The MCD43B3 product provides white-sky and black-sky shortwave albedo at 16-day temporal 300 

resolution (Table1). The observed white-sky albedo was used as the daytime albedo (Peng et 301 

al., 2014). For evapotranspiration (ET), we used the ET band in MOD16A2, which includes 302 

water fluxes from soil evaporation, wet canopy evaporation and plant transpiration. To calculate 303 

the mean annual albedo and evapotranspiration for 2002–2004 (t1) and 2010–2014 (t2) we used 304 

the same approach as used for LST. 305 

 306 

2.2.3 Land-Cover Datasets and Processing 307 

 308 

Two land-cover datasets were used in this study: the ‘actual effect’ approach was based on the 309 

Global Forest Change (GFC) dataset, while the ‘mixed potential effect’ and ‘full potential effect’ 310 

used the GlobeLand30 land-cover data (Table 1).  311 

 312 

The SVD technique, used in the ‘full potential effect’ approach, requires a land-cover map with 313 

a higher spatial resolution than the 1km spatial resolution of the LST data. The GlobeLand30 314 

product, which is based on Landsat images, provides land-cover information for China at a 30m 315 

resolution for the years 2000 and 2010 (Chen et al., 2015). Cultivated land and grassland in 316 

GlobeLand30 were classified as openland. Discrete land-cover type information at 30m 317 

resolution in 2010 was aggregated to obtain the area fractions of the different land-cover types 318 

at 1km resolution, which were then used to construct matrix X in Eq. (5) (Fig. 2). Furthermore, 319 

land-cover type information at the 1km scale was extracted, based on the vegetation type with 320 

area fraction >50% for every 1km×1km window. This data was then applied in the ‘space-for-321 

time’ method to identify forest and openland (Fig. 2). 322 

 323 

https://www.zotero.org/google-docs/?BzWVOl
https://www.zotero.org/google-docs/?BzWVOl
https://www.zotero.org/google-docs/?qJiEYq
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GlobeLand30 data is not suitable for detecting forest change (Zeng et al., 2021). The Global 324 

Forest Change (GFC) data, however, provides forest gain and forest loss at a spatial resolution 325 

of 30m between 2000 and 2012 and has been used for mapping global forest change (Hansen 326 

et al., 2013). This product shows an overall accuracy of greater than 99% for areas of forest 327 

gain at the global scale when compared with statistical data reported in Forest Resource 328 

Assessment (FRA), LiDAR detection (Geoscience Laser Altimetry System), and MODIS 329 

NDVI time series (Hansen et al., 2013), and thus has been recommended for use in forest and 330 

forest-change estimates (Chen et al., 2020; Zeng et al., 2021). Using this dataset, forest loss 331 

events were identified for each year between 2000 and 2012, but forest gain was only identified 332 

for the whole period, simply because forest loss is an abrupt change which can be effectively 333 

identified over short time periods, whereas forest gain is a gradual change which can only be 334 

confidently identified over longer time spans. Here, forest losses and gains from GFC were 335 

aggregated at a 1km resolution to obtain net forest change (defined as forest gain minus forest 336 

loss) during this period (Fig. 2). A positive net change indicates afforestation and the area 337 

percentage of afforestation for the 1km pixel area was defined as Faff. The land-cover type of 338 

pixels with Faff = 0% was considered to be stable. This net forest-change information was then 339 

used in the calculation of the actual afforestation-induced temperature effect (ΔTa)(Fig. 2). 340 

 341 

2.3 Decomposition of Changes in Surface Temperature 342 

 343 

Changes in surface temperature following forest-cover change are the net result of changes in 344 

underlying fluxes that collectively determine the land surface energy balance: 345 

 
in out in out

- - GΔSW ΔSW +ΔLW ΔLW =ΔH +ΔLE +Δ  (11) 346 

where ΔSWin, ΔSWout, ΔLWin, ΔLWout are the changes in incoming and outgoing shortwave 347 

and longwave radiation, respectively, and ΔH, ΔLE, and ΔG are changes in sensible heat flux, 348 

https://www.zotero.org/google-docs/?X1vAgD
https://www.zotero.org/google-docs/?X1vAgD
https://www.zotero.org/google-docs/?X1vAgD
https://www.zotero.org/google-docs/?X1vAgD
https://www.zotero.org/google-docs/?X1vAgD
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latent heat flux and ground heat flux, respectively. All the terms of Eq. (11) are expressed in 349 

Wm-2. 350 

 351 

Firstly, it can be reasonably assumed that ΔSWin≈0 and ΔLWin≈0, given that all three 352 

approaches consider only local effects on surface temperature by following a comparison of 353 

target pixels with surrounding control pixels, thus excluding feedbacks from, e.g., cloud 354 

formation (Duveiller et al., 2018). Changes in reflected shortwave radiation can be derived as: 355 

 
out in

ΔSW = SW ×Δα  (12) 356 

where SWin is available from the CERES EBAF-Surface Product Ed 4.1 (Kato et al., 2018; Liu 357 

et al., 2018) (Table 1), and Δα is the surface albedo change. To approximate ΔLWout, we used 358 

its first order differential equation: 359 

 3 4

B B
ΔLW = σ(4ε T ΔT+Δε T )

out
 (13) 360 

where σ is Stefan-Boltzmann's constant (5.67×10−8 W m−2 K−4), T is daytime surface 361 

temperature and ΔT is the afforestation impact on surface temperature. Surface broadband 362 

emissivity, εB, is usually obtained from an empirical relationship (Zhang et al., 2019): 363 

 
B 29 31 32
ε =0.2122ε +0.3859ε +0.4029ε  (14) 364 

where ε29, ε31 and ε32 are obtained from the estimated emissivity for bands 29 (8,400–8,700 nm), 365 

31 (10,780–11,280 nm) and 32 (11,770–12,270 nm) in the MOD11C3 data (Duveiller et al., 366 

2018).  367 

 368 

Latent heat flux change (ΔLE) refers to changes in the energy used for evapotranspiration (ET, 369 

unit: mm d-1), which can be obtained from the change in evapotranspiration (ΔET): 370 

 -2 -1
)ΔLE =ΔET 28.94 W m /(mm d  (15) 371 

Therefore, the sum of sensible heat change and ground heat change (ΔH+ΔG) can be calculated 372 

as the difference between net radiation change and latent heat flux change (ΔLE) based on Eq. 373 
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(11). The afforestation effects on albedo (Δα), εB (ΔεB) and ET (ΔET) needed in the above 374 

equations were calculated in a similar way to ΔT for each of the three different approaches as 375 

described in Section 2.1.  376 

 377 

2.4 Statistical Analysis 378 

The spatial distributions of original samples for the three methods are different because of the 379 

different land-cover maps used (Fig. 2 and Figure A1) and, therefore, the statistical analysis 380 

was limited to those pixels shared by all three approaches: 96,058 sample pixels at 1km 381 

resolution. The distribution of these shared sample pixels retained the characteristics of the 382 

spatial distribution of the original samples (Figure A2).  383 

 384 

Differences in the afforestation effects on LST of the three approaches were tested by 385 

performing paired-samples t-tests between pairs of approaches. The paired-samples t-test was 386 

used, rather than a normal t-test, to avoid the bias due to strong spatial heterogeneity in the LST 387 

effects of afforestation that could occur if the values of all pixels had been pooled together for 388 

a normal t-test. The test was made using the ‘ttest_rel’ method from the ‘scipy.stats’ package 389 

in Python. The Bonferroni correction was applied to adjust the significance level (p-value) to 390 

mitigate the increasing Type I error when making multiple paired-samples t-test, which in our 391 

case involves three pairs (Lee and Lee, 2018; UC Berkely, 2008). The Bonferroni correction 392 

sets the significance cut-off at α/k (with α as the p-value before correction and k as number of 393 

pairs). In this study, with 3 hypotheses tests (i.e., 3 pairs) and an original significance level α = 394 

0.05, the adjusted p-value is 0.0167. In order to investigate ΔTa in relation to the afforestation 395 

intensity, a linear regression was performed between ΔTa and Faff using the ordinary least 396 

squares method. 397 

 398 
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Table 1 Summary of the datasets and their main characteristics 399 

Type Dataset Selected band Resolution Projection Timespan 

Forest change 

Global Forest 

Change 

Forest gain; 

Loss year 

30m, annual WGS84 2000–2012 

Land-cover 

type 

GlobeLand 30 

Land-cover 

type 

30m, — UTM 2000; 2010 

Land surface 

Temperature 

MOD11A2 

Daytime 

temperature  

1km, 8days sinusoidal 

2002–2004; 

2010–2014 

Albedo MCD43B3 

Albedo WSA 

shortwave 

1km, 16days sinusoidal 

2002–2004; 

2010–2014 

Incoming 

shortwave 

radiation  

CERES 

sfc_sw_down

_all_mon 

1°, monthly WGS84 

2002–2004; 

2010–2014 

Surface 

broadband 

emissivity 

MOD11C3 

Emis_29; 

Emis_31; 

Emis_32 

0.05°, monthly sinusoidal 

2002–2004; 

2010–2014 

Evapotranspira

tion 

MOD16A2 ET_500m 500m, 8days sinusoidal 

2002–2004; 

2010–2014 

Elevation SRTM30 Be75 30m, —  WGS84 — 

 400 
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3 Results 401 

3.1 Spatial Distribution of Afforestation and its Effect on Land Surface 402 

Temperature 403 

 404 

In China, afforestation areas are mainly located in the northeast, southwest and south, where 405 

sufficient precipitation is available (Fig. 3a) and largely driven by afforestation of former 406 

cropland or abandoned cropland, with a relatively small contribution from forest regeneration 407 

or replanting following natural disturbance or timber harvest. One prominent feature of 408 

afforestation in China is its small afforestation patch, with most afforested pixels (1km2) having 409 

an afforestation fraction of less than 30% (Fig. 3b). Pixels with an afforestation intensity below 410 

10% account for 93% of the total number of pixels (Fig. 3b), representing 0.14 Mha, more than 411 

half (55.6%) of the total afforestation area (Fig. 3b).  412 

413 

Figure 3. (a) Spatial distribution of afforestation intensity (Faff) in China during 2000–2012. 414 

The solid black line crossing China is the 400mm annual precipitation isoline. (b) Frequency 415 

distribution of Faff and cumulative afforestation area with the increase in Faff. The red dashed 416 

line represents the cumulative afforestation area corresponding to Faff =10%. 417 

 418 
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Although all three approaches result in similar spatial and latitudinal patterns regarding 419 

afforestation effects on LST (Fig. 4), their magnitudes differ substantially. The actual effect has 420 

the lowest temperature change, followed by the mixed potential effect, with the full potential 421 

effect showing the greatest temperature change (Fig. 4a–c). For the latitude range of 20–36° N 422 

where afforestation effects show a dominant cooling effect, the full potential effect (ΔTp2) 423 

reaches -1.75±0.01K, while the mixed potential effect (ΔTp1) was smaller at -0.96±0.00K, but 424 

both of them were much larger than the actual effect (ΔTa) of -0.09±0.00K. Similarly, the full 425 

potential effect (ΔTp2) showed the strongest warming effect (0.35±0.01K) in the area north of 426 

48° N, stronger than the mixed potential effect (0.22±0.01K), and again the actual effect is the 427 

smallest (0.07±0.01K). However, regarding the latitude where the effects change from a 428 

warming to cooling effect, the three approaches largely converge (Fig. 4d). Between 40° N and 429 

48° N, the afforestation effects are largely neutral, with the mean temperature change for the 430 

three approaches being 0.07±0.01K (ΔTa=-0.01±0.01K; ΔTp1=0.11±0.01K; ΔTp2=0.12±0.01K).  431 

432 

Figure 4. Afforestation effects on LST quantified by three approaches: (a) actual effect based 433 

on a ‘space-and-time’ approach (ΔTa), (b) mixed potential effect based on a ‘space-for-time’ 434 
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approach (ΔTp1) and (c) full potential effect assuming a transition from 100% openland 435 

coverage to 100% forest coverage using the SVD method (ΔTp2). The solid black line crossing 436 

China is the 400mm precipitation isoline. (d) Zonal averages of the annual mean daytime LST 437 

change within 2° latitudinal bins, with shaded areas representing the standard errors (SE). Note 438 

that in panel (d), ΔTa corresponds to the vertical axis on the left; ΔTp1 and ΔTp2 correspond to 439 

the vertical axis on the right. 440 

 441 

3.2 Reconciling Temperature Effects of Afforestation  442 

 443 

Even though the observed land surface temperature is assumed to be uniform for the 1km 444 

afforested satellite pixel, the underlying afforestation intensity varies substantially (Fig. 3a). 445 

This leads to our first hypothesis that for a 1km pixel, ΔTa should be influenced by the area 446 

fraction that has been afforested within the pixel (i.e., afforestation intensity or Faff). Indeed, the 447 

actual daytime surface cooling increases significantly with afforestation intensity (Fig. 5), with 448 

a 0.079±0.017K (mean ± std) increase for each ten percent increase in Faff.  449 

450 

Figure 5. Changes in ΔTa as a function of afforestation intensity (Faff), defined as the fraction 451 

of afforested area to the total pixel area at a 1-km resolution. Error bars indicate the standard 452 

error of ΔTa within each ten percent bin of Faff. The red line represents the fitted linear 453 

regression line between ΔTa and Faff. 454 
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 455 

The afforestation effects obtained from the three approaches were compared for each Faff 456 

interval (Fig. 6). When afforestation intensity is less than 60%, significant differences exist in 457 

the temperature change obtained by the three approaches, with ΔTa < ΔTp1 < ΔTp2. This result 458 

confirms our second hypothesis that the actual effect is expected to be smaller than potential 459 

effects. However, for pixels with relatively low Faff, the mixed potential effect is found to be 460 

smaller than the full potential effect, which is reasonable, but to our knowledge, has not been 461 

reported before. When the afforestation intensity is greater than 60%, the significant difference 462 

in cooling effect between the different approaches disappears, likely because afforestation 463 

intensity, and the associated forest coverage at 1km resolution, reach values high enough to 464 

allow the ‘potential’ effects to be realized.  465 

Figure 6. Comparison of ΔT for the three approaches for bins of afforestation intensity. Error 466 

bars are given as the standard error and different letters indicate that ΔT calculated by the two 467 

approaches concerned are significantly different using the adjusted p-value after applying the 468 

Bonferroni correction for multiple paired-samples t-tests. 469 

 470 

When considering the overall differences in ΔT for the three approaches, irrespective of the 471 

afforestation intensity, ΔTa (-0.07±0.00K) over China was significantly lower than ΔTp1 (-472 

0.63±0.00K), which is further significantly lower than ΔTp2 (-1.16±0.01K) (p < 0.05, paired-473 
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samples t-test, n= 96,058), once again confirming our second hypothesis (Fig. 7). Moreover, 474 

extrapolation of the relationship shown in Fig. 5 suggests that ΔTa would reach -0.79±0.17K 475 

(mean ± std) if a 1km pixel was 100% afforested, which is conceptually comparable to the 476 

potential effects. ΔTa was indeed found to be higher than ΔTp1 but lower than ΔTp2. This result 477 

confirms our third hypothesis and demonstrates that the potential cooling effect could indeed 478 

be reached when a pixel is fully afforested. 479 

 480 

Figure 7. Comparison of ΔT for the three approaches, irrespective of the afforestation intensity. 481 

Error bars are given as the standard error and different letters indicate ΔT being significantly 482 

different (p = 0.0167, paired-samples t-test, n = 96,058). For comparison, the predicted ΔTa 483 

with Faff reaching 100%, which is conceptually comparable with ΔTp1 and ΔTp2, is also shown. 484 

 485 

3.3 Reconciling Changes in Surface Energy Fluxes by Afforestation 486 

 487 

In order to investigate whether the underlying surface energy fluxes could be reconciled 488 

following the reconciliation of the LST changes, changes in surface energy fluxes due to 489 

afforestation were quantified using each of the three approaches, under the same boundary 490 
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conditions as for full afforestation (i.e., changes following the ‘actual effect’ approach were 491 

extended for Faff = 100%). As illustrated in Fig. 8, changes in all the relevant surface energy 492 

fluxes under the three different approaches have the same direction, with similar magnitudes, 493 

confirming the reconciliation of the different approaches in terms of surface energy fluxes. 494 

More specifically, the three approaches converge on a reduction in reflected shortwave 495 

radiation (ΔSWout) of 0.56~1.23 W m-2 due to the lower albedo of forest compared to openland 496 

(Figure A3). Emitted longwave radiation (ΔLWout) was reduced by 1.03~3.10 W m-2 and 497 

sensible and ground heat fluxes (ΔH+ΔG) reduced by 4.84~6.14 W m-2. All these reduced 498 

fluxes were offset by an increased latent heat flux of 7.99~8.41 W m-2 (ΔLE), the single energy 499 

flux leading to surface cooling. 500 

 501 

Figure 8. Afforestation-induced changes in surface energy fluxes (Wm-2) following the three 502 

approaches: (a) actual effect based on a ‘space-and-time’ approach, (b) mixed potential effect 503 

using medium-resolution land cover maps based on a ‘space-for-time’ approach and (c) full 504 

potential effect assuming a transition from 100% openland coverage to 100% forest coverage 505 

using the SVD method. For each approach, changes were calculated for the reflected shortwave 506 

radiation (SWout), outgoing longwave radiation (LWout), latent heat flux (LE) and the 507 

combination of sensible and ground heat fluxes (H+G). No changes were assumed for incoming 508 

shortwave and longwave radiation. Changes in energy fluxes for the ‘actual effect’ approach 509 

have been adjusted to the condition of full afforestation (i.e., Faff = 100%) in a similar way as 510 
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for the ‘predicted ΔTa’ in Fig. 7, by fitting linear regressions between energy flux variables and 511 

Faff (Figure A4). 512 

 513 

4 Discussion 514 

 515 

The three approaches (Li et al., 2015; Alkama and Cescatti, 2016; Duveiller et al., 2018) used 516 

to quantify local surface temperature change following forest-cover change and presented with 517 

details in this study, have been cited over 919 times in research papers (Web of Science, 518 

December 2021) and in high-level climate science synthesis reports. Despite the apparently 519 

large differences in temperature effect among them, to our knowledge, no studies have 520 

examined whether these differences can be reconciled. This study fills that gap by comparing 521 

the three approaches for a single study case, i.e., large-scale afforestation in China. China is 522 

highly suitable for the purpose of this study as the size of an afforestation patch is, in general, 523 

smaller than the spatial resolution (1km) at which the temperature effects of afforestation were 524 

conducted in the previous studies describing the three approaches (Li et al., 2015; Alkama and 525 

Cescatti, 2016; Duveiller et al., 2018). Hence, the difference between the actual and potential 526 

temperature effects is expected to be large.  527 

 528 

Indeed, we found surface cooling following afforestation was much less when estimated as the 529 

actual effect (ΔTa) compared to the potential effects (ΔTp1 and ΔTp2). This lower ΔTa has been 530 

attributed to incomplete afforestation at a 1km resolution, at which potential effects are 531 

quantified by assuming complete afforestation (i.e., a complete shift from openland to forest). 532 

Consistent with our first hypothesis, the afforestation fraction at a 1km resolution explained 89% 533 

of the variation in ΔTa, making it a key determinant of the surface cooling following 534 

afforestation (Fig. 5). This result is consistent with the fact that the observed temperature for a 535 
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mixed surface is determined by the area fractions of its respective components, with each 536 

component having a unique temperature. This fact also forms the theoretical foundation for the 537 

SVD technique used to derive the full potential effect (Duveiller et al., 2018).  538 

 539 

Modelling (Li et al., 2016b) and satellite-based (Alkama and Cescatti, 2016) studies have found 540 

that temperature change after afforestation (or deforestation) is highly sensitive to the fraction 541 

of the model grid cell or satellite pixel that is subjected to afforestation (or deforestation), 542 

echoing our finding that ΔTa significantly changes with Faff. In addition, we provide strong 543 

evidence in support of our third hypothesis that when Faff reaches 100%, the expected actual 544 

effect is comparable to the potential effects (Fig. 7). This finding shows that the three 545 

approaches compared here are consistent when the same boundary condition, i.e., full 546 

afforestation, is applied, and demonstrates that all three methods are mutually compatible. It is, 547 

therefore, the basis of the reconciliation of the three approaches. It also highlights the fact that 548 

the actual afforestation area must be considered when evaluating the climate mitigation effects 549 

of afforestation. 550 

 551 

Our results also show that the mixed potential effect (ΔTp1) is smaller than the full potential 552 

effect (ΔTp2) (Fig. 6, Fig. 7). We suspect that this phenomenon likely also relates to the 553 

incomplete forest coverage for the identified forest pixels at the 1km scale used in the ‘space-554 

for-time’ analysis, because a threshold value of 50% forest cover was used when upscaling the 555 

30m land-cover map to 1km resolution. This threshold, however, is consistent with the 556 

commonly applied value in land-cover classification based on medium resolution satellite 557 

images, such as MCD12Q1, which uses a tree coverage value of 60% to identify forest pixels 558 

(Sulla-Menashe and Friedl, 2018). For the purpose of comparison, we also calculated the mixed 559 

potential effect based on the MCD12Q1 land-cover map but using the same LST data. The 560 

https://www.zotero.org/google-docs/?l02F73
https://www.zotero.org/google-docs/?teicJt
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result shows that potential effects derived using MCD12Q1 data versus those derived using 561 

spatially upscaled GlobeLand30 data are almost identical (Figure A5), lending credibility to our 562 

estimated ΔTp1 in comparison to previous studies using MODIS land-cover data (Li et al., 2015). 563 

Progressively increasing the forest-cover threshold from 50% to 90% steadily increases ΔTp1 564 

from -0.62±0.02K to -0.75±0.02K (Figure A6). Further increasing the thresholds used to 565 

identify 1km-resolution openland pixels from 50% to 90% increases ΔTp1 from -0.63±0.00K to 566 

-1.10±0.02K (Figure A7), bringing ΔTp1 even closer to ΔTp2 (-1.16±0.01K). This is consistent 567 

with the finding of a previous study on the dependence of the temperature effect on the forest 568 

cover change thresholds that were used to define afforestation: the higher the threshold, the 569 

stronger the impact on temperature (Li et al., 2016). Our results add further support to the 570 

compatibility of the three approaches given the same boundary condition, i.e., the complete 571 

transformation from full openland to full forest coverage. 572 

 573 

Several factors may contribute to the remaining differences in the temperature effects produced 574 

by different methods even after reconciliation. As described in the Method section, there are 575 

discrepancies in the assumptions of the three approaches, which lead to differences in the 576 

control pixels (i.e., adjacent comparison pixels). For instance, for the ‘pure potential effect’ it 577 

is assumed that the LSTs for pixels with the same land cover type are uniform and forest pixels 578 

are compared with openland pixels, whereas the in the ‘mixed potential impact’ approach the 579 

central target forest pixel is compared with the mean value of non-forest pixels within the 580 

searching window. Moreover, space-for-time is an assumption that cannot be verified (Chen et 581 

al., 2016), and which will inevitably result in differences in the estimated actual and potential 582 

effects, although the consistency between ‘potential’ and ‘actual’ effects after reconciliation in 583 

our study does illustrate the broad validity of this assumption.  584 

 585 
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Differences between the actual and potential temperature effects can also arise from influences 586 

of both the timing of the afforestation and the time period elapsed following afforestation. 587 

However, such influences are expected to be small in our study. We argue that such influences 588 

should be more pronounced in the case of deforestation than afforestation. The temperature 589 

effect caused by deforestation is considered to be instant (Liu et al., 2018). As a result, if 590 

deforestation occurred in one specific year of our starting time window (i.e., 2002–2004), using 591 

the time-averaging LST over the whole time window to represent the LST before deforestation 592 

will greatly bias the quantified ΔT. In contrast, afforestation-driven surface temperature change 593 

can only gradually increase with forest development. The LST effect depends on different 594 

stages of forest development and is expected to saturate only when the forest canopy stabilizes 595 

(Zhang et al., 2021; Windisch et al., 2021). Observation studies show that closed dense-canopy 596 

old forests can exert greater cooling effect than the open-canopy young forests (Zhang et al., 597 

2021; Windisch et al., 2021). Hence, given the gradual nature of the afforestation effect on LST, 598 

when we quantify the afforestation effect by comparing the time-averaging LST before and 599 

after afforestation, the influence of the specific ‘timing of afforestation’ is expected to be small. 600 

Furthermore, the GFC dataset used in this analysis defined forest gain using the condition of 601 

successful detection of a stable closed forest canopy that is clearly different from a non-forest 602 

state (Hansen et al., 2013), which enhances the chance of temperature change saturation 603 

following afforestation. But, given a maximum stand age of 12 years inferred from the GFC 604 

dataset, differences in surface temperatures may still exist between newly established forests 605 

and the mature existing forests that were used in the ‘potential effect’ approaches. Thus, we 606 

cannot exclude the possible contribution of time period elapsed following afforestation to the 607 

difference between the actual and potential effects, which failed to be reconciled. 608 

 609 
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Previous analyses have documented latitudinal patterns of surface temperature change induced 610 

by afforestation (Alkama and Cescatti, 2016; Li et al., 2015, 2016a; Peng et al., 2014). When 611 

comparing the three approaches for a single case study, consistent latitudinal patterns of local 612 

surface temperature effects following afforestation are observed (Fig. 4). Notably, all three 613 

approaches show a warming effect in the northern high latitudes and an opposite cooling effect 614 

in the southern low latitudes, with a largely neutral effect in the 40–48° N latitude band, 615 

providing further evidence that the three approaches are compatible. In particular, although the 616 

three approaches used different land-cover maps, they derived consistent LST impacts 617 

following afforestation, which highlights that fact that the reconciliation provided in this study 618 

is rather robust and unlikely to be dependent on the land cover datasets used. 619 

 620 

In addition to the reconciliation of the land surface temperature change, we checked and 621 

confirmed that the changes in surface energy fluxes that underlie and drive the changes in 622 

surface temperature are compatible under the boundary condition of full afforestation. This 623 

finding confirms the inherent consistency in the three approaches and clarifies the reasons 624 

behind the apparent discrepancies in existing studies as discussed in the introduction. 625 

Nonetheless, when it comes to the biophysical impacts of afforestation in the real world, our 626 

findings have far-reaching implications. Full afforestation is often possible at small spatial 627 

scales but becomes challenging at large scale. Therefore, the realization of the full potential 628 

effect by afforestation is scale-dependent. For example, a complete afforestation of the semi-629 

arid Loess Plateau in the northwest of China is predicted to generate a surface cooling effect of 630 

2.40±0.07K, but substantial afforestation efforts over the past 4 decades in that region have only 631 

realized a cooling of 0.11±0.01K as measured by the ‘actual effect’. Because of greater water 632 

consumption by forest compared to openland and the need to maintain land area for food 633 

https://www.zotero.org/google-docs/?kYuIMS
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production, achieving the full cooling potential may not be feasible (Huang et al., 2018; Liu 634 

and She, 2012; Liang et al., 2019).  635 

 636 

Potential cooling effects have a value in that they can serve to establish the envelope of effects 637 

and measure possible outcomes given the condition of full afforestation. However, given the 638 

challenge of full afforestation at large spatial scales, potential effects should be converted into 639 

a more realistic estimate (i.e., actual effects), by taking into account the intensity of afforestation, 640 

to better represent policy ambitions. The analog could also be made for the effects of the surface 641 

energy impacts of afforestation. Taking 10% as the afforestation intensity threshold to compare 642 

the cumulative surface energy effect between the actual and potential approaches, actual 643 

cumulative biophysical changes (5.06 EJ) for 2000–2012 are much smaller than mixed potential 644 

changes (20.13 EJ) and full potential change (19.02 EJ) (methods in Text A1; Figure A8). Again, 645 

this shows that simply using the potential effects for policy making or evaluation risks greatly 646 

overestimating the biophysical effects of afforestation. 647 

 648 

5 Conclusions 649 

In this study we provided a synthesis of the three influential methods used to quantify 650 

afforestation impact on surface temperature change and provided evidence that these different 651 

methods could in fact be reconciled. The actual effect of surface temperature change following 652 

afforestation was highly dependent on the intensity of afforestation (Faff), which explained 89% 653 

of the variation in ΔTa. With the common boundary condition of full afforestation being applied, 654 

differences in afforestation impacts on LST reported by the three methods in previous studies 655 

greatly reduced, showing that simply treating these differences as uncertainty is incorrect and 656 

could greatly overestimate the uncertainty. In other words, when full afforestation is assumed, 657 

the actual effect approaches the potential effect, demonstrating the effectiveness of the ‘space-658 
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for-time’ approach and that the potential cooling effect of afforestation could indeed be realized. 659 

Potential cooling effects have a value in academic studies where they can be used to establish 660 

an envelope of effects, but their realization at large scales is challenging given the scale 661 

dependency. The reconciliation of the different approaches demonstrated here stresses that the 662 

afforestation fraction should be accounted for in order to bridge different estimates of surface 663 

cooling effects in policy evaluation. 664 

 665 

Appendix A 666 

Figure A1. The distributions of the original sample pixels (at a 1km resolution) for (a) the 667 

actual effect and (b) the two potential effects. 668 
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Figure A2. (a) Histogram of ΔΤa of all pixels based on the GFC dataset (b) Histogram of ΔΤa 669 

for samples used for the statistical test. (c) Histogram of ΔΤp1 of all pixels based on GFC dataset 670 

(d) Histogram of ΔΤp2 for samples used for the statistical test. 671 

 672 

 673 

  674 

Figure A3. Spatial distribution of afforestation-induced changes in albedo (α) over China from 675 

three approaches: (a) Actual albedo change following afforestation based on ‘space-and-time’ 676 

method (Δαa), (b) mixed potential albedo change using medium-resolution land-cover maps 677 

based on ‘space-for-time’ approach (Δαp1) and (c) full potential effect (Δαp2) based on SVD 678 

approach. 679 

 680 
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Figure A4. Changes of actual effect in (a) ΔLW, (b) ΔSW, (c) ΔH+ΔG and (d) ΔLE (W m-2) 681 

as a function of afforestation intensity (Faff) following the ‘actual effect’ approach. Error bars 682 

indicate the standard error within each ten percent bin of Faff. The solid black lines represent 683 

the fitted linear regression line between each energy flux variable and Faff. 684 

  685 

 686 

 687 

 688 
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Figure A5. The mixed potential effects (ΔTp1) obtained based on MODIS land-cover data 689 

(MCD12Q1) and the land-cover distribution map defined at the threshold of 50% GlobeLand30 690 

at 1 km resolution. 691 

 692 

Figure A6. The influence of the forest-cover threshold applied to the land-cover map 693 

underlying the estimation of the mixed potential effect (ΔTp1).  694 

  695 

Figure A7. The influence of the openland-cover threshold used to identify a 1km pixel as 696 

openland in the estimation of the mixed potential effect (ΔTp1). 697 
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  698 

Figure A8. Afforestation-induced cumulative changes in surface energy fluxes (exaJoules) in 699 

China for the period 2000–2012 following the approaches of (a) actual effect, (b) mixed 700 

potential effect and (c) full potential effect (methods in Appendix Text A1). 701 

 702 

Text A1  703 

The cumulative surface energy effect (fcum) in Figure A8 refers to the sum of the flux change (J) 704 

from all the samples, while at the same time accounting for the forest change area (m2). More 705 

specifically, the cumulative surface energy change (fcum) can be calculated from equation A1: 706 

                      𝑓𝑐𝑢𝑚 = ∑ (𝑎𝑟𝑒𝑎𝑖 × 𝐹𝑖)𝑖=𝑛
𝑖=1                            (A1) 707 

where Fi is the flux change per unit area (W m-2) for pixel i, n is the total number of samples, 708 

and areai is the forest change area in pixel i.  709 

 710 
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All datasets used in this study are summarized in Table 1 and are openly available. Albedo, 712 

transpiration and surface temperature data can be accessed at 713 
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https://earthenginepartners.appspot.com/science-2013-global-forest/. The land-cover type 715 

dataset (GlobeLand30) can be downloaded from http://www.globallandcover.com/. Incoming 716 
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