

Reconciling different approaches to quantifying land surface temperature impacts of afforestation using satellite observations

Huanhuan Wang¹, Chao Yue^{2,3*}, Sebastiaan Luyssaert⁴

¹College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China

² State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China

³ College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China

⁴ Department of Ecological Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands

Correspondence: Chao Yue, State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China

E-mail: chaoyue@ms.iswc.ac.cn

Abstract

Satellite observations have been widely used to examine afforestation effects on local surface temperature at large spatial scales. Different approaches, which potentially lead to differing definitions of the afforestation effect, have been used in previous studies. Despite their large differences, the results of these studies have been used in climate model validation and cited in climate synthesis reports. Such differences have been simply treated as observational uncertainty, which can be an order of magnitude bigger than the signal itself. Although the fraction of the satellite pixel actually afforested has been noted to influence the magnitude of afforestation effect, it remains unknown whether it is a key factor which can reconcile the different approaches. Here, we provide a synthesis of three influential approaches (one

26 estimates the actual effect and the other two the potential effect) and use large-scale
27 afforestation over China as a test case to examine whether the different approaches can be
28 reconciled. We found that the actual effect (ΔT_a) often relates to incomplete afforestation over
29 a medium resolution satellite pixel (1km). ΔT_a increased with the afforestation fraction, which
30 explained 89% of its variation. One potential effect approach quantifies the impact of quasi-full
31 afforestation (ΔT_{p1}), whereas the other quantifies the potential impact of full afforestation (ΔT_{p2})
32 by assuming a shift from 100% openland to 100% forest coverage. An initial paired-samples *t*-
33 test shows that $\Delta T_a < \Delta T_{p1} < \Delta T_{p2}$ for the cooling effect of afforestation ranging from 0.07K to
34 1.16K. But when all three methods are normalized for full afforestation, the observed range in
35 surface cooling becomes much smaller (0.79K to 1.16K). Potential cooling effects have a value
36 in academic studies where they can be used to establish an envelope of effects, but their
37 realization at large scales is challenging given its nature of scale dependency. The reconciliation
38 of the different approaches demonstrated in this study highlights the fact that the afforestation
39 fraction should be accounted for in order to bridge different estimates of surface cooling effects
40 in policy evaluation.

41
42 **Keywords:** surface temperature change, afforestation, actual effect, potential effect,
43 reconciliation, surface energy balance, China

44
45 **1 Introduction**
46
47 Afforestation has been and is still proposed as an effective strategy to mitigate climate change
48 because forest ecosystems are able to sequester large amounts of carbon in their biomass and
49 soil, slowing the increase of atmospheric CO₂ concentration (Fang et al., 2014; Pan et al., 2011).
50 Additionally, forests regulate the exchange of energy and water between the land surface and

51 the lower atmosphere through various biophysical effects, including radiative processes such
52 as surface reflectance, and non-radiative processes such as evapotranspiration and sensible heat
53 flux (Bonan, 2008; Juang et al., 2007). As the net result of the surface energy balance, land
54 surface temperature (LST) is widely used to measure the local climatic impact of afforestation
55 (Li et al., 2015; Winckler et al., 2019a).

56

57 Climate model simulations and site-level observations have been utilized to explore the impact
58 of forest dynamics on land surface temperature (Lee et al., 2011; Pitman et al., 2009; Swann et
59 al., 2012). However, afforestation impacts on local LST derived from models tend to be highly
60 uncertain as they are limited by the coarse spatial resolution of models and uncertainties in
61 model parameters and processes (Oleson et al., 2013; Pitman et al., 2011), while insights from
62 site-level assessments cannot be extrapolated to large spatial domains (Lee et al., 2011).
63 Alternatively, remote sensing-based LST products enable the assessment of local LST changes
64 due to forest dynamics on large spatial scales (Li et al., 2015; Shen et al., 2020).

65

66 A number of studies investigated the surface temperature impact of afforestation based on
67 satellite observations and they have been cited in high-level climate science synthesis reports
68 (e.g., *IPCC Special Report on Climate and Land* authored by Jia et al., 2019), even though there
69 are large differences in afforestation impacts on LST between different methods. For example,
70 Alkama and Cescatti (2016), found a cooling effect of about 0.02K from afforestation in
71 temperate regions, while Li et al. (2015) reported a 0.27 ± 0.03 K ‘potential’ cooling from
72 afforestation in the northern temperate zone ($20\text{--}50^\circ\text{ N}$) based on the ‘space-for-time’ method.
73 In contrast, Duveiller et al. (2018) found a much stronger ‘potential’ cooling effect of 2.75K
74 for afforestation in the northern temperate region. While such differences were acknowledged
75 in a recent modelling study (Winckler et al., 2019b), they were simply treated as observational

76 uncertainty for climate model evaluation, with the uncertainty range being as big as, or even an
77 order of magnitude larger than, the afforestation effect. It remains unclear whether the
78 differences arising from these different methods can be reconciled.

79

80 Until now, studies using satellite data to investigate afforestation impact on surface temperature
81 have mainly focused on three methods. The first method, termed the ‘space-and-time’ approach
82 (Fig. 1, red box), aims to examine the actual, realized effect of afforestation (‘actual effect’) by
83 isolating the forest cover change effect from the gross temperature change over time in places
84 where forest cover change actually occurred (Alkama and Cescatti, 2016; Li et al., 2016a). The
85 second method, termed the ‘space-for-time’ approach (Fig. 1, orange box), compares the
86 surface temperature of forest with adjacent ‘openland’ (i.e., cropland or grassland) under similar
87 environmental conditions (e.g., background climate and topography) and estimates the
88 ‘potential effect’ of afforestation if afforestation were to occur (Ge et al., 2019; Li et al., 2015;
89 Peng et al., 2014). Note that such effects are often quantified using medium-resolution land-
90 cover datasets (typical resolution = 1km), which do not necessarily represent 100% ground
91 coverage, and we therefore term such a potential effect a ‘mixed potential effect’.

92

93 The third method, recently used by Duveiller et al. (2018), uses the ‘singular value
94 decomposition’ technique (Fig. 1 green box), which is claimed to extract the hypothetical LST
95 for different land-cover types by assuming a 100% coverage of the target cover type. The
96 afforestation effect on LST is then quantified as the difference between the LST of a pixel with
97 a hypothetical 100% forest coverage and the LST of an adjacent pixel with 100% openland
98 coverage. As with the second method, such an approach quantifies the ‘potential effect’ of
99 afforestation, but in this case, it quantifies the ‘full potential effect’ by assuming transitions
100 between land-cover types with 100% complete ground coverage.

101 Previous studies have revealed the fraction of forest change as an important factor determining
102 the magnitude of the afforestation effect. Alkama and Cescatti (2016) indicated that the actual
103 temperature effect is fraction-dependent, and Li et al. (2016a) pointed out that use of a higher
104 threshold to define forest change resulted in a stronger potential effect. Nonetheless, whether
105 the fraction of forest change can explain the differences in the afforestation effect produced by
106 different methods, e.g., whether the ‘potential’ effect can be ‘actualized’, has not been
107 demonstrated. Testing the role of afforestation fraction in reconciling the afforestation effects
108 produced by different methods can help clarify potential confusion and contribute to appropriate
109 policy evaluation.

110

111 This study develops detailed conceptual and methodological descriptions for each of the three
112 approaches and uses large-scale afforestation over China as a case study to compare the three
113 approaches. We tested the following hypotheses: (1) The actual effect on LST increases with
114 the area that has actually been afforested, defined as afforestation intensity (or F_{aff}). (2) The
115 actual effect is smaller than the potential effects. (3) When extending F_{aff} to a hypothetical value
116 of 100%, the actual effect approaches the potential effect. If proven, this third hypothesis
117 implies that the LST impacts from different approaches could be reconciled given the same
118 boundary condition of full afforestation. In that case, we then have a fourth hypothesis (4)
119 stating that changes in underlying biophysical processes including radiation, sensible and latent
120 heat fluxes that drive LST changes should also be reconciled among different methods. To keep
121 the focus on reconciling methodological differences, only changes in the daytime surface
122 temperature were considered in this study. Nevertheless, similar conclusions regarding the
123 different approaches are expected for nighttime surface temperature.

124

125

126 **Figure 1.** Illustration of the three approaches to quantifying the local surface temperature effect
 127 of afforestation. (a) and (b) represent two nearby pixels, both classified as openland at time t_1
 128 by medium-resolution satellites (1km spatial resolution), with one of them classified as forest
 129 at time t_2 (i.e., having experienced afforestation) and the other unchanged. Note, neither of these
 130 pixels will have 100% complete coverage of either openland (i.e., grassland or cropland) or
 131 forest, but they will have been classified as either openland or forest by medium-resolution
 132 satellite products. (c) and (d) represent pixels with 100% forest or 100% openland coverage
 133 whose temperature can be derived from pixels of mixed land cover types by using the singular
 134 value decomposition (SVD) technique (Duveiller et al., 2018). The red dotted box describes the
 135 quantification of the ‘actual effect’ of afforestation (ΔT_a) occurring from t_1 to t_2 by the ‘space-
 136 and-time’ method. The orange box represents the ‘mixed potential effect’ determined by
 137 hypothesizing potential shifts between openland and forest based on the ‘space-for-time’
 138 approach (ΔT_{p1}). The green box represents the ‘full potential effect’ of afforestation (ΔT_{p2})

139 derived by hypothesizing a transition from 100% complete openland coverage to 100%
 140 complete forest coverage.

141

142 2 Methods

143 2.1 Three Approaches to Quantifying the Impacts of Afforestation on LST

145 **Figure 2.** Schematic overview of the processing steps. The different output results correspond
 146 to actual effect (ΔT_a), mixed potential effect (ΔT_{p1}) and full potential effect of afforestation
 147 (ΔT_{p2}).

148

149 2.1.1 Actual Effect of Afforestation (ΔT_a)

150

151 The ‘space-and-time’ approach assumes that the gross change in land surface temperature (ΔT)
 152 over a given time period during which afforestation occurred, contains both signals of
 153 temperature change due to afforestation (ΔT_a) and background temperature variation (ΔT_{res})
 154 due to changes in large-scale circulation patterns (Alkama and Cescatti, 2016; Li et al., 2016a):

155
$$\Delta T = \Delta T_a + \Delta T_{res} \quad (1)$$

156 where ΔT is the gross temperature change during the period from t_1 to t_2 for the pixel under
157 study. ΔT can be calculated as the difference between LST_{t2} and LST_{t1} , with LST_{t2} being the
158 surface temperature after afforestation and LST_{t1} being that before afforestation. It thus follows
159 that

160
$$\Delta T_a = \Delta T - \Delta T_{res} \quad (2)$$

161 ΔT_{res} can be approximated by averaging changes in surface temperature for those pixels
162 adjacent to the target afforestation pixel for which the forest cover remained constant between
163 t_1 and t_2 (i.e., $F_{aff} = 0\%$; section 2.2.2). Here, pixels with $F_{aff} > 0\%$ were defined as afforestation
164 target pixels. A searching window of 11 km by 11 km was established, centered on the
165 afforestation pixel. Within this window, pixels with $F_{aff} = 0\%$ were defined as control pixels and
166 were used to derive ΔT_{res} . Afforestation pixels and adjacent control pixels were both determined
167 based on the net forest change between t_1 and t_2 using Global Forest Change (GFC) data (Fig.
168 2; Section 2.2.2).

169

170 2.1.2 Mixed Potential Effect (ΔT_{p1})

171

172 The ‘space-for-time’ method relies on the ‘space-substitute-for-time’ assumption to obtain the
173 potential impact of afforestation on local temperature (Zhao and Jackson, 2014). By assuming
174 that forest and openland share the same environmental conditions (background climate,
175 topography, etc.) within a small spatial domain, the potential temperature effect of afforestation
176 is examined using the search window method with a window size of up to 40km×40km (Ge et
177 al., 2019; Li et al., 2015; Peng et al., 2014). Here, to be consistent with our ‘actual effect’
178 approach, a more conservative window size of 11km×11km was used, smaller than that used in
179 the majority of previous studies (Ge et al., 2019; Li et al., 2015; Peng et al., 2014). In most

180 previous studies, existing medium resolution (1km) land-cover maps were used directly. Such
181 land-cover products rely on certain thresholds to classify satellite pixels into discrete land-cover
182 types. Given the widespread spatial heterogeneity in land-cover distribution, it is to be expected
183 that only in rare cases will these medium-resolution pixels have 100% coverage of a given land-
184 cover type. Therefore, when determined in this way, the potential effect of afforestation has
185 been named the ‘mixed potential effect’, in contrast to the ‘full potential effect’, on which we
186 will focus in the next section, which assumes a potential transition between land-cover types of
187 100% coverage.

188

189 To ensure consistency with the land-cover data used in the ‘full potential effect’ approach (i.e.,
190 the SVD method), the GlobeLand30 land-cover map was aggregated from its original resolution
191 (30m) to 1km resolution. The land-cover type assigned to a given 1km pixel during aggregation
192 was based on the land-cover type with an area fraction >50% within that pixel, to be consistent
193 with the rationale behind the generation of medium-resolution land-cover products (Section
194 2.2.2). A 1km forest pixel was then chosen as the target pixel and put at the center of a search
195 window with dimensions 11km×11km. The ‘mixed potential effect’ of afforestation (ΔT_{p1}) was
196 defined as the difference between the temperature of the target pixel (LST_F) and the average
197 temperature of all the surrounding openland pixels within the window ($\overline{LST'_O}$):

$$198 \quad \Delta T_{p1} = LST_F - \overline{LST'_O} \quad (3)$$

199 where LST_F is the surface temperature of the target forest pixel at t_2 , and $\overline{LST'_O}$ represents the
200 elevation-corrected surface temperature of openland pixels at t_2 within the search window.
201 Given our search window size, ΔT_{p1} could be biased by the elevation difference between the
202 target forest pixel and surrounding openland pixels. Therefore, a linear relationship was first
203 fitted between the observed openland temperature, LST_O , and the elevation of the openland

204 pixel (Eleo). This fitted temperature lapse rate was then used to derive elevation-corrected
205 openland temperature LST_o' :

206
$$LST_o' = LST_o + k \times \Delta Ele_{F-O} \quad (4)$$

207 where ΔEle_{F-O} is the elevation difference between forest and openland pixels. The elevation is
208 available from NASA's Shuttle Radar Topography Mission (SRTM) data
209 (<https://lpdaac.usgs.gov/products/srtmgl1v003/>).

210

211 2.1.3 Full Potential Effect (ΔT_{p2})

212

213 The full potential effect represents the temperature change due to hypothesizing a shift from
214 100% openland to 100% forest coverage, and was determined here by employing the singular
215 value decomposition (SVD) method used in Duveiller et al. (2018). The SVD technique
216 assumes that the temperature observed for a pixel at 1km scale is a linear composition of the
217 temperatures of different land-cover types at a finer resolution (in our study at a 30m resolution).
218 For each 1km pixel, the observed temperature can be written as the composition of the
219 temperature of each component land-cover type and its corresponding fraction, based on the
220 land-cover fractions derived from the 30m-resolution GlobeLand30 map (Section 2.2). The
221 temperature of each type of land cover was assumed constant within a search window of 11km
222 \times 11km. For each given search window, the following equations can be obtained:

223
$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_{11} & \dots & x_{1m} \\ \vdots & \ddots & \vdots \\ x_{n1} & \dots & x_{nm} \end{pmatrix} \times \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_m \end{pmatrix} \quad (5)$$

224 where n is the total number of 1km pixels within the window, after accounting for the elevation
225 difference (thus the maximum value of n is 121 given our 11km \times 11km search window), m is
226 the number of land-cover types, x_{ij} refers to the fraction of land-cover type j in pixel i, β_i refers

227 to the temperature of land cover type i . To minimize elevation impacts, the linear regression
228 relationship for a given 1km pixel was included only when the elevation difference between
229 this pixel and the central pixel of the search window was smaller than 100m. Using matrix
230 notation, Eq. (5) can be simplified to:

231
$$y = X \times \beta \quad (6)$$

232 where the matrix X contains land-cover fraction for the n 1km pixels as an explanatory variable,
233 the response variable y contains n LST observations, and the coefficient vector, β , contains the
234 regression coefficients which show temperatures of different land-cover types. Note that this
235 linear equation system cannot be easily solved because the matrix X is ‘closed’, i.e., by
236 definition, the elements in each row of the matrix X add to 1. After removing the mean of each
237 column (Zhang et al., 2007), the matrix X was transformed, by applying the SVD technique, to
238 another matrix, Z , of reduced dimension (more details in Duveiller et al., 2018). After this
239 transformation, we have the following:

240
$$y = Z \times \beta' + \varepsilon \quad (7)$$

241 in which the β' coefficient can be obtained from equation (8):

242
$$\beta' = (Z'Z)^{-1} Z'y \quad (8)$$

243 However, the β' vector calculated from the transformed matrix Z cannot directly provide
244 surface temperatures for corresponding land-cover types. To obtain temperatures for each land-
245 cover type by assuming 100% ground coverage, an identity matrix Y with its dimension equal
246 to the number of land-cover types must be constructed to represent the hypothetical case in
247 which each 1km pixel was 100% covered by a single land-cover type. The same transformation
248 as applied to the matrix X was then applied to Y , to obtain a transformed matrix Z' . Finally, the
249 predicted temperature ($LST'_{100\%}$) for each land-cover type assuming a 100% coverage is
250 calculated as:

251
$$\text{LST}_{100\%}^* = \mathbf{Z}^* \boldsymbol{\beta}^* \quad (9)$$

252 For the central pixel of the local search window, ΔT_{p2} is defined as the difference between the
253 predicted $\text{LST}_{100\%}^*$ for forest ($\text{LST}_{100\%F}^*$) and openland ($\text{LST}_{100\%O}^*$).

254
$$\Delta T_{p2} = \text{LST}_{100\%F}^* - \text{LST}_{100\%O}^* \quad (10)$$

255 More details, including an illustration of the SVD method, can be found in Fig. 7 in Duveiller
256 et al. (2018).

257

258 At the scale of the searching windows used in this analysis (11km×11km), any nonlocal effects
259 cancel out when comparing temperature differences over neighboring areas because the effects
260 of advection and atmospheric circulation have been reported to be similar for adjacent areas
261 (Pongratz et al., 2021; Winckler et al., 2019a). Hence the quantified afforestation effect for each
262 of the three methods can be considered to be the local effect only.

263

264 2.2 Dataset and Processing

265 2.2.1 The Test Case: Large-scale Afforestation over China

266

267 China was selected as the test case for addressing the important methodological issues in
268 quantifying land surface impacts of afforestation because afforestation is a key national strategy
269 for sustainable development and climate mitigation (Bryan et al., 2018; Qi et al., 2013).

270 According to the 8th National Forest Inventory conducted in 2013, China's afforestation area
271 has reached 6.9×10^3 million ha, accounting for 33% of the total global afforestation area (Chen
272 et al., 2019). Afforestation in China during 2000–2012 occurred mainly in regions with more
273 than 400 mm of precipitation per year (Fig. 3a), which is considered a threshold below which
274 there is a high risk of afforestation failing due to water limitation (Mátyás et al., 2013). China
275 covers a wide range of latitude from 3.9° N to 53.6° N and its forest ecosystems cover an

276 elevation range of 100m to 4000m. This wide range of climate zones, from tropical/subtropical
277 to temperate and boreal, make it highly suitable for our methodological analysis because the
278 impact of afforestation on LST might differ with latitude and background climate (Lee et al.,
279 2011; Alkama and Cescatti, 2016). Further justification for using China as a test case comes
280 from the strongly diverging published LST impacts of afforestation there, which range from an
281 actual effect of $-0.0036\text{K decade}^{-1}$ by Li et al. (2020) to a potential effect of -1.1K by Peng et
282 al. (2014).

283

284 2.2.2 MODIS Dataset and Preparation

285

286 In this study, the actual effect was estimated by combining the actual satellite-derived
287 afforestation for 2000 to 2012 (see Section 2.2.2) with satellite-based estimates of biophysical
288 variables for the periods 2002–2004 (t_1) and 2010–2014 (t_2). MODIS remote sensing products
289 for land surface temperature (MOD11A2), albedo (MCD43B3) and evapotranspiration
290 (MOD16A2) were used to characterize the biophysical effects (Table 1). The datasets were
291 regridded to harmonize with spatial (1km) and temporal (annual) resolutions (Table 1).

292

293 The MOD11A2 product provides 8-day land surface temperature for 10:30 AM and 22:30 PM
294 from the Terra satellite, but here we focused on daytime surface temperature. Only valid LST
295 observations from the original data were used to compute the average daily values for a given
296 year. Years for which more than 40% of daily data are missing were excluded from the analysis.
297 Annual data were then aggregated to obtain the average annual temperature for periods t_1 and
298 t_2 .

299

300 The MCD43B3 product provides white-sky and black-sky shortwave albedo at 16-day temporal
301 resolution (Table1). The observed white-sky albedo was used as the daytime albedo (Peng et
302 al., 2014). For evapotranspiration (ET), we used the ET band in MOD16A2, which includes
303 water fluxes from soil evaporation, wet canopy evaporation and plant transpiration. To calculate
304 the mean annual albedo and evapotranspiration for 2002–2004 (t_1) and 2010–2014 (t_2) we used
305 the same approach as used for LST.

306

307 2.2.3 Land-Cover Datasets and Processing

308

309 Two land-cover datasets were used in this study: the ‘actual effect’ approach was based on the
310 Global Forest Change (GFC) dataset, while the ‘mixed potential effect’ and ‘full potential effect’
311 used the GlobeLand30 land-cover data (Table 1).

312

313 The SVD technique, used in the ‘full potential effect’ approach, requires a land-cover map with
314 a higher spatial resolution than the 1km spatial resolution of the LST data. The GlobeLand30
315 product, which is based on Landsat images, provides land-cover information for China at a 30m
316 resolution for the years 2000 and 2010 (Chen et al., 2015). Cultivated land and grassland in
317 GlobeLand30 were classified as openland. Discrete land-cover type information at 30m
318 resolution in 2010 was aggregated to obtain the area fractions of the different land-cover types
319 at 1km resolution, which were then used to construct matrix X in Eq. (5) (Fig. 2). Furthermore,
320 land-cover type information at the 1km scale was extracted, based on the vegetation type with
321 area fraction >50% for every 1km×1km window. This data was then applied in the ‘space-for-
322 time’ method to identify forest and openland (Fig. 2).

323

324 GlobeLand30 data is not suitable for detecting forest change (Zeng et al., 2021). The Global
325 Forest Change (GFC) data, however, provides forest gain and forest loss at a spatial resolution
326 of 30m between 2000 and 2012 and has been used for mapping global forest change (Hansen
327 et al., 2013). This product shows an overall accuracy of greater than 99% for areas of forest
328 gain at the global scale when compared with statistical data reported in Forest Resource
329 Assessment (FRA), LiDAR detection (Geoscience Laser Altimetry System), and MODIS
330 NDVI time series (Hansen et al., 2013), and thus has been recommended for use in forest and
331 forest-change estimates (Chen et al., 2020; Zeng et al., 2021). Using this dataset, forest loss
332 events were identified for each year between 2000 and 2012, but forest gain was only identified
333 for the whole period, simply because forest loss is an abrupt change which can be effectively
334 identified over short time periods, whereas forest gain is a gradual change which can only be
335 confidently identified over longer time spans. Here, forest losses and gains from GFC were
336 aggregated at a 1km resolution to obtain net forest change (defined as forest gain minus forest
337 loss) during this period (Fig. 2). A positive net change indicates afforestation and the area
338 percentage of afforestation for the 1km pixel area was defined as F_{aff} . The land-cover type of
339 pixels with $F_{aff} = 0\%$ was considered to be stable. This net forest-change information was then
340 used in the calculation of the actual afforestation-induced temperature effect (ΔT_a)(Fig. 2).

341

342 2.3 Decomposition of Changes in Surface Temperature

343

344 Changes in surface temperature following forest-cover change are the net result of changes in
345 underlying fluxes that collectively determine the land surface energy balance:

$$346 \Delta SW_{in} - \Delta SW_{out} + \Delta LW_{in} - \Delta LW_{out} = \Delta H + \Delta LE + \Delta G \quad (11)$$

347 where ΔSW_{in} , ΔSW_{out} , ΔLW_{in} , ΔLW_{out} are the changes in incoming and outgoing shortwave
348 and longwave radiation, respectively, and ΔH , ΔLE , and ΔG are changes in sensible heat flux,

349 latent heat flux and ground heat flux, respectively. All the terms of Eq. (11) are expressed in
350 W m^{-2} .

351
352 Firstly, it can be reasonably assumed that $\Delta\text{SW}_{\text{in}} \approx 0$ and $\Delta\text{LW}_{\text{in}} \approx 0$, given that all three
353 approaches consider only local effects on surface temperature by following a comparison of
354 target pixels with surrounding control pixels, thus excluding feedbacks from, e.g., cloud
355 formation (Duveiller et al., 2018). Changes in reflected shortwave radiation can be derived as:

356
$$\Delta\text{SW}_{\text{out}} = \text{SW}_{\text{in}} \times \Delta\alpha \quad (12)$$

357 where SW_{in} is available from the CERES EBAF-Surface Product Ed 4.1 (Kato et al., 2018; Liu
358 et al., 2018) (Table 1), and $\Delta\alpha$ is the surface albedo change. To approximate $\Delta\text{LW}_{\text{out}}$, we used
359 its first order differential equation:

360
$$\Delta\text{LW}_{\text{out}} = \sigma(4\epsilon_B T^3 \Delta T + \Delta\epsilon_B T^4) \quad (13)$$

361 where σ is Stefan-Boltzmann's constant ($5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$), T is daytime surface
362 temperature and ΔT is the afforestation impact on surface temperature. Surface broadband
363 emissivity, ϵ_B , is usually obtained from an empirical relationship (Zhang et al., 2019):

364
$$\epsilon_B = 0.2122\epsilon_{29} + 0.3859\epsilon_{31} + 0.4029\epsilon_{32} \quad (14)$$

365 where ϵ_{29} , ϵ_{31} and ϵ_{32} are obtained from the estimated emissivity for bands 29 (8,400–8,700 nm),
366 31 (10,780–11,280 nm) and 32 (11,770–12,270 nm) in the MOD11C3 data (Duveiller et al.,
367 2018).

368
369 Latent heat flux change (ΔLE) refers to changes in the energy used for evapotranspiration (ET,
370 unit: mm d^{-1}), which can be obtained from the change in evapotranspiration (ΔET):

371
$$\Delta\text{LE} = \Delta\text{ET} \times 28.94 \text{ W m}^{-2} / (\text{mm d}^{-1}) \quad (15)$$

372 Therefore, the sum of sensible heat change and ground heat change ($\Delta\text{H} + \Delta\text{G}$) can be calculated
373 as the difference between net radiation change and latent heat flux change (ΔLE) based on Eq.

374 (11). The afforestation effects on albedo ($\Delta\alpha$), ε_B ($\Delta\varepsilon_B$) and ET (ΔET) needed in the above
375 equations were calculated in a similar way to ΔT for each of the three different approaches as
376 described in Section 2.1.

377

378 2.4 Statistical Analysis

379 The spatial distributions of original samples for the three methods are different because of the
380 different land-cover maps used (Fig. 2 and Figure A1) and, therefore, the statistical analysis
381 was limited to those pixels shared by all three approaches: 96,058 sample pixels at 1km
382 resolution. The distribution of these shared sample pixels retained the characteristics of the
383 spatial distribution of the original samples (Figure A2).

384

385 Differences in the afforestation effects on LST of the three approaches were tested by
386 performing paired-samples *t*-tests between pairs of approaches. The paired-samples *t*-test was
387 used, rather than a normal *t*-test, to avoid the bias due to strong spatial heterogeneity in the LST
388 effects of afforestation that could occur if the values of all pixels had been pooled together for
389 a normal *t*-test. The test was made using the ‘ttest_rel’ method from the ‘scipy.stats’ package
390 in Python. The Bonferroni correction was applied to adjust the significance level (p-value) to
391 mitigate the increasing Type I error when making multiple paired-samples *t*-test, which in our
392 case involves three pairs (Lee and Lee, 2018; UC Berkely, 2008). The Bonferroni correction
393 sets the significance cut-off at α/k (with α as the p-value before correction and k as number of
394 pairs). In this study, with 3 hypotheses tests (i.e., 3 pairs) and an original significance level $\alpha =$
395 0.05, the adjusted p-value is 0.0167. In order to investigate ΔT_a in relation to the afforestation
396 intensity, a linear regression was performed between ΔT_a and F_{aff} using the ordinary least
397 squares method.

398

399 Table 1 Summary of the datasets and their main characteristics

Type	Dataset	Selected band	Resolution	Projection	Timespan	
Forest change	Global Change	Forest	Forest gain; Loss year	30m, annual	WGS84	2000–2012
Land-cover type	GlobeLand 30		Land-cover type	30m, —	UTM	2000; 2010
Land surface Temperature	MOD11A2		Daytime temperature	1km, 8days	sinusoidal	2002–2004; 2010–2014
Albedo	MCD43B3		Albedo WSA shortwave	1km, 16days	sinusoidal	2002–2004; 2010–2014
Incoming shortwave radiation	CERES	sfc_sw_down _all_mon		1°, monthly	WGS84	2002–2004; 2010–2014
Surface broadband emissivity	MOD11C3	Emis_29; Emis_31; Emis_32		0.05°, monthly	sinusoidal	2002–2004; 2010–2014
Evapotranspiration	MOD16A2	ET_500m		500m, 8days	sinusoidal	2002–2004; 2010–2014
Elevation	SRTM30	Be75		30m, —	WGS84	—

401 3 Results

402 3.1 Spatial Distribution of Afforestation and its Effect on Land Surface
403 Temperature

404

405 In China, afforestation areas are mainly located in the northeast, southwest and south, where
406 sufficient precipitation is available (Fig. 3a) and largely driven by afforestation of former
407 cropland or abandoned cropland, with a relatively small contribution from forest regeneration
408 or replanting following natural disturbance or timber harvest. One prominent feature of
409 afforestation in China is its small afforestation patch, with most afforested pixels (1km^2) having
410 an afforestation fraction of less than 30% (Fig. 3b). Pixels with an afforestation intensity below
411 10% account for 93% of the total number of pixels (Fig. 3b), representing 0.14 Mha, more than
412 half (55.6%) of the total afforestation area (Fig. 3b).

413

414 **Figure 3.** (a) Spatial distribution of afforestation intensity (F_{aff}) in China during 2000–2012.
415 The solid black line crossing China is the 400mm annual precipitation isoline. (b) Frequency
416 distribution of F_{aff} and cumulative afforestation area with the increase in F_{aff} . The red dashed
417 line represents the cumulative afforestation area corresponding to $F_{\text{aff}} = 10\%$.

418

419 Although all three approaches result in similar spatial and latitudinal patterns regarding
 420 afforestation effects on LST (Fig. 4), their magnitudes differ substantially. The actual effect has
 421 the lowest temperature change, followed by the mixed potential effect, with the full potential
 422 effect showing the greatest temperature change (Fig. 4a–c). For the latitude range of 20–36° N
 423 where afforestation effects show a dominant cooling effect, the full potential effect (ΔT_{p2})
 424 reaches -1.75 ± 0.01 K, while the mixed potential effect (ΔT_{p1}) was smaller at -0.96 ± 0.00 K, but
 425 both of them were much larger than the actual effect (ΔT_a) of -0.09 ± 0.00 K. Similarly, the full
 426 potential effect (ΔT_{p2}) showed the strongest warming effect (0.35 ± 0.01 K) in the area north of
 427 48° N, stronger than the mixed potential effect (0.22 ± 0.01 K), and again the actual effect is the
 428 smallest (0.07 ± 0.01 K). However, regarding the latitude where the effects change from a
 429 warming to cooling effect, the three approaches largely converge (Fig. 4d). Between 40° N and
 430 48° N, the afforestation effects are largely neutral, with the mean temperature change for the
 431 three approaches being 0.07 ± 0.01 K ($\Delta T_a = -0.01 \pm 0.01$ K; $\Delta T_{p1} = 0.11 \pm 0.01$ K; $\Delta T_{p2} = 0.12 \pm 0.01$ K).

432
 433 **Figure 4.** Afforestation effects on LST quantified by three approaches: (a) actual effect based
 434 on a ‘space-and-time’ approach (ΔT_a), (b) mixed potential effect based on a ‘space-for-time’

435 approach (ΔT_{p1}) and (c) full potential effect assuming a transition from 100% openland
 436 coverage to 100% forest coverage using the SVD method (ΔT_{p2}). The solid black line crossing
 437 China is the 400mm precipitation isoline. (d) Zonal averages of the annual mean daytime LST
 438 change within 2° latitudinal bins, with shaded areas representing the standard errors (SE). Note
 439 that in panel (d), ΔT_a corresponds to the vertical axis on the left; ΔT_{p1} and ΔT_{p2} correspond to
 440 the vertical axis on the right.

441

442 3.2 Reconciling Temperature Effects of Afforestation

443

444 Even though the observed land surface temperature is assumed to be uniform for the 1km
 445 afforested satellite pixel, the underlying afforestation intensity varies substantially (Fig. 3a).
 446 This leads to our first hypothesis that for a 1km pixel, ΔT_a should be influenced by the area
 447 fraction that has been afforested within the pixel (i.e., afforestation intensity or F_{aff}). Indeed, the
 448 actual daytime surface cooling increases significantly with afforestation intensity (Fig. 5), with
 449 a 0.079 ± 0.017 K (mean \pm std) increase for each ten percent increase in F_{aff} .

450

451 **Figure 5.** Changes in ΔT_a as a function of afforestation intensity (F_{aff}), defined as the fraction
 452 of afforested area to the total pixel area at a 1-km resolution. Error bars indicate the standard
 453 error of ΔT_a within each ten percent bin of F_{aff} . The red line represents the fitted linear
 454 regression line between ΔT_a and F_{aff} .

455

456 The afforestation effects obtained from the three approaches were compared for each F_{aff}
 457 interval (Fig. 6). When afforestation intensity is less than 60%, significant differences exist in
 458 the temperature change obtained by the three approaches, with $\Delta T_a < \Delta T_{p1} < \Delta T_{p2}$. This result
 459 confirms our second hypothesis that the actual effect is expected to be smaller than potential
 460 effects. However, for pixels with relatively low F_{aff} , the mixed potential effect is found to be
 461 smaller than the full potential effect, which is reasonable, but to our knowledge, has not been
 462 reported before. When the afforestation intensity is greater than 60%, the significant difference
 463 in cooling effect between the different approaches disappears, likely because afforestation
 464 intensity, and the associated forest coverage at 1km resolution, reach values high enough to
 465 allow the ‘potential’ effects to be realized.

466 **Figure 6.** Comparison of ΔT for the three approaches for bins of afforestation intensity. Error
 467 bars are given as the standard error and different letters indicate that ΔT calculated by the two
 468 approaches concerned are significantly different using the adjusted p-value after applying the
 469 Bonferroni correction for multiple paired-samples *t*-tests.

470

471 When considering the overall differences in ΔT for the three approaches, irrespective of the
 472 afforestation intensity, ΔT_a (-0.07 ± 0.00 K) over China was significantly lower than ΔT_{p1} (-0.63 ± 0.00 K), which is further significantly lower than ΔT_{p2} (-1.16 ± 0.01 K) ($p < 0.05$, paired-

474 samples *t*-test, n= 96,058), once again confirming our second hypothesis (Fig. 7). Moreover,
475 extrapolation of the relationship shown in Fig. 5 suggests that ΔT_a would reach -0.79 ± 0.17 K
476 (mean \pm std) if a 1km pixel was 100% afforested, which is conceptually comparable to the
477 potential effects. ΔT_a was indeed found to be higher than ΔT_{p1} but lower than ΔT_{p2} . This result
478 confirms our third hypothesis and demonstrates that the potential cooling effect could indeed
479 be reached when a pixel is fully afforested.

480

481 **Figure 7.** Comparison of ΔT for the three approaches, irrespective of the afforestation intensity.
482 Error bars are given as the standard error and different letters indicate ΔT being significantly
483 different ($p = 0.0167$, paired-samples *t*-test, n = 96,058). For comparison, the predicted ΔT_a
484 with F_{aff} reaching 100%, which is conceptually comparable with ΔT_{p1} and ΔT_{p2} , is also shown.

485

486 3.3 Reconciling Changes in Surface Energy Fluxes by Afforestation

487

488 In order to investigate whether the underlying surface energy fluxes could be reconciled
489 following the reconciliation of the LST changes, changes in surface energy fluxes due to
490 afforestation were quantified using each of the three approaches, under the same boundary

491 conditions as for full afforestation (i.e., changes following the ‘actual effect’ approach were
 492 extended for $F_{aff} = 100\%$). As illustrated in Fig. 8, changes in all the relevant surface energy
 493 fluxes under the three different approaches have the same direction, with similar magnitudes,
 494 confirming the reconciliation of the different approaches in terms of surface energy fluxes.
 495 More specifically, the three approaches converge on a reduction in reflected shortwave
 496 radiation (ΔSW_{out}) of $0.56\sim1.23\text{ W m}^{-2}$ due to the lower albedo of forest compared to openland
 497 (Figure A3). Emitted longwave radiation (ΔLW_{out}) was reduced by $1.03\sim3.10\text{ W m}^{-2}$ and
 498 sensible and ground heat fluxes ($\Delta H+\Delta G$) reduced by $4.84\sim6.14\text{ W m}^{-2}$. All these reduced
 499 fluxes were offset by an increased latent heat flux of $7.99\sim8.41\text{ W m}^{-2}$ (ΔLE), the single energy
 500 flux leading to surface cooling.

501
 502 **Figure 8.** Afforestation-induced changes in surface energy fluxes (W m^{-2}) following the three
 503 approaches: (a) actual effect based on a ‘space-and-time’ approach, (b) mixed potential effect
 504 using medium-resolution land cover maps based on a ‘space-for-time’ approach and (c) full
 505 potential effect assuming a transition from 100% openland coverage to 100% forest coverage
 506 using the SVD method. For each approach, changes were calculated for the reflected shortwave
 507 radiation (SW_{out}), outgoing longwave radiation (LW_{out}), latent heat flux (LE) and the
 508 combination of sensible and ground heat fluxes (H+G). No changes were assumed for incoming
 509 shortwave and longwave radiation. Changes in energy fluxes for the ‘actual effect’ approach
 510 have been adjusted to the condition of full afforestation (i.e., $F_{aff} = 100\%$) in a similar way as

511 for the ‘predicted ΔT_a ’ in Fig. 7, by fitting linear regressions between energy flux variables and
512 F_{aff} (Figure A4).

513

514 4 Discussion

515

516 The three approaches (Li et al., 2015; Alkama and Cescatti, 2016; Duveiller et al., 2018) used
517 to quantify local surface temperature change following forest-cover change and presented with
518 details in this study, have been cited over 919 times in research papers (Web of Science,
519 December 2021) and in high-level climate science synthesis reports. Despite the apparently
520 large differences in temperature effect among them, to our knowledge, no studies have
521 examined whether these differences can be reconciled. This study fills that gap by comparing
522 the three approaches for a single study case, i.e., large-scale afforestation in China. China is
523 highly suitable for the purpose of this study as the size of an afforestation patch is, in general,
524 smaller than the spatial resolution (1km) at which the temperature effects of afforestation were
525 conducted in the previous studies describing the three approaches (Li et al., 2015; Alkama and
526 Cescatti, 2016; Duveiller et al., 2018). Hence, the difference between the actual and potential
527 temperature effects is expected to be large.

528

529 Indeed, we found surface cooling following afforestation was much less when estimated as the
530 actual effect (ΔT_a) compared to the potential effects (ΔT_{p1} and ΔT_{p2}). This lower ΔT_a has been
531 attributed to incomplete afforestation at a 1km resolution, at which potential effects are
532 quantified by assuming complete afforestation (i.e., a complete shift from openland to forest).
533 Consistent with our first hypothesis, the afforestation fraction at a 1km resolution explained 89%
534 of the variation in ΔT_a , making it a key determinant of the surface cooling following
535 afforestation (Fig. 5). This result is consistent with the fact that the observed temperature for a

536 mixed surface is determined by the area fractions of its respective components, with each
537 component having a unique temperature. This fact also forms the theoretical foundation for the
538 SVD technique used to derive the full potential effect (Duveiller et al., 2018).

539

540 Modelling (Li et al., 2016b) and satellite-based (Alkama and Cescatti, 2016) studies have found
541 that temperature change after afforestation (or deforestation) is highly sensitive to the fraction
542 of the model grid cell or satellite pixel that is subjected to afforestation (or deforestation),
543 echoing our finding that ΔT_a significantly changes with F_{aff} . In addition, we provide strong
544 evidence in support of our third hypothesis that when F_{aff} reaches 100%, the expected actual
545 effect is comparable to the potential effects (Fig. 7). This finding shows that the three
546 approaches compared here are consistent when the same boundary condition, i.e., full
547 afforestation, is applied, and demonstrates that all three methods are mutually compatible. It is,
548 therefore, the basis of the reconciliation of the three approaches. It also highlights the fact that
549 the actual afforestation area must be considered when evaluating the climate mitigation effects
550 of afforestation.

551

552 Our results also show that the mixed potential effect (ΔT_{p1}) is smaller than the full potential
553 effect (ΔT_{p2}) (Fig. 6, Fig. 7). We suspect that this phenomenon likely also relates to the
554 incomplete forest coverage for the identified forest pixels at the 1km scale used in the ‘space-
555 for-time’ analysis, because a threshold value of 50% forest cover was used when upscaling the
556 30m land-cover map to 1km resolution. This threshold, however, is consistent with the
557 commonly applied value in land-cover classification based on medium resolution satellite
558 images, such as MCD12Q1, which uses a tree coverage value of 60% to identify forest pixels
559 (Sulla-Menashe and Friedl, 2018). For the purpose of comparison, we also calculated the mixed
560 potential effect based on the MCD12Q1 land-cover map but using the same LST data. The

561 result shows that potential effects derived using MCD12Q1 data versus those derived using
562 spatially upscaled GlobeLand30 data are almost identical (Figure A5), lending credibility to our
563 estimated ΔT_{p1} in comparison to previous studies using MODIS land-cover data (Li et al., 2015).
564 Progressively increasing the forest-cover threshold from 50% to 90% steadily increases ΔT_{p1}
565 from $-0.62 \pm 0.02\text{K}$ to $-0.75 \pm 0.02\text{K}$ (Figure A6). Further increasing the thresholds used to
566 identify 1km-resolution openland pixels from 50% to 90% increases ΔT_{p1} from $-0.63 \pm 0.00\text{K}$ to
567 $-1.10 \pm 0.02\text{K}$ (Figure A7), bringing ΔT_{p1} even closer to ΔT_{p2} ($-1.16 \pm 0.01\text{K}$). This is consistent
568 with the finding of a previous study on the dependence of the temperature effect on the forest
569 cover change thresholds that were used to define afforestation: the higher the threshold, the
570 stronger the impact on temperature (Li et al., 2016). Our results add further support to the
571 compatibility of the three approaches given the same boundary condition, i.e., the complete
572 transformation from full openland to full forest coverage.

573

574 Several factors may contribute to the remaining differences in the temperature effects produced
575 by different methods even after reconciliation. As described in the Method section, there are
576 discrepancies in the assumptions of the three approaches, which lead to differences in the
577 control pixels (i.e., adjacent comparison pixels). For instance, for the ‘pure potential effect’ it
578 is assumed that the LSTs for pixels with the same land cover type are uniform and forest pixels
579 are compared with openland pixels, whereas in the ‘mixed potential impact’ approach the
580 central target forest pixel is compared with the mean value of non-forest pixels within the
581 searching window. Moreover, space-for-time is an assumption that cannot be verified (Chen et
582 al., 2016), and which will inevitably result in differences in the estimated actual and potential
583 effects, although the consistency between ‘potential’ and ‘actual’ effects after reconciliation in
584 our study does illustrate the broad validity of this assumption.

585

586 Differences between the actual and potential temperature effects can also arise from influences
587 of both the timing of the afforestation and the time period elapsed following afforestation.
588 However, such influences are expected to be small in our study. We argue that such influences
589 should be more pronounced in the case of deforestation than afforestation. The temperature
590 effect caused by deforestation is considered to be instant (Liu et al., 2018). As a result, if
591 deforestation occurred in one specific year of our starting time window (i.e., 2002–2004), using
592 the time-averaging LST over the whole time window to represent the LST before deforestation
593 will greatly bias the quantified ΔT . In contrast, afforestation-driven surface temperature change
594 can only gradually increase with forest development. The LST effect depends on different
595 stages of forest development and is expected to saturate only when the forest canopy stabilizes
596 (Zhang et al., 2021; Windisch et al., 2021). Observation studies show that closed dense-canopy
597 old forests can exert greater cooling effect than the open-canopy young forests (Zhang et al.,
598 2021; Windisch et al., 2021). Hence, given the gradual nature of the afforestation effect on LST,
599 when we quantify the afforestation effect by comparing the time-averaging LST before and
600 after afforestation, the influence of the specific ‘timing of afforestation’ is expected to be small.
601 Furthermore, the GFC dataset used in this analysis defined forest gain using the condition of
602 successful detection of a stable closed forest canopy that is clearly different from a non-forest
603 state (Hansen et al., 2013), which enhances the chance of temperature change saturation
604 following afforestation. But, given a maximum stand age of 12 years inferred from the GFC
605 dataset, differences in surface temperatures may still exist between newly established forests
606 and the mature existing forests that were used in the ‘potential effect’ approaches. Thus, we
607 cannot exclude the possible contribution of time period elapsed following afforestation to the
608 difference between the actual and potential effects, which failed to be reconciled.
609

610 Previous analyses have documented latitudinal patterns of surface temperature change induced
611 by afforestation (Alkama and Cescatti, 2016; Li et al., 2015, 2016a; Peng et al., 2014). When
612 comparing the three approaches for a single case study, consistent latitudinal patterns of local
613 surface temperature effects following afforestation are observed (Fig. 4). Notably, all three
614 approaches show a warming effect in the northern high latitudes and an opposite cooling effect
615 in the southern low latitudes, with a largely neutral effect in the 40–48° N latitude band,
616 providing further evidence that the three approaches are compatible. In particular, although the
617 three approaches used different land-cover maps, they derived consistent LST impacts
618 following afforestation, which highlights that fact that the reconciliation provided in this study
619 is rather robust and unlikely to be dependent on the land cover datasets used.

620

621 In addition to the reconciliation of the land surface temperature change, we checked and
622 confirmed that the changes in surface energy fluxes that underlie and drive the changes in
623 surface temperature are compatible under the boundary condition of full afforestation. This
624 finding confirms the inherent consistency in the three approaches and clarifies the reasons
625 behind the apparent discrepancies in existing studies as discussed in the introduction.
626 Nonetheless, when it comes to the biophysical impacts of afforestation in the real world, our
627 findings have far-reaching implications. Full afforestation is often possible at small spatial
628 scales but becomes challenging at large scale. Therefore, the realization of the full potential
629 effect by afforestation is scale-dependent. For example, a complete afforestation of the semi-
630 arid Loess Plateau in the northwest of China is predicted to generate a surface cooling effect of
631 $2.40 \pm 0.07\text{K}$, but substantial afforestation efforts over the past 4 decades in that region have only
632 realized a cooling of $0.11 \pm 0.01\text{K}$ as measured by the ‘actual effect’. Because of greater water
633 consumption by forest compared to openland and the need to maintain land area for food

634 production, achieving the full cooling potential may not be feasible (Huang et al., 2018; Liu
635 and She, 2012; Liang et al., 2019).

636

637 Potential cooling effects have a value in that they can serve to establish the envelope of effects
638 and measure possible outcomes given the condition of full afforestation. However, given the
639 challenge of full afforestation at large spatial scales, potential effects should be converted into
640 a more realistic estimate (i.e., actual effects), by taking into account the intensity of afforestation,
641 to better represent policy ambitions. The analog could also be made for the effects of the surface
642 energy impacts of afforestation. Taking 10% as the afforestation intensity threshold to compare
643 the cumulative surface energy effect between the actual and potential approaches, actual
644 cumulative biophysical changes (5.06 EJ) for 2000–2012 are much smaller than mixed potential
645 changes (20.13 EJ) and full potential change (19.02 EJ) (methods in Text A1; Figure A8). Again,
646 this shows that simply using the potential effects for policy making or evaluation risks greatly
647 overestimating the biophysical effects of afforestation.

648

649 5 Conclusions

650 In this study we provided a synthesis of the three influential methods used to quantify
651 afforestation impact on surface temperature change and provided evidence that these different
652 methods could in fact be reconciled. The actual effect of surface temperature change following
653 afforestation was highly dependent on the intensity of afforestation (F_{aff}), which explained 89%
654 of the variation in ΔT_a . With the common boundary condition of full afforestation being applied,
655 differences in afforestation impacts on LST reported by the three methods in previous studies
656 greatly reduced, showing that simply treating these differences as uncertainty is incorrect and
657 could greatly overestimate the uncertainty. In other words, when full afforestation is assumed,
658 the actual effect approaches the potential effect, demonstrating the effectiveness of the ‘space-

659 for-time' approach and that the potential cooling effect of afforestation could indeed be realized.
660 Potential cooling effects have a value in academic studies where they can be used to establish
661 an envelope of effects, but their realization at large scales is challenging given the scale
662 dependency. The reconciliation of the different approaches demonstrated here stresses that the
663 afforestation fraction should be accounted for in order to bridge different estimates of surface
664 cooling effects in policy evaluation.

665

666 **Appendix A**

667 **Figure A1.** The distributions of the original sample pixels (at a 1km resolution) for (a) the
668 actual effect and (b) the two potential effects.

669 **Figure A2.** (a) Histogram of ΔT_a of all pixels based on the GFC dataset (b) Histogram of ΔT_a
670 for samples used for the statistical test. (c) Histogram of ΔT_p of all pixels based on GFC dataset
671 (d) Histogram of ΔT_p for samples used for the statistical test.

672
673

674
675 **Figure A3.** Spatial distribution of afforestation-induced changes in albedo (α) over China from
676 three approaches: (a) Actual albedo change following afforestation based on 'space-and-time'
677 method ($\Delta\alpha_a$), (b) mixed potential albedo change using medium-resolution land-cover maps
678 based on 'space-for-time' approach ($\Delta\alpha_{p1}$) and (c) full potential effect ($\Delta\alpha_{p2}$) based on SVD
679 approach.

680

681 **Figure A4.** Changes of actual effect in (a) ΔLW , (b) ΔSW , (c) $\Delta H + \Delta G$ and (d) $\Delta LE (W m^{-2})$
 682 as a function of afforestation intensity (F_{aff}) following the 'actual effect' approach. Error bars
 683 indicate the standard error within each ten percent bin of F_{aff} . The solid black lines represent
 684 the fitted linear regression line between each energy flux variable and F_{aff} .

685

686

687

688

689 **Figure A5.** The mixed potential effects (ΔT_{p1}) obtained based on MODIS land-cover data
 690 (MCD12Q1) and the land-cover distribution map defined at the threshold of 50% GlobeLand30
 691 at 1 km resolution.

692

693 **Figure A6.** The influence of the forest-cover threshold applied to the land-cover map
 694 underlying the estimation of the mixed potential effect (ΔT_{p1}).

695

696 **Figure A7.** The influence of the openland-cover threshold used to identify a 1km pixel as
 697 openland in the estimation of the mixed potential effect (ΔT_{p1}).

698

699 **Figure A8.** Afforestation-induced cumulative changes in surface energy fluxes (exaJoules) in
 700 China for the period 2000–2012 following the approaches of (a) actual effect, (b) mixed
 701 potential effect and (c) full potential effect (methods in Appendix Text A1).

702

703 **Text A1**

704 The cumulative surface energy effect (f_{cum}) in Figure A8 refers to the sum of the flux change (J)
 705 from all the samples, while at the same time accounting for the forest change area (m^2). More
 706 specifically, the cumulative surface energy change (f_{cum}) can be calculated from equation A1:

$$707 \quad f_{cum} = \sum_{i=1}^{i=n} (area_i \times F_i) \quad (A1)$$

708 where F_i is the flux change per unit area ($W m^{-2}$) for pixel i , n is the total number of samples,
 709 and $area_i$ is the forest change area in pixel i .

710

711 **Data availability**

712 All datasets used in this study are summarized in Table 1 and are openly available. Albedo,
 713 transpiration and surface temperature data can be accessed at
 714 (<https://modis.gsfc.nasa.gov/data/>). The Global Forest Change data is available from
 715 <https://earthenginepartners.appspot.com/science-2013-global-forest/>. The land-cover type
 716 dataset (GlobeLand30) can be downloaded from <http://www.globallandcover.com/>. Incoming

717 shortwave radiation data can be accessed at <https://ceres.larc.nasa.gov/data/>. The elevation data
718 is available from NASA's Shuttle Radar Topography Mission (SRTM) data
719 (<https://lpdaac.usgs.gov/products/srtmgl1v003/>). Intermediate data and scripts used to generate
720 the results in this study are available from the corresponding author upon reasonable request.

721

722 **Author contributions**

723 Chao Yue and Sebastiaan Luyssaert designed the study. Huanhuan Wang conducted the
724 analysis. All three authors contributed to writing and revision of the text.

725

726 **Competing interests**

727 The authors have the following competing interests: At least one of the (co-)authors is a member
728 of the editorial board of Biogeosciences.

729

730 **Acknowledgments**

731 This study was supported by the Strategic Priority Research Program of the Chinese Academy
732 of Sciences (grant no. XDB40020000) and by the National Natural Science Foundation of
733 China (grant no. 41971132).

734

735 **References**

736 Alkama, R. and Cescatti, A.: Biophysical climate impacts of recent changes in global forest
737 cover, *Science*, 351, 600–604, <https://doi.org/10.1126/science.aac8083>, 2016.

738 Bonan, G. B.: Forests and climate change: forcings, feedbacks, and the climate benefits of
739 forests, *Science*, 320, 1444–1449, <https://doi.org/10.1126/science.1155121>, 2008.

740 Bryan, B. A., Gao, L., Ye, Y., Sun, X., Connor, J. D., Crossman, N. D., Stafford-Smith, M.,
741 Wu, J., He, C., Yu, D., Liu, Z., Li, A., Huang, Q., Ren, H., Deng, X., Zheng, H., Niu, J.,

742 Han, G., and Hou, X.: China's response to a national land-system sustainability
743 emergency, *Nature*, 559, 193–204, <https://doi.org/10.1038/s41586-018-0280-2>, 2018.

744 Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R. K., Fuchs, R., Brovkin, V., Ciais,
745 P., Fensholt, R., Tømmervik, H., Bala, G., Zhu, Z., Nemani, R. R., and Myneni, R. B.:
746 China and India lead in greening of the world through land-use management, *Nat
747 Sustain*, 2, 122–129, <https://doi.org/10.1038/s41893-019-0220-7>, 2019.

748 Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., and Lu, M.:
749 Global land cover mapping at 30 m resolution: A POK-based operational approach, 103,
750 7–27, <https://doi.org/10.1016/j.isprsjprs.2014.09.002>, 2015.

751 Chen, L. and Dirmeyer, P. A.: Adapting observationally based metrics of biogeophysical
752 feedbacks from land cover/land use change to climate modeling, *Environ. Res. Lett.*, 11,
753 034002, <https://doi.org/10.1088/1748-9326/11/3/034002>, 2016.

754 Chen, H., Zeng, Z., Wu, J., Peng, L., Lakshmi, V., Yang, H., and Liu, J.: Large Uncertainty on
755 Forest Area Change in the Early 21st Century among Widely Used Global Land Cover
756 Datasets, *Remote Sensing*, 12, 3502, <https://doi.org/10.3390/rs12213502>, 2020.

757 Cs, M., G, S., and Y, Z.: Afforestation and forests at the dryland edges: lessons learned and
758 future outlooks. In: Chen J, Wan S, Henebry G, Qi J, Gutman G, Sun G, Kappas M
759 (szerk.) *Dryland East Asia: Land dynamics amid social and climate change*. HEP
760 Publishers, Beijing & Walter de Gruyter and Co. Berlin, 2013, 245–264,
761 <https://doi.org/10.13140/RG.2.1.4325.4487>, 2013.

762 Duveiller, G., Hooker, J., and Cescatti, A.: The mark of vegetation change on Earth's surface
763 energy balance, *Nat Commun*, 9, 679, <https://doi.org/10.1038/s41467-017-02810-8>,
764 2018.

765 Duveiller, G., Caporaso, L., Abad-Viñas, R., Perugini, L., Grassi, G., Arneth, A., and Cescatti,
766 A.: Local biophysical effects of land use and land cover change: towards an assessment

767 tool for policy makers, Land Use Policy, 91, 104382,
768 <https://doi.org/10.1016/j.landusepol.2019.104382>, 2020.

769 Fang, J., Guo, Z., Hu, H., Kato, T., Muraoka, H., and Son, Y.: Forest biomass carbon sinks in
770 East Asia, with special reference to the relative contributions of forest expansion and
771 forest growth, Global Change Biology, 20, 2019–2030,
772 <https://doi.org/10.1111/gcb.12512>, 2014.

773 Ge, J., Guo, W., Pitman, A. J., De Kauwe, M. G., Chen, X., and Fu, C.: The Nonradiative Effect
774 Dominates Local Surface Temperature Change Caused by Afforestation in China, 32,
775 4445–4471, <https://doi.org/10.1175/JCLI-D-18-0772.1>, 2019.

776 Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A.,
777 Thau, D., Stehman, S. V., Goetz, S. J., and Loveland, T. R.: High-resolution global maps
778 of 21st-century forest cover change, 342, 850–853,
779 <https://doi.org/10.1126/science.1244693>, 2013.

780 Huang, L., Zhai, J., Liu, J., and Sun, C.: The moderating or amplifying biophysical effects of
781 afforestation on CO₂-induced cooling depend on the local background climate regimes
782 in China, Agricultural and Forest Meteorology, 260–261, 193–203,
783 <https://doi.org/10.1016/j.agrformet.2018.05.020>, 2018.

784 Jia, G., Shevliakova, E., Artaxo, P., Noblet-Ducoudré, N. D., Houghton, R., Anderegg, W.,
785 Bastos, A., Bernsten, T. K., Cai, P., Calvin, K., Klein, C. D., Humpenöder, F., Kanter,
786 D., McDermid, S., Peñuelas, J., Pradhan, P., Quesada, B., Roe, S., Bernier, P., Espinoza,
787 J. C., Semenov, S., and Xu, X.: Climate Change and Land: an IPCC Special Report on
788 Climate Change, Desertification, Land Degradation, Sustainable Land Management,
789 Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. 2019.

790 Juang, J.-Y., Katul, G., Siqueira, M., Stoy, P., and Novick, K.: Separating the effects of albedo
791 from eco-physiological changes on surface temperature along a successional

792 chronosequence in the southeastern United States, *Geophys. Res. Lett.*, 34, 21,
793 <https://doi.org/10.1029/2007GL031296>, 2007.

794 Kato, S., Rose, F. G., Rutan, D. A., Thorsen, T. J., Loeb, N. G., Doelling, D. R., Huang, X.,
795 Smith, W. L., Su, W., and Ham, S.-H.: Surface Irradiances of Edition 4.0 Clouds and
796 the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Data
797 Product, 31, 4501–4527, <https://doi.org/10.1175/JCLI-D-17-0523.1>, 2018.

798 Lee, X., Goulden, M. L., Hollinger, D. Y., Barr, A., Black, T. A., Bohrer, G., Bracho, R., Drake,
799 B., Goldstein, A., Gu, L., Katul, G., Kolb, T., Law, B. E., Margolis, H., Meyers, T.,
800 Monson, R., Munger, W., Oren, R., Paw U, K. T., Richardson, A. D., Schmid, H. P.,
801 Staebler, R., Wofsy, S., and Zhao, L.: Observed increase in local cooling effect of
802 deforestation at higher latitudes, *Nature*, 479, 384–387,
803 <https://doi.org/10.1038/nature10588>, 2011.

804 Lee, S. and Lee, D. K.: What is the proper way to apply the multiple comparison test?, *Korean
805 J Anesthesiol*, 71, 353–360, <https://doi.org/10.4097/kja.d.18.00242>, 2018.

806 Li, Y., Zhao, M., Motesharrei, S., Mu, Q., Kalnay, E., and Li, S.: Local cooling and warming
807 effects of forests based on satellite observations, *Nature Communications*, 6, 6603,
808 <https://doi.org/10.1038/ncomms7603>, 2015.

809 Li, Y., Zhao, M., Mildrexler, D. J., Motesharrei, S., Mu, Q., Kalnay, E., Zhao, F., Li, S., and
810 Wang, K.: Potential and Actual impacts of deforestation and afforestation on land
811 surface temperature: IMPACTS OF FOREST CHANGE ON TEMPERATURE, *J.
812 Geophys. Res. Atmos.*, 121, 14,372-14,386, <https://doi.org/10.1002/2016JD024969>,
813 2016a.

814 Li, Y., De Noblet-Ducoudré, N., Davin, E. L., Motesharrei, S., Zeng, N., Li, S., and Kalnay, E.:
815 The role of spatial scale and background climate in the latitudinal temperature response
816 to deforestation, *Earth Syst. Dynam.*, 7, 167–181, <https://doi.org/10.5194/esd-7-167->

817 2016, 2016b.

818 Li, Y., Piao, S., Chen, A., Ciais, P., and Li, L. Z. X.: Local and teleconnected temperature
819 effects of afforestation and vegetation greening in China, *National Science Review*, 7,
820 897–912, <https://doi.org/10.1093/nsr/nwz132>, 2020.

821 Liang, W., Fu, B., Wang, S., Zhang, W., Jin, Z., Feng, X., Yan, J., Liu, Y., and Zhou, S.:
822 Quantification of the ecosystem carrying capacity on China's Loess Plateau, *Ecological
823 Indicators*, 101, 192–202, <https://doi.org/10.1016/j.ecolind.2019.01.020>, 2019.

824 Liu, Y.: China's forest resource dynamics based on allometric scaling relationship between
825 forest area and total stocking volume, *Afr. J. Agric. Res.*, 7,
826 <https://doi.org/10.5897/AJAR12.216>, 2012.

827 Liu, Z., Ballantyne, A. P., and Cooper, L. A.: Increases in Land Surface Temperature in
828 Response to Fire in Siberian Boreal Forests and Their Attribution to Biophysical
829 Processes, *Geophys. Res. Lett.*, 45, 6485–6494, <https://doi.org/10.1029/2018GL078283>,
830 2018.

831 Oleson, K., Lawrence, D., Bonan, G., Drewniak, B., Huang, M., Koven, C., Levis, S., Li, F.,
832 Riley, W., Subin, Z., Swenson, S., Thornton, P., Bozbiyik, A., Fisher, R., Heald, C.,
833 Kluzek, E., Lamarque, J.-F., Lawrence, P., Leung, L., and Yang, Z.-L.: Technical
834 description of version 4.5 of the Community Land Model (CLM),
835 <https://doi.org/10.5065/D6RR1W7M>, 2013.

836 Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L.,
837 Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W.,
838 McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., and Hayes, D.: A Large and
839 Persistent Carbon Sink in the World's Forests, 333, 988–993,
840 <https://doi.org/10.1126/science.1201609>, 2011.

841 Peng, S.-S., Piao, S., Zeng, Z., Ciais, P., Zhou, L., Li, L. Z. X., Myneni, R. B., Yin, Y., and

842 Zeng, H.: Afforestation in China cools local land surface temperature, Proceedings of
843 the National Academy of Sciences, 111, 2915–2919,
844 <https://doi.org/10.1073/pnas.1315126111>, 2014. Pongratz, J., Schwingshackl, C., Bultan,
845 S., Obermeier, W., Havermann, F., and Guo, S.: Land Use Effects on Climate: Current
846 State, Recent Progress, and Emerging Topics, Curr Clim Change Rep, 7, 99–120,
847 <https://doi.org/10.1007/s40641-021-00178-y>, 2021.

848 Pitman, A. J., de Noblet-Ducoudré, N., Cruz, F. T., Davin, E. L., Bonan, G. B., Brovkin, V.,
849 Claussen, M., Delire, C., Ganzeveld, L., and Gayler, V.: Uncertainties in climate
850 responses to past land cover change: First results from the LUCID intercomparison
851 study, Geophys. Res. Lett., 36, <https://doi.org/10.1029/2009GL039076>, 2009.

852 Pitman, A. J., Avila, F. B., Abramowitz, G., Wang, Y. P., Phipps, S. J., and de Noblet-Ducoudré,
853 N.: Importance of background climate in determining impact of land-cover change on
854 regional climate, Nat. Clim. Chang., 1, 472–475, <https://doi.org/10.1038/nclimate1294>,
855 2011.

856 Qi, Y. and Wu, T.: The politics of climate change in China, WIREs Clim Change, 4, 301–313,
857 <https://doi.org/10.1002/wcc.221>, 2013.

858 Shen, W., He, J., Huang, C., and Li, M.: Quantifying the Actual Impacts of Forest Cover Change
859 on Surface Temperature in Guangdong, China, Remote Sensing, 12, 2354,
860 <https://doi.org/10.3390/rs12152354>, 2020.

861 Sulla-Menashe, D. and Friedl, M. A.: User guide to collection 6 MODIS land cover (MCD12Q1
862 and MCD12C1) product, 1–18, 2018.

863 Swann, A. L., Fung, I. Y., and Chiang, J. C.: Mid-latitude afforestation shifts general circulation
864 and tropical precipitation, Proceedings of the National Academy of Sciences, 109, 712–
865 716, <https://doi.org/10.1073/pnas.1116706108>, 2012.

866 UC Berkely. Spring 2008 - Stat C141/ Bioeng C141 - Statistics for Bioinformatics

867 Winckler, J., Reick, C. H., Bright, R. M., and Pongratz, J.: Importance of Surface Roughness
868 for the Local Biogeophysical Effects of Deforestation, *J. Geophys. Res. Atmos.*, 124,
869 8605–8618, <https://doi.org/10.1029/2018JD030127>, 2019a.

870 Winckler, J., Lejeune, Q., Reick, C. H., and Pongratz, J.: Nonlocal Effects Dominate the Global
871 Mean Surface Temperature Response to the Biogeophysical Effects of Deforestation,
872 *Geophys. Res. Lett.*, 46, 745–755, <https://doi.org/10.1029/2018GL080211>, 2019b.

873 Windisch, M. G., Davin, E. L., and Seneviratne, S. I.: Prioritizing forestation based on
874 biogeochemical and local biogeophysical impacts, *Nat. Clim. Chang.*, 11, 867–871,
875 <https://doi.org/10.1038/s41558-021-01161-z>, 2021.

876 Zeng, Z., Wang, D., Yang, L., Wu, J., Ziegler, A. D., Liu, M., Ciais, P., Searchinger, T. D.,
877 Yang, Z.-L., Chen, D., Chen, A., Li, L. Z. X., Piao, S., Taylor, D., Cai, X., Pan, M.,
878 Peng, L., Lin, P., Gower, D., Feng, Y., Zheng, C., Guan, K., Lian, X., Wang, T., Wang,
879 L., Jeong, S.-J., Wei, Z., Sheffield, J., Caylor, K., and Wood, E. F.: Deforestation-
880 induced warming over tropical mountain regions regulated by elevation, *Nature
Geoscience*, 14, 23–29, <https://doi.org/10.1038/s41561-020-00666-0>, 2021.

882 Zhang, L., Marron, J. S., Shen, H., and Zhu, Z.: Singular Value Decomposition and Its
883 Visualization, *Journal of Computational and Graphical Statistics*, 16, 833–854,
884 <https://doi.org/10.1198/106186007X256080>, 2007.

885 Zhang, Y., Chen, Y., Li, J., and Chen, X.: A Simple Method for Converting 1-km Resolution
886 Daily Clear-Sky LST into Real LST, *Remote Sensing*, 12, 1641,
887 <https://doi.org/10.3390/rs12101641>, 2020.

888 Zhao, K. and Jackson, R. B.: Biophysical forcings of land-use changes from potential forestry
889 activities in North America, *Ecological Monographs*, 84, 329–353,
890 <https://doi.org/10.1890/12-1705.1>, 2014.

891 Zhang, Z., Zhang, F., Wang, L., Lin, A., and Zhao, L.: Biophysical climate impact of forests

892 with different age classes in mid- and high-latitude North America, *Forest Ecology and*
893 *Management*, 494, 119327, <https://doi.org/10.1016/j.foreco.2021.119327>, 2021.
894