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Reconciling different approaches to quantifying land surface temperature
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Abstract

Satellite observations have been widely used to examine afforestation effects on local surface
temperature at large spatial scales. Different approaches, which potentially lead to differing
definitions of the afforestation effect, have been used in previous studies. Despite their large
differences, the results of these studies have been used in climate model validation and cited in
climate synthesis reports. Such differences have been simply treated as observational
uncertainty, which can be an order of magnitude bigger than the signal itself. Although the
fraction of the satellite pixel actually afforested has been noted to influence the magnitude of
afforestation effect, it remains unknown whether it is a key factor which can reconcile the

different approaches. Here, we provide a synthesis of three influential approaches (one
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estimates the actual effect and the other two the potential effect) and use large-scale
afforestation over China as a test case to examine whether the different approaches can be
reconciled. We found that the actual effect (ATa) often relates to incomplete afforestation over
a medium resolution satellite pixel (1km). AT, increased with the afforestation fraction, which
explained 89% of its variation. One potential effect approach quantifies the impact of quasi-full
afforestation (ATp1), whereas the other quantifies the potential impact of full afforestation (ATp2)
by assuming a shift from 100% openland to 100% forest coverage. An initial paired-samples t-
test shows that ATa < ATp1 < ATp2 for the cooling effect of afforestation ranging from 0.07K to
1.16K. But when all three methods are normalized for full afforestation, the observed range in
surface cooling becomes much smaller (0.79K to 1.16K). Potential cooling effects have a value
in academic studies where they can be used to establish an envelope of effects, but their
realization at large scales is challenging given its nature of scale dependency. The reconciliation
of the different approaches demonstrated in this study highlights the fact that the afforestation
fraction should be accounted for in order to bridge different estimates of surface cooling effects

in policy evaluation.

Keywords: surface temperature change, afforestation, actual effect, potential effect,

reconciliation, surface energy balance, China

1 Introduction

Afforestation has been and is still proposed as an effective strategy to mitigate climate change
because forest ecosystems are able to sequester large amounts of carbon in their biomass and
soil, slowing the increase of atmospheric CO, concentration (Fang et al., 2014; Pan et al., 2011).

Additionally, forests regulate the exchange of energy and water between the land surface and
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the lower atmosphere through various biophysical effects, including radiative processes such
as surface reflectance, and non-radiative processes such as evapotranspiration and sensible heat
flux (Bonan, 2008; Juang et al., 2007). As the net result of the surface energy balance, land
surface temperature (LST) is widely used to measure the local climatic impact of afforestation

(Li et al., 2015; Winckler et al., 2019a).

Climate model simulations and site-level observations have been utilized to explore the impact
of forest dynamics on land surface temperature (Lee et al., 2011; Pitman et al., 2009; Swann et
al., 2012). However, afforestation impacts on local LST derived from models tend to be highly
uncertain as they are limited by the coarse spatial resolution of models and uncertainties in
model parameters and processes (Oleson et al., 2013; Pitman et al., 2011), while insights from
site-level assessments cannot be extrapolated to large spatial domains (Lee et al., 2011).
Alternatively, remote sensing-based LST products enable the assessment of local LST changes

due to forest dynamics on large spatial scales (Li et al., 2015; Shen et al., 2020).

A number of studies investigated the surface temperature impact of afforestation based on
satellite observations and they have been cited in high-level climate science synthesis reports
(e.g., IPCC Special Report on Climate and Land authored by Jia et al., 2019), even though there
are large differences in afforestation impacts on LST between different methods. For example,
Alkama and Cescatti (2016), found a cooling effect of about 0.02K from afforestation in
temperate regions, while Li et al. (2015) reported a 0.27+0.03K ‘potential’ cooling from
afforestation in the northern temperate zone (20-50°N) based on the ‘space-for-time’ method.
In contrast, Duveiller et al. (2018) found a much stronger ‘potential’ cooling effect of 2.75K
for afforestation in the northern temperate region. While such differences were acknowledged

in a recent modelling study (Winckler et al., 2019b), they were simply treated as observational
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uncertainty for climate model evaluation, with the uncertainty range being as big as, or even an
order of magnitude larger than, the afforestation effect. It remains unclear whether the

differences arising from these different methods can be reconciled.

Until now, studies using satellite data to investigate afforestation impact on surface temperature
have mainly focused on three methods. The first method, termed the ‘space-and-time’ approach
(Fig. 1, red box), aims to examine the actual, realized effect of afforestation (‘actual effect’) by
isolating the forest cover change effect from the gross temperature change over time in places
where forest cover change actually occurred (Alkama and Cescatti, 2016; Li et al., 2016a). The
second method, termed the ‘space-for-time’ approach (Fig. 1, orange box), compares the
surface temperature of forest with adjacent ‘openland’ (i.e., cropland or grassland) under similar
environmental conditions (e.g., background climate and topography) and estimates the
‘potential effect’ of afforestation if afforestation were to occur (Ge et al., 2019; Li et al., 2015;
Peng et al., 2014). Note that such effects are often quantified using medium-resolution land-
cover datasets (typical resolution = 1km), which do not necessarily represent 100% ground

coverage, and we therefore term such a potential effect a ‘mixed potential effect’.

The third method, recently used by Duveiller et al. (2018), uses the ‘singular value
decomposition’ technique (Fig. 1 green box), which is claimed to extract the hypothetical LST
for different land-cover types by assuming a 100% coverage of the target cover type. The
afforestation effect on LST is then quantified as the difference between the LST of a pixel with
a hypothetical 100% forest coverage and the LST of an adjacent pixel with 100% openland
coverage. As with the second method, such an approach quantifies the ‘potential effect’ of
afforestation, but in this case, it quantifies the ‘full potential effect’ by assuming transitions

between land-cover types with 100% complete ground coverage.
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Previous studies have revealed the fraction of forest change as an important factor determining
the magnitude of the afforestation effect. Alkama and Cescatti (2016) indicated that the actual
temperature effect is fraction-dependent, and Li et al. (2016a) pointed out that use of a higher
threshold to define forest change resulted in a stronger potential effect. Nonetheless, whether
the fraction of forest change can explain the differences in the afforestation effect produced by
different methods, e.g., whether the ‘potential’ effect can be ‘actualized’, has not been
demonstrated. Testing the role of afforestation fraction in reconciling the afforestation effects
produced by different methods can help clarify potential confusion and contribute to appropriate

policy evaluation.

This study develops detailed conceptual and methodological descriptions for each of the three
approaches and uses large-scale afforestation over China as a case study to compare the three
approaches. We tested the following hypotheses: (1) The actual effect on LST increases with
the area that has actually been afforested, defined as afforestation intensity (or Faf). (2) The
actual effect is smaller than the potential effects. (3) When extending Fas to a hypothetical value
of 100%, the actual effect approaches the potential effect. If proven, this third hypothesis
implies that the LST impacts from different approaches could be reconciled given the same
boundary condition of full afforestation. In that case, we then have a fourth hypothesis (4)
stating that changes in underlying biophysical processes including radiation, sensible and latent
heat fluxes that drive LST changes should also be reconciled among different methods. To keep
the focus on reconciling methodological differences, only changes in the daytime surface
temperature were considered in this study. Nevertheless, similar conclusions regarding the

different approaches are expected for nighttime surface temperature.
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(a) Observed as Openland

====Actual Effect

T S ——————— -y,

Afforestation

Figure 1. lllustration of the three approaches to quantifying the local surface temperature effect
of afforestation. (a) and (b) represent two nearby pixels, both classified as openland at time t;
by medium-resolution satellites (1km spatial resolution), with one of them classified as forest
at time t2 (i.e., having experienced afforestation) and the other unchanged. Note, neither of these
pixels will have 100% complete coverage of either openland (i.e., grassland or cropland) or
forest, but they will have been classified as either openland or forest by medium-resolution
satellite products. (c) and (d) represent pixels with 100% forest or 100% openland coverage
whose temperature can be derived from pixels of mixed land cover types by using the singular
value decomposition (SVD) technique (Duveiller et al., 2018). The red dotted box describes the
quantification of the ‘actual effect’ of afforestation (ATa) occurring from t; to t2 by the ‘space-
and-time’ method. The orange box represents the ‘mixed potential effect’ determined by
hypothesizing potential shifts between openland and forest based on the ‘space-for-time’

approach (ATp1). The green box represents the ‘full potential effect’ of afforestation (ATpz)
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derived by hypothesizing a transition from 100% complete openland coverage to 100%

complete forest coverage.

2 Methods

2.1 Three Approaches to Quantifying the Impacts of Afforestation on LST

Input data
Global Forest Change GlobeL and30 2010 Processing step
(30131) (30m) Interm ediate data
. . . . Output result
Forest gain Forest loss SR 4" }7 Spaialaszesation

il ame Discrete land cover Fraction of land cover
patial agsrezation type (HCII[) (IIGII.)

Net forest change MODE IST
(1km) Paricd 2 MODE LST
1 Pericd 2
Afforestation l i
intensity (F.z %) Eﬁ
y=X=p Eq.(6)
Pafowfo% — -
I—I—\

AT in ATeein LES TE’;; LE 'I'Ei;n L&8T e L3Tpe0
" Eq(l) Eq(1) & 9 inEq(l0) |inEq(10)

MODE LST ‘_'_/ MODE LST 1
Penod 142 Period 142

Space-and-time Spacefor-time SVD approach
} ! ]
Pariod 1=2002-200¢
AT, ATy ATg Pariod 2-2010.2014

Figure 2. Schematic overview of the processing steps. The different output results correspond
to actual effect (ATa), mixed potential effect (ATp1) and full potential effect of afforestation

(ATpZ).

2.1.1 Actual Effect of Afforestation (ATz)

The ‘space-and-time’ approach assumes that the gross change in land surface temperature (AT)
over a given time period during which afforestation occurred, contains both signals of
temperature change due to afforestation (ATa) and background temperature variation (ATres)

due to changes in large-scale circulation patterns (Alkama and Cescatti, 2016; Li et al., 2016a):
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AT = AT +AT Q)

where AT is the gross temperature change during the period from t; to t> for the pixel under
study. AT can be calculated as the difference between LSTr, and LSTw, with LSTrw, being the
surface temperature after afforestation and LSTw being that before afforestation. It thus follows
that
AT, = AT - AT, (2)

ATres can be approximated by averaging changes in surface temperature for those pixels
adjacent to the target afforestation pixel for which the forest cover remained constant between
tr and to (i.e., Farf =0%; section 2.2.2). Here, pixels with Fas > 0% were defined as afforestation
target pixels. A searching window of 11 km by 11 km was established, centered on the
afforestation pixel. Within this window, pixels with Fas =0% were defined as control pixels and
were used to derive ATres. Afforestation pixels and adjacent control pixels were both determined
based on the net forest change between t; and t2 using Global Forest Change (GFC) data (Fig.

2; Section 2.2.2).

2.1.2 Mixed Potential Effect (ATp1)

The ‘space-for-time’ method relies on the ‘space-substitute-for-time” assumption to obtain the
potential impact of afforestation on local temperature (Zhao and Jackson, 2014). By assuming
that forest and openland share the same environmental conditions (background climate,
topography, etc.) within a small spatial domain, the potential temperature effect of afforestation
is examined using the search window method with a window size of up to 40km>40km (Ge et
al., 2019; Li et al., 2015; Peng et al., 2014). Here, to be consistent with our ‘actual effect’
approach, a more conservative window size of 11km>11km was used, smaller than that used in

the majority of previous studies (Ge et al., 2019; Li et al., 2015; Peng et al., 2014). In most
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previous studies, existing medium resolution (1km) land-cover maps were used directly. Such
land-cover products rely on certain thresholds to classify satellite pixels into discrete land-cover
types. Given the widespread spatial heterogeneity in land-cover distribution, it is to be expected
that only in rare cases will these medium-resolution pixels have 100% coverage of a given land-
cover type. Therefore, when determined in this way, the potential effect of afforestation has
been named the ‘mixed potential effect’, in contrast to the ‘full potential effect’, on which we
will focus in the next section, which assumes a potential transition between land-cover types of

100% coverage.

To ensure consistency with the land-cover data used in the ‘full potential effect’ approach (i.e.,
the SVD method), the GlobeLand30 land-cover map was aggregated from its original resolution
(30m) to 1km resolution. The land-cover type assigned to a given 1km pixel during aggregation
was based on the land-cover type with an area fraction >50% within that pixel, to be consistent
with the rationale behind the generation of medium-resolution land-cover products (Section
2.2.2). A 1km forest pixel was then chosen as the target pixel and put at the center of a search
window with dimensions 11kmx11km. The ‘mixed potential effect’ of afforestation (ATp1) was

defined as the difference between the temperature of the target pixel (LSTr) and the average

temperature of all the surrounding openland pixels within the window (LST, ):

AT, = LST,-LST, ©)
where LSTe is the surface temperature of the target forest pixel at to, and LST, represents the

elevation-corrected surface temperature of openland pixels at t> within the search window.
Given our search window size, ATp1 could be biased by the elevation difference between the
target forest pixel and surrounding openland pixels. Therefore, a linear relationship was first

fitted between the observed openland temperature, LSTo, and the elevation of the openland
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pixel (Eleo). This fitted temperature lapse rate was then used to derive elevation-corrected
openland temperature LST,:
LST, = LST,+ kxAEle,, (4)

where AEler.o is the elevation difference between forest and openland pixels. The elevation is
available from NASA’s Shuttle Radar Topography Mission (SRTM) data

(https://Ipdaac.usgs.gov/products/srtmgl1v003/).

2.1.3 Full Potential Effect (ATy2)

The full potential effect represents the temperature change due to hypothesizing a shift from
100% openland to 100% forest coverage, and was determined here by employing the singular
value decomposition (SVD) method used in Duveiller et al. (2018). The SVD technique
assumes that the temperature observed for a pixel at 1km scale is a linear composition of the
temperatures of different land-cover types at a finer resolution (in our study at a 30m resolution).
For each 1km pixel, the observed temperature can be written as the composition of the
temperature of each component land-cover type and its corresponding fraction, based on the
land-cover fractions derived from the 30m-resolution GlobeLand30 map (Section 2.2). The
temperature of each type of land cover was assumed constant within a search window of 11km

x11km. For each given search window, the following equations can be obtained:

Yi Xy X B,

= : Tt x

(%)

yn an Xnm Bm
where n is the total number of 1km pixels within the window, after accounting for the elevation
difference (thus the maximum value of n is 121 given our 11km =< 11km search window), m is

the number of land-cover types, x; refers to the fraction of land-cover type j in pixel i, B, refers

10
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to the temperature of land cover type i. To minimize elevation impacts, the linear regression
relationship for a given 1km pixel was included only when the elevation difference between
this pixel and the central pixel of the search window was smaller than 100m. Using matrix
notation, Eq. (5) can be simplified to:
y=Xxp (6)

where the matrix X contains land-cover fraction for the n 1km pixels as an explanatory variable,
the response variable y contains n LST observations, and the coefficient vector, 3, contains the
regression coefficients which show temperatures of different land-cover types. Note that this
linear equation system cannot be easily solved because the matrix X is ‘closed’, i.e., by
definition, the elements in each row of the matrix X add to 1. After removing the mean of each
column (Zhang et al., 2007), the matrix X was transformed, by applying the SVD technique, to
another matrix, Z, of reduced dimension (more details in Duveiller et al., 2018). After this

transformation, we have the following:
y=ZxB+e )

in which the B’ coefficient can be obtained from equation (8):

-1

p=(22) Zy ®
However, the B’ vector calculated from the transformed matrix Z cannot directly provide
surface temperatures for corresponding land-cover types. To obtain temperatures for each land-
cover type by assuming 100% ground coverage, an identity matrix Y with its dimension equal
to the number of land-cover types must be constructed to represent the hypothetical case in
which each 1km pixel was 100% covered by a single land-cover type. The same transformation
as applied to the matrix X was then applied to Y, to obtain a transformed matrix Z’. Finally, the

predicted temperature ( LST,,, ) for each land-cover type assuming a 100% coverage is

calculated as:

11
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LST,,, =Z B 9)

For the central pixel of the local search window, ATp is defined as the difference between the

predicted LST,

100%

for forest (LST,,,. ) and openland (LST,

00%F 100%0 ) '

LST,

100%0

AT,=LST,

100%F (10)
More details, including an illustration of the SVD method, can be found in Fig. 7 in Duveiller

et al. (2018).

At the scale of the searching windows used in this analysis (11km>11km), any nonlocal effects
cancel out when comparing temperature differences over neighboring areas because the effects
of advection and atmospheric circulation have been reported to be similar for adjacent areas
(Pongratz et al., 2021; Winckler et al., 2019a). Hence the quantified afforestation effect for each

of the three methods can be considered to be the local effect only.

2.2 Dataset and Processing

2.2.1 The Test Case: Large-scale Afforestation over China

China was selected as the test case for addressing the important methodological issues in
quantifying land surface impacts of afforestation because afforestation is a key national strategy
for sustainable development and climate mitigation (Bryan et al., 2018; Qi et al., 2013).
According to the 8" National Forest Inventory conducted in 2013, China’s afforestation area
has reached 6.9>10° million ha, accounting for 33% of the total global afforestation area (Chen
et al., 2019). Afforestation in China during 2000-2012 occurred mainly in regions with more
than 400 mm of precipitation per year (Fig. 3a), which is considered a threshold below which
there is a high risk of afforestation failing due to water limitation (Méy& et al., 2013). China
covers a wide range of latitude from 3.9°N to 53.6°N and its forest ecosystems cover an

12
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elevation range of 100m to 4000m. This wide range of climate zones, from tropical/subtropical
to temperate and boreal, make it highly suitable for our methodological analysis because the
impact of afforestation on LST might differ with latitude and background climate (Lee et al.,
2011; Alkama and Cescatti, 2016). Further justification for using China as a test case comes
from the strongly diverging published LST impacts of afforestation there, which range from an
actual effect of -0.0036K decade™ by Li et al. (2020) to a potential effect of -1.1K by Peng et

al. (2014).

2.2.2 MODIS Dataset and Preparation

In this study, the actual effect was estimated by combining the actual satellite-derived
afforestation for 2000 to 2012 (see Section 2.2.2) with satellite-based estimates of biophysical
variables for the periods 2002-2004 (t1) and 2010-2014 (t2). MODIS remote sensing products
for land surface temperature (MOD11A2), albedo (MCD43B3) and evapotranspiration
(MOD16A2) were used to characterize the biophysical effects (Table 1). The datasets were

regridded to harmonize with spatial (1km) and temporal (annual) resolutions (Table 1).

The MOD11A2 product provides 8-day land surface temperature for 10:30 AM and 22:30 PM
from the Terra satellite, but here we focused on daytime surface temperature. Only valid LST
observations from the original data were used to compute the average daily values for a given
year. Years for which more than 40% of daily data are missing were excluded from the analysis.
Annual data were then aggregated to obtain the average annual temperature for periods t; and

.
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The MCD43B3 product provides white-sky and black-sky shortwave albedo at 16-day temporal
resolution (Tablel). The observed white-sky albedo was used as the daytime albedo (Peng et
al., 2014). For evapotranspiration (ET), we used the ET band in MOD16A2, which includes
water fluxes from soil evaporation, wet canopy evaporation and plant transpiration. To calculate
the mean annual albedo and evapotranspiration for 2002-2004 (t1) and 2010-2014 (t2) we used

the same approach as used for LST.

2.2.3 Land-Cover Datasets and Processing

Two land-cover datasets were used in this study: the ‘actual effect’ approach was based on the
Global Forest Change (GFC) dataset, while the ‘mixed potential effect” and ‘full potential effect’

used the GlobeLand30 land-cover data (Table 1).

The SVD technique, used in the ‘full potential effect’ approach, requires a land-cover map with
a higher spatial resolution than the 1km spatial resolution of the LST data. The GlobeLand30
product, which is based on Landsat images, provides land-cover information for China at a 30m
resolution for the years 2000 and 2010 (Chen et al., 2015). Cultivated land and grassland in
GlobeLand30 were classified as openland. Discrete land-cover type information at 30m
resolution in 2010 was aggregated to obtain the area fractions of the different land-cover types
at 1km resolution, which were then used to construct matrix X in Eq. (5) (Fig. 2). Furthermore,
land-cover type information at the 1km scale was extracted, based on the vegetation type with
area fraction >50% for every 1kmx1km window. This data was then applied in the ‘space-for-

time’ method to identify forest and openland (Fig. 2).

14
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GlobelLand30 data is not suitable for detecting forest change (Zeng et al., 2021). The Global
Forest Change (GFC) data, however, provides forest gain and forest loss at a spatial resolution
of 30m between 2000 and 2012 and has been used for mapping global forest change (Hansen
et al., 2013). This product shows an overall accuracy of greater than 99% for areas of forest
gain at the global scale when compared with statistical data reported in Forest Resource
Assessment (FRA), LIDAR detection (Geoscience Laser Altimetry System), and MODIS
NDVI time series (Hansen et al., 2013), and thus has been recommended for use in forest and
forest-change estimates (Chen et al., 2020; Zeng et al., 2021). Using this dataset, forest loss
events were identified for each year between 2000 and 2012, but forest gain was only identified
for the whole period, simply because forest loss is an abrupt change which can be effectively
identified over short time periods, whereas forest gain is a gradual change which can only be
confidently identified over longer time spans. Here, forest losses and gains from GFC were
aggregated at a 1km resolution to obtain net forest change (defined as forest gain minus forest
loss) during this period (Fig. 2). A positive net change indicates afforestation and the area
percentage of afforestation for the 1km pixel area was defined as Fasr. The land-cover type of
pixels with Far = 0% was considered to be stable. This net forest-change information was then

used in the calculation of the actual afforestation-induced temperature effect (ATa)(Fig. 2).

2.3 Decomposition of Changes in Surface Temperature

Changes in surface temperature following forest-cover change are the net result of changes in
underlying fluxes that collectively determine the land surface energy balance:

ASW, -ASW,, +ALW, -ALW, , =AH +ALE +AG (11)

where ASWin, ASWout, ALWin, ALWoyt are the changes in incoming and outgoing shortwave

and longwave radiation, respectively, and AH, ALE, and AG are changes in sensible heat flux,
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latent heat flux and ground heat flux, respectively. All the terms of Eq. (11) are expressed in

Wm2

Firstly, it can be reasonably assumed that ASWin=0 and ALWin=0, given that all three
approaches consider only local effects on surface temperature by following a comparison of
target pixels with surrounding control pixels, thus excluding feedbacks from, e.g., cloud
formation (Duveiller et al., 2018). Changes in reflected shortwave radiation can be derived as:
ASW_, = SW, >xAa (12)
where SWin is available from the CERES EBAF-Surface Product Ed 4.1 (Kato et al., 2018; Liu
et al., 2018) (Table 1), and Aa is the surface albedo change. To approximate ALWoyt, we used
its first order differential equation:

ALW,, = 6(4e, T’ AT+Ae, TY) (13)
where o is Stefan-Boltzmann's constant (5.67><10°% W m2 K™), T is daytime surface
temperature and AT is the afforestation impact on surface temperature. Surface broadband
emissivity, €g, is usually obtained from an empirical relationship (Zhang et al., 2019):

£,=0.2122¢,,+0.3859¢, +0.4029¢ ,, (14)
where €29, €31 and €32 are obtained from the estimated emissivity for bands 29 (8,400-8,700 nm),

31 (10,780-11,280 nm) and 32 (11,770-12,270 nm) in the MOD11C3 data (Duveiller et al.,

2018).

Latent heat flux change (ALE) refers to changes in the energy used for evapotranspiration (ET,
unit: mm d), which can be obtained from the change in evapotranspiration (AET):

ALE =AET x28.94 W m*?/(mm d™) (15)
Therefore, the sum of sensible heat change and ground heat change (AH+AG) can be calculated
as the difference between net radiation change and latent heat flux change (ALE) based on Eg.
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(11). The afforestation effects on albedo (Aa), es (Aes) and ET (AET) needed in the above
equations were calculated in a similar way to AT for each of the three different approaches as

described in Section 2.1.

2.4 Statistical Analysis

The spatial distributions of original samples for the three methods are different because of the
different land-cover maps used (Fig. 2 and Figure Al) and, therefore, the statistical analysis
was limited to those pixels shared by all three approaches: 96,058 sample pixels at 1km
resolution. The distribution of these shared sample pixels retained the characteristics of the

spatial distribution of the original samples (Figure A2).

Differences in the afforestation effects on LST of the three approaches were tested by
performing paired-samples t-tests between pairs of approaches. The paired-samples t-test was
used, rather than a normal t-test, to avoid the bias due to strong spatial heterogeneity in the LST
effects of afforestation that could occur if the values of all pixels had been pooled together for
a normal t-test. The test was made using the ‘ttest _rel’ method from the ‘scipy.stats’ package
in Python. The Bonferroni correction was applied to adjust the significance level (p-value) to
mitigate the increasing Type | error when making multiple paired-samples t-test, which in our
case involves three pairs (Lee and Lee, 2018; UC Berkely, 2008). The Bonferroni correction
sets the significance cut-off at a/k (with o as the p-value before correction and k as number of
pairs). In this study, with 3 hypotheses tests (i.e., 3 pairs) and an original significance level a =
0.05, the adjusted p-value is 0.0167. In order to investigate ATa in relation to the afforestation
intensity, a linear regression was performed between AT, and Far using the ordinary least

squares method.
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399 Table 1 Summary of the datasets and their main characteristics
Type Dataset Selected band Resolution Projection  Timespan
Global Forest Forest gain;
Forest change 30m, annual WGS84 2000-2012
Change Loss year
Land-cover Land-cover
GlobeLand 30 30m, — UTM 2000; 2010
type type
Land surface Daytime 2002-2004;
MOD11A2 1km, 8days sinusoidal
Temperature temperature 2010-2014
Albedo WSA 2002-2004;
Albedo MCD43B3 1km, 16days sinusoidal
shortwave 2010-2014
Incoming
sfc_sw_down 2002-2004;
shortwave CERES 1< monthly WGS84
_all_mon 2010-2014
radiation
Surface Emis_29;
2002-2004;
broadband MOD11C3 Emis_31; 0.05< monthly  sinusoidal
2010-2014
emissivity Emis_32
Evapotranspira 2002-2004;
MOD16A2 ET_500m 500m, 8days sinusoidal
tion 2010-2014
Elevation SRTM30 Be75 30m, — WGS84 —
400
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3 Results

3.1 Spatial Distribution of Afforestation and its Effect on Land Surface

Temperature

In China, afforestation areas are mainly located in the northeast, southwest and south, where
sufficient precipitation is available (Fig. 3a) and largely driven by afforestation of former
cropland or abandoned cropland, with a relatively small contribution from forest regeneration
or replanting following natural disturbance or timber harvest. One prominent feature of
afforestation in China is its small afforestation patch, with most afforested pixels (1km?) having
an afforestation fraction of less than 30% (Fig. 3b). Pixels with an afforestation intensity below
10% account for 93% of the total number of pixels (Fig. 3b), representing 0.14 Mha, more than

half (55.6%) of the total afforestation area (Fig. 3b).
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Figure 3. (a) Spatial distribution of afforestation intensity (Faf) in China during 2000-2012.
The solid black line crossing China is the 400mm annual precipitation isoline. (b) Frequency
distribution of Far and cumulative afforestation area with the increase in Faf. The red dashed

line represents the cumulative afforestation area corresponding to Fas =10%.
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Although all three approaches result in similar spatial and latitudinal patterns regarding
afforestation effects on LST (Fig. 4), their magnitudes differ substantially. The actual effect has
the lowest temperature change, followed by the mixed potential effect, with the full potential
effect showing the greatest temperature change (Fig. 4a—c). For the latitude range of 20-36°N
where afforestation effects show a dominant cooling effect, the full potential effect (ATp2)
reaches -1.7540.01K, while the mixed potential effect (AT,1) was smaller at -0.9640.00K, but
both of them were much larger than the actual effect (ATa) of -0.0940.00K. Similarly, the full
potential effect (ATy2) showed the strongest warming effect (0.3540.01K) in the area north of
48°N, stronger than the mixed potential effect (0.2240.01K), and again the actual effect is the
smallest (0.0740.01K). However, regarding the latitude where the effects change from a
warming to cooling effect, the three approaches largely converge (Fig. 4d). Between 40°N and
48<N, the afforestation effects are largely neutral, with the mean temperature change for the

three approaches being 0.0740.01K (AT-=-0.0140.01K; ATp:1=0.1140.01K; AT,2=0.1240.01K).

60°N
2
. 1
40° N1 0
—1
20°N -2
(a)AT, ‘ (b)ATpl ‘ (C)ATpZ
70°E  90°E 110°E 130°E 70°E  90°E 110°E 130°E 70°E 90°E 110°E 130°E AT(°C)
0.4 2.50
AT,
0.2 ATpy 125 O
B e EEEEE e LR H0.00
5 5
&
_02 1 _125 <
@
-0.41— . , - : ; - -2.50
20 25 30 35 40 45 50

Latitude (° N)

Figure 4. Afforestation effects on LST quantified by three approaches: (a) actual effect based

on a ‘space-and-time’ approach (ATa), (b) mixed potential effect based on a ‘space-for-time’

20



435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

approach (ATp1) and (c) full potential effect assuming a transition from 100% openland
coverage to 100% forest coverage using the SVD method (ATp2). The solid black line crossing
China is the 400mm precipitation isoline. (d) Zonal averages of the annual mean daytime LST
change within 2 <latitudinal bins, with shaded areas representing the standard errors (SE). Note
that in panel (d), ATa corresponds to the vertical axis on the left; ATp1 and ATp2 correspond to

the vertical axis on the right.

3.2 Reconciling Temperature Effects of Afforestation

Even though the observed land surface temperature is assumed to be uniform for the 1km
afforested satellite pixel, the underlying afforestation intensity varies substantially (Fig. 3a).
This leads to our first hypothesis that for a 1km pixel, ATa should be influenced by the area
fraction that has been afforested within the pixel (i.e., afforestation intensity or Faff). Indeed, the
actual daytime surface cooling increases significantly with afforestation intensity (Fig. 5), with

a 0.07940.017K (mean =std) increase for each ten percent increase in Faf.

0.00
—0.25 1
)
< —0.50
=
<
=0.75 1 . _ 2
linear fit : y=-0.79x + 0.0 (R<=0.89,p<0.005)
AT,
-1.00- ; ; ; ; , ;
(0, 10] (10, 20] (20, 30] (30, 40] (40, 50] (50, 60] (60, 70]

Afforestation Intensity (%)

Figure 5. Changes in AT, as a function of afforestation intensity (Fasf), defined as the fraction
of afforested area to the total pixel area at a 1-km resolution. Error bars indicate the standard
error of ATa within each ten percent bin of Fa. The red line represents the fitted linear

regression line between AT, and Fas.
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The afforestation effects obtained from the three approaches were compared for each Fas
interval (Fig. 6). When afforestation intensity is less than 60%, significant differences exist in
the temperature change obtained by the three approaches, with ATa < ATp1 < ATp2. This result
confirms our second hypothesis that the actual effect is expected to be smaller than potential
effects. However, for pixels with relatively low Faf, the mixed potential effect is found to be
smaller than the full potential effect, which is reasonable, but to our knowledge, has not been
reported before. When the afforestation intensity is greater than 60%, the significant difference
in cooling effect between the different approaches disappears, likely because afforestation
intensity, and the associated forest coverage at 1km resolution, reach values high enough to

allow the ‘potential’ effects to be realized.

0.0 -
. L] L]
a
a
05
. . |
5 b - b . |1
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- (0, 10] (10, 20] (20, 30] (30, 40] (40, 501 (50, 60] (60, 70]

Fraction of Afforestation (%)

Figure 6. Comparison of AT for the three approaches for bins of afforestation intensity. Error
bars are given as the standard error and different letters indicate that AT calculated by the two
approaches concerned are significantly different using the adjusted p-value after applying the

Bonferroni correction for multiple paired-samples t-tests.

When considering the overall differences in AT for the three approaches, irrespective of the
afforestation intensity, AT, (-0.0740.00K) over China was significantly lower than ATp: (-

0.6340.00K), which is further significantly lower than ATz (-1.1640.01K) (p < 0.05, paired-
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samples t-test, n= 96,058), once again confirming our second hypothesis (Fig. 7). Moreover,
extrapolation of the relationship shown in Fig. 5 suggests that AT would reach -0.7940.17K
(mean =£std) if a 1km pixel was 100% afforested, which is conceptually comparable to the
potential effects. AT, was indeed found to be higher than AT,z but lower than ATp.. This result
confirms our third hypothesis and demonstrates that the potential cooling effect could indeed

be reached when a pixel is fully afforested.

0.0

AT (°C)

—1.01

-1.5

AT, AT,y AT, Predicted AT,

Figure 7. Comparison of AT for the three approaches, irrespective of the afforestation intensity.
Error bars are given as the standard error and different letters indicate AT being significantly
different (p = 0.0167, paired-samples t-test, n = 96,058). For comparison, the predicted ATa

with Fasf reaching 100%, which is conceptually comparable with ATp1 and ATpe, is also shown.

3.3 Reconciling Changes in Surface Energy Fluxes by Afforestation

In order to investigate whether the underlying surface energy fluxes could be reconciled
following the reconciliation of the LST changes, changes in surface energy fluxes due to

afforestation were quantified using each of the three approaches, under the same boundary
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conditions as for full afforestation (i.e., changes following the ‘actual effect’ approach were
extended for Farr = 100%). As illustrated in Fig. 8, changes in all the relevant surface energy
fluxes under the three different approaches have the same direction, with similar magnitudes,
confirming the reconciliation of the different approaches in terms of surface energy fluxes.
More specifically, the three approaches converge on a reduction in reflected shortwave
radiation (ASWoy:) of 0.56~1.23 W m due to the lower albedo of forest compared to openland
(Figure A3). Emitted longwave radiation (ALWou) was reduced by 1.03~3.10 W m and
sensible and ground heat fluxes (AH+AG) reduced by 4.84~6.14 W m. All these reduced
fluxes were offset by an increased latent heat flux of 7.99~8.41 W m™2 (ALE), the single energy

flux leading to surface cooling.

ALWOU[’ i -5/16 -4.84 -6.14
Aswout J -0.36 -0.96 -1.23
AH+AG d -2.27 3.10 -1.03
ALE J 7.99 i 8.90 i 841
(@) (b) (c)
-10 -5 0 10 15-10 -5 O 5 10 15-10 -5 O 5 10 15
Wm™?2 Wm™?2 Wm™ 2

Figure 8. Afforestation-induced changes in surface energy fluxes (Wm) following the three
approaches: (a) actual effect based on a ‘space-and-time’ approach, (b) mixed potential effect
using medium-resolution land cover maps based on a ‘space-for-time’ approach and (c) full
potential effect assuming a transition from 100% openland coverage to 100% forest coverage
using the SVD method. For each approach, changes were calculated for the reflected shortwave
radiation (SWout), outgoing longwave radiation (LWou), latent heat flux (LE) and the
combination of sensible and ground heat fluxes (H+G). No changes were assumed for incoming
shortwave and longwave radiation. Changes in energy fluxes for the ‘actual effect” approach

have been adjusted to the condition of full afforestation (i.e., Fatt = 100%) in a similar way as
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511  for the ‘predicted ATa’ in Fig. 7, by fitting linear regressions between energy flux variables and
512  Fasf (Figure A4).

513

514 4 Discussion

515

516  The three approaches (Li et al., 2015; Alkama and Cescatti, 2016; Duveiller et al., 2018) used
517  to quantify local surface temperature change following forest-cover change and presented with
518  details in this study, have been cited over 919 times in research papers (Web of Science,
519  December 2021) and in high-level climate science synthesis reports. Despite the apparently
520 large differences in temperature effect among them, to our knowledge, no studies have
521  examined whether these differences can be reconciled. This study fills that gap by comparing
522  the three approaches for a single study case, i.e., large-scale afforestation in China. China is
523  highly suitable for the purpose of this study as the size of an afforestation patch is, in general,
524  smaller than the spatial resolution (1km) at which the temperature effects of afforestation were
525  conducted in the previous studies describing the three approaches (Li et al., 2015; Alkama and
526  Cescatti, 2016; Duveiller et al., 2018). Hence, the difference between the actual and potential
527  temperature effects is expected to be large.

528

529  Indeed, we found surface cooling following afforestation was much less when estimated as the
530 actual effect (ATa) compared to the potential effects (ATp1 and ATp2). This lower AT, has been
531 attributed to incomplete afforestation at a 1km resolution, at which potential effects are
532 quantified by assuming complete afforestation (i.e., a complete shift from openland to forest).
533  Consistent with our first hypothesis, the afforestation fraction at a 1km resolution explained 89%
534  of the variation in AT., making it a key determinant of the surface cooling following

535 afforestation (Fig. 5). This result is consistent with the fact that the observed temperature for a

25



536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

mixed surface is determined by the area fractions of its respective components, with each
component having a unique temperature. This fact also forms the theoretical foundation for the

SVD technique used to derive the full potential effect (Duveiller et al., 2018).

Modelling (Li et al., 2016b) and satellite-based (Alkama and Cescatti, 2016) studies have found
that temperature change after afforestation (or deforestation) is highly sensitive to the fraction
of the model grid cell or satellite pixel that is subjected to afforestation (or deforestation),
echoing our finding that ATa significantly changes with Fa. In addition, we provide strong
evidence in support of our third hypothesis that when Fas reaches 100%, the expected actual
effect is comparable to the potential effects (Fig. 7). This finding shows that the three
approaches compared here are consistent when the same boundary condition, i.e., full
afforestation, is applied, and demonstrates that all three methods are mutually compatible. It is,
therefore, the basis of the reconciliation of the three approaches. It also highlights the fact that
the actual afforestation area must be considered when evaluating the climate mitigation effects

of afforestation.

Our results also show that the mixed potential effect (ATp1) is smaller than the full potential
effect (ATp2) (Fig. 6, Fig. 7). We suspect that this phenomenon likely also relates to the
incomplete forest coverage for the identified forest pixels at the 1km scale used in the ‘space-
for-time’ analysis, because a threshold value of 50% forest cover was used when upscaling the
30m land-cover map to 1km resolution. This threshold, however, is consistent with the
commonly applied value in land-cover classification based on medium resolution satellite
images, such as MCD12Q1, which uses a tree coverage value of 60% to identify forest pixels
(Sulla-Menashe and Friedl, 2018). For the purpose of comparison, we also calculated the mixed

potential effect based on the MCD12Q1 land-cover map but using the same LST data. The
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result shows that potential effects derived using MCD12Q1 data versus those derived using
spatially upscaled GlobeLand30 data are almost identical (Figure A5), lending credibility to our
estimated ATp1 in comparison to previous studies using MODIS land-cover data (Li et al., 2015).
Progressively increasing the forest-cover threshold from 50% to 90% steadily increases ATp1
from -0.6240.02K to -0.7540.02K (Figure A6). Further increasing the thresholds used to
identify 1km-resolution openland pixels from 50% to 90% increases ATp1 from -0.63240.00K to
-1.1040.02K (Figure A7), bringing ATp1 even closer to ATp2 (-1.1630.01K). This is consistent
with the finding of a previous study on the dependence of the temperature effect on the forest
cover change thresholds that were used to define afforestation: the higher the threshold, the
stronger the impact on temperature (Li et al., 2016). Our results add further support to the
compatibility of the three approaches given the same boundary condition, i.e., the complete

transformation from full openland to full forest coverage.

Several factors may contribute to the remaining differences in the temperature effects produced
by different methods even after reconciliation. As described in the Method section, there are
discrepancies in the assumptions of the three approaches, which lead to differences in the
control pixels (i.e., adjacent comparison pixels). For instance, for the ‘pure potential effect’ it
is assumed that the LSTs for pixels with the same land cover type are uniform and forest pixels
are compared with openland pixels, whereas the in the ‘mixed potential impact’ approach the
central target forest pixel is compared with the mean value of non-forest pixels within the
searching window. Moreover, space-for-time is an assumption that cannot be verified (Chen et
al., 2016), and which will inevitably result in differences in the estimated actual and potential
effects, although the consistency between ‘potential’ and ‘actual’ effects after reconciliation in

our study does illustrate the broad validity of this assumption.
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Differences between the actual and potential temperature effects can also arise from the time
period elapsed following afforestation. The temperature effect caused by deforestation is
considered to be instant (Liu et al., 2018), while, in contrast, afforestation-driven surface
temperature change depends on different stages of forest development and is expected to
saturate only when the forest canopy stabilizes (Ziter et al., 2019). The GFC dataset used in this
analysis defined forest gain using the condition of successful detection of a stable closed forest
canopy that is clearly different from a non-forest state (Hansen et al., 2013), which enhances
the chance of temperature change saturation following afforestation. But, given a maximum
stand age of 12 years inferred from the GFC dataset, differences in surface temperatures may
still exist between newly established forests and the mature existing forests that were used in
the ‘potential effect’ approaches. Thus, we cannot exclude the possible contribution of such a
mechanism to the difference between the actual and potential effects, which failed to be

reconciled.

Previous analyses have documented latitudinal patterns of surface temperature change induced
by afforestation (Alkama and Cescatti, 2016; Li et al., 2015, 2016a; Peng et al., 2014). When
comparing the three approaches for a single case study, consistent latitudinal patterns of local
surface temperature effects following afforestation are observed (Fig. 4). Notably, all three
approaches show a warming effect in the northern high latitudes and an opposite cooling effect
in the southern low latitudes, with a largely neutral effect in the 40-48°N latitude band,
providing further evidence that the three approaches are compatible. In particular, although the
three approaches used different land-cover maps, they derived consistent LST impacts
following afforestation, which highlights that fact that the reconciliation provided in this study

is rather robust and unlikely to be dependent on the land cover datasets used.
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In addition to the reconciliation of the land surface temperature change, we checked and
confirmed that the changes in surface energy fluxes that underlie and drive the changes in
surface temperature are compatible under the boundary condition of full afforestation. This
finding confirms the inherent consistency in the three approaches and clarifies the reasons
behind the apparent discrepancies in existing studies as discussed in the introduction.
Nonetheless, when it comes to the biophysical impacts of afforestation in the real world, our
findings have far-reaching implications. Full afforestation is often possible at small spatial
scales but becomes challenging at large scale. Therefore, the realization of the full potential
effect by afforestation is scale-dependent. For example, a complete afforestation of the semi-
arid Loess Plateau in the northwest of China is predicted to generate a surface cooling effect of
2.4030.07K, but substantial afforestation efforts over the past 4 decades in that region have only
realized a cooling of 0.11+£0.01K as measured by the ‘actual effect’. Because of greater water
consumption by forest compared to openland and the need to maintain land area for food
production, achieving the full cooling potential may not be feasible (Huang et al., 2018; Liu

and She, 2012; Liang et al., 2019).

Potential cooling effects have a value in that they can serve to establish the envelope of effects
and measure possible outcomes given the condition of full afforestation. However, given the
challenge of full afforestation at large spatial scales, potential effects should be converted into
amore realistic estimate (i.e., actual effects), by taking into account the intensity of afforestation,
to better represent policy ambitions. The analog could also be made for the effects of the surface
energy impacts of afforestation. Taking 10% as the afforestation intensity threshold to compare
the cumulative surface energy effect between the actual and potential approaches, actual
cumulative biophysical changes (5.06 EJ) for 2000-2012 are much smaller than mixed potential

changes (20.13 EJ) and full potential change (19.02 EJ) (methods in Text AL; Figure A8). Again,
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this shows that simply using the potential effects for policy making or evaluation risks greatly

overestimating the biophysical effects of afforestation.

5 Conclusions

In this study we provided a synthesis of the three influential methods used to quantify
afforestation impact on surface temperature change and provided evidence that these different
methods could in fact be reconciled. The actual effect of surface temperature change following
afforestation was highly dependent on the intensity of afforestation (Faff), which explained 89%
of the variation in ATa. With the common boundary condition of full afforestation being applied,
differences in afforestation impacts on LST reported by the three methods in previous studies
greatly reduced, showing that simply treating these differences as uncertainty is incorrect and
could greatly overestimate the uncertainty. In other words, when full afforestation is assumed,
the actual effect approaches the potential effect, demonstrating the effectiveness of the ‘space-
for-time’ approach and that the potential cooling effect of afforestation could indeed be realized.
Potential cooling effects have a value in academic studies where they can be used to establish
an envelope of effects, but their realization at large scales is challenging given the scale
dependency. The reconciliation of the different approaches demonstrated here stresses that the
afforestation fraction should be accounted for in order to bridge different estimates of surface

cooling effects in policy evaluation.
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Appendix A
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Figure Al. The distributions of the original sample pixels (at a 1km resolution) for (a) the

actual effect and (b) the two potential effects.
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(d) Histogram of ATy for samples used for the statistical test.
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Figure A3. Spatial distribution of afforestation-induced changes in albedo (o) over China from

three approaches: (a) Actual albedo change following afforestation based on ‘space-and-time’

method (Acaa), (b) mixed potential albedo change using medium-resolution land-cover maps

based on ‘space-for-time’ approach (Aap1) and (c) full potential effect (Aap2) based on SVD
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Figure A8. Afforestation-induced cumulative changes in surface energy fluxes (exaJoules) in
China for the period 2000-2012 following the approaches of (a) actual effect, (b) mixed

potential effect and (c) full potential effect (methods in Appendix Text Al).

Text Al

The cumulative surface energy effect (fcum) in Figure A8 refers to the sum of the flux change (J)
from all the samples, while at the same time accounting for the forest change area (m?). More

specifically, the cumulative surface energy change (fcum) can be calculated from equation Al:

foum = ZiZi(area; x Fy) (Al)

where Fi is the flux change per unit area (W m) for pixel i, n is the total number of samples,

and areai; is the forest change area in pixel i.

Data availability

All datasets used in this study are summarized in Table 1 and are openly available. Albedo,
transpiration and surface temperature data can be accessed at
(https://modis.gsfc.nasa.gov/data/). The Global Forest Change data is available from
https://earthenginepartners.appspot.com/science-2013-global-forest/. The land-cover type

dataset (GlobeLand30) can be downloaded from http://www.globallandcover.com/. Incoming
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(https://Ipdaac.usgs.gov/products/srtmgl1v003/). Intermediate data and scripts used to generate

the results in this study are available from the corresponding author upon reasonable request.
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