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Abstract. Tropical Cyclones (TCs) are extreme climate events that are known to strongly interact with the ocean 8 
through two mechanisms: dynamically through the associated intense wind stress, and thermodynamically through 9 
moist enthalpy exchanges at the ocean surface. These interactions contribute to relevant oceanic responses during and 10 
after the passage of a TC, namely the induction of a cold wake and the production of chlorophyll (Chl-a) blooms. This 11 
study aimed to understand these interactions in the Azores region, an area with relatively low cyclonic activity for the 12 
North Atlantic basin, since the area experiences much less intense events than the rest of the basin. Results for the 13 
1998-2020 period showed that the averaged induced anomalies were on the order of +0.050 mg m-3 for the Chl-a and 14 
-1.615 K for SST. Furthermore, looking at the role played by several TCs characteristics we found that the intensity 15 
of the TCs was the most important condition for the development of upper ocean responses. Additionally, it was found 16 
that bigger TCs induced greater anomalies in both variables, while faster ones created greater Chl-a responses, and 17 
TCs that occurred later in the season had greater anomalies. Two case studies (Ophelia, in 2017, and Nadine, in 2012) 18 
were conducted to better understand each upper ocean response. Ophelia showed to affect the SST at an earlier stage 19 
while the biggest Chl-a induced anomalies were registered at a later stage, allowing the conclusion that thermodynamic 20 
exchanges conditioned the SST more while dynamical mixing might have played a more important role in the later 21 
stage. Nadine showed the importance of the TC track geometry, revealing that the TC track observed in each event 22 
can impact a specific region for longer, and therefore induce greater anomalies. 23 

Introduction 24 

Tropical Cyclones (TCs) are potentially intense atmospheric disturbances which are characterised by a low-pressure 25 
centre (eye) where strong winds curl around. Among other important properties, TCs are thermodynamic dependent 26 
phenomena, meaning that intense temperature gradients need to occur in the lower atmosphere to maintain and 27 
intensify the storm. Thus, TCs are fed from warm sea water which provide a strong moist enthalpy flux from the 28 
oceanic surface to maintain a steep temperature gradient within the lower and middle troposphere and produce massive 29 
water vapour convection (Emanuel, 2003; Holton and Hakim, 2012; Pearce, 1987). 30 
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The strong wind stress present near the surface and the associated intense curl are also shown to induce vertical mixing 31 
and Ekman upwelling in the upper layer of the ocean. In his seminal study, Price (1981) shows, through both observed 32 
and numerical modelling data, the evolution of sea surface temperature (SST) on the passage of a hurricane, with the 33 
emergence of a cold wake of SST after a TC due to entrainment of water from shallow layers. This effect has since 34 
been well studied and documented with many case studies observed, for example, the case of Hurricane Felix, in the 35 
vicinity of Bermuda in 1995, that showed decreases in the order of 3.5-4 ºC (Dickey et al., 1998), or the cases of 36 
cyclones Nargis (2008) and Laila (2010), in the Bay of Bengal, that caused SSTs to drop by around 1.76 ºC (Maneesha 37 
et al., 2012). Additionally, several model-based works focused on either the effects caused by the TCs, or the 38 
interaction of the TC with its own cold wake (e.g., Chen et al., 2017; Zhang et al., 2019). 39 

There are also biological responses to the passage of a TC. Due to the upwelling of colder water, transport of nutrient-40 
rich water from the sub-superficial layer may also occur (Kawai and Wada, 2011). In this case, phytoplankton can 41 
quickly increase in the surface layer following the rise in nutrients. This increase can be remotely sensed through 42 
satellite observations that capture the chlorophyll-a concentration (Chl-a) increasing after the passage of a TC, since 43 
Chl-a is generally accepted as a proxy for biological activity (Kawai and Wada, 2011; Liu et al., 2009; Subrahmanyam 44 
et al., 2002; Walker et al., 2005). 45 

The oceanic response, either physical or biological, to the passage of a TC depends on various aspects, most 46 
remarkably the TC’s intensity and its translation speed but also the oceanic subsurface conditions (Zheng et al., 2008). 47 
The magnitude and significance of these aspects on the modulation of the oceanic response varies regionally, although 48 
it is generally regarded that the most impactful phenomena to be those of an intense and slow TC (Chacko, 2019; 49 
Price, 1981; Price et al., 1994). Recent studies (e.g., Chacko, 2019; Pan et al., 2018; Shropshire et al., 2016) have 50 
shown that regional differences do matter when studying the biological response. In the case of the Bay of Bengal, it 51 
was shown that the intensity of a TC is less important, and the most meaningful aspects are the TC’s translation speed 52 
and, to a lesser degree, a pre-existing shallow mixed layer (Chacko 2019). The results from this study are important 53 
to stress that relatively weaker TCs can also induce a strong biological response after their passage. 54 

Until now, the Azores region has not been studied regarding its thermodynamic and biological impacts. This section 55 
of the North Atlantic basin presents much fewer and weaker cyclones than the tropical band of the basin, with this 56 
region being mainly a zone where TCs undergo either cyclosis or post-tropical transition into extra-tropical cyclones 57 
or mid-latitude storms (Baatsen et al., 2015; Haarsma et al., 2013). The north-eastern Atlantic (NEA) basin, where the 58 
Azores archipelago is located, presents significantly less TCs than the western counterpart, closer to the USA coast 59 
(Baatsen et al., 2015; Lima et al., 2021; Haarsma et al., 2013). However, there is growing evidence of a significant 60 
increase in the frequency of strong TCs in both western (Kossin et al., 2020) and eastern (Lima et al., 2021) halves of 61 
the north Atlantic Ocean. The climatology of the area points to a south-north gradient in both SST and Chl-a, with a 62 
decrease in the former and an increase in the latter (Amorim et al., 2017; Caldeira and Reis, 2017). In general, the 63 
southern part of the Azores region offers SSTs high enough to maintain TCs, although the necessary atmospheric 64 
conditions (e.g., high lapse rates and low wind shear) need to occur for their passage northeast through the Azores 65 
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(Lima et al., 2021). However, this area is undergoing a transition due to anthropogenic climate change and an increase 66 
both in number and intensity of TCs is expected (Baatsen et al., 2015; Haarsma et al., 2013). Therefore, the NEA basin 67 
is a challenging study region to assess the impact that lower intensity TCs have on the oceanic surface. 68 

The main aim of this study is to analyse in detail the upper ocean response observed after the passage of a TC in the 69 
Azores region, which is characterised by its lower-than-normal cyclonic activity in relation to the rest of the north 70 
Atlantic basin. In particular, we aim to evaluate the impacts on SST and Chl-a concentration produced by important 71 
TC characteristics (averaged maximum wind speed, average translation speed, overall impacted area, time of 72 
occurrence, and geometry of the track). Two practical case studies, relative to Nadine (2012) and Ophelia (2017) are 73 
then thoroughly analysed to reflect the drawn conclusions for this area. 74 

Data 75 

The main data used to evaluate the oceanic response in this study is divided into three main parts: Remotely sensed 76 
interpolated data used to characterise the Chl-a and SST, respectively, and TC track data, which provides the necessary 77 
additional information on the location and dynamic variables of each TC, that allow to explore the oceanic response 78 
in the aforementioned data. Additionally, non-interpolated datasets are used for the case studies to validate the 79 
interpolated ones; and wind-stress data is used for the Hurricane Ophelia study case. 80 

Biological oceanic response was evaluated using a multi-sensor daily Chl-a product available through the Copernicus 81 
Marine Environment Monitoring Service (CMEMS) in a 4 km x 4 km resolution from the end of 1997 to the present 82 
(CMEMS, 2021b). This product, delivered by the ACRI-ST company, is based on the Copernicus-GlobColour project 83 
and obtained by merging different sensors: SeaWiFS, MODIS, MERIS, VIIRS-SNPP&JPSS1, OLCI-S3A&S3B. The 84 
final Chl-a product is a mix of several algorithms that consider different water conditions, such as oligotrophic, 85 
mesotrophic, coastal, clear, and complex waters (Garnesson et al., 2019). To produce a “cloud free” product, the 86 
resulting data was subjected to daily interpolation to fill any gaps (Krasnopolsky et al., 2016; Saulquin et al., 2019). 87 
The lack of gaps in this dataset is particularly relevant in the context of this study since the areas analysed will be 88 
concentrated around the TCs; it is then expected that large amounts of the analysed areas would be under cloud 89 
coverage and, therefore, some of the analysed data is not real but interpolated values. Nonetheless, CMEMS provides 90 
approximate uncertainty levels for this data, which we used to assess the quality of our results. For further validation 91 
purposes we used also a non-interpolated Chl-a product generated by the Ocean Colour component of the European 92 
Space Agency’s Climate Change Initiative project (OC-CCI) (Sathyendranath et al., 2019). This dataset results from 93 
a merge of several sensors: SeaWiFS LAC and GAC, MODIS Aqua, MERIS, VIIRS, and OLCI. ESA’s OCC-CI 94 
version 5.0 Chl-a product has 0.042º resolution and a daily temporal resolution (Sathyendranath et al., 2021). 95 

To evaluate the physical oceanic response and to relate this to the biological one, a daily SST dataset from the CMEMS 96 
was used, with a 0.05º resolution. This data is available from 1981 up to the near present (CMEMS, 2021a). Similarly, 97 
to the previous CMEMS interpolated Chl-a product the SST field is also a blended gap-free analysis product, with the 98 
present one resulting from re-processed (A)ATSR, SLSTR and AVHRR sensor data being applied to the Operational 99 
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SST and Sea Ice Analysis (OSTIA) system (Donlon et al., 2012). This reprocessed analysis product provides an 100 
estimate of the SST at 20 cm depth. The inputs to the system are SSTs at 10:30 am and 10.30 pm local time which 101 
means that the analyses roughly correspond to the daily average SST (Good et al., 2020; Lavergne et al., 2019; 102 
Merchant et al., 2013). As stated before, approximated error values for SST are also provided by CMEMS. 103 
Additionally, AVHRR Pathfinder version 5.3 collated data was used as non-interpolated data for validation. This 104 
dataset, similarly to the CMEMS one, is a collection of twice-daily (averaged to daily), 4km spatial resolution, merged 105 
SST product, provided by NOAA’s National Centers for Environmental Information (Saha et al., 2018). The merge 106 
of this data, however, is only used to spatially collate the data, as it is a single instrument measurement (AVHRR) 107 
onboard NOAA-7 through NOAA-19 Polar Operational Environmental Satellites (POES). 108 

Wind stress data to assist in the analysis of the Hurricane Ophelia study case was provided by NOAA’s CoastWatch 109 
dataset available at https://coastwatch.pfeg.noaa.gov/erddap/griddap/erdQMstress1day_LonPM180.html. This dataset 110 
is derived from wind measurements obtained from the Advanced Scatterometer (ASCAT) instrument on board 111 
EUMETSAT’s MetOp satellites (A and B) at a daily 0.25º resolution, from 2013 to the present. ASCAT presents a 112 
near all-weather capacity (not affected by clouds), as it operates a frequency in C-band (5.255 GHz), therefore, 113 
minimizing the number of missing values in predominately clouded areas such as the case of TC paths. 114 

The TC track data is made available by the International Best Track Archive for Climate Stewardship Project version 115 
4 (IBTrACS v4) free access dataset (Knapp et al., 2009). This dataset contains global information regarding TC 116 
activity since the 1851 hurricane season up to 2020. It aggregates variables such as TC geographical location, 117 
maximum wind speed, minimum sea level pressure, and storm radius estimation based on wind intensity, measured at 118 
6-hour intervals (original dataset interpolates for increased resolution, at 3-hour rates, however this interpolation only 119 
includes the geographical location).  For the 1998-2020 period, the Azores region experienced the passage of 62 120 
individual TCs accounting to 642 6-hour observations that are categorised in the following intensities according to the 121 
Saffir-Simpson hurricane wind scale (Taylor et al., 2010): 122 

● 148 tropical depression observations. 123 
● 389 tropical storm observations. 124 
● 85 category 1 hurricane observations. 125 
● 18 category 2 hurricane observations. 126 
● 2 category 3 hurricane observations. 127 

The full TC tracks can be better visualised in Fig. 1, with the left panel showing the full track for all these 62 TCs’ 128 
observed in the NA basin for the 1998-2020 period and the right panel showing a zoomed view relative to the 129 
considered Azores region. Tropical depression observations (dark blue in Fig. 1, right panel) account for 23 % of the 130 
total observations and will not be considered in this study, as they present the lower branch of intensities with winds 131 
below the 34-kt (18 m/s) threshold. Therefore, a total of 494 TC 6-hour observations were considered for this study. 132 
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 133 

Figure 1 - Left panel: North Atlantic basin and the tracks for all TCs that went through or occurred inside the study region 134 
(shown by the red outline). Right panel: Zoom of the previous red outline, with each TC observation marked in different 135 
colours for intensity (TD: Tropical Depression; TS: Tropical Storm; Cat1 - Cat5: Hurricane category according to the 136 
hurricane Saffir-Simpson wind scale). 137 

Since the interpolated datasets used for most of this study do not share the same time frame and to better encapsulate 138 
full years of data, the timeframe of the present study will be from January 1st of 1998 to December 31st of 2020. 139 
Moreover, while we have extracted all the data described above covering the entire North Atlantic basin, we will focus 140 
on the area around the Azores archipelago, delimited by the 15ºW and 40ºW meridians and between the 30ºN and the 141 
45º parallels (Fig. 1). 142 

Methodology 143 

The region of study was chosen due to its nature regarding TCs, since it is an area with fewer and less intense tropical 144 
storms (Hart and Evans, 2001; Lima et al., 2021; Ramsay, 2017). Generally, tropical cyclosis and post-tropical 145 
transition occur here (Baatsen et al., 2015; Haarsma et al., 2013). Because of these aspects, it corresponds to a much 146 
less studied area and is a good region to characterise oceanic biophysical effects after the passage of (generally) weaker 147 
TCs at higher-than-tropical latitudes and to compare the obtained results with previous literature. 148 

To cope with large amounts of data, the bio-physical response was evaluated within a small area around individual 149 
locations obtained for each TCs’ best-track location. For this, we used the approximated quadrant radius given by the 150 
IBTrACS v4 dataset. This dataset provides different types of radii depending on the considered isotach, for this study 151 
we used the 34-kt isotach as it corresponds to the lower-bound for the Tropical Storm status according to the Saffir-152 
Simpson hurricane wind scale (Taylor et al., 2010). Since the considered area of analysis falls above the 34-kt isotach, 153 
tropical depressions were not considered (exact partition of intensities is given at the beginning of the Results section). 154 
There are some missing radii values in the middle of TC tracks and in order to correct a simple linear regression was 155 
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applied. To illustrate the application of this methodology we present the study cases in the results and discussion 156 
section, for hurricanes Ophelia (2017) and Nadine (2012). From inside this area of analysis, we may retrieve the Chl-157 
a concentration and SST at their respective resolution. The analysis inside the considered area was performed using 158 
histograms, in which each pixel inside the 34-kt isotach contributes to that TCs histogram. 159 

To analyse the TCs’ impact on their passage, inspiration was taken from Kawai and Wada (2011), who computed the 160 
climatic monthly standard deviation of Chl-a on 0.25º grids over a 5-year study period. Here, we computed for each 161 
storm the daily standard deviation of both Chl-a and SST over their respective grids relative to the climatology over 162 
the same area (only the area impacted by the TC was considered) for the study’s complete time frame; this analysis 163 
was performed considering 30 days before and after each TC to allow then the analysis of an ideal window to compute 164 
the induced anomalies. To compute this ideal window, we searched for the maximum difference between the number 165 
of standard deviations over the climatological value before and after the storm.  166 

To compromise between having the maximum difference and ensuring a time window as close as possible to the storm 167 
(to minimize external factors to the TC), we performed a sensibility study on the length and location of the considered 168 
time window. First, we analyse the overall maximum difference in the 61-day period (including the day of the storm) 169 
and then search for a secondary maximum value that is within 10% of it considering a smaller sample of days, 170 
decreasing in groups of 5 days each time this search is made (e.g., the first iteration would be 25 days before and 30 171 
after, the second 30 before and 25 after, the third 25 before and after, etc.), until an optimum maximum difference 172 
value is identified. With this window defined, the induced anomalies are simply the difference between the daily 173 
values of Chl-a or SST after and before the TC. 174 

As an example of this methodology, Fig. 2 shows the Chl-a standard deviation over the climatological value in the 175 
case of Hurricane Nadine. In this case, only 15 days around the TC are shown for clarity. We can see that the maximum 176 

difference is obtained between 8 days before and 1 day after the storm (DChl-a max). However, when we take into 177 

account the compromise of considering windows located as close as possible to the occurrence of the TC over the 178 
region, we see that the value found between 4 days before and 1 day after is within 10% of the absolute maximum. 179 
This methodology is then applied to all 6-hour observations individually and for each TC, thus resulting in two groups 180 
of induced anomalies (per TC and per 6-hour observations) where we can study these with respect to the TCs averaged 181 
(per TC) or instantaneous (6-observations) characteristics. 182 

To address the possibility that some pixels are overlaid on top of each other, which would contaminate the analysis, 183 
as observed in the case of the slow erratic Hurricane Nadine (presented in the results and discussion section as a study 184 
case), we did not take into consideration the days in which the TC is over the aforementioned overlaid region. In these 185 
cases, the days considered are those when the TC has completely travelled over the area (i.e., that pixel is no longer 186 
inside the radius of influence of the TC). However, when we consider independent 6-hour observations, this caveat 187 
cannot be accounted for since we have no way of knowing if that area has been influenced or not by the TC before, 188 
for how long, or even if a future observation will impact the area.  189 
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 190 

Figure 2 - Schematic of the applied methodology for each TC. Black line shows the number of standard deviations from the 191 
climatological values for the area surrounding Hurricane Nadine. A detailed description of this methodology can be found 192 
in the text. 193 

As previously mentioned in the Data section, the interpolated data used for this study is expected to encounter some 194 
regions where clouds are to be expected due to the presence of the TCs. To account for this potential caveat, we looked 195 
at the uncertainties associated with the data before and after the TCs, as well as during the TC (e.g., day 0 in Fig. 2), 196 
to evaluate if there were clear increases in uncertainty for cloud covered situations.  197 

Two case studies were looked at in greater detail: Hurricane Ophelia (2017) and Hurricane Nadine (2012). The former 198 
was performed to assess the different impacts along the lifecycle of the storm, and different histograms were produced 199 
for smaller portions of the TC. The latter was made to analyse the possible increasing impacts the storm geometry 200 
could cause. Additionally, these study cases were used as validation for the interpolated “cloud-free” data, where a 201 
comparison was made between the non-interpolated and the interpolated “cloud-free” data described in the Data 202 
section. 203 

Results and Discussion 204 

Applying the mentioned methodology leaves us with a large pool of induced anomalies, from which we can now 205 
evaluate the distribution of anomalies for both the Chl-a and SST as shown in Figs. 3a and 3b in the form of histograms 206 
of induced Chl-a and SST anomalies, respectively. Both variables present a large impact after the passage of TCs, 207 
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with the Chl-a presenting a mean response of positive 0.050 mg m-3 and the SST showing a mean response of negative 208 
1.615 K. Figs. 3c-f show the corresponding distributions as a function of the cyclone’s intensities (Figs. 3c and 3d) 209 
and translation speeds (Figs. 3e and 3f). To make these distinctions, we chose only the high values (either regarding 210 
intensity or translation speed) to be those above the third quartile and the lower values to be those below the second 211 
quartile. 212 

Firstly, regarding intensity (Figs. 3c and 3d), we have the induced response of the most powerful intensities in orange 213 
and the weaker ones in blue. Regarding the impact as a function of intensity it is possible to observe that more powerful 214 
TCs tend to induce a stronger biological response than weaker ones, which have a mean response closer to zero. It is 215 
also important to note that the more powerful TCs have a response that is much more skewed towards extreme positive 216 
values of Chl-a. Fig. 3d also shows a great impact regarding different intensities in SST, in which even weaker TCs 217 
show a substantial mean response of -1.517 K and nearly all the analysed pixels showing negative induced anomalies. 218 
Important to note the nearly bimodal nature of this distribution, which can be attributed to both the earlier phase of 219 
TCs (more energy being drawn from the ocean) resulting in more negative SST values, and the less negative 220 
corresponding to the later part of TCs since baroclinic instabilities are more prevalent than the action of moist enthalpy 221 
flux from the ocean at this phase (Baatsen et al., 2015; Emanuel, 2003). Powerful TCs induced a more varied 222 
distribution of anomalies, with a mean response of -1.694 K. 223 

Regarding the different translation speeds, Fig. 3e shows that, for biological responses, faster TCs show a greater 224 
mean value of +0.060 mg m-3. This difference is not as expressive as the one in Fig. 3c. On the other hand, the SST 225 
response (Fig. 3f) seems to be weakly impacted by the TC’s translation speed, with slower TCs have a slightly stronger 226 
impact than faster ones, while the mean response values do not differ as much as the ones in Fig. 3d. Additionally, 227 
even if faster TCs do not affect the SST response as much as slower ones, the mean value is still close to what is seen 228 
in the general case in Fig. 3b, and most of the impact is towards negative SSTs. 229 
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 230 

Figure 3 - Histograms for the: a) Total Chl-a and b) SST induced anomalies; c) Chl-a and d) SST induced anomalies after 231 
weak (blue) and powerful TCs (orange); e) Chl-a and f) SST induced anomalies after slow TCs (blue) and fast TCs (orange). 232 
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Each subplot histogram presents the respective population mean value (μ) in a dashed black line, and the zero value on a 233 
grey line. 234 

To quantify these relations, Fig. 4 shows the storm-averaged induced anomalies compared to the averaged maximum 235 
wind and average translation speed. The linear regression is also shown for each of the comparisons, with nearly all 236 
results significant at the 95 % statistical level. According to these plots, only the translation speed in relation to the 237 
SST induced anomalies (Figs. 4d) did not show a significant relation at the 95 % statistical confidence level (marked 238 
by the dashed regression line). Regarding the mean wind (Figs. 4a and 4c), and therefore the TC’s average intensity 239 
within the Azores region, the linear regression showed significantly high values, upwards of 0.5 for Chl-a and -0.3 for 240 
SST induced anomalies. In the case of Chl-a, like observed in Fig. 3, the relation is positive while with SST this 241 
relation is negative. Considering the translation speed, the relation is equally positive and significant for biological 242 
responses (r = 0.416). 243 

 244 

Figure 4 - Linear regression of Chl-a (top panel) and SST (bottom panel) induced anomalies for each TC, respectively, when 245 
compared with average winds in knots (left column); and average TC translation speed in knots (right column). In each 246 
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plot the Pearson R is presented, and the regression’s significance is marked by the type of line used in the regression, with 247 
a dashed line representing non-significant at a 95 % confidence level, and a solid line representing a regression significant 248 
at the 95 % confidence level.  249 

Further analysis of other TC characteristics requires a different approach, Fig. 5 shows similar relations to Fig. 4, but 250 
considering 6-hour observations instead of total TC mean values. This is made to account for the possible error that 251 
averaging a whole TC may create since the cyclone’s characteristics may change substantially along its lifetime. This 252 
analysis, however, does not consider the possibility of superposition in pixels from observation to observation – i.e., 253 
from a TC that either moves slowly or whose track is more erratic, ending up covering the same area for several 254 
hours/days. This caveat was not present in Fig. 4 since we considered the TC lifetime as a whole and could then 255 
disregard the days of superposition. Using 6-hour observations, we can study several types of characteristics that 256 
change between observations, such as the impact area or the time of season when it occurred, adding to the already 257 
seen maximum wind speed and translation speed. 258 

 259 

Figure 5 – Same as in Fig. 5 but considering individual 6-hour observations. Two columns are added: (b) and (f) with respect 260 
to the area affected by that observation; and (d) and (h) with respect to the time of the season when that observation 261 
occurred. 262 

Considering then the maximum wind speed per observation (Fig. 5a and 5e), both variables are significantly related 263 
to this characteristic, which is expected considering the analysis made in Figs. 3 and 4. As previously noted in the 264 
form of histograms in Fig. 3, most observations show a positive impact regarding Chl-a and, especially for SST as 265 
most fall below zero, a negative change after a TC. The affected area (Figs. 5b and 5f) also presents a significant 266 
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relation, although less intense than that observed with the maximum winds. However, it should be noted that this 267 
variable is linked to the mean winds, since more intense cyclones tend to be larger than less powerful ones, but also 268 
to the storm phase, since storms nearing their post-tropical transition tend to grow larger (Knaff et al., 2014). 269 
Translation speed is the less correlated variable from those studied (Fig. 5c and 5g), with only the biological response 270 
seeing a positive relation to this characteristic, agreeing with the previous results from Figs. 3 and 4. The time period 271 
in the season in which the TC occurs seems to also be important for the magnitude of the average induced anomaly 272 
seen in both variables (Figs. 5d and 5h) with late occurrences in the season showing greater responses respective to 273 
the signal of induced anomalies seen in Figs. 3a and 3b. Lastly, a geographical correlation was concluded not to be 274 
relevant for this study (not shown), as both variables were correlated with both latitude and longitude, and only 275 
negligible and non-significant relations were found. 276 

The results presented so far in this study result from interpolated “cloud-free” data and should be quality assured to 277 
guarantee the integrity of the conclusions made previously. As mentioned in the Data section, CMEMS provides 278 
measures of uncertainty for the used Chl-a and SST datasets, thus, we have explored these values at different periods 279 
as a first step in validating the quality of the data. Figure S1 shows the associated uncertainty with respect to the 280 
absolute observed values both for Chl-a (top panels) and SST (bottom panels) for three different periods surrounding 281 
a TC event (before, during, and after), and a randomly drawn sample of the same size as the data analysed in the other 282 
subplots. It becomes immediately clear from these plots the considerably different magnitude of uncertainty for this 283 
data, with Chl-a (Figs. S1a-d) ranging from 25 % to 45 % considering all moments, while SST (Fig. S1e-h) does not 284 
commonly surpass 0.4 % with a mean error around the 0.25 %. The randomly drawn sample of data gives a rough 285 
idea of the average uncertainty we can find in this dataset, with Chl-a (Fig. S1a) presenting values around 35 % and 286 
SST (Fig. S1e) around 0.25 %. Additionally, we should consider three distinct moments of analysis, namely before 287 
and after the TC passage, which corresponds to the data used to compute the induced anomalies, and during the TCs, 288 
which should be the moment with most cloud-cover over the studied regions. Looking first at Chl-a (Figs. S1b-d) we 289 
see the progression from near normal uncertainty before the TC (Fig. S1b) to an increase during TCs (Figs. S1c), 290 
maybe due to the higher cloud-covered area in this situation, after the storm (Fig. S1d) however, the uncertainty 291 
substantially decreases reaching values below the randomly drawn sample (around 30 % compared to 35 %). For the 292 
SST (Figs. S1f-h), the associated uncertainty does not fluctuate substantially, constantly being below the 0.3 % mark. 293 
Additionally, it is noticeable in both variables the variation that has been identified before, with Chl-a increasing and 294 
the SST decreasing. 295 

Visible in Figs. 4 and 5 are two case studies are marked: Hurricane Ophelia in 2017 (red squares) and Hurricane 296 
Nadine in 2012 (green squares). These case studies were chosen based on the presented characteristics, coupled with 297 
the amount of sampling data within the region. Hurricane Ophelia (2017) was chosen due to its large intensity in the 298 
region (Red squares, Fig. 4 and 5), reaching a category 3 intensity in the Saffir-Simpson hurricane wind scale, 299 
something abnormal for the region (Lima et al., 2021). The complete TC track can be seen in Fig. 6a inset. Besides 300 
the large intensity, Ophelia’s genesis took place inside our study region which enabled us to study different phases of 301 
the storm and its impacts on the ocean surface in the region. Even though hurricane Ophelia was so intense, this storm 302 
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impacted a very small area (Figs. 5b and 5f) particularly when compared with the other case study, Hurricane Nadine 303 
(2012). Hurricane Nadine (Fig. 7a) was chosen due to its large sampling, relatively high intensity (maximum category 304 
1) and great impact area (second highest in this study, considering cumulative area of impact). The large impacted 305 
area was amplified by the geometry of the storm's track (i.e., many overlaid observations). Only the final stage of 306 
Hurricane Nadine was caught within the study region, producing an ideal case study to analyse the impact of a less 307 
intense storm that heavily impacted a particular region due to its geometry. 308 

 309 

Figure 6 - Case study for Hurricane Ophelia, in 2017, with its track on the left panel (scatter marker colour scheme 310 
represents intensity as in Fig. 1), as well as the affected area around the cyclone (marked as the 34-kt isotach) with shading 311 
according to the number of pixels overlapping. Inside, there is an inset with the full track and the region of study marked 312 
with a red box. Ophelia track is divided in three phases: Histograms show induced Chl-a (b) and SST anomalies (c), by 313 
phase of the storm (colours) and in total (grey). The phase of the storm is marked in (a) as triangles (genesis), squares 314 
(maturing), and stars (mature) and correspond to the aforementioned colours in (b) and (c).  315 

For the case study of Hurricane Ophelia (2017), three different phases of the storm were studied, corresponding 316 
approximately to: cyclogenesis (Fig. 6a, triangles), maturing (Fig. 6a, squares), and mature hurricane (Fig. 6a, stars). 317 
There are 23 total observations; the first two phases encompass 8 observations and the last one 7. Each of these phases 318 
has its own histogram in Figs. 6b and 6c (shown in colours), for the induced Chl-a and SST anomalies, respectively. 319 
The histograms are inserted in a larger one (in grey), representing the total induced anomalies caused by Ophelia and 320 
therefore, the sum of all three phases will result in the bigger histogram. Regarding the Chl-a induced anomalies (Fig. 321 
6b), Ophelia seemed to have a higher impact towards the end of its track in the region of study, when the storm had 322 
the highest intensity and the mean values of the induced anomalies increased along the track. Even at the storm’s 323 
genesis, the induced anomalies were mostly positive with a mean value of +0.006 mg m-3 reaching +0.048 mg m-3 in 324 
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the most intense phase. In contrast, the SST induced anomalies (Fig. 6c) present the highest mean response (-1.333 325 
K) at the initial phase. The SST induced anomaly is then seen decreasing as the storm goes on, with the last phase 326 
weighing the most in the general distribution (as was seen for the Chl-a).  The highest SST impact of the storm during 327 
the initial phases may reflect that this is the phase of the storm with highest interaction with the ocean, regarding 328 
thermodynamic exchanges (Emanuel, 2003).  329 

As a further insight to Ophelia’s interaction with the ocean surface, Fig. S3 shows the mean modulus of wind stress 330 
on the surface, by day of analysis (Fig. S2a) and by Ophelia’s 6-hour observations (Fig. S2b). Marked in both these 331 
plots are the analysed periods in corresponding colours and marker type to Fig. 6, these plots exceed the original study 332 
region, in order to fully encompass the TCs entire lifetime. There is a significant relation between the increased mean 333 
modulus of the wind stress and the evolution of the TC in time. This increase may be related to the increase in the 334 
storm’s intensity, as Ophelia reaches its maximum intensity, so does the observed interaction with the ocean, 335 
decreasing afterwards as the storm moves north-eastward and undergoes post-tropical transition. This observed 336 
interaction with the ocean might be the reason for the maximum induced anomaly of Chl-a being observed at the end 337 
of Ophelia’s passage over the study region, inducing the mixing of the superficial layer. 338 

 339 

Figure 7 - Case study for Hurricane Nadine, in 2012, with the left panel the same as in Fig. 6. For Nadine, plots (b) and (c) 340 
pertain to the average induced Chl-a and SST anomalies, respectively, based on the amount of superposition verified in 341 
each pixel. 342 

Hurricane Nadine’s (2012) case study shows very different behaviour and impact during its lifetime to that of 343 
Hurricane Ophelia. In this case, we present scatter plots of the averaged induced anomalies for the areas (Figs. 7b and 344 
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7c) corresponding to the superposition of pixels, i.e., the number of repeated observations inside the 34-kt isotach due 345 
to storms track geometry (as seen in Fig. 7a). The conclusions drawn regarding the Chl-a and SST induced anomalies 346 
are similar and significant in this case study: The more time the TC spent over a certain area the more this area became 347 
affected by its passage, with large anomalies registered in both variables (over 0.040 mg m-3 and -3.500 K for Chl-a 348 
and SST, respectively), and all cases being positive (negative), for Chl-a (SST). It is possible to hypothesise that the 349 
translation speed also had a relevant role in these results, with a slower TC (Nadine was one of the slowest TCs in this 350 
study, as seen by the closer observations in Fig. 7a and by Figs. 4 and 5) spending more time over a region and 351 
therefore producing larger anomalies. 352 

 353 

Figure 8 – Comparison between interpolated “cloud-free” data (top row), and non-interpolated data (bottom row), for 354 
Hurricanes Ophelia (2017) and Nadine (2012). Values for non-interpolated data were obtained with the same methodology 355 
as the ones presented before and represent the exact same days of analysis. Mean values for each histogram are presented, 356 
with black histograms representing the situation before the TC and the grey ones the situation after. 357 

For these two case studies, we considered an additional quality assessment exercise, by comparing the interpolated 358 
“cloud-free” data to similar non-interpolated datasets. Figure 8 shows the histograms obtained for Ophelia and Nadine 359 
for the situations before and after the TC, independently, since non-interpolated data cannot be correctly subtracted as 360 
corresponding pixels may not be available. Overall, and despite the different number of observations considered, the 361 
Chl-a presents the same average response between the different types of data for both TCs, with non-interpolated data 362 
having an observed mean increase of 0.044 mg m-3 for Ophelia (Fig. 8e) compared to 0.041 mg m-3 for interpolated 363 
data (Fig. 8a), with these values representing the difference in the mean values shown in Fig. 8. Likewise, non-364 
interpolated data reveals an increase of 0.035 mg m-3 for Nadine (Fig. 8g), compared to 0.033 mg m-3 for interpolated 365 
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data (Fig. 8c). Looking at the histograms, the shape of the data itself does not differ too much between the different 366 
types, with peaks more or less located over the same values and distributions ranging the same values. However, for 367 
the SST variable, despite both TC’s present relatively similar decreases between both types of data, the non-368 
interpolated data has a wider range of values, and the peaks do not correspond so closely. This, however, may be due 369 
to the process of data collation. In this process, some pixels are averaged with incorrect ones, resulting in unrealistic 370 
values in some areas. This can be identified by the unrealistic SST seen in Figs. 8f and 8h, with values that do not 371 
support TC development around 18-19ºC and, so far as reaching 0ºC. Nonetheless, interpolated SST data does show 372 
the less uncertainty as verified before as the process of interpolating the data fixes this issue (Fig. S1). 373 

Final remarks 374 

The current study provides the first general assessment of the bio-physical oceanic response to the passage of TCs in 375 
a relatively low cyclonic activity area such as the region near the Azores archipelago. It is important to stress the 376 
efficiency of identifying the precise timing and associated spatial impacts of all TCs using remotely sensed products 377 
that rely on interpolated areas to fill existing gaps due to cloud coverage or lack of satellite imagery. 378 

Over the Azores region, it was generally identified the existence of a bio-physical response after the passage of a TC 379 
was identified from the analysis of Chl-a and SST datasets, which produced signatures of positive Chl-a and negative 380 
SST induced anomalies. This signature is more intense for the SST analysis, in which the passage of a TC results in 381 
nearly all observed pixels to have a negative (i.e., cooling) induced anomaly. On average, TCs produced positive 382 
anomalies in the order of 0.050 mg m-3 regarding Chl-a and a mean SST cooling of 1.615 K. 383 

The more powerful TCs tend to produce more intense bio-physical oceanic responses, which agree with previous 384 
literature on the topic (Chacko, 2019; Price, 1981; Price et al., 1994). TC translation speed was also found to be 385 
associated with the induced anomalies, although the relationship was found to be positive and significant in the case 386 
of Chl-a while it was not significant at the 95 % statistical confidence level for SST. The impacted area was also found 387 
to be significantly linked to the oceanic response. However, the sensitivity to the impacted area can rise due to several 388 
other factors: slower TCs impact larger areas (due to track geometry); more intense TCs impact larger areas (Knaff et 389 
al., 2014); and TCs nearing post-tropical transition are generally larger (Knaff et al., 2014).  These effects, either 390 
individually or combined, can affect the induced anomalies at different levels. Additionally, the oceanic response was 391 
found to be increased later in the season, with significant relation in both variables, this may be due to the seasonal 392 
variability of the variables themselves, as the normal climatological values for that time of the year is exceeded in 393 
exceptional TC conditions (Amorim et al., 2017; Lima et al., 2021) and the oceanic response may help the impacted 394 
area return to expected values in both variables, in respect to that time of the year. 395 

Two particular case studies were evaluated in further detail concerning hurricanes Ophelia (2017) and Nadine (2012). 396 
Hurricane Ophelia was a particular case as it corresponds to the only major hurricane in this study region and had 397 
almost its entire track inside this area. Ophelia showed strong induced anomalies for both Chl-a and SST variables. 398 
Regarding Chl-a, Ophelia had a stronger impact towards the end of its track within the region, revealing that its 399 
intensity played a key role in inducing Chl-a anomalies, with the mean modulus of wind stress revealing a positive 400 
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and significative relation to the evolution of the storm and therefore its intensity. On the other hand, Ophelia had a 401 
stronger impact on the SST in its cyclogenesis, probably related to ocean-atmosphere thermodynamic exchanges 402 
during its maturing. Hurricane Nadine, one of the slowest TCs in this study, showed more prominent anomalies, 403 
especially regarding SST. In this case, considering the low translational speed of Nadine, the objective was to study 404 
the impact that consecutive overlaid observations had on the induced anomalies. It is evident through this analysis that 405 
the impact increases with the number of superposed observations, implying that Nadine’s slow translation speed and 406 
particular track geometry played a key role in creating such anomalies. 407 

This study allowed for both the quality control of the remotely sensed “cloud-free” Chl-a and SST multi-sensor 408 
products by comparing them to similar non-interpolated products, and in the sense that it identified expected changes 409 
in the variables in areas covered by TC clouds and established crucial relations with some principal TC aspects. Future 410 
studies should aim to understand the inherent physical mechanisms that affect the ocean during and after the passage 411 
of a TC to better comprehend the associated induced anomalies. 412 
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