Transforming “Living Labs” into :”Lighthouses”: a promising policy to achieve land-related sustainable development?

Johan Bouma
Prof. em. of soil science, Wageningen University, 6708 Wageningen, the Netherlands.
Correspondance to: johan.bouma@planet.nl

Abstract

The until that time rather abstract debate about sustainable development has been focused by introducing the United Nations Sustainable Development Goals (SDGs) in 2015 and the related European Green Deal in 2019. Restricting attention to agriculture, proposed targets and indicators are, however, not specific enough to allow a focus for developing innovative and sustainable management practices. Clarity is needed because farmers are suspicious of Governmental actions defining environmental rules and regulations. The European policy arena has recognized this problem and has presented the Mission concept that requires joint learning between farmers, scientists and citizens. For the soil Mission, “Living Labs” are proposed that should evolve into: “Lighthouses” when environmental thresholds for each of at least six land-related ecosystem services are met. This presents “wicked” problems that can be “tamed” by measuring ecosystem services in a given :”Living Lab” that are associated with the land-related SDGs. Thresholds with a regional character are needed to separate the “good” from the “not good enough”. Contributions by the soil to ecosystem services can be expressed by assessing soil health. By introducing the Mission concept, the policy arena challenges the research community to rise to the occasion by developing effective interaction models with farmers and citizens that can be the foundation for innovative and effective environmental rules and regulations. We argue and illustrate with a specific example, that establishing :”Living Labs” can be an important, if not essential, contribution to realizing the lofty goals of the SDGs and the Green Deal.

Keywords: missions, soil health, modeling, SDGs, Green Deal. transdisciplinarity
Highlights:

1. Living Labs can realize transdisciplinarity but only when established in practice.
2. Land-related SDG targets need specification by defining ecosystem services.
3. Lighthouses can make crucial contributions to the sustainability discourse.

1. Introduction.

As society faces serious environmental problems, the presented storylines are now rather confusing for land users and the public at large. Different environmental issues receive often separate attention in the media: greenhouse-gas emissions in the context of climate change; ground- and surface water pollution; polluted soil resulting in unhealthy crops, nature deterioration, biodiversity decline and land degradation to mention just six issues of high societal importance. How to deal with this?

To structure and clarify the debate, the policy arena launched a welcome series of initiatives, such as the UN Sustainable Development Goals (SDGs) in 2015 (https://sdgs.un.org) that list seventeen goals and the associated EU Green Deal in 2019 (GD) that basically follows the SDGs... (https://ec.europa.eu/ghreendeal). However, even though goals and associated targets and indicators are defined for the SDGs and the GD, hardly any attention is as yet being paid as to how implementation of all these lofty goals should be realized in the real world. The EC is, however, certainly aware of current communication gaps between land users (where farmers are the largest group that will be focused on hereafter) and the scientific and policy arenas by promoting the Mission concept: "a new role for research and innovation and a new relationship with citizens" in their Horizon Europe Research and Innovation program 2021-2027 (EC, 2021, Dro et al, 2022). The Mission for "A Soil Deal for Europe" suggests establishment of "Living Labs" and "Lighthouses" on farm level (defined as: "spaces for co-innovation, through participatory, transdisciplinary systemic research"). These "Living Labs would contribute to Green Deal targets for sustainable farming, climate resilience, biodiversity and zero-pollution". When
contributions are successful by meeting their particular threshold values, a “Lighthouse” is established to be used for education and communication purposes focused on other farmers and the public at large.

The lack of operational implementation plans for Living labs presents a real problem because farmers have to be convinced to see a clear connection with sustainable development that most of them would support, in principle, when clearly articulated in a manner that would recognize their entrepreneurial activities. The fact that some environmental goals are not directly defined in current regulations but, rather, in terms of means to reach the goals, increases the confusion. For example, water quality (SDG6, to be discussed later) is not directly addressed in the Netherlands by measurement of water quality but in terms of the soil nitrogen content in the Fall at the start of the leaching season or in terms of a critical level of cattle density (Bouma, 2011, 2016). Such indirect values have quite different effects in different soils and distract attention from the real issue at stake which, in this case, is water quality.

Citizens also receive mixed messages: the media, often inspired by action groups, seem to focus on environmental problems associated with agriculture: pollution of water, decrease of biodiversity, nature deterioration and land degradation. Little attention is paid to existing farming systems that successfully satisfy both economic and environmental goals. The agricultural community and their leaders and the research community are ineffective in communicating such successful efforts.

How to move beyond the current state-of-the-art? The policy arena, represented here by the United Nations and the European Union, has clearly presented a challenge to the science community that should now rise to the occasion. An open discussion on the future role of research, interacting with stakeholders, citizens and the policy arena is urgently needed, if only because the SDGs should be reached by 2030. The large body of literature on interactive, transdisciplinary research (e.g. Bunders et al, 2011, Functowicz and Ravetz, 1993, Habermas, 1884, Hessels et al, 2008, Hoes et al, 2008, Peterson, 2009, Tress et al, 2001, van Mierlo et al, 2010, Wenger et al, 2002) should now result in real practical results.

The issue will be addressed here from four perspectives focusing on: (i) the farmers; (ii) the research community; (iii) public perceptions, and: (iv) the policy arena. Reference is made to a published case study, illustrating a proposed roadmap.
This sequence reflects the need for a bottom-up approach to jointly develop management systems on different types of soils in “Living Labs” that satisfy the targets and indicators of the SDGs and the goals of the GD thereby creating: "Lighthouses”. Then, effective policies with transparent rules and regulations should follow being inspired by results obtained in such :“Lighthouses” and results should be widely shared as inspiring examples aimed at colleague farmers and citizens at large using modern interactive communication methods.

2. Engaging the farmers

Farmers are confused and ill-informed about current environmental rules and regulations and about the overall thrust of environmental policies aimed at achieving sustainable development. They feel that current regulations defacto act as suffocating barriers hampering their entrepreneurial activities as they appear to reflect a lack of understandig among bureaucrats of the adaptive requirements of modern farming. Of particular concern are: (i) economic prospects; (ii) unclear environmental regulations, and (iii) lack of independant advice. (e.g. Bampa. et al, 2019; Schroder et al, 2020; Bouma, 2021). A recent I&O survey of dairy farmers in the Netherlands showed that 88% did not trust government!

But if farmers don’t adopt appropriate practices, environmental laws and regulations are bound to remain a dead letter. Veerman et al (2020) report that 60-70% of European soils are degraded in various ways. But after decades of research, technical solutions are well known in many cases but they are apparently not effectively communicated to practitioners. More effective communication about environmental goals in the context of achieving sustainable development is therefore needed with both farmers and citizens.This is necessary if only because there is now conflicting information on a wide range of farming systems, each one supported by often highly vocal supporters, often operating in the social media: organic, biological-dynamic, circular, regenerative, nature-inclusive, enriching, high-tech precision and others, many of which only covering parts of the SDG spectrum.

More clarity can be achieved by focusing on SDG and Green Deal targets and their indicators as land-related SDGs are strongly affected by agricultural practices and soils play an important role (Lal et al., 2021). When focusing on agriculture, primary attention
will not only be on the traditional role of producing healthy crops to combat hunger (SDG2 & SDG3), but also on clean ground- and surface water (SDG6), on increasing carbon sequestration and limiting greenhouse-gas emissions for climate mitigation (SDG13) and on reduction of land degradation and biodiversity preservation (SDG15). Also, energy use (SDG7) and sustainable production and consumption (SDG12) are relevant, where the latter has much in common with SDG2 & SDG3. But current targets and indicators are broadly defined and don’t allow direct measurement. For example, SDG target 2.4 (abridged): “by 2030 ensure sustainable food production systems and implement resilient agricultural practices that help maintain ecosystems”. The associated indicator: “proportion of the agricultural area under productive and sustainable agriculture” represents a topdown effort towards quantification but this will be difficult to assess when there are no clear methods and quantitative criteria for “sustainable agriculture” that farmers can apply in order to adapt their management. The same lack of indications as to how goals are defined in practical terms applies to the important recent Berlin declaration of 68 ministers of agriculture emphasizing in 24 points the crucial role of soils in contributing to food security and environmental quality (GFFA, 2022). Clearly, the scientific community is challenged to produce clear procedures to assess the SDG targets and the establishment of “Living Labs” and “Lighthouses” provides a clear starting point, linking farmers with the scientific community.

In this context, measuring and judging ecosystem services (es), defined as: “services contributed by the ecosystem to mankind” (https://www.millenniumassessment.org), can be a suitable bottom-up procedure to specify the current general indicators for the various targets. (e.g., Bouma, 2014; Keesstra et al., 2016). For example, part of SDG2 is defined by the es: production of biomass; part of SDG6 by es: transformation of agrochemicals; part of SDG7 by es: reduction of energy use. SDG13 by es: reduction of greenhouse-gas emissions and by carbon capture. Part of SDG 15 by enhancing biodiversity and combatting land degradation. Note that ecosystem services fit into a much broader socio-economic societal context of the various SDGs and they therefore contribute to SDGs providing thereby the desired “clear and concrete objectives” as required by EC (2021).

The various ecosystem services are strongly interrelated and some form of multifunctional soil use and management has therefore to be realized in “Living Labs”
that will have to be very different in different regions. Distinction of ecosystem services
at farm level in "Living Labs" has at least two advantages: (i) it allows quantification of
as yet broadly formulated topdown indicators for the various targets of the SDGs as
discussed above, and (ii) the European Union proposes financing of provided
ecosystem services as part of their new Common Agricultural Policy 2021-2027 with a
budget of 350 billion €. In fact, farmers are now like chess players, required to perform
simultaneously on six separate SDG playing boards, an impossible act that needs to
be unified into a comprehensive single approach. And while the rules of the game for
cheese are clear, the rules for sustainable development are as yet rather murky.
Where does all this leave the target group of land users, of which, again, farmers
form by far the largest group? In the Netherlands there are appr. 50000 farmers with
different specializations and individual approaches ("farming styles") based on
various forms of adaptive management (e.g. Van der Ploeg et al, 2004). Interaction
between scientists and farmers in “Living Labs” can therefore only be successful
when the actual farming system on any given farm is studied first and when adoption
of existing research results and recommendations for possible new research are
based on the features of the particular “Living Lab” being analysed. In fact, every
farm acts like a "Living Lab"! This implies a need, based on a gradually developing
trustful relationship, to compromise because neither farmers nor researchers have all
the, certainly not perfect, answers. Definition of important ecosystem services in line
with the SDGs and the GD also requires regional thresholds to distinguish the "good"
from the “not yet good enough". (see section 6).

Returning to the three major points of farmer’s concerns, discussed above, when
ecosystem services are measured and assessed, the farmer will know which
thresholds will have to be met and this will present a welcome and clear: "point at the
horizon". Also, the joint work in "Living Labs" will provide focused, clear information
that is not necessarily commercially nor ideologically inspired. Whether or not
economic goals are reached depends on market conditions and consumer choices
and are beyond the scope of the environmental issues. However, food products
produced in "lighthouses" are bound to be commercially more attractive than if this is
not the case.

3. Research approaches
The role of the scientific community in addressing the SDGs appears to currently lack a practical focus. No lack of theoretical analyses, as cited in the introduction. Clearly, to reach the SDGs, an interdisciplinary systems approach is needed. Separate scientific disciplines, such as agronomy, hydrology, climatology, soil science and ecology tend to follow their own disciplinary regimes, each one also with limited contacts with disciplines like economy and sociology. Individual disciplines are essential to contribute to the needed broad systems approach but separate disciplinary contributions cannot do the job by themselves. So far, this fact has not widely been internalised by the various scientific disciplines. However, the proposed definition of soil health (Veerman et al, 2020) clearly reflects the link of soils with ecosystem services and the SDGs and the Green Deal: “the continued capacity of soils to contribute to ecosystem services in line with the SDGs and the Green Deal”.

Of course, widely applied and well tested simulation modeling of the soil-water-atmosphere-plant system is a de facto illustration of an interdisciplinary effort, as soil scientists, hydrologists, climatologists and agronomists/ecologists have to provide basic data for the models (e.g., White et al., 2013; Kroes et al., 2017; Holzwirth et al., 2018; Bieger et al., 2017). Modeling is therefore a key methodology when assessing ecosystem services.

Most research is of the “tame” type: a problem and a hypothesis are formulated, experiments are made and the hypothesis is either accepted or rejected. Acceptance always implies a probability, of, for example, 95%. This implies that in 5% of the cases the hypothesis is not true. This explains that “the truth” does not exist in scientific experiments, which is difficult to understand by the public and by more than a few politicians. But the research community does not only face this “truth” issue but also the challenge of dealing with different types of knowledge from different scientific disciplines, politicians and the public at large. In this context, the concept of “wicked problems” has been applied in policy studies for at least fifty years considering conditions where several different and conflicting goals have to be realized at the same time as is the case with the SDGs (e.g. Rittel and Webber, 1973, Peterson, 2009). Termeer et al (2019) have analysed the concept that has been defined as: “a class of social system problems which are ill formulated, where: (i) information is confusing; (ii) there are many clients and decision makers with conflicting values, and (iii) the ramifications in the whole system are thoroughly confusing”. More simply:
"lack of consensus on problem definition, and lack of consensus on solutions". Or:

"there are no solutions in the sense of definite and objective answers". Bouma et al (2011) analysed “wicked” problems in the context of future land use policies by defining various options from which a selection can be made.

Noordergraaf et al (2019) point out that the way people experience problems and practices are complex and may involve a mix of emotions, divisions, secrecy, competition, resistance and distrust. They prefer to talk about “wicked situations", rather than “wicked problems”. Be that as it may, when defining ecosystem services the research community can, in our view, “tame” such “wicked problems” by providing measured data and thresholds for ecosystem services in the SDGs. Available methods can provide part of the data but also new research is needed, while defining thresholds still needs much future attention (see section 6).

4. Engaging the public

People show increasingly individualistic behavior in the information age where social media play an important role and this results in criticism of governments issuing rules and regulations that are experienced as being overly restrictive and topdown. Critical opinions about government actions, that often remained isolated in the past, become more visible now as they are embraced by social media forming isolated “bubbles” based on mutual confirmation of critical thoughts, also leading to major and disruptive demonstrations and protest actions. There clearly is a widening gap between government and the people in many countries.

How to deal with different forms of knowledge when attempting to improve communication between citizens and the policy arena, with science acting as a possible intermediary?

First of all, different knowledge levels can be distinguished. Figure 1 (Bouma et al, 2011) shows two vertical axes: qualitative versus quantitative and empirical versus mechanistic. Level K1 represents tacit knowledge by practitioners and interested citizens. K2 moves to the expert level, while K3 and K4 represent increasing levels of scientific insights. K5 is the domain of cutting edge research. Most soil research is focused on publishing K5 results in international refereed journals if only to advance scientific careers. But if research has to reach stakeholders and the policy arena, such results will not register. Figure 1 represents the challenge of realizing effective
research in “Living Labs” where K1/K2 knowledge will feed and inspire K3/K4/K5 research, while the latter will increase tacit K1/K2 knowledge. The two-way arrows in Figure 1 are essential to realize joint development of knowledge in “Living Labs”.

Figure 1: Schematic representation of five types of knowledge, as discussed in the text.

Bouma et al. (2015) showed that environmental studies can sometimes be resolved by applying available knowledge (often of the type K3-K5) and that the Pavlov reaction of researchers asking for new research funds when a problem or question is raised is not always justified. It should be based first on an application of available expertise, showing gaps that justify new research (section 6).

But aside from the knowledge level, communication among people is also affected by the perception of knowledge where three aspects can be considered (Bouma, 2005): (1) opinions are “true”, as defined by objective, quantitative standards; (2) they are “right” when they agree with established norms of groups of people, and (3) they are “real” when they correspond with personal, individual feelings. In short, respectively: “IT”, “WE” and “I”.

A first priority is joint learning of individual scientists and farmers in “Living Labs” combining the respective “I” levels that will usually consist of lower K values for the farmers and higher ones for the scientists. Each group will have their own impressions of what is “true” at the “IT” level. Listening to different opinions and effective dialogues can result in a convergence of the: “IT” issue. When successful interaction, built on gradually increasing mutual trust, results in “Lighthouses”, the
“WE” can come in, not only relating to other farmers but to groups of interested citizens as well.

Clearly, communication should focus on the process by which the various “I”s, all of them with specific ideas about “IT”, can evolve into a shared “WE” of a majority of the people, realistically not all of them.

5. Policy development

Current environmental rules and legislation in Europe focus on separate issues. For example, the EU Habitat Directive (http://data.europa.eu/eli/dir/1992/42/oj) focuses on nature and has defined protected areas in the NATURA 2000 network in Europe. The EU Water Guideline (http://data.europa.eu/eli/dir/2000/60/2014-11-20) pays only attention to water quality. Other Directives dealing with greenhouse gas emissions, biodiversity and soil health are likely to follow in future.

But, as discussed, all ecosystem services associated with the separate SDGs have to be satisfied at the same time and considering them separately can only be a first step. How to combine the separate judgements about ecosystems into a general conclusion about sustainable development? Defining threshold values for each ecosystem service allows a selection between services provided by a given “Living Lab”, that are satisfactory versus those that are not. Only when all services satisfy their particular threshold values, can a “Living Lab” transform into a “Lighthouse”, the ultimate objective (see also section 6).

But to establish effective future environmental policies is not only a technical matter focused on defining and assessing ecosystem services but needs to acknowledge the current communication problems where “trust” plays an important role. When environmental-oriented organizations are trusted, effective implementation of innovative management, focused on sustainable development, are potentially more successful (e.g. Gordon-Arbuckle et al, 2015). Then, as discussed in section 4, policies are successful when a majority of people (“WE”) feel that policies are “right”. There will always be a, probably and hopefully, small group that does not agree no matter what is being proposed. They can best be ignored.

Policies that focus on measurement and assessment of ecosystem services, as discussed above, should be convincing to farmers and citizens alike as their relation-
ship with sustainable development can clearly be demonstrated. "Lighthouses" can play a central role here, certainly when presented with modern communication techniques where “storylines” can be quite effective (e.g. Bouma, 2020).

6. A case study

Discussions so far are summarized in Figure 2. “Living Labs” receive information from farmers, scientists and citizens and have to consider existing environmental rules and regulations. Ecosystem services are determined to specifically define existing environmental targets for the various SDGs and when they meet regional thresholds, a “Lighthouse” is established. If not, the activities at the “Living Lab” have to continue. “Lighthouse” information is communicated to colleague farmers, citizens and to the policy arena with the objective to improve information exchange, future regulations and public information.

Figure 2 A schematic representation of processes and interactions involved when transforming “Living Labs” into “Lighthouses” (see text).

An exploratory case study was made for an arable farm on calcareous light clay soils in the Netherlands, testing the analysis articulated above. Details are presented by Bouma et al (2022). Results are summarized in Tables 1 and 2.

When assessing six ecosystem services for this “Living Lab”, three services could be assessed. Biomass production can be judged by comparison with local yields but an
independent estimate based on modeling water-limited yields (Yw as defined by van Ittersum, 2013) is preferable. 80% Yw is considered as a threshold. Soil and water pollution can be assessed by applying existing rules and regulations containing critical thresholds. Land degradation is characterized by soil health to be discussed next. Three ecosystem services could, however, not be assessed. The quality of ground- and surface water was not measured on-farm but only at some distance. This can easily be corrected, preferably by installing automatic monitoring equipment, but lack of specific data in this case had to result in a negative judgement. Water quality indicators and thresholds are provided by legislation in contrast to greenhouse gas emissions, that can be estimated by modeling, and biodiversity preservation where targets and threshold indicators have not yet been defined. Biodiversity has a strong regional component and whatever is required on farm level, let alone corresponding thresholds, are as yet undefined. In conclusion, this “Living Lab” does not yet qualify as a “Lighthouse”. Bouma et al (2022) emphasize the need for modern sensing technology to improve measurement of soil characteristics and greenhouse gas emissions and for attention to develop rapid, user-friendly on-site tests.

<table>
<thead>
<tr>
<th>Ecosystem service</th>
<th>Indicator</th>
<th>regional threshold</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDG2: biomass production</td>
<td>local yields and Yw</td>
<td>80% Yw</td>
<td>positive</td>
</tr>
<tr>
<td>SDG3: pollution</td>
<td>EU & local reg.</td>
<td>EU & local reg.</td>
<td>positive</td>
</tr>
<tr>
<td>SDG6: water quality</td>
<td>EU & local reg.</td>
<td>EU & local reg.</td>
<td>negative</td>
</tr>
<tr>
<td>SDG13: greenhouse gas em.</td>
<td>not defined</td>
<td>not defined</td>
<td>negative</td>
</tr>
<tr>
<td>SDG15: biodiversity pres.</td>
<td>not defined</td>
<td>not defined</td>
<td>negative</td>
</tr>
<tr>
<td>SDG15: land degradation</td>
<td>soil health</td>
<td>does not apply</td>
<td>positive</td>
</tr>
</tbody>
</table>

Table 1. Ecosystem services determined for a “Living Lab”, an arable farm on calcareous light clay soils in Flevoland, the Netherlands (from Bouma et al, 2022). Conclusion: this “Living Lab” does not yet qualify as a “Lighthouse”.

Table 2 shows that the soils at this particular “Living Lab” are healthy, based on judging a number of indicators that reflect conditions favorable for root growth (Veerman et al, 2020). As soil biodiversity is not yet defined, in terms of indicators, let
alone thresholds, the organic matter content is applied here as a (poor) proxy value. Distinction of different soil types is important because carbon dynamics vary significantly among soil types. Bouma et al. (2022) emphasize the need to develop more operational methods to measure bulk density and organic matter contents, applying available sensing techniques that rapidly produce many data while the traditional laboratory analyses based on soil samples are costly and time consuming. Besides, small core samples are not representative for many structured soils, resulting in high variabilities among replicate samples which makes comparisons with thresholds difficult if not impossible.

Overall, the applied analysis of this particular farm has provided clarity on goals to be achieved and on the role of soils. When certain ecosystem services don't meet their threshold, application of innovative forms of management is needed to be derived by Lighthouses for this particular type of soil, by literature or by new on-site Living Lab research. When criteria for a Lighthouse are met, the farm qualifies for support measures, such as those provided by the Common Agricultural Policy of the European Union, as discussed above.

<table>
<thead>
<tr>
<th>Soil-health indicator</th>
<th>actual value</th>
<th>threshold</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil pollution: EU& local reg.</td>
<td>below threshold</td>
<td></td>
<td>positive</td>
</tr>
<tr>
<td>Soil structure: bulk density</td>
<td>1.35 g/cm³, sd 0.08</td>
<td>1.55 g/cm³</td>
<td>positive</td>
</tr>
<tr>
<td>Penetrometer res.</td>
<td>0.67 Mpa, sd 0.31</td>
<td>5 Mpa</td>
<td>positive</td>
</tr>
<tr>
<td>Organic matter content</td>
<td>2.9%, sd 0.032</td>
<td>2.0%</td>
<td>positive</td>
</tr>
<tr>
<td>Soil biodiversity:</td>
<td>% org matter as proxy</td>
<td>not yet defined</td>
<td>positive</td>
</tr>
<tr>
<td>Soil fertility: regime based on soil testing</td>
<td></td>
<td></td>
<td>positive</td>
</tr>
</tbody>
</table>

Table 2. Soil health indicators for the "Living Lab" described in table 1. Conclusion: this soil is healthy and offers a positive entry point for SDG 15 in table 1.
1. Establishment of “Living Labs” aimed at realizing “Lighthouses” can be an effective procedure to realize the lofty goals of the SDGs and the Green Deal and presents a challenge to the scientific community to realize real-life transdisciplinarity.

2. Focusing sustainability research on the United Nations Sustainable Development Goals (SDGs) and the associated Green Deal (GD) of the European Union offers a welcome focus and “point at the horizon” for scientists, stakeholders and policy makers in what used to be the rather hazy concept of sustainable development.

3. Recognizing that a communication gap exists between government, stakeholders and citizens, the European Union deserves credit for proposing Missions for their new research program “Horizon Europe 2021-2027”. The soil Mission emphasizes joint activities in “Living Labs” focused on establishing “Lighthouses” as a means to improve communication between science and society.

4. Existing targets and indicators for the various land-related SDGs are not clear enough to allow a focus of activities in “Living Labs”. Measurement of SDG-related ecosystem services is therefore proposed to specify targets. Threshold values will have to be defined to express successful efforts, resulting in “Lighthouses”.

5. Effective Communication processes are crucial not only when working in “Living Labs” but also when addressing farmers and the public at large when successful “Lighthouses” have been established. How to merge widely different individual opinions and attitudes into procedures that can form a solid basis for governmental rules and regulations? Focused and inspired work in “Living Labs”, based on mutual trust, can provide an answer.

6. Only an Interdisciplinary approach can address measurement of ecosystem services. Contributions by separate disciplines, such as soil science, have therefore to be framed in terms of “contributions to ecosystem services” as shown for soil science in the presented case study. This, rather than pontifications about the importance of certain scientific disciplines, is most effective to illustrate the relevance of such separate disciplines.

8. Literature cited

GFFA. Global Forum for Food and Agriculture. Berlin; Agricultural Ministers communiqué after the: Conference Sustainable Land Use: Food security starts with the soil. 2022.

