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Abstract. Up-to-date digital soil resource information and its comprehensive understanding are 25 

crucial to supporting crop production and sustainable agricultural development. Generating such 26 

information through conventional approaches consumes time and resources, and is difficult for 27 

developing countries. In Ethiopia, the soil resource map that was in use is qualitative, dated (since 28 

1984), and small-scaled (1:2 M) which limit its practical applicability. Yet, a large legacy soil profile 29 

data accumulated over time and the emerging machine learning modelling approaches can help in 30 

generating a high-quality quantitative digital soil map that can provide better soil information. Thus, 31 
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a group of researchers formed a coalition of the willing for soil and agronomy data sharing and collated 32 

about 20,000 soil profile data and stored them in a central database. The data were cleaned and 33 

harmonised using the latest soil profile data template and 14,681 profile data were prepared for 34 

modelling. Random Forest was used to develop a continuous quantitative digital map of 18 World 35 

Reference Base (WRB) soil groups at 250 m resolution by integrating environmental covariates 36 

representing major soil-forming factors. The map was validated by experts through a rigorous process 37 

involving senior soil specialists/pedologists checking the map based on purposely-selected district 38 

level geographic windows across Ethiopia. The map is expected to have tremendous value in soil 39 

management and other land-based development planning, given its improved spatial resolution and 40 

quantitative digital representation. 41 

Keywords: soil profiles, environmental covariates, modelling, expert validation, Reference Soil 42 

Group 43 

1 Introduction     44 

Soils are important resources that support the development and production of various economic, social, 45 

and ecosystem services, and are useful in climate change mitigation and adaptation (Baveye et al., 46 

2016). Data on soils’ physical and chemical characteristics and their spatial distribution are needed to 47 

define and plan their functions over time and space, which are important steps towards sustainable use 48 

and management of soils (Elias, 2016; Hengl et al., 2017).  49 

 In Ethiopia, soil surveys and mapping have been conducted at various scales with varying scopes, 50 

approaches, methodologies, qualities, and levels of detail (Abayneh, 2001; Abayneh and Berhanu, 51 

2007; Berhanu, 1994; Elias, 2016; Zewdie, 2013). The most recent country-wide digital soil mapping 52 

efforts focused primarily on soil characteristics (Ali et al., 2020; Iticha and Chalsissa, 2019; Tamene 53 

et al., 2017), although soil class maps are equally important for allocating a particular soil unit for 54 

specific use (Leenaars et al., 2020a; Wadoux et al., 2020). Many attempts have been made to improve 55 

digital soil information systems (Hengl et al., 2021, 2017, 2015; Poggio et al., 2020). However, the 56 

initiatives were based on limited and unevenly distributed soil profile data (e.g., 1.15 soil profiles per 57 

1,000 km2 for Ethiopia) which restricts the accuracy and applicability of the products.  58 

In Ethiopia, thousands of soil profile data have been collected since the 1960s (Erkossa et al., 2022), 59 

but these data were scattered across different institutions and individuals (Ali et al., 2020). 60 

Furthermore, country-wide quantitative and gridded spatial soil type information does not exist (Elias, 61 

2016). The Ethiopian Soil Information System (EthioSIS) project attempted to develop a countrywide 62 
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digital soil map focusing on topsoil characteristics, including plant nutrient content, but overlooked 63 

soil resource mapping (Ali et al., 2020; Elias, 2016), despite a strong need for a high-resolution soil 64 

resource map (Mulualem et al., 2018). 65 

Ethiopia has an area of about 1.14 mill. km2 consisting of varied environments, making its soils 66 

extremely heterogeneous. Capturing the heterogeneity using conventional soil survey and mapping 67 

approaches is an expensive and time-consuming endeavour (Hounkpatin et al., 2018). This can be 68 

circumvented using available legacy soil profile data accumulated over decades  and tapping into the 69 

potential of  advanced analytical techniques to develop high-resolution digital soil maps (Hounkpatin 70 

et al., 2018; Kempen, 2012, 2009).Therefore, the objectives of this study were to (1) develop a national 71 

legacy soil profile dataset that can be used as an input for various digital soil mapping exercises, and 72 

(2) generate an improved 250 m digital Reference Soil Groups (RSGs) map of Ethiopia.  73 

2 Methods  74 

2.1 The study area 75 

The study area covered the entire area of Ethiopia (1.14 mill. km2) located between 3°N and 15° N, 76 

and between 33° E and 48° E (Figure 1). The topography of the country is marked by a large altitudinal 77 

variation, ranging from 126 meter below sea level at Dalol in the northeast to 4,620 m  at Ras Dashen 78 

Mountain in the northwest (Billi, 2015; Enyew and Steeneveld, 2014). Ethiopia’s wide range of 79 

topography, climate, parent material, and land use types created conditions for the formation of 80 

different soil types (Abayneh, 2005; Berhanu and Ochtman, 1974; Donahue, 1972; Mesfin, 1998; 81 

Nyssen et al., 2019; Virgo and Munro, 1978; Zewdie, 2013, 1999). More than 33% of the country is 82 

covered by the central, upper and highland complex (Abegaz et al., 2022), which embraces Africa's 83 

most prominent mountain system (Hurni, 1998). 84 
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 85 

Figure 1. Location map of Ethiopia, overview map © Esri World Topographic Map. 86 

The country’s complex topography strongly determines both rainfall and temperature patterns, by 87 

modifying the influence of the large-scale ocean-land-atmosphere pattern, thus creating diverse 88 

localised climates.  Spatially, rainfall is characterised by a general decreasing trend in the direction 89 

from the west- to east, north, northeast, south and southeast. The lowlands in the southeast and 90 

northeast, covering approximately 55% of the country’s land area, are characterised by arid and semi-91 

arid climates. Annual rainfall ranges from less than 300 mm in the south-eastern and north-western 92 

lowlands to over 2,000 mm in the southwestern (southern portion of the western highlands). The 93 

eastern lowlands get rain twice a year, in April–May and October–November, with two dry periods in 94 

between. The total annual precipitation in this region varies from less than 500 to 1,000 mm. The driest 95 

of all regions is the Denakil Plain, which receives less than 500 mm and sometimes none (Fazzini et 96 
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al., 2015). Temperatures are also greatly influenced by the rapidly changing altitude and the mean 97 

monthly values vary from ~35oC in the northeast lowlands to less than 7.5oC over the north and central 98 

highlands.  99 

The country is characterised by a wide variety of geological formations (Abyneh, 2005; Alemayehu 100 

et al., 2014; Elias., 2016; Jarvis et al., 2011; Zewdie, 2013). These include (i) recent and old volcanic 101 

activities; (ii) the highlands consisting of igneous rocks (mainly basalts); (iii) steep-sided valleys 102 

characterised by strong colluvial and alluvial deposits; (iv) metamorphic rocks exposed by denudation 103 

process; and (v) various sedimentary rocks like limestone and sandstone in the relatively lower areas. 104 

Diverse biophysical factors affecting the spatial distribution of vegetated land cover which in turn both 105 

as single and combined factors result in diverse soil types and properties across Ethiopia’s landscapes 106 

(Hurni, 1998; Nyssen et al., 2019; WLRC, 2018). The spatio-temporal vegetation cover of the country 107 

has been characterised by a long history of  landuse-landcover changes(WLRC, 2018). In terms of the 108 

type and spatial coverage of major landuse/landcover classes,  woody vegetation (forest, woodland, 109 

and shrub and bush lands) covers about 57% of the country in accordance with the national 2016 map 110 

(WLRC, 2018). This is followed by cultivated land (20%) and grasslands (12%). Barren lands are 111 

estimated to cover about one-tenth of the area of the country while other minor lands  with ecological 112 

significance (i.e., wetlands, water bodies and sub-afro-alpine and afro-alpine ) cover about 1.2% of 113 

the country’s land mass.   114 

2.2 Legacy soil profile data collation and preparation   115 

The soil profile data generated over decades through various soil survey missions were  kept in a 116 

variety of formats with limited accessibility. There has been no institution with a mandate to coordinate 117 

the generation, collation, harmonisation, and sharing of soil profile data. This led to the formation of 118 

a group of individuals and institutions who were willing to exchange soil and agronomy data. 119 

Established in 2018, the group known as the Coalition of the Willing (CoW) was committed to 120 

addressing the challenges posed by the lack of the soil and agronomy data access and sharing in the 121 

country (Tamene et al., 2021). 122 

The CoW conducted a national soil and agronomy data ecosystem mapping which revealed that a 123 

plethora of legacy soil resource data sets do exist across different institutions and individuals (Ali et 124 

al., 2020). The assessment also revealed that a sizable proportion of the data holders were willing to 125 
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share the data in their custody, provided that some regulations are put in place to administer the data. 126 

The CoW developed and approved internal data sharing guidelines (CoW, 2020), and facilitated data 127 

collation campaigns, which involved both formal and informal approaches to data holders.  128 

Through a data collation campaign, soil profile data collected between the 1970s and 2021 were 129 

acquired from over 88 diverse sources (Ali et al., 2020; Tamene et al., 2021). Initially, 8,000 profile 130 

data points were collated and subjected to improved modelling techniques to create a provisional WRB 131 

reference soil group map of Ethiopia. This was presented to various partners and data-holding  132 

institutions to demonstrate the power of data sharing. This created awareness and enabled us to 133 

mobilise and  collate over 20,000 legacy soil profile data. These data  were then added to the national 134 

data repository. 135 

The data had varying levels of completeness in terms of soil field and environmental descriptions and 136 

laboratory analysis. These required a rigorous expert-based quality assessment and standardisation 137 

before compiling into a harmonised format. The expanded version of the Africa Soil Profile (AfSP) 138 

database (Leenaars et al., 2014) template was used for standardising and harmonising the data. Out of 139 

the collated soil profile data, 14,681 georeferenced data points were extracted based on completeness 140 

and cleanness for the purposes of modelling. The cleaned soil profile data set contained, at least, the 141 

reference soil group (RSG) nomenclature as outlined in the WRB legend. While the original soil 142 

profile records were set in different coordinate systems, all were projected into the adopted standard 143 

georeferencing system, namely WGS84, decimal degrees in the QGIS (3.20.2) environment (QGIS 144 

Development Team, 2021). To verify their position, soil profile locations were plotted using a standard 145 

WGS84 coordinate system to verify that points are matching with the site description, 146 

geomorphological settings, and at the very least the source project boundary outline.  147 

The accuracy of the data depends on the quality and reliability of the survey data itself which in turn 148 

requires expert knowledge and experience in soil description and classification (Leenaars et al., 149 

2020a). In this study, data cleaning, validation, reclassification, and verification were carried out by a 150 

team of prominent national pedologists and soil surveyors, including those involved in the generation 151 

of some of the soil profile data themselves (Figure 2). 152 
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 153 

Figure 2. Schematic presentation of data acquisition and workflow.  154 

In addition, the Ministry of Agriculture (MoA) soil survey and mapping experts and other volunteers 155 

have validated the legacy soil profile observations. This led to the reclassification of the soil types as 156 

deemed necessary. Such validation and reclassification involved re-examining the geomorphological 157 

setup of the soil profile locations using Google Earth as well as reviewing the site and soil descriptions 158 

and the corresponding laboratory data, and reviewing the proposed soil type. The harmonised data sets 159 

in the database were used as input soil profile data for modelling and mapping IUSS WRB reference 160 

soil groups. 161 

2.3 Preparation and selection of environmental covariates   162 

2.3.1 Covariates acquisition and preparation 163 

In order to develop spatially continuous soil class/type maps, data on environmental covariates that 164 

represent directly or indirectly the soil-forming factors have to be integrated with soil profile data 165 

(Hengl and MacMillan, 2019). Environmental covariates are spatially explicit proxies of soil-forming 166 

factors based on the soil-environment relationship (McBratney et al., 2003, Shi et al., 2018). 167 

Acquisition and preparation of covariates is a crucial step in digital soil mapping using machine 168 
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learning algorithms (McBratney et al., 2003; Miller et al., 2021). In this study, 68 potential candidate 169 

environmental variables representing soil-forming factors (climate, organisms, relief, parent material, 170 

and time) were derived from diverse remote sensing products and thematic maps (Hengl and 171 

MacMillan, 2019; McBratney et al., 2003).  172 

Relief and topography-related covariates were derived from 90-meter Shuttle Radar Topography 173 

Mission (SRTM) digital elevation model (DEM) (Vågen, 2010). Climate-related variables including 174 

long-term mean, minimum, maximum, and standard deviation temperature, and precipitation data for 175 

the period between 1983 and 2016 (Dinku et al., 2014) were acquired from Enhancing National 176 

Climate Services (ENACTS-NMA) initiatives with 4 km resolutions (Dinku et al., 2014). Moderate 177 

Resolution Imaging Spectroradiometer (MODIS) imagery raw bands and derived indices (Vågen, 178 

2010), were downloaded from USGS EarthExplorer (https://earthexplorer.usgs.gov/) to represent 179 

vegetation-related factors. National geological (Tefera et al., 1996), and land use and land cover 180 

(WLRC-AAU, 2018) thematic maps of Ethiopia were gathered to represent parent material and 181 

organisms, respectively.  182 

Downscaling (disaggregating) or upscaling (aggregating) of rasters were also performed to match the 183 

target resolution. A 250 m spatial resolution was chosen to accommodate both the spatial resolution 184 

of the major covariates inputs and make it applicable for large-scale analysis. All layers were masked 185 

for buildings and water bodies by the national boundary of Ethiopia and a stacked layer was created 186 

using raster package (R Core Team, 2020) to extract covariate values at the locations of soil profiles. 187 

One-hot encoding technique using dummyVars function available in Caret package (Kuhn, 2008) was 188 

used to pre-process and convert categorical covariates into a binary vector. Each element of the binary 189 

vector represents the presence or absence of that category. One-hot encoding is beneficial because it 190 

allows machine-learning algorithms to interpret categorical variables as numerical features. The 191 

covariate pre-processing, visual inspection for inconsistencies, and resampling to a target grid of 250 192 

m were conducted in QGIS [3.20.2] (QGIS Development Team, 2021), SAGA GIS [7.8.2] (Conrad et 193 

al., 2015) and R [version 4.05] (R Core Team, 2020) software packages. All input data were projected 194 

to a common Lambert azimuthal equal-area projection with the latitude of origin 8.65 and centre of 195 

meridian 39.64 which is the centre point for Ethiopia. This projection was selected since it is effective 196 

in minimising area distortions over land. Each covariate was adjusted to have an identical spatial 197 

resolution, extent and projection using two resampling methods. Continuous covariates were 198 
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resampled using the bilinear spline method, whereas categorical covariates were resampled using the 199 

nearest neighbour method. 200 

2.3.2 Covariates’ selection 201 

Selecting an optimal set of covariates for effectively represent the soil–environment relationship is a 202 

key step in Digital Soil Mapping (DSM) since improper selection of covariates will affect the quality 203 

of model outputs (Shi et al., 2018; Huang et al. 2020). In this study, near-zero variance assessment 204 

was conducted using nearZeroVar function available in R caret package (Kuhn, 2008) to identify and 205 

remove environmental variables that have little or no variance. In addition, preliminary Random Forest 206 

model training was performed to assess and identify covariates having high variable importance. After 207 

expert judgement, a total of 27 environmental variables (24 continuous and 3 categorical) were 208 

selected for modelling and predicting Reference Soil Groups.  209 

2.4 Modelling and mapping soil types/reference soil groups    210 

2.4.1 Model tuning and quantitative evaluation 211 

In digital soil mapping, machine-learning techniques have been extensively used to determine the 212 

relationship between soil types and environmental variables (McBratney et al., 2003). Many machine-213 

learning models were developed in the past decades for digital soil mapping to spatially predict soil 214 

classes based on existing soil data and soil-forming environmental covariates (Heung et al., 2016). 215 

Random Forest (RF), a tree-based ensemble method, is one of the most promising machine learning 216 

techniques available for digital soil mapping (Breiman, 2001; Heung et al., 2016), which has gained 217 

popularity due to its high overall accuracy and has been widely used in predictive soil mapping 218 

(Brungard, 2015; Hengl et al., 2018). Examples of the main strengths of the RF model are its ability 219 

to handle numerical and categorical data without any assumption of the probability distribution; and 220 

its robustness against nonlinearity and overfitting (Breiman, 2001; Svetnik et al., 2003). While 221 

building the RF model, data was split into training  (80 %) and testing (20 %) components using 222 

random sampling for training the model and evaluating its performance, respectively (Kuhn, 2008). 223 

Hyper-parameter optimization and repeated cross-validation on the training dataset were performed 224 

for optimal model application using the ranger method of Caret package. The three tuning parameters 225 

for ranger method are mtry, splitrule, and .min.node.size. Generally this function is used to tune the 226 

parameters in modelling in an automated fashion, as this will automatically check all the possible 227 
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tuning parameters and return the optimised parameters on which the model gives the best accuracy. 228 

Model tuning was performed with a repeated 10-fold cross-validation procedure applying multiple 229 

combinations of hyper-parameters for the ranger method. This is a fast implementation of RF 230 

particularly suited for high-dimensional data (Wright and Ziegler, 2017). Then the number of 231 

covariates used for the splits (mtry), splitting rules (splitrule) and minimum node size (min.node.size) 232 

were optimised. The parameter ntree was adjusted to 1,000 in the model, and mtry values (10, 15, 20), 233 

min.node.size values (5, 10, 15), and splitrule values (“variance’’, “extratrees’’, and “maxstat”) were 234 

fed  for the optimization procedure. The accuracy of the testing dataset was related to the model 235 

performance for the new dataset, indicating the capacity of the model to predict at the unsampled 236 

location. A confusion matrix was also used to calculate a cross-tabulation of observed and predicted 237 

classes with associated statistics i.e., producer’s accuracy and user’s accuracy.  238 

2.4.2 Software and computational framework 239 

In this study, various open-source software packages that provide a comprehensive set of tools and 240 

diverse capabilities were used for data preparation, analysis and visualisation. Data pre-processing and 241 

preparation were performed using QGIS (QGIS Development Team, 2021) and SAGA GIS (Conrad 242 

et al., 2015). For statistical analysis and machine learning modelling, R (R Core Team, 2020) and 243 

relevant libraries were installed on a Windows server 2016 standard with 250 GB of working memory 244 

to handle the challenges associated with large-scale data processing and analysis. 245 

2.4.3 Expert evaluation of spatial patterns of the beta-version soil map 246 

Visual inspection of the DSM output over the terrain was used to identify abnormalities and assess 247 

how effectively it depicts landscape components (Rossiter et al., 2022). For this, we employed an 248 

expert-based qualitative assessment of the model output. This technique was used to complement 249 

model-based accuracy assessment and confirm agreement or indicate areas of concern. This was 250 

implemented by a panel of senior soil specialists/pedologists checking the map based on purposely 251 

selected district level geographic windows across Ethiopia, representing different agro-ecological 252 

zones known to have diverse soil occurrences, and familiar to the panel of experts. Accordingly, an 253 

expert validation workshop was conducted using the first version of the reference soil groups (RSGs) 254 

map. About 45 multi-disciplinary scientists including soil surveyors, pedologists, geologists, and 255 

geomorphologists were drawn from national and international research, development, and higher 256 
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learning institutions to review the draft RSG map in plenary. This was followed by breakout sessions 257 

where groups of experts evaluated the map based on their experience and knowledge of soil-landscape 258 

relations of the country and examined geographic windows.   259 

Most importantly, disagreements regarding RSGs occurrence and patterns of the modelling outputs 260 

across topo-sequences and contrasting soil-forming  factor sequences were identified and discussed. 261 

Further, inferences on parts of the DSM framework that require improvement were recommended. 262 

After finalising the evaluation at the group’s level assessment, each group presented the results in the 263 

plenary followed by a discussion to get feedback from other participants. Following the plenary 264 

discussions, the participants created a group of six senior pedologists to work on the recommendations  265 

including  changing the quality mask layer, validation of the additional data obtained during the event, 266 

and assessment of re-modelling outputs.  267 

After the second model was re-run, the group of senior pedologists together with  geospatial experts 268 

re-evaluated the output using the selected districts based on the feedback from the first review, which 269 

was mainly on areas where there were  “minor” and “major” concerns. Consequently, some 270 

improvements were made e.g., in the areas where Vertisols, Fluvisols, and Leptosols were 271 

overestimated. Further, underestimated RSGs (Alisols, Solonetz, Planosols, Acrisols, Lixisols, 272 

Phaeozems, and Gleysols) showed a slight increase in area coverage and pattern improvements. 273 

However, the total area of Leptosols and Cambisols increased from the first run due to the partial 274 

exclusion of the mask layer used in the first round of modelling.  The mask layer used in the first run 275 

was criticised for quality issues as it excluded significant soil areas and due to its weakness in  276 

capturing non-soil areas such as rock outcrops, salt flats, swamps and sand dunes. Nevertheless, the 277 

spatial patterns of these soils occurring across previously considered “non-soil areas’’ were examined 278 

by the panel of experts. In parallel, geospatial and soil experts checked the raster map of the RSGs in 279 

the GIS environment to ensure areas with ‘no concern’ before re-running the model are kept the same 280 

or changes are accepted by the panel of experts. The map from the second run is presented in this 281 

paper as EthioSoilGrids version 1.0 product. 282 

 283 

 284 
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3 Results and Discussion  285 

3.1 Soil profile datasets   286 

Using the IUSS WRB, 2015, the preliminary identified 14,742 georeferenced legacy soil profiles were 287 

classified/reclassified into twenty-three reference soil groups (RSGs). Nearly 90% of the soil profile 288 

points represented Vertisols, followed by Luvisols, Cambisols, Leptosols, Fluvisols, and Nitisols, 289 

which were found to be the dominant soil types in Ethiopia (Figure 3). The remaining 10% represented 290 

the Regosols, Alisols, Andosols, Arenosols, Calcisols, Solonetz, Lixisols, Phaeozems, Solonchaks, 291 

Acrisols, Planosols, Gleysols, Umbrisols, Ferralsols, Gypsisols, Plinthosols, and Stagnosols.  292 

According to this study, about 72% of the IUSS WRB (2015) RSGs were confirmed to occur in 293 

Ethiopia. This reconfirms the characterization of Ethiopia as a land of soil diversity  having endowed 294 

with a diverse range of soil types (Elias, 2016; Mishra et al., 2004). One of the limitations  with legacy 295 

soil data in categorical mapping is the imbalanced soil samples, in that all classes were not equally 296 

represented (Wadoux et al., 2020). For this study, soil profiles with less than 30 observations were 297 

objectively excluded from the model after examining the accuracy and spatial distribution of each 298 

reference soil group. Five reference soil groups (Umbrisols, Ferralsols, Gypsisols, Plinthosols, and 299 

Stagnosols) were excluded from the model and the  EthioSoilGrids version 1.0 map.  300 

 301 

Figure 3. Number of soil profile points per WRB reference soil groups.  302 
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After excluding the built-up) and water surface areas the average soil profile density was 13.1 per 303 

1,000 km² (Figure 4), but the actual density varied  across the different parts of the country. The 304 

variation tends to follow river basins, sub-basins, and agricultural land-use types-based studies from 305 

which most of the legacy data  were pulled.. For instance, in 30 intervention districts of the Capacity 306 

Building for Scaling up of Evidence-Based Best Practices in Agricultural Production in Ethiopia 307 

(CASCAPE) project, the average profile density was about 87 profiles per 1,000 km2 for a total area 308 

of about 26,830 km² (Leenars et al., 2020a). Similarly, semi-detailed soil mapping missions in 15 309 

districts conducted through the Bilateral Ethiopia-Netherlands Effort for Food, Income and Trade 310 

(BENEFIT)-REALISE project generated about 217 observations per 1,000 km² (Leenars et al., 311 

2020b).  312 

A soil type and depth map compilation and updating mission at a 1:250,000 scale by the Water Land 313 

Resource Centre (WLRC) of Addis Ababa University collated and used about 3,949 legacy soil 314 

profiles for the entire country (Ali et al., 2020), which is about 3.5 profiles per 1,000 km2.  Although 315 

the distribution is not even and the eastern lowlands are sparsely represented, the number of data used 316 

in this study is 8.5 times higher than the 1,712 legacy soil profiles data currently existing in the Africa 317 

soil profile database (Batjas et al., 2020; Leenaars et al., 2014).   318 
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 319 

Figure 4. Spatial distribution of collated legacy soil profile data.  320 

The soil profiles distribution across the 32 agro-ecological zones (AEZ) of Ethiopia revealed that all, 321 

except two–tepid per-humid mid-highland (0.13% landmass) and very cold sub-humid sub-afro alpine 322 

to afro-alpine (0.03% landmass)–were represented by soil profile observations. Furthermore, about 323 

95% of the profile observations represented 91% of the AEZs aerial coverage (Appendix A). The 324 

distribution of legacy soil profiles varied across AEZs. In general, the top-ranked lowland AEZs with 325 

roughly 56% area coverage were represented by 23% of the total profile observations, whereas top-326 

ranked highland AEZs with 20% area coverage received 47% of profile observations. For instance, 327 

warm desert, warm moist, hot arid, and warm sub-moist lowlands with area coverage of around 20%, 328 

15%, 11%, and 10%, were represented roughly by 3%, 11%, 2%, and 7% of the total profiles, 329 

respectively. Tepid moist mid highlands (8% area coverage), tepid sub-humid mid highlands (7% area 330 



 

15 

coverage), and tepid sub-moist mid highlands (5% area coverage) each were represented by 20%, 331 

15%, and 12% of the profiles, respectively. 332 

3.2 Modelling and Mapping   333 

   3.2.1 Variable importance  334 

The reference soil group spatial pattern is primarily influenced by long-term average surface 335 

reflectance, flow-based DEM indices, and precipitation. Figure 5 shows variables of importance for 336 

determining RSGs spatial prediction. The top-ranked variables were (i) long-term MODIS Near-337 

Infrared (NIR) reflectance; (ii) multiresolution index of valley bottom flatness, (iii) long-term mean 338 

day-land surface temperature; (iv) long-term mean soil moisture; (v) standard deviation of long-term 339 

precipitation; (vi) long-term mean precipitation; and (vii) topographic wetness index. 340 

MODIS long-term mean spectral signatures showed high relative importance.  According to Hengl et 341 

al. (2017), accounting for seasonal vegetation fluctuation and inter-annual variations in surface 342 

reflectance, long-term temporal signatures of the soil surface, derived as monthly averages from long-343 

term MODIS imagery, were more effective. Furthermore, Hengl and MacMillan (2019) explained that 344 

long-term average seasonal signatures of surface reflectance provide a better indication of soil 345 

characteristics than only a single snapshot of surface reflectance. 346 

The Multi-Resolution Valley Bottom Flatness Index, a DEM-derived topography index, is the second 347 

top-ranked covariate driving soil variability across Ethiopia. This hydrological/soil removal and 348 

accumulation/deposition index is used to distinguish valley floor and ridgetop landscape positions 349 

(Soil Science Division Staff, 2017) highly responsible for multiple soil-forming processes to operate 350 

over a particular landscape, resulting in a wide range of soil development. The influence of topography 351 

on spatial soil variation is manifested in every landscape of Ethiopia (Belay, 1997; Mesfin, 1998; 352 

Nyssen et al., 2019; Zewdie, 2013).  353 

Long-term daily mean land surface temperature, mean soil moisture, rainfall standard deviation and 354 

mean annual rainfall were among the top-ranked covariates for predicting reference soil groups’ spatial 355 

variation across the country. In Ethiopia, different soil genesis studies revealed that climate has a 356 

significant influence on soil development and properties and is, therefore, responsible for having 357 

widely varying soils in the country (Abayneh, 2006, 2005; Fikru, 1988, 1980; Zewdie, 2013).   358 

https://soilmapper.org/soil-covs-chapter.html#ref-Hengl2017SoilGrids250m
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 359 

Among the most important covariates for predicting reference soil groups in the Ethiopian highlands,  360 

are monthly average soil moisture for January (ranked 3rd), long-term average soil moisture (ranked 361 

4th), and monthly average soil moisture for August (ranked 5th) (Leenars et al., 2020a). In the current 362 

study, soil moisture was among the ten top ranked covariates in modelling and explaining long-363 

distance soil type variability across the country. 364 

 365 

Figure 5. Random forest covariate relative importance for modelling RSGs.   366 

Note: prep=Precipitation; prep_sd=The standard deviation of precipitation; tmax=Maximum 367 

Temperature; tmin=Minimum Temperature; trange=Temperature range; tav_sd=Standard deviation of 368 

average temperature; pet=Potential evapotranspiration; lstd=Land surface temperature- Day; 369 

lstn=Land surface temperature-Night; soil_moist=Soil Moisture ; soil_temp=Soil temperature; DEM 370 

=Digital elevation model (Elevation); twi =Topographic wetness Index; aspect=Topographic Aspect; 371 

curv=Topographic Curvature; conv=Topographic convergence index; ls=Slope Length and Steepness 372 
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factor (ls_factor); morph=Terrain Morphometry; mrvbf=Multiresolution index of valley bottom 373 

flatness; slope=Slope class (%); ndvi=Normalised Difference Vegetation Index (NDVI); 374 

evi=Enhanced Vegetation Index (EVI); lulc=Land use/ landcover; lithology=Geology; ref1=Red band 375 

;ref2=Near-Infrared; ref7=Mid-Infrared.  376 

In this study, lithology showed a relatively low influence on soil variability may be due to the use of 377 

a coarse-scale and less detailed lithology map, which may not sufficiently capture the spatial 378 

variability of the parent materials. 379 

3.2.2 Model performance 380 

The parameter optimization process resulted in mtry = 20, split rule= extra trees and minimum node 381 

size= 5. The overall accuracy of the model was 56.24% which ranged between 54.43% and 58.1% 382 

with a 95% confidence interval. The kappa values based on the internal cross-validation and testing 383 

dataset showed that the overall model performance produced using 10–fold cross-validation with the 384 

repeated fitting was 48%. Considering similar area-based digital soil class mapping efforts, the overall 385 

accuracy was in line with the accuracies that were typically reported for soil class maps developed 386 

with random forest model (Leenaars et al., 2020a) and statistical methods (Heung et al., 2016; Holmes 387 

et al., 2015). Table 1 shows the confusion matrix at validation/testing points i.e., 20 % of the 388 

observation. Further, the matrix indicates the producer’s accuracy (class representation of observed 389 

versus predicted) and user’s accuracy were not similar for all RSGs. The map purity is in the order of 390 

Lixisols, Calcisols, Alisols, Phaeozems, Vertisols, Andosols, Solonchaks, Fluvisols, Arenosols, 391 

Leptosols, Luvisols, Nitisols, and Cambisols. However, Vertisols, Calcisols, and Andosols are the 392 

observed classes that are best represented by the map followed by Fluvisols, Alisols, Nitisols, 393 

Leptosols, Luvisols and Cambisols. 394 

Global Soil Grids at 250 m resolution used machine learning algorithms to map the global WRB 395 

reference soil groups with map purity and weighted kappa of 28% and 42%, respectively (Hengl et al., 396 

2017). The Soil Grids 250 m WRB soil groups/classes prediction output-spatial soil patterns were not 397 

evaluated based on expert knowledge while in this study we did an extensive back and forth qualitative 398 

assessment by a panel of pedologists. The quantitative accuracy in the present study (about 56%) 399 

coupled with an expert-based qualitative evaluation of the predicted maps indicated the development 400 

and achievement of a substantially enhanced national product for users of spatial soil resource 401 
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information. This finding is a step forward and acceptable considering that Soil Grids are not expected 402 

to be as accurate as locally produced maps and models that use much more local point data and finer 403 

local variables (Mulder et al., 2016). Further, the data and findings in this study can help improve the 404 

soil maps of Africa as it partially addresses the concern by Hengl et al. (2017) who recognised that 405 

WRB RSGs modelling in the global Soil Grids 250 m is critically uncertain for parts of Africa. This 406 

is mainly attributed to limited access to more local point data by regional and global modelling 407 

initiatives, unlike the present study which accessed a large number of legacy soil profile datasets.  408 

 409 

410 
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Table 1. Confusion matrix of random forest RSG prediction (at validation/testing observations). 411 

 412 

 3.2.3 Modelling and Mapping: EthioSoilGrids Version 1.0   413 

The study identified eighteen reference soil groups in Ethiopia, mapped at 250 m resolution (Figure 414 

6). The model prediction showed that seven soil reference groups including Cambisols, Leptosols, 415 

Vertisols, Fluvisols, Nitisols, Luvisols, and Calcisols covered nearly 98% of the total land area of the 416 

country (Figure 7). Five soil reference groups (Solonchaks, Arenosols, Regosols, Andosols, and 417 
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Acrisols 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0                

0.33  

3 

Alisols 0 40 0 0 0 0 1 1 0 0 9 4 0 0 2 0 0 2                

0.68  

59 

Andosols 0 0 28 1 1 3 5 0 2 0 2 0 0 0 0 0 1 1                

0.64  

44 

Arenosols 0 0 0 11 0 2 1 0 0 0 5 0 0 0 0 0 0 1                

0.55  

20 

Calcisols 0 0 0 0 21 0 1 0 0 0 2 0 0 0 0 0 0 5                

0.72  

29 

Cambisols 2 3 6 9 1 197 28 2 35 2 47 16 5 1 16 3 3 28                

0.49  

404 

Fluvisols 1 0 3 5 1 34 144 0 9 0 15 7 0 0 1 5 5 17                

0.58  

247 

Gleysols 0 0 0 0 0 0 1 2 0 0 1 0 0 1 0 0 0 0                

0.40  

5 

Leptosols 0 1 4 3 3 47 11 0 176 0 27 7 1 0 32 0 0 24                

0.52  

336 

Lixisols 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0                

1.00  

1 

Luvisols 2 16 3 8 0 34 13 2 33 3 216 30 3 0 25 1 0 41                

0.50  

430 

Nitisols 6 8 0 0 1 23 8 3 18 8 29 132 0 1 8 0 1 21                

0.49  

267 

Phaeozems 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0                

0.67  

3 

Planosols 0 0 0 0 0 0 0 0 0 0 1 1 0 5 1 0 0 1                

0.55  

9 

Regosols 0 0 0 0 0 7 1 0 7 1 8 1 0 0 22 0 0 5                

0.42  

52 

Solonchaks 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 1 0                

0.60  

5 

Solonetzs 0 0 0 0 1 4 1 0 0 0 0 0 0 0 0 1 6 0                

0.46  

13 

Vertisols 3 1 3 5 5 92 32 2 61 3 81 31 5 5 25 2 6 641                

0.64  

1,003 

Producer  

Accuracy 
0.07 0.58 0.60 0.26 0.62 0.44 0.58 0.17 0.51 0.06 0.49 0.58 0.13 0.38 0.17 0.20 0.25 0.81      0.56    - 

Total 15 69 47 42 34 443 247 12 342 18 445 229 16 13 132 15 24 787   - 2,930 
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Alisols) were estimated to cover about 2% of the land area, while trace coverages of Solonetz, 418 

Planosols, Acrisols, Lixisols, Phaeozems, and Gleysols were also found in some pocket areas. 419 

In terms of spatial distribution, Nitisols and Luvisols dominated the northwestern and southwestern 420 

highlands while the southeastern lowlands were dominantly covered by Cambisols, Calcisols, and 421 

Fluvisols with some Solonchaks. The Vertisols extensively cover the north and south-western 422 

lowlands along with the Ethio-Sudan border areas and central highland plateaus. The probability of 423 

occurrence of each RSG was mapped (Appendix C) in each modelling spatial window (i.e., the cell 424 

size of 250-meter X 250 m). The dominant RSGs were aggregated based on the most probable RSGs 425 

in each spatial modelling window. There was high correspondence between the top seven ranked 426 

prediction probabilities and observed soil types as confirmed visually by overlaying observed classes 427 

and prediction probabilities.  428 

The overall occurrence and the relative position of each of the RSG along the topo-sequence and its 429 

association with other RSGs agree with previous works (Abayneh, 2006; Ali et al., 2010; Abdenna et 430 

al., 2018; Asmamaw and Mohammed, 2012; Belay, 2000, 1998, 1997, 1996; Driessen et al., 2001; 431 

Elias, 2016; FAO 1984a; Fikre, 2003; Mitku, 1987; Mohammed and Belay, 2008; Mohammed and 432 

Solomon, 2012; Mulugeta et al., 2021; Nyssen et al., 2019; Sheleme, 2017; Shimeles et al., 2007; 433 

Tolossa, 2015; Zewdie, 2013). However, in some cases, the RSGs’ position along the topo-sequence 434 

and association with other RSGs require further investigation.  The observed disparities might be 435 

attributed to the positional accuracy of legacy point observations, modelling approach, and most 436 

importantly the level of detail and scale/resolution of the environmental variables used in this study. 437 

We used the currently available coarse resolution national geological map and hence soil parent 438 

material might be inadequately represented in the model, which probably resulted in irregular RSGs 439 

sequences. For instance, the main driving factors to establish and explain soil-landscape variability in 440 

May-Leiba catchment of northern Ethiopia were geology (soil parent material) and different mass 441 

movements (Van de Wauw et al., 2008). These factors led to Cambisols– Vertisols catenas 442 

on basalt and Regosols–Cambisols–Vertisols catenas on limestone formations. Similar studies 443 

identified parent material strongly determines the soil type (e.g. Vertisol, Luvisol, Cambisol) (Nyssen 444 

et al., 2019). In general, in areas where there is complex soil diversity and distribution of soils, one of 445 

the most important parameters is to identify parent material including effective techniques to capture 446 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/vertisol
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and delineate mass movement bodies, and human-induced soil erosion and deposition areas (Leenars 447 

et al., 2020a;  Nyssen et al., 2019; Van de Wauw et al., 2008). 448 

 449 

Figure 6. Major reference soil groups of Ethiopia (EthioSoilGrid V1.0). 450 

Considering the third position of Cambisols in the order of frequency occurrence of RSGs per point 451 

observations (following Vertisols and Luvisols), these soils seem to be over-represented on the map 452 

(ranked 1st) apparently at the expense of Vertisols and Luvisols, and to some extent in places of 453 

Leptosols and other RSGs. This might be attributed to the fact that Cambisols create a geographical 454 

continuation with Vertisols and/or Luvisols at the lower slopes and Leptosols/ Regosols at the higher 455 

slopes, suggesting the presence of some bordering soil qualities in respective transitional zones (Ali et 456 

al., 2010; Asmamaw and Mohammed, 2012; Sheleme, 2017; Zewdie, 2013). 457 
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The proportion of area mapped as Cambisols (34 %) revealed new insights compared with the 458 

information from the most cited spatial soil maps:  Cambisols ranked 2nd (21 %), 2nd (16 %), 4th (9 %), 459 

and 4th (8 %) as reported by Berhanu (1980), FAO (1984b), FAO (1998), and Soil Grids- Hengl et al 460 

(2017), respectively. This might be due to: (i) the number and distribution of profile observations, 461 

which is more extensive than the previous ones, (ii) the type and level of details of covariates 462 

considered; (iii) variations and rearrangements in the keys for classification of the RSGs among soil 463 

classification versions used in previous studies and misclassification/confusion of Vertisols with 464 

Vertic Cambisols, as legacy soil profile data coming from diverse sources.  465 

 466 

Figure 7. The area coverage (in %) for the major WRB RSGs (Note: the remaining 10 RSGs-467 

Arenosols (0.44 %), Regosols (0.35 %), Andosols (0.31 %), Alisols (0.16 %), Solonetzs (0.04 %), 468 

Planosols (0.04 %), Acrisols (0.02 %), Lixisols (0.02 %), Phaeozems (0.02 %), and Gleysols (0.01 %)  469 

were not plotted because of their relatively small area coverage). 470 

  
471 
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3.3 Expert validation of the soil map  472 

Expert knowledge of soil-landscape relations and soil distribution remains important to evaluate the 473 

predictive soil mapping results and assess if predicted spatial patterns make sense from a pedological 474 

viewpoint (Hengl et al., 2017; Poggio et al., 2020; Rossiter et al., 2022). An important step in 475 

qualitative model evaluation is, therefore, expert assessment whereby professionals with broad 476 

experience in soil survey and mapping can evaluate and improve the quality of the soil resource map. 477 

This can highlight areas of agreement or concern across the landscape (Rossiter et al., 2022). The 478 

expert validation workshop provided useful insights and tangible improvements to the development 479 

of the map. While the plenary discussion provided an overview of the approaches followed in 480 

developing the map, the group discussions helped to have an in-depth review of the selected polygons 481 

of the map assigned to them. Participants were split into five groups (with 8-10 members each) and 482 

have chosen up to 60 polygons representing areas with which at least one of the group members has 483 

sufficient information, including data sources. Overall, the groups have checked a total of 126 484 

polygons (Figure 8) which were fairly distributed across the country. 485 

 486 
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 487 

Figure 8. The spatial distribution of districts validated by stakeholders and feedback categories 488 

according to the level of concerns raised. 489 

The group members displayed the polygons one by one in a GIS environment and discussed the 490 

predicted dominant and associated soil reference soil groups and labelled them in one of three 491 

confirmation categories: 1. confirmed with ‘no concern’, 2. confirmed with “minor concern”, and 3. 492 

confirmed with ‘major concern’.  Confirmation with ‘no concern’ was made when all members of a 493 

group agreed on both the types, relative coverage and patterns of the predicted soils within the polygon.  494 

Confirmation with  ‘minor concern’ was made when all or some of the team members agreed on the 495 

predicted soil types within the polygons but did not agree on the order of abundance or the probability 496 

occurrence of one or two soils including observed spatial patterns, while confirmation with ‘major 497 

concern’ was made when all members of the team did not agree on the predicted soil type, or when 498 

the presence of another soil type, other than the predicted ones is noted.  499 
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All three groups have rated the accuracy of the map at 60 +%; of the 126 polygons, they have expressed 500 

no concern for 63 %, minor concern for 23 % and a major concern for 14 % of the polygons. 501 

Furthermore, differences in the prevalence of RSGs and patterns of the modeling outputs across 502 

different soil forming factor sequences, as well as inferences about which areas of the DSM framework 503 

still need work, were identified  and elaborated by the expert input, and presented in the subsequent 504 

sections. 505 

3.4 Evaluation of results, limitations and future direction  506 

Up-to-date soil resource spatial information is critically missing at a required scale and extent in 507 

Ethiopia. As a result, resource management strategies miss their targets. Furthermore, the absence of 508 

such data at a required resolution and extent, forced decision support tool developers to pick and use 509 

the data they can access and afford. As a result, model outputs appear more site-specific or 510 

representation becomes homogenous over the very heterogeneous landscapes that exist in reality. On 511 

the other hand, in large areas and complex landscapes such as Ethiopia, it is very difficult to address 512 

the demand for reasonably  accurate and detailed soil-type  maps using a conventional approach due 513 

to the costs involved, and resources  and time it requires. For instance, given the vastness of the country 514 

and heterogeneous  landscapes, a new conventional soil survey mission requires at least 170,000 515 

profile point observations to map the entire terrestrial land mass of Ethiopia at a scale of 1: 250,000 516 

with at least 1 observations per square centimetre. Moreover, the soil profile data requirement 517 

definitely could have been much higher as we increase the scale of mapping and density of 518 

observations. In the present study, machine-learning techniques combined with expert input were 519 

implemented to produce a countrywide soil resource map of Ethiopia at reasonably higher accuracy, 520 

less time and cost than that of conventional methods. In addition, rescue, compilations and 521 

standardization of about 14,681 geo-referenced legacy soil profiles that can be included in the National 522 

Soil Information System (NSIS) of Ethiopia and the World Soil Information Centre will support future 523 

national, regional and global DSM efforts. The approach used demonstrates the power of data and 524 

analytics to map the soil resources of Ethiopia and the output is an exemplary use case for similar 525 

digital content development efforts in Ethiopia and beyond.  526 

Moreover, in this study the quality monitoring processes and methods were followed to filter dubious 527 

soil profiles, and soil classification and harmonization protocols. Then after, the study followed a 528 

robust modelling framework and generated new insights into the relative area coverage of WRB RSGs 529 
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of  Ethiopia. In addition, the study provided coherent and up-to-date digital quantitative gridded spatial 530 

soil resource information to support the successful implementation of various digital agricultural 531 

solutions and decision support tools (DSTs).  532 

The spatially explicit limitation of the present study is revealed by expert-based qualitative evaluation 533 

of spatial patterns across objectively selected geographic windows and prominent contrasting 534 

landscapes of Ethiopia. This qualitative assessment indicated areas of concern in terms of how well 535 

EthioSoilGrids version 1.0 represents soil geography across a mosaic of the country’s landscapes. For 536 

instance, in the north-eastern lowlands of Ethiopia, mainly along the “Denakil” depression, Fluvisols, 537 

Cambisols and Vertisols were found on the map in areas where normally other soil types were expected 538 

to occur. In this area, the expected prediction and area coverage of Leptosols has  been probably 539 

overshadowed by Fluvisols and Cambisols. Similarly, in some parts of western Ethiopia landscapes, 540 

the prediction of Vertisols overshadows other RSGs which resulted in area coverage underestimation 541 

of Fluvisols (along the “Akobo”, “Gilo”, and “Baro” rivers and their tributaries) and Alisols. Likewise, 542 

in the central parts of northwestern Ethiopia, the prediction of Nitisols has been overshadowed by 543 

Vertisols and Luvisols resulting in probable underestimation of the Nitisols area coverage.  544 

The relatively low  model performance and some classification errors in some of the  examined 545 

geographic windows (e.g. the Denakil depression , along Akobo, Baro, and Gilo rivers and the Somali 546 

region) is , probably due  to the paucity of samples from those areas (Figure 4), the inadequacy of the 547 

dataset by RSGs, and over-representation of the dataset by some RSGs such as Vertisols, Luvisols, 548 

and Cambisols. Balanced datasets are ideal to allow a decision tree algorithms to produce better 549 

classification but for datasets with uneven class size, the generated classification model might be 550 

biased  towards the majority class (Hounkpatin et al., 2018; Wadoux et al., 2020). In addition, 551 

uncertainty around quality of included covariates, not considered covariates in the modelling process 552 

including management, use of validation methods that do not sufficiently control the effect of clustered 553 

samples, and small sample size for some RSGs could have possibly biased modelling results in some  554 

geographic areas.  555 

To improve the modelling performance, future studies could explore (1) adding data for under-556 

represented geographic areas, land uses and covariate spaces, (2) opportunities to include other 557 

covariates (parent material and management) that could capture the variability of the country 558 

heterogeneous landscapes, (3) dimension reduction of covariates (4) use of remedial measures for 559 
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imbalances in sample sizes, (5) comparing different cross-validation methods, (6) use of an ensemble 560 

modelling approach and/or robust modelling technique that accommodates neighbourhood size and 561 

connectivity analyses, (7) use of better resolution/quality mask layer to segregate non-soil areas (rock 562 

outcrops, salt flats, sand dunes and water bodies) from mapping areas, and (8) implementation of 563 

quantitative and qualitative comparison of national, regional, and global legacy soil maps/soil grids  564 

with new DSM products in terms of how well DSM products represent soil geography. In addition , 565 

future digital soil mapping strategies in Ethiopia may require  to consider new soil sampling missions 566 

in under-represented areas, adopt standard soil sampling, description guidelines and soil classification 567 

systems including soil physico-chemical and mineralogical analysis, and combine local soil 568 

nomenclature/classification systems with RSGs and develop a map of RSGs with qualifiers. At the 569 

moment the under-sampled and under-represented areas are the Somali region, the Denakil and the 570 

western and northwestern border areas of Ethiopia (Figure 4). Regardless of these limitations and to 571 

the best of our knowledge the EthioSoilGrids v1.0 product provides the most complete soil information 572 

available for Ethiopia.  573 

4 Conclusions 574 

Coherent and up-to-date country-wide digital soil information is essential to support digital 575 

agricultural transformation efforts. This study involved collation, cleaning, harmonization, and 576 

validation of the legacy soil profile data sets, involving soil scientists with different backgrounds 577 

individually and in groups. To develop the 250 m digital soil resource map, a machine learning 578 

modelling approach and expert validation were applied to the harmonised soil database and 579 

environmental covariates affecting soil-forming processes. Accordingly, about 20,000 soil profile data 580 

have been collated, out of which, about 14,681 were used for the modelling and mapping of eighteen 581 

RSGs out of the identified twenty-three RSGs. Although unevenly distributed, the legacy soil profile 582 

data used in the modelling covered most of the agro-ecologies of the country.  583 

Among the mapped 18 RSGs, the highest number of observed (3,935) profiles represent Vertisols, 584 

followed by Luvisols, Cambisols and Leptosols, while Gleysols were represented with the lowest 585 

number (63) of profiles. The modelling revealed that MODIS long-term  reflectance, multiresolution 586 

index of valley bottom flatness, land surface temperature, soil moisture, long-term mean annual 587 
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rainfall, and wetness index of the landscape are  the most important covariates for predicting reference 588 

soil groups in Ethiopia.  589 

Our ten-fold spatial cross‑validation result showed an overall accuracy of about 56 % with varying 590 

accuracy levels among RSGs. The modelling result revealed that seven major soil reference groups 591 

including Cambisols (34 %), Leptosols (20 %), Vertisols (18 %), Fluvisols (10 %) Nitisols (7 %), 592 

Luvisols (6 %) and Calcisols (3 %) covered nearly 98 % of the total land area of the country, while 593 

minor coverage of other reference soil groups (Solonchaks, Arenosols, Regosols, Andosols, Alisols, 594 

Solonetzs, Planosols, Acrisols, Lixisols, Phaeozems, and Gleysols) were also detected in some areas. 595 

Compared to the existing soil resource map, the coverage of the first three major soil groups has 596 

substantially increased which is related to the increased availability of soil profile data covering larger 597 

areas of the country, implying that these soils were previously underestimated. Cambisols and 598 

Vertisols which together represent nearly half of the total land area are relatively young with inherent 599 

fertility, implying the high agricultural potential for the country. However, given their limitations, 600 

these and the other soil types require the implementation of suitable land, water, and crop management 601 

techniques to sustainably exploit their potential. 602 

The EthioSoilGrids version 1.0 product from this first countrywide RSGs modelling effort requires 603 

complementary activities. These include modelling and mapping that should go beyond RSGs and 604 

need to include 2nd level classifications including principal and supplementary qualifiers. Furthermore, 605 

soil atlas of Ethiopia with details of the soil physicochemical properties needs to be prepared together 606 

with the map, for which the authors and/or others responsible need to prioritize in their future research 607 

endeavours.   608 

  609 

 610 

  
611 
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Appendix A: Legacy soil profile data distribution 612 

Table A1. Distribution of legacy soil profile data by agroecology zones.  613 

Major agroecological zones AEZ area 

coverage (%)* 

Profiles  

observation (%)** 

Warm arid lowland plains 19.76 3.40 

Warm moist lowlands 15.12 10.74 

Hot arid lowland plains 10.79 2.44 

Warm sub-moist lowlands 9.63 6.94 

Tepid moist mid highlands 8.05 20.21 

Warm sub-humid lowlands 7.11 5.69 

Tepid sub-humid mid highlands 6.63 15.26 

Tepid sub-moist mid highlands 5.17 12.39 

Warm semi-arid lowlands 2.75 3.23 

Tepid humid mid highlands 2.65 2.48 

Warm humid lowlands 2.29 0.45 

Cool moist mid highlands 1.74 4.15 

Hot sub-humid lowlands 1.67 0.07 

Cool sub-moist mid highlands 1.16 3.00 

Cool  humid mid highlands 0.82 1.01 

Warm per-humid lowlands 0.68 0.01 
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Major agroecological zones AEZ area 

coverage (%)* 

Profiles  

observation (%)** 

Hot moist lowlands 0.59 3.56 

Hot sub-moist lowlands 0.56 0.03 

Cool sub-humid mid highlands 0.52 1.38 

Tepid arid mid highlands 0.43 0.39 

Hot semi-arid lowlands 0.40 2.05 

Tepid semi-arid mid highlands 0.19 0.67 

Cold moist sub-afro-alpine to afro-alpine 0.07 0.16 

Cold sub-moist mid highlands 0.07 0.04 

Cold sub-humid sub-afro-alpine to afro-alpine 0.06 0.03 

Cold humid sub-afro-alpine to afro-alpine 0.06 0.01 

Very cold humid sub-afro-alpine 0.04 0.02 

Very cold sub-moist mid highlands 0.02 0.02 

Very cold moist sub-afro-alpine to afro-alpine 0.01V 0.03 

Hot per-humid lowlands 0.01 0.15 

Tepid perhumid mid highland 0.13 0 

Very cold sub-humid sub-afro alpine to afro-

alpine 

0.03 0 

Note: *= total area of Ethiopia 1.14mln km2 ; **=total number of profiles 14,681 614 

615 
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Appendix B: Environmental covariates 616 

Table B1. List, description, spatial and temporal extent, and source of covariates used in modelling 617 

the reference soil groups. 618 

Categories Covariates  Descriptions  Spatial 

resolution 

 

Temporal 

resolution 
Source 

Climate prep Precipitation  4 km 1981 - 2016 ENACTS (Dinku et al.,2014) 

prep_sd The standard deviation 

of precipitation 

4 km 1981 - 2016 Derived from ENACTS 

(Dinku et al.,2014) 

tmax Maximum Temperature  4 km 1983 - 2016 ENACTS (Dinku et al.,2014) 

tmin Minimum Temperature 4 km 1983 - 2016 ENACTS (Dinku et al.,2014) 

trange Temperature range 4 km 1983 - 2016 ENACTS (Dinku et al.,2014) 

tav_sd Standard deviation of 

average temperature 

4 km 1983 - 2016 Derived from ENACTS 

(Dinku et al.,2014) 

pet Potential 

evapotranspiration  

4 km 1981 - 2016 Derived from ENACTS 

(Dinku et al.,2014) using 

Modified Penman method  

lstd 

Land surface 

temperature- Day (Aqua 

MODIS- MYD11A2 , 

time series monthly 

average) 

 

1000 m 2002-2018 AfSIS a 

lstn Land surface 

temperature-Night (Aqua 

MODIS- MYD11A2 , time 

series monthly average) 

 

1000 m 2002-2018 AfSIS 

soil_moist Soil Moisture (Derived 

from one-dimensional 

soil water balance) 

4 km 1981 - 2016 Ethiopian Digital 

AgroClimate Advisory 

Platform (EDACaP) 

soil_temp Soil temperature  30 km 1979 - 2019 ERA 5-Reanalysis ECMWF 

data b  

Topography DEM  Digital elevation model 

(Elevation) 

90 m -  SRTM- DEM (Vågen, 

2010) 



 

32 

Categories Covariates  Descriptions  Spatial 

resolution 

 

Temporal 

resolution 
Source 

twi  Topographic wetness 

Index 

90 m - SAGA GIS-based  

SRTM-DEM derivative 

aspect Topographic Aspect 90 m - SAGA GIS-based  

SRTM-DEM derivative 

curv Topographic Curvature 90 m - SAGA GIS-based  

SRTM-DEM derivative  

conv Topographic 

convergence index 

90 m - SAGA GIS-based  

SRTM-DEM derivative  

ls Slope Length and 

Steepness factor 

(ls_factor) 

90 m - SAGA GIS-based  

SRTM-DEM derivative 

morph Terrain Morphometry 90 m - SAGA GIS-based  

SRTM-DEM derivative  

mrvbf Multiresolution index of 

valley bottom flatness 

90 m - SAGA GIS-based  

SRTM-DEM derivative  

slope Slope class (%) 90 m - SAGA GIS-based  

SRTM-DEM derivative  

Vegetation  ndvi Normalised Difference 

Vegetation Index 

(NDVI) (MODIS- MODIS 

MOD13Q1, time series monthly 

average) 

250 m 2000-2021  AfSIS a 

evi Enhanced Vegetation 

Index (EVI) (MODIS- 

MODIS MOD13Q1, time series 

monthly average) 

250 m 2000-2021 AfSIS 

lulc Land use/ landcover 30 m 2010 Water and Land Resource 

Centre-Addis Ababa 

University (WLRC-AAU, 

2010) 

parent 

material 

lithology Geology/parent material 1:2,000,000 1996 The Ethiopian Geological 

Survey (Tefera et al.,1996) 

MODIS 

spectral 

refelectance 

ref1 Red band 
(MODIS- MODIS MOD13Q1, 

time series monthly average) 

250 m 2000 – 2018 AfSIS a   

ref2 Near-Infrared 
(MODIS- MODIS MOD13Q1, 

time series monthly average) 

250 m 2000 – 2018  AfSIS 
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Categories Covariates  Descriptions  Spatial 

resolution 

 

Temporal 

resolution 
Source 

ref7 Mid-Infrared  
(MODIS- MODIS MOD13Q1, 

time series monthly average) 

250 m 2000 – 2018 AfSIS 
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Appendix C: Probability of occurrence of reference soil groups 620 

 621 

Figure C1. Occurrence probability maps of Cambisols, Leptosols, Vertisols, and Fluvisols. 622 

623 
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 624 

Figure C2. Occurrence probability maps of Nitisols, Luvisols, and Calcisols. 625 

626 
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