

1 **Reference Soil Groups Map of Ethiopia Based on Legacy Data and Machine**
2 **Learning Technique: EthioSoilGrids 1.0**

3 Ashenafi Ali^{1,2,3,4}, Teklu Erkossa³, Kiflu Gudeta², Wuletawu Abera⁴, Ephrem Mesfin², Terefe
4 Mekete², Mitiku Haile⁶, Wondwosen Haile⁷, Assefa Abegaz¹, Demeke Tafesse¹², Gebeyhu Belay⁷,
5 Mekonen Getahun^{8,9}, Sheleme Beyene¹⁰, Mohamed Assen¹, Alemayehu Regassa¹¹, Yihenew G.
6 Selassie⁹, Solomon Tadesse¹², Dawit Abebe¹³, Yitbarek Wolde¹³, Nesru Hussien², Abebe Yirdaw²,
7 Addisu Mera², Tesema Admas², Feyera Wakoya², Awgachew Legesse², Nigat Tessema^{2,10}, Ayele
8 Abebe¹⁴, Simret Gebremariam², Yismaw Aregaw², Bizuayehu Abebaw², Damtew Bekele¹², Eylachew
9 Zewdie⁷, Steffen Schulz³, Lulseged Tamene⁴, and Eyasu Elias^{2,5}

10 ¹Department of Geography and Environmental Studies, Addis Ababa University (AAU), Addis Ababa, Ethiopia

11 ²Ministry of Agriculture (MoA), Addis Ababa, Ethiopia

12 ³Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ), Ethiopia

13 ⁴International Centre for Tropical Agriculture (CIAT), Addis Ababa, Ethiopia

14 ⁵Centre for Environmental Science, Addis Ababa University, Ethiopia

15 ⁶Mekelle University, Mekelle, Ethiopia

16 ⁷ Private Consultant, Addis Ababa, Ethiopia

17 ⁸Amhara Design and Supervision Enterprise (ADSE), Bahir Dar, Ethiopia

18 ⁹BahirDar University (BDU), Bahir Dar, Ethiopia

19 ¹⁰Hawassa University (HU), Hawassa, Ethiopia

20 ¹¹Jimma University (JU), Jimma, Ethiopia

21 ¹² Ethiopian Construction Design and Supervision Works Corporation (ECDSWCo), Addis Ababa, Ethiopia

22 ¹³ Engineering Corporation of Oromia, Addis Ababa, Ethiopia

23 ¹⁴ National Soil Testing Centre, MoA, Addis Ababa, Ethiopia.

24 **Correspondence:** Ashenafi Ali (ashenafi.ali@aau.edu.et)

25 **Abstract.** Up-to-date digital soil resource information and its comprehensive understanding are
26 crucial to supporting crop production and sustainable agricultural development. Generating such
27 information through conventional approaches consumes time and resources, and is difficult for
28 developing countries. In Ethiopia, the soil resource map that was in use is qualitative, dated (since
29 1984), and small-scaled (1:2 M) which limit its practical applicability. Yet, a large legacy soil profile
30 data accumulated over time and the emerging machine learning modelling approaches can help in
31 generating a high-quality quantitative digital soil map that can provide better soil information. Thus,

32 a group of researchers formed a coalition of the willing for soil and agronomy data sharing and collated
33 about 20,000 soil profile data and stored them in a central database. The data were cleaned and
34 harmonised using the latest soil profile data template and 14,681 profile data were prepared for
35 modelling. Random Forest was used to develop a continuous quantitative digital map of 18 World
36 Reference Base (WRB) soil groups at 250 m resolution by integrating environmental covariates
37 representing major soil-forming factors. The map was validated by experts through a rigorous process
38 involving senior soil specialists/pedologists checking the map based on purposely-selected district
39 level geographic windows across Ethiopia. The map is expected to have tremendous value in soil
40 management and other land-based development planning, given its improved spatial resolution and
41 quantitative digital representation.

42 **Keywords:** soil profiles, environmental covariates, modelling, expert validation, Reference Soil
43 Group

44 1 Introduction

45 Soils are important resources that support the development and production of various economic, social,
46 and ecosystem services, and are useful in climate change mitigation and adaptation (Baveye et al.,
47 2016). Data on soils' physical and chemical characteristics and their spatial distribution are needed to
48 define and plan their functions over time and space, which are important steps towards sustainable use
49 and management of soils (Elias, 2016; Hengl et al., 2017).

50 In Ethiopia, soil surveys and mapping have been conducted at various scales with varying scopes,
51 approaches, methodologies, qualities, and levels of detail (Abayneh, 2001; Abayneh and Berhanu,
52 2007; Berhanu, 1994; Elias, 2016; Zewdie, 2013). The most recent country-wide digital soil mapping
53 efforts focused primarily on soil characteristics (Ali et al., 2020; Iticha and Chalsissa, 2019; Tamene
54 et al., 2017), although soil class maps are equally important for allocating a particular soil unit for
55 specific use (Leenaars et al., 2020a; Wadoux et al., 2020). Many attempts have been made to improve
56 digital soil information systems (Hengl et al., 2021, 2017, 2015; Poggio et al., 2020). However, the
57 initiatives were based on limited and unevenly distributed soil profile data (e.g., 1.15 soil profiles per
58 1,000 km² for Ethiopia) which restricts the accuracy and applicability of the products.

59 In Ethiopia, thousands of soil profile data have been collected since the 1960s (Erkossa et al., 2022),
60 but these data were scattered across different institutions and individuals (Ali et al., 2020).
61 Furthermore, country-wide quantitative and gridded spatial soil type information does not exist (Elias,
62 2016). The Ethiopian Soil Information System (EthioSIS) project attempted to develop a countrywide

63 digital soil map focusing on topsoil characteristics, including plant nutrient content, but overlooked
64 soil resource mapping (Ali et al., 2020; Elias, 2016), despite a strong need for a high-resolution soil
65 resource map (Mulualem et al., 2018).

66 Ethiopia has an area of about 1.14 mill. km² consisting of varied environments, making its soils
67 extremely heterogeneous. Capturing the heterogeneity using conventional soil survey and mapping
68 approaches is an expensive and time-consuming endeavour (Hounkpatin et al., 2018). This can be
69 circumvented using available legacy soil profile data accumulated over decades and tapping into the
70 potential of advanced analytical techniques to develop high-resolution digital soil maps (Hounkpatin
71 et al., 2018; Kempen, 2012, 2009). Therefore, the objectives of this study were to (1) develop a national
72 legacy soil profile dataset that can be used as an input for various digital soil mapping exercises, and
73 (2) generate an improved 250 m digital Reference Soil Groups (RSGs) map of Ethiopia.

74 **2 Methods**

75 **2.1 The study area**

76 The study area covered the entire area of Ethiopia (1.14 mill. km²) located between 3°N and 15° N,
77 and between 33° E and 48° E (Figure 1). The topography of the country is marked by a large altitudinal
78 variation, ranging from 126 meter below sea level at Dalol in the northeast to 4,620 m at Ras Dashen
79 Mountain in the northwest (Billi, 2015; Enyew and Steeneveld, 2014). Ethiopia's wide range of
80 topography, climate, parent material, and land use types created conditions for the formation of
81 different soil types (Abayneh, 2005; Berhanu and Ochtman, 1974; Donahue, 1972; Mesfin, 1998;
82 Nyssen et al., 2019; Virgo and Munro, 1978; Zewdie, 2013, 1999). More than 33% of the country is
83 covered by the central, upper and highland complex (Abegaz et al., 2022), which embraces Africa's
84 most prominent mountain system (Hurni, 1998).

86 **Figure 1.** Location map of Ethiopia, overview map © Esri World Topographic Map.

87 The country's complex topography strongly determines both rainfall and temperature patterns, by
 88 modifying the influence of the large-scale ocean-land-atmosphere pattern, thus creating diverse
 89 localised climates. Spatially, rainfall is characterised by a general decreasing trend in the direction
 90 from the west- to east, north, northeast, south and southeast. The lowlands in the southeast and
 91 northeast, covering approximately 55% of the country's land area, are characterised by arid and semi-
 92 arid climates. Annual rainfall ranges from less than 300 mm in the south-eastern and north-western
 93 lowlands to over 2,000 mm in the southwestern (southern portion of the western highlands). The
 94 eastern lowlands get rain twice a year, in April–May and October–November, with two dry periods in
 95 between. The total annual precipitation in this region varies from less than 500 to 1,000 mm. The driest
 96 of all regions is the Denakil Plain, which receives less than 500 mm and sometimes none (Fazzini et

97 al., 2015). Temperatures are also greatly influenced by the rapidly changing altitude and the mean
98 monthly values vary from ~35°C in the northeast lowlands to less than 7.5°C over the north and central
99 highlands.

100 The country is characterised by a wide variety of geological formations (Abyneh, 2005; Alemayehu
101 et al., 2014; Elias., 2016; Jarvis et al., 2011; Zewdie, 2013). These include (i) recent and old volcanic
102 activities; (ii) the highlands consisting of igneous rocks (mainly basalts); (iii) steep-sided valleys
103 characterised by strong colluvial and alluvial deposits; (iv) metamorphic rocks exposed by denudation
104 process; and (v) various sedimentary rocks like limestone and sandstone in the relatively lower areas.

105 Diverse biophysical factors affecting the spatial distribution of vegetated land cover which in turn both
106 as single and combined factors result in diverse soil types and properties across Ethiopia's landscapes
107 (Hurni, 1998; Nyssen et al., 2019; WLRC, 2018). The spatio-temporal vegetation cover of the country
108 has been characterised by a long history of landuse-landcover changes(WLRC, 2018). In terms of the
109 type and spatial coverage of major landuse/landcover classes, woody vegetation (forest, woodland,
110 and shrub and bush lands) covers about 57% of the country in accordance with the national 2016 map
111 (WLRC, 2018). This is followed by cultivated land (20%) and grasslands (12%). Barren lands are
112 estimated to cover about one-tenth of the area of the country while other minor lands with ecological
113 significance (i.e., wetlands, water bodies and sub-afro-alpine and afro-alpine) cover about 1.2% of
114 the country's land mass.

115 **2.2 Legacy soil profile data collation and preparation**

116 The soil profile data generated over decades through various soil survey missions were kept in a
117 variety of formats with limited accessibility. There has been no institution with a mandate to coordinate
118 the generation, collation, harmonisation, and sharing of soil profile data. This led to the formation of
119 a group of individuals and institutions who were willing to exchange soil and agronomy data.
120 Established in 2018, the group known as the Coalition of the Willing (CoW) was committed to
121 addressing the challenges posed by the lack of the soil and agronomy data access and sharing in the
122 country (Tamene et al., 2021).

123 The CoW conducted a national soil and agronomy data ecosystem mapping which revealed that a
124 plethora of legacy soil resource data sets do exist across different institutions and individuals (Ali et
125 al., 2020). The assessment also revealed that a sizable proportion of the data holders were willing to

126 share the data in their custody, provided that some regulations are put in place to administer the data.
127 The CoW developed and approved internal data sharing guidelines (CoW, 2020), and facilitated data
128 collation campaigns, which involved both formal and informal approaches to data holders.

129 Through a data collation campaign, soil profile data collected between the 1970s and 2021 were
130 acquired from over 88 diverse sources (Ali et al., 2020; Tamene et al., 2021). Initially, 8,000 profile
131 data points were collated and subjected to improved modelling techniques to create a provisional WRB
132 reference soil group map of Ethiopia. This was presented to various partners and data-holding
133 institutions to demonstrate the power of data sharing. This created awareness and enabled us to
134 mobilise and collate over 20,000 legacy soil profile data. These data were then added to the national
135 data repository.

136 The data had varying levels of completeness in terms of soil field and environmental descriptions and
137 laboratory analysis. These required a rigorous expert-based quality assessment and standardisation
138 before compiling into a harmonised format. The expanded version of the Africa Soil Profile (AfSP)
139 database (Leenaars et al., 2014) template was used for standardising and harmonising the data. Out of
140 the collated soil profile data, 14,681 georeferenced data points were extracted based on completeness
141 and cleanliness for the purposes of modelling. The cleaned soil profile data set contained, at least, the
142 reference soil group (RSG) nomenclature as outlined in the WRB legend. While the original soil
143 profile records were set in different coordinate systems, all were projected into the adopted standard
144 georeferencing system, namely WGS84, decimal degrees in the QGIS (3.20.2) environment (QGIS
145 Development Team, 2021). To verify their position, soil profile locations were plotted using a standard
146 WGS84 coordinate system to verify that points are matching with the site description,
147 geomorphological settings, and at the very least the source project boundary outline.

148 The accuracy of the data depends on the quality and reliability of the survey data itself which in turn
149 requires expert knowledge and experience in soil description and classification (Leenaars et al.,
150 2020a). In this study, data cleaning, validation, reclassification, and verification were carried out by a
151 team of prominent national pedologists and soil surveyors, including those involved in the generation
152 of some of the soil profile data themselves (Figure 2).

153 **Figure 2.** Schematic presentation of data acquisition and workflow.

154 In addition, the Ministry of Agriculture (MoA) soil survey and mapping experts and other volunteers
 155 have validated the legacy soil profile observations. This led to the reclassification of the soil types as
 156 deemed necessary. Such validation and reclassification involved re-examining the geomorphological
 157 setup of the soil profile locations using Google Earth as well as reviewing the site and soil descriptions
 158 and the corresponding laboratory data, and reviewing the proposed soil type. The harmonised data sets
 159 in the database were used as input soil profile data for modelling and mapping IUSS WRB reference
 160 soil groups.

162 **2.3 Preparation and selection of environmental covariates**

163 **2.3.1 Covariates acquisition and preparation**

164 In order to develop spatially continuous soil class/type maps, data on environmental covariates that
 165 represent directly or indirectly the soil-forming factors have to be integrated with soil profile data
 166 (Hengl and MacMillan, 2019). Environmental covariates are spatially explicit proxies of soil-forming
 167 factors based on the soil-environment relationship (McBratney et al., 2003, Shi et al., 2018).
 168 Acquisition and preparation of covariates is a crucial step in digital soil mapping using machine

169 learning algorithms (McBratney et al., 2003; Miller et al., 2021). In this study, 68 potential candidate
170 environmental variables representing soil-forming factors (climate, organisms, relief, parent material,
171 and time) were derived from diverse remote sensing products and thematic maps (Hengl and
172 MacMillan, 2019; McBratney et al., 2003).

173 Relief and topography-related covariates were derived from 90-meter Shuttle Radar Topography
174 Mission (SRTM) digital elevation model (DEM) (Vågen, 2010). Climate-related variables including
175 long-term mean, minimum, maximum, and standard deviation temperature, and precipitation data for
176 the period between 1983 and 2016 (Dinku et al., 2014) were acquired from Enhancing National
177 Climate Services (ENACTS-NMA) initiatives with 4 km resolutions (Dinku et al., 2014). Moderate
178 Resolution Imaging Spectroradiometer (MODIS) imagery raw bands and derived indices (Vågen,
179 2010), were downloaded from USGS EarthExplorer (<https://earthexplorer.usgs.gov/>) to represent
180 vegetation-related factors. National geological (Tefera et al., 1996), and land use and land cover
181 (WLRC-AAU, 2018) thematic maps of Ethiopia were gathered to represent parent material and
182 organisms, respectively.

183 Downscaling (disaggregating) or upscaling (aggregating) of rasters were also performed to match the
184 target resolution. A 250 m spatial resolution was chosen to accommodate both the spatial resolution
185 of the major covariates inputs and make it applicable for large-scale analysis. All layers were masked
186 for buildings and water bodies by the national boundary of Ethiopia and a stacked layer was created
187 using raster package (R Core Team, 2020) to extract covariate values at the locations of soil profiles.
188 One-hot encoding technique using dummyVars function available in Caret package (Kuhn, 2008) was
189 used to pre-process and convert categorical covariates into a binary vector. Each element of the binary
190 vector represents the presence or absence of that category. One-hot encoding is beneficial because it
191 allows machine-learning algorithms to interpret categorical variables as numerical features. The
192 covariate pre-processing, visual inspection for inconsistencies, and resampling to a target grid of 250
193 m were conducted in QGIS [3.20.2] (QGIS Development Team, 2021), SAGA GIS [7.8.2] (Conrad et
194 al., 2015) and R [version 4.05] (R Core Team, 2020) software packages. All input data were projected
195 to a common Lambert azimuthal equal-area projection with the latitude of origin 8.65 and centre of
196 meridian 39.64 which is the centre point for Ethiopia. This projection was selected since it is effective
197 in minimising area distortions over land. Each covariate was adjusted to have an identical spatial
198 resolution, extent and projection using two resampling methods. Continuous covariates were

199 resampled using the bilinear spline method, whereas categorical covariates were resampled using the
200 nearest neighbour method.

201 **2.3.2 Covariates' selection**

202 Selecting an optimal set of covariates for effectively represent the soil–environment relationship is a
203 key step in Digital Soil Mapping (DSM) since improper selection of covariates will affect the quality
204 of model outputs (Shi et al., 2018; Huang et al. 2020). In this study, near-zero variance assessment
205 was conducted using `nearZeroVar` function available in R *caret* package (Kuhn, 2008) to identify and
206 remove environmental variables that have little or no variance. In addition, preliminary Random Forest
207 model training was performed to assess and identify covariates having high variable importance. After
208 expert judgement, a total of 27 environmental variables (24 continuous and 3 categorical) were
209 selected for modelling and predicting Reference Soil Groups.

210 **2.4 Modelling and mapping soil types/reference soil groups**

211 **2.4.1 Model tuning and quantitative evaluation**

212 In digital soil mapping, machine-learning techniques have been extensively used to determine the
213 relationship between soil types and environmental variables (McBratney et al., 2003). Many machine-
214 learning models were developed in the past decades for digital soil mapping to spatially predict soil
215 classes based on existing soil data and soil-forming environmental covariates (Heung et al., 2016).
216 Random Forest (RF), a tree-based ensemble method, is one of the most promising machine learning
217 techniques available for digital soil mapping (Breiman, 2001; Heung et al., 2016), which has gained
218 popularity due to its high overall accuracy and has been widely used in predictive soil mapping
219 (Brungard, 2015; Hengl et al., 2018). Examples of the main strengths of the RF model are its ability
220 to handle numerical and categorical data without any assumption of the probability distribution; and
221 its robustness against nonlinearity and overfitting (Breiman, 2001; Svetnik et al., 2003). While
222 building the RF model, data was split into training (80 %) and testing (20 %) components using
223 random sampling for training the model and evaluating its performance, respectively (Kuhn, 2008).
224 Hyper-parameter optimization and repeated cross-validation on the training dataset were performed
225 for optimal model application using the `ranger` method of *Caret* package. The three tuning parameters
226 for `ranger` method are `mtry`, `splitrule`, and `.min.node.size`. Generally this function is used to tune the
227 parameters in modelling in an automated fashion, as this will automatically check all the possible

228 tuning parameters and return the optimised parameters on which the model gives the best accuracy.
229 Model tuning was performed with a repeated 10-fold cross-validation procedure applying multiple
230 combinations of hyper-parameters for the ranger method. This is a fast implementation of RF
231 particularly suited for high-dimensional data (Wright and Ziegler, 2017). Then the number of
232 covariates used for the splits (mtry), splitting rules (splitrule) and minimum node size (min.node.size)
233 were optimised. The parameter ntree was adjusted to 1,000 in the model, and mtry values (10, 15, 20),
234 min.node.size values (5, 10, 15), and splitrule values (“variance”, “extratrees”, and “maxstat”) were
235 fed for the optimization procedure. The accuracy of the testing dataset was related to the model
236 performance for the new dataset, indicating the capacity of the model to predict at the unsampled
237 location. A confusion matrix was also used to calculate a cross-tabulation of observed and predicted
238 classes with associated statistics i.e., producer’s accuracy and user’s accuracy.

239 **2.4.2 Software and computational framework**

240 In this study, various open-source software packages that provide a comprehensive set of tools and
241 diverse capabilities were used for data preparation, analysis and visualisation. Data pre-processing and
242 preparation were performed using QGIS (QGIS Development Team, 2021) and SAGA GIS (Conrad
243 et al., 2015). For statistical analysis and machine learning modelling, R (R Core Team, 2020) and
244 relevant libraries were installed on a Windows server 2016 standard with 250 GB of working memory
245 to handle the challenges associated with large-scale data processing and analysis.

246 **2.4.3 Expert evaluation of spatial patterns of the beta-version soil map**

247 Visual inspection of the DSM output over the terrain was used to identify abnormalities and assess
248 how effectively it depicts landscape components (Rossiter et al., 2022). For this, we employed an
249 expert-based qualitative assessment of the model output. This technique was used to complement
250 model-based accuracy assessment and confirm agreement or indicate areas of concern. This was
251 implemented by a panel of senior soil specialists/pedologists checking the map based on purposely
252 selected district level geographic windows across Ethiopia, representing different agro-ecological
253 zones known to have diverse soil occurrences, and familiar to the panel of experts. Accordingly, an
254 expert validation workshop was conducted using the first version of the reference soil groups (RSGs)
255 map. About 45 multi-disciplinary scientists including soil surveyors, pedologists, geologists, and
256 geomorphologists were drawn from national and international research, development, and higher

257 learning institutions to review the draft RSG map in plenary. This was followed by breakout sessions
258 where groups of experts evaluated the map based on their experience and knowledge of soil-landscape
259 relations of the country and examined geographic windows.

260 Most importantly, disagreements regarding RSGs occurrence and patterns of the modelling outputs
261 across topo-sequences and contrasting soil-forming factor sequences were identified and discussed.
262 Further, inferences on parts of the DSM framework that require improvement were recommended.
263 After finalising the evaluation at the group's level assessment, each group presented the results in the
264 plenary followed by a discussion to get feedback from other participants. Following the plenary
265 discussions, the participants created a group of six senior pedologists to work on the recommendations
266 including changing the quality mask layer, validation of the additional data obtained during the event,
267 and assessment of re-modelling outputs.

268 After the second model was re-run, the group of senior pedologists together with geospatial experts
269 re-evaluated the output using the selected districts based on the feedback from the first review, which
270 was mainly on areas where there were “minor” and “major” concerns. Consequently, some
271 improvements were made e.g., in the areas where Vertisols, Fluvisols, and Leptosols were
272 overestimated. Further, underestimated RSGs (Alisols, Solonetz, Planosols, Acrisols, Lixisols,
273 Phaeozems, and Gleysols) showed a slight increase in area coverage and pattern improvements.
274 However, the total area of Leptosols and Cambisols increased from the first run due to the partial
275 exclusion of the mask layer used in the first round of modelling. The mask layer used in the first run
276 was criticised for quality issues as it excluded significant soil areas and due to its weakness in
277 capturing non-soil areas such as rock outcrops, salt flats, swamps and sand dunes. Nevertheless, the
278 spatial patterns of these soils occurring across previously considered “non-soil areas” were examined
279 by the panel of experts. In parallel, geospatial and soil experts checked the raster map of the RSGs in
280 the GIS environment to ensure areas with ‘no concern’ before re-running the model are kept the same
281 or changes are accepted by the panel of experts. The map from the second run is presented in this
282 paper as EthioSoilGrids version 1.0 product.

283

284

285 **3 Results and Discussion**

286 **3.1 Soil profile datasets**

287 Using the IUSS WRB, 2015, the preliminary identified 14,742 georeferenced legacy soil profiles were
288 classified/reclassified into twenty-three reference soil groups (RSGs). Nearly 90% of the soil profile
289 points represented Vertisols, followed by Luvisols, Cambisols, Leptosols, Fluvisols, and Nitisols,
290 which were found to be the dominant soil types in Ethiopia (Figure 3). The remaining 10% represented
291 the Regosols, Alisols, Andosols, Arenosols, Calcisols, Solonetz, Lixisols, Phaeozems, Solonchaks,
292 Acrisols, Planosols, Gleysols, Umbrisols, Ferralsols, Gypsisols, Plinthosols, and Stagnosols.

293 According to this study, about 72% of the IUSS WRB (2015) RSGs were confirmed to occur in
294 Ethiopia. This reconfirms the characterization of Ethiopia as a land of soil diversity having endowed
295 with a diverse range of soil types (Elias, 2016; Mishra et al., 2004). One of the limitations with legacy
296 soil data in categorical mapping is the imbalanced soil samples, in that all classes were not equally
297 represented (Wadoux et al., 2020). For this study, soil profiles with less than 30 observations were
298 objectively excluded from the model after examining the accuracy and spatial distribution of each
299 reference soil group. Five reference soil groups (Umbrisols, Ferralsols, Gypsisols, Plinthosols, and
300 Stagnosols) were excluded from the model and the EthioSoilGrids version 1.0 map.

302 **Figure 3.** Number of soil profile points per WRB reference soil groups.

303 After excluding the built-up) and water surface areas the average soil profile density was 13.1 per
304 1,000 km² (Figure 4), but the actual density varied across the different parts of the country. The
305 variation tends to follow river basins, sub-basins, and agricultural land-use types-based studies from
306 which most of the legacy data were pulled.. For instance, in 30 intervention districts of the Capacity
307 Building for Scaling up of Evidence-Based Best Practices in Agricultural Production in Ethiopia
308 (CASCAPE) project, the average profile density was about 87 profiles per 1,000 km² for a total area
309 of about 26,830 km² (Leenars et al., 2020a). Similarly, semi-detailed soil mapping missions in 15
310 districts conducted through the Bilateral Ethiopia-Netherlands Effort for Food, Income and Trade
311 (BENEFIT)-REALISE project generated about 217 observations per 1,000 km² (Leenars et al.,
312 2020b).

313 A soil type and depth map compilation and updating mission at a 1:250,000 scale by the Water Land
314 Resource Centre (WLRC) of Addis Ababa University collated and used about 3,949 legacy soil
315 profiles for the entire country (Ali et al., 2020), which is about 3.5 profiles per 1,000 km². Although
316 the distribution is not even and the eastern lowlands are sparsely represented, the number of data used
317 in this study is 8.5 times higher than the 1,712 legacy soil profiles data currently existing in the Africa
318 soil profile database (Batjas et al., 2020; Leenaars et al., 2014).

320 **Figure 4.** Spatial distribution of collated legacy soil profile data.

321 The soil profiles distribution across the 32 agro-ecological zones (AEZ) of Ethiopia revealed that all,
 322 except two—tepid per-humid mid-highland (0.13% landmass) and very cold sub-humid sub-afro alpine
 323 to afro-alpine (0.03% landmass)—were represented by soil profile observations. Furthermore, about
 324 95% of the profile observations represented 91% of the AEZs aerial coverage (Appendix A). The
 325 distribution of legacy soil profiles varied across AEZs. In general, the top-ranked lowland AEZs with
 326 roughly 56% area coverage were represented by 23% of the total profile observations, whereas top-
 327 ranked highland AEZs with 20% area coverage received 47% of profile observations. For instance,
 328 warm desert, warm moist, hot arid, and warm sub-moist lowlands with area coverage of around 20%,
 329 15%, 11%, and 10%, were represented roughly by 3%, 11%, 2%, and 7% of the total profiles,
 330 respectively. Tepid moist mid highlands (8% area coverage), tepid sub-humid mid highlands (7% area

331 coverage), and tepid sub-moist mid highlands (5% area coverage) each were represented by 20%,
332 15%, and 12% of the profiles, respectively.

333 **3.2 Modelling and Mapping**

334 **3.2.1 Variable importance**

335 The reference soil group spatial pattern is primarily influenced by long-term average surface
336 reflectance, flow-based DEM indices, and precipitation. Figure 5 shows variables of importance for
337 determining RSGs spatial prediction. The top-ranked variables were (i) long-term MODIS Near-
338 Infrared (NIR) reflectance; (ii) multiresolution index of valley bottom flatness, (iii) long-term mean
339 day-land surface temperature; (iv) long-term mean soil moisture; (v) standard deviation of long-term
340 precipitation; (vi) long-term mean precipitation; and (vii) topographic wetness index.

341 MODIS long-term mean spectral signatures showed high relative importance. According to Hengl et
342 al. (2017), accounting for seasonal vegetation fluctuation and inter-annual variations in surface
343 reflectance, long-term temporal signatures of the soil surface, derived as monthly averages from long-
344 term MODIS imagery, were more effective. Furthermore, Hengl and MacMillan (2019) explained that
345 long-term average seasonal signatures of surface reflectance provide a better indication of soil
346 characteristics than only a single snapshot of surface reflectance.

347 The Multi-Resolution Valley Bottom Flatness Index, a DEM-derived topography index, is the second
348 top-ranked covariate driving soil variability across Ethiopia. This hydrological/soil removal and
349 accumulation/deposition index is used to distinguish valley floor and ridgeline landscape positions
350 (Soil Science Division Staff, 2017) highly responsible for multiple soil-forming processes to operate
351 over a particular landscape, resulting in a wide range of soil development. The influence of topography
352 on spatial soil variation is manifested in every landscape of Ethiopia (Belay, 1997; Mesfin, 1998;
353 Nyssen et al., 2019; Zewdie, 2013).

354 Long-term daily mean land surface temperature, mean soil moisture, rainfall standard deviation and
355 mean annual rainfall were among the top-ranked covariates for predicting reference soil groups' spatial
356 variation across the country. In Ethiopia, different soil genesis studies revealed that climate has a
357 significant influence on soil development and properties and is, therefore, responsible for having
358 widely varying soils in the country (Abayneh, 2006, 2005; Fikru, 1988, 1980; Zewdie, 2013).

359

360 Among the most important covariates for predicting reference soil groups in the Ethiopian highlands,
 361 are monthly average soil moisture for January (ranked 3rd), long-term average soil moisture (ranked
 362 4th), and monthly average soil moisture for August (ranked 5th) (Leenars et al., 2020a). In the current
 363 study, soil moisture was among the ten top ranked covariates in modelling and explaining long-
 364 distance soil type variability across the country.

365

366 **Figure 5.** Random forest covariate relative importance for modelling RSGs.

367 Note: prep=Precipitation; prep_sd=The standard deviation of precipitation; tmax=Maximum
 368 Temperature; tmin=Minimum Temperature; trange=Temperature range; tav_sd=Standard deviation of
 369 average temperature; pet=Potential evapotranspiration; lstd=Land surface temperature- Day;
 370 lstdn=Land surface temperature-Night; soil_moist=Soil Moisture ; soil_temp=Soil temperature; DEM
 371 =Digital elevation model (Elevation); twi =Topographic wetness Index; aspect=Topographic Aspect;
 372 curv=Topographic Curvature; conv=Topographic convergence index; ls=Slope Length and Steepness

373 factor (ls_factor); morph=Terrain Morphometry; mrvbf=Multiresolution index of valley bottom
374 flatness; slope=Slope class (%); ndvi=Normalised Difference Vegetation Index (NDVI);
375 evi=Enhanced Vegetation Index (EVI); lulc=Land use/ landcover; lithology=Geology; ref1=Red band
376 ;ref2=Near-Infrared; ref7=Mid-Infrared.

377 In this study, lithology showed a relatively low influence on soil variability may be due to the use of
378 a coarse-scale and less detailed lithology map, which may not sufficiently capture the spatial
379 variability of the parent materials.

380 **3.2.2 Model performance**

381 The parameter optimization process resulted in mtry = 20, split rule= extra trees and minimum node
382 size= 5. The overall accuracy of the model was 56.24% which ranged between 54.43% and 58.1%
383 with a 95% confidence interval. The kappa values based on the internal cross-validation and testing
384 dataset showed that the overall model performance produced using 10-fold cross-validation with the
385 repeated fitting was 48%. Considering similar area-based digital soil class mapping efforts, the overall
386 accuracy was in line with the accuracies that were typically reported for soil class maps developed
387 with random forest model (Leenaars et al., 2020a) and statistical methods (Heung et al., 2016; Holmes
388 et al., 2015). Table 1 shows the confusion matrix at validation/testing points i.e., 20 % of the
389 observation. Further, the matrix indicates the producer's accuracy (class representation of observed
390 versus predicted) and user's accuracy were not similar for all RSGs. The map purity is in the order of
391 Lixisols, Calcisols, Alisols, Phaeozems, Vertisols, Andosols, Solonchaks, Fluvisols, Arenosols,
392 Leptosols, Luvisols, Nitisols, and Cambisols. However, Vertisols, Calcisols, and Andosols are the
393 observed classes that are best represented by the map followed by Fluvisols, Alisols, Nitisols,
394 Leptosols, Luvisols and Cambisols.

395 Global Soil Grids at 250 m resolution used machine learning algorithms to map the global WRB
396 reference soil groups with map purity and weighted kappa of 28% and 42%, respectively (Hengl et al.,
397 2017). The Soil Grids 250 m WRB soil groups/classes prediction output-spatial soil patterns were not
398 evaluated based on expert knowledge while in this study we did an extensive back and forth qualitative
399 assessment by a panel of pedologists. The quantitative accuracy in the present study (about 56%)
400 coupled with an expert-based qualitative evaluation of the predicted maps indicated the development
401 and achievement of a substantially enhanced national product for users of spatial soil resource

402 information. This finding is a step forward and acceptable considering that Soil Grids are not expected
403 to be as accurate as locally produced maps and models that use much more local point data and finer
404 local variables (Mulder et al., 2016). Further, the data and findings in this study can help improve the
405 soil maps of Africa as it partially addresses the concern by Hengl et al. (2017) who recognised that
406 WRB RSGs modelling in the global Soil Grids 250 m is critically uncertain for parts of Africa. This
407 is mainly attributed to limited access to more local point data by regional and global modelling
408 initiatives, unlike the present study which accessed a large number of legacy soil profile datasets.

409

410

411 **Table 1.** Confusion matrix of random forest RSG prediction (at validation/testing observations).
412

Prediction	Reference																	User Accuracy		
	Acrisols	Alisols	Andosols	Arenosols	Calcisols	Cambisols	Fluvisols	Gleysols	Leptosols	Lixisols	Luvisols	Nitisols	Phaeozems	Planosols	Regosols	Solonchaks	Solonetzs	Vertisols		
Acrisols	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0.33	
Alisols	0	40	0	0	0	0	1	1	0	0	9	4	0	0	2	0	0	2	59	
Andosols	0	0	28	1	1	3	5	0	2	0	2	0	0	0	0	0	1	1	0.68	
Arenosols	0	0	0	11	0	2	1	0	0	0	5	0	0	0	0	0	0	1	0.64	
Calcisols	0	0	0	0	21	0	1	0	0	0	2	0	0	0	0	0	0	5	0.55	
Cambisols	2	3	6	9	1	197	28	2	35	2	47	16	5	1	16	3	3	28	0.72	
Fluvisols	1	0	3	5	1	34	144	0	9	0	15	7	0	0	1	5	5	17	0.49	
Gleysols	0	0	0	0	0	0	1	2	0	0	1	0	0	1	0	0	0	0	0.58	
Leptosols	0	1	4	3	3	47	11	0	176	0	27	7	1	0	32	0	0	24	0.40	
Lixisols	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	
Luvisols	2	16	3	8	0	34	13	2	33	3	216	30	3	0	25	1	0	41	1.00	
Nitisols	6	8	0	0	1	23	8	3	18	8	29	132	0	1	8	0	1	21	0.50	
Phaeozems	0	0	0	0	0	0	0	0	0	0	1	0	2	0	0	0	0	0	0.49	
Planosols	0	0	0	0	0	0	0	0	0	0	1	1	0	5	1	0	0	1	0.67	
Regosols	0	0	0	0	0	7	1	0	7	1	8	1	0	0	22	0	0	5	0.55	
Solonchaks	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	3	1	0	0.42	
Solonetzs	0	0	0	0	1	4	1	0	0	0	0	0	0	0	0	1	6	0	0.60	
Vertisols	3	1	3	5	5	92	32	2	61	3	81	31	5	5	25	2	6	641	0.46	
Producer Accuracy	0.07	0.58	0.60	0.26	0.62	0.44	0.58	0.17	0.51	0.06	0.49	0.58	0.13	0.38	0.17	0.20	0.25	0.81	0.64	
Total	15	69	47	42	34	443	247	12	342	18	445	229	16	13	132	15	24	787	-	2,930

413 **3.2.3 Modelling and Mapping: EthioSoilGrids Version 1.0**

414 The study identified eighteen reference soil groups in Ethiopia, mapped at 250 m resolution (Figure
415 6). The model prediction showed that seven soil reference groups including Cambisols, Leptosols,
416 Vertisols, Fluvisols, Nitisols, Luvisols, and Calcisols covered nearly 98% of the total land area of the
417 country (Figure 7). Five soil reference groups (Solonchaks, Arenosols, Regosols, Andosols, and

418 Alisols) were estimated to cover about 2% of the land area, while trace coverages of Solonetz,
419 Planosols, Acrisols, Lixisols, Phaeozems, and Gleysols were also found in some pocket areas.

420 In terms of spatial distribution, Nitisols and Luvisols dominated the northwestern and southwestern
421 highlands while the southeastern lowlands were dominantly covered by Cambisols, Calcisols, and
422 Fluvisols with some Solonchaks. The Vertisols extensively cover the north and south-western
423 lowlands along with the Ethio-Sudan border areas and central highland plateaus. The probability of
424 occurrence of each RSG was mapped (Appendix C) in each modelling spatial window (i.e., the cell
425 size of 250-meter X 250 m). The dominant RSGs were aggregated based on the most probable RSGs
426 in each spatial modelling window. There was high correspondence between the top seven ranked
427 prediction probabilities and observed soil types as confirmed visually by overlaying observed classes
428 and prediction probabilities.

429 The overall occurrence and the relative position of each of the RSG along the topo-sequence and its
430 association with other RSGs agree with previous works (Abayneh, 2006; Ali et al., 2010; Abdenna et
431 al., 2018; Asmamaw and Mohammed, 2012; Belay, 2000, 1998, 1997, 1996; Driessen et al., 2001;
432 Elias, 2016; FAO 1984a; Fikre, 2003; Mitku, 1987; Mohammed and Belay, 2008; Mohammed and
433 Solomon, 2012; Mulugeta et al., 2021; Nyssen et al., 2019; Sheleme, 2017; Shimeles et al., 2007;
434 Tolossa, 2015; Zewdie, 2013). However, in some cases, the RSGs' position along the topo-sequence
435 and association with other RSGs require further investigation. The observed disparities might be
436 attributed to the positional accuracy of legacy point observations, modelling approach, and most
437 importantly the level of detail and scale/resolution of the environmental variables used in this study.
438 We used the currently available coarse resolution national geological map and hence soil parent
439 material might be inadequately represented in the model, which probably resulted in irregular RSGs
440 sequences. For instance, the main driving factors to establish and explain soil-landscape variability in
441 May-Leiba catchment of northern Ethiopia were geology (soil parent material) and different mass
442 movements (Van de Wauw et al., 2008). These factors led to Cambisols–Vertisols catenas
443 on basalt and Regosols–Cambisols–Vertisols catenas on limestone formations. Similar studies
444 identified parent material strongly determines the soil type (e.g. Vertisol, Luvisol, Cambisol) (Nyssen
445 et al., 2019). In general, in areas where there is complex soil diversity and distribution of soils, one of
446 the most important parameters is to identify parent material including effective techniques to capture

447 and delineate mass movement bodies, and human-induced soil erosion and deposition areas (Leenars
448 et al., 2020a; Nyssen et al., 2019; Van de Wauw et al., 2008).

450 **Figure 6.** Major reference soil groups of Ethiopia (EthioSoilGrid V1.0).

451 Considering the third position of Cambisols in the order of frequency occurrence of RSGs per point
452 observations (following Vertisols and Luvisols), these soils seem to be over-represented on the map
453 (ranked 1st) apparently at the expense of Vertisols and Luvisols, and to some extent in places of
454 Leptosols and other RSGs. This might be attributed to the fact that Cambisols create a geographical
455 continuation with Vertisols and/or Luvisols at the lower slopes and Leptosols/ Regosols at the higher
456 slopes, suggesting the presence of some bordering soil qualities in respective transitional zones (Ali et
457 al., 2010; Asmamaw and Mohammed, 2012; Sheleme, 2017; Zewdie, 2013).

458 The proportion of area mapped as Cambisols (34 %) revealed new insights compared with the
459 information from the most cited spatial soil maps: Cambisols ranked 2nd (21 %), 2nd (16 %), 4th (9 %),
460 and 4th (8 %) as reported by Berhanu (1980), FAO (1984b), FAO (1998), and Soil Grids- Hengl et al
461 (2017), respectively. This might be due to: (i) the number and distribution of profile observations,
462 which is more extensive than the previous ones, (ii) the type and level of details of covariates
463 considered; (iii) variations and rearrangements in the keys for classification of the RSGs among soil
464 classification versions used in previous studies and misclassification/confusion of Vertisols with
465 Vertic Cambisols, as legacy soil profile data coming from diverse sources.

467 **Figure 7.** The area coverage (in %) for the major WRB RSGs (Note: the remaining 10 RSGs-
468 Arenosols (0.44 %), Regosols (0.35 %), Andosols (0.31 %), Alisols (0.16 %), Solonetz (0.04 %),
469 Planosols (0.04 %), Acrisols (0.02 %), Lixisols (0.02 %), Phaeozems (0.02 %), and Gleysols (0.01 %)
470 were not plotted because of their relatively small area coverage).

471

472 **3.3 Expert validation of the soil map**

473 Expert knowledge of soil-landscape relations and soil distribution remains important to evaluate the
474 predictive soil mapping results and assess if predicted spatial patterns make sense from a pedological
475 viewpoint (Hengl et al., 2017; Poggio et al., 2020; Rossiter et al., 2022). An important step in
476 qualitative model evaluation is, therefore, expert assessment whereby professionals with broad
477 experience in soil survey and mapping can evaluate and improve the quality of the soil resource map.
478 This can highlight areas of agreement or concern across the landscape (Rossiter et al., 2022). The
479 expert validation workshop provided useful insights and tangible improvements to the development
480 of the map. While the plenary discussion provided an overview of the approaches followed in
481 developing the map, the group discussions helped to have an in-depth review of the selected polygons
482 of the map assigned to them. Participants were split into five groups (with 8-10 members each) and
483 have chosen up to 60 polygons representing areas with which at least one of the group members has
484 sufficient information, including data sources. Overall, the groups have checked a total of 126
485 polygons (Figure 8) which were fairly distributed across the country.

488 **Figure 8.** The spatial distribution of districts validated by stakeholders and feedback categories
 489 according to the level of concerns raised.

490 The group members displayed the polygons one by one in a GIS environment and discussed the
 491 predicted dominant and associated soil reference soil groups and labelled them in one of three
 492 confirmation categories: 1. confirmed with '*no concern*', 2. confirmed with '*minor concern*', and 3.
 493 confirmed with '*major concern*'. Confirmation with '*no concern*' was made when all members of a
 494 group agreed on both the types, relative coverage and patterns of the predicted soils within the polygon.
 495 Confirmation with '*minor concern*' was made when all or some of the team members agreed on the
 496 predicted soil types within the polygons but did not agree on the order of abundance or the probability
 497 occurrence of one or two soils including observed spatial patterns, while confirmation with '*major*
 498 *concern*' was made when all members of the team did not agree on the predicted soil type, or when
 499 the presence of another soil type, other than the predicted ones is noted.

500 All three groups have rated the accuracy of the map at 60 +%; of the 126 polygons, they have expressed
501 no concern for 63 %, minor concern for 23 % and a major concern for 14 % of the polygons.
502 Furthermore, differences in the prevalence of RSGs and patterns of the modeling outputs across
503 different soil forming factor sequences, as well as inferences about which areas of the DSM framework
504 still need work, were identified and elaborated by the expert input, and presented in the subsequent
505 sections.

506 **3.4 Evaluation of results, limitations and future direction**

507 Up-to-date soil resource spatial information is critically missing at a required scale and extent in
508 Ethiopia. As a result, resource management strategies miss their targets. Furthermore, the absence of
509 such data at a required resolution and extent, forced decision support tool developers to pick and use
510 the data they can access and afford. As a result, model outputs appear more site-specific or
511 representation becomes homogenous over the very heterogeneous landscapes that exist in reality. On
512 the other hand, in large areas and complex landscapes such as Ethiopia, it is very difficult to address
513 the demand for reasonably accurate and detailed soil-type maps using a conventional approach due
514 to the costs involved, and resources and time it requires. For instance, given the vastness of the country
515 and heterogeneous landscapes, a new conventional soil survey mission requires at least 170,000
516 profile point observations to map the entire terrestrial land mass of Ethiopia at a scale of 1: 250,000
517 with at least 1 observations per square centimetre. Moreover, the soil profile data requirement
518 definitely could have been much higher as we increase the scale of mapping and density of
519 observations. In the present study, machine-learning techniques combined with expert input were
520 implemented to produce a countrywide soil resource map of Ethiopia at reasonably higher accuracy,
521 less time and cost than that of conventional methods. In addition, rescue, compilations and
522 standardization of about 14,681 geo-referenced legacy soil profiles that can be included in the National
523 Soil Information System (NSIS) of Ethiopia and the World Soil Information Centre will support future
524 national, regional and global DSM efforts. The approach used demonstrates the power of data and
525 analytics to map the soil resources of Ethiopia and the output is an exemplary use case for similar
526 digital content development efforts in Ethiopia and beyond.

527 Moreover, in this study the quality monitoring processes and methods were followed to filter dubious
528 soil profiles, and soil classification and harmonization protocols. Then after, the study followed a
529 robust modelling framework and generated new insights into the relative area coverage of WRB RSGs

530 of Ethiopia. In addition, the study provided coherent and up-to-date digital quantitative gridded spatial
531 soil resource information to support the successful implementation of various digital agricultural
532 solutions and decision support tools (DSTs).

533 The spatially explicit limitation of the present study is revealed by expert-based qualitative evaluation
534 of spatial patterns across objectively selected geographic windows and prominent contrasting
535 landscapes of Ethiopia. This qualitative assessment indicated areas of concern in terms of how well
536 EthioSoilGrids version 1.0 represents soil geography across a mosaic of the country's landscapes. For
537 instance, in the north-eastern lowlands of Ethiopia, mainly along the "Denakil" depression, Fluvisols,
538 Cambisols and Vertisols were found on the map in areas where normally other soil types were expected
539 to occur. In this area, the expected prediction and area coverage of Leptosols has been probably
540 overshadowed by Fluvisols and Cambisols. Similarly, in some parts of western Ethiopia landscapes,
541 the prediction of Vertisols overshadows other RSGs which resulted in area coverage underestimation
542 of Fluvisols (along the "Akobo", "Gilo", and "Baro" rivers and their tributaries) and Alisols. Likewise,
543 in the central parts of northwestern Ethiopia, the prediction of Nitisols has been overshadowed by
544 Vertisols and Luvisols resulting in probable underestimation of the Nitisols area coverage.

545 The relatively low model performance and some classification errors in some of the examined
546 geographic windows (e.g. the Denakil depression, along Akobo, Baro, and Gilo rivers and the Somali
547 region) is, probably due to the paucity of samples from those areas (Figure 4), the inadequacy of the
548 dataset by RSGs, and over-representation of the dataset by some RSGs such as Vertisols, Luvisols,
549 and Cambisols. Balanced datasets are ideal to allow a decision tree algorithms to produce better
550 classification but for datasets with uneven class size, the generated classification model might be
551 biased towards the majority class (Hounkpatin et al., 2018; Wadoux et al., 2020). In addition,
552 uncertainty around quality of included covariates, not considered covariates in the modelling process
553 including management, use of validation methods that do not sufficiently control the effect of clustered
554 samples, and small sample size for some RSGs could have possibly biased modelling results in some
555 geographic areas.

556 To improve the modelling performance, future studies could explore (1) adding data for under-
557 represented geographic areas, land uses and covariate spaces, (2) opportunities to include other
558 covariates (parent material and management) that could capture the variability of the country
559 heterogeneous landscapes, (3) dimension reduction of covariates (4) use of remedial measures for

560 imbalances in sample sizes, (5) comparing different cross-validation methods, (6) use of an ensemble
561 modelling approach and/or robust modelling technique that accommodates neighbourhood size and
562 connectivity analyses, (7) use of better resolution/quality mask layer to segregate non-soil areas (rock
563 outcrops, salt flats, sand dunes and water bodies) from mapping areas, and (8) implementation of
564 quantitative and qualitative comparison of national, regional, and global legacy soil maps/soil grids
565 with new DSM products in terms of how well DSM products represent soil geography. In addition ,
566 future digital soil mapping strategies in Ethiopia may require to consider new soil sampling missions
567 in under-represented areas, adopt standard soil sampling, description guidelines and soil classification
568 systems including soil physico-chemical and mineralogical analysis, and combine local soil
569 nomenclature/classification systems with RSGs and develop a map of RSGs with qualifiers. At the
570 moment the under-sampled and under-represented areas are the Somali region, the Denakil and the
571 western and northwestern border areas of Ethiopia (Figure 4). Regardless of these limitations and to
572 the best of our knowledge the EthioSoilGrids v1.0 product provides the most complete soil information
573 available for Ethiopia.

574 **4 Conclusions**

575 Coherent and up-to-date country-wide digital soil information is essential to support digital
576 agricultural transformation efforts. This study involved collation, cleaning, harmonization, and
577 validation of the legacy soil profile data sets, involving soil scientists with different backgrounds
578 individually and in groups. To develop the 250 m digital soil resource map, a machine learning
579 modelling approach and expert validation were applied to the harmonised soil database and
580 environmental covariates affecting soil-forming processes. Accordingly, about 20,000 soil profile data
581 have been collated, out of which, about 14,681 were used for the modelling and mapping of eighteen
582 RSGs out of the identified twenty-three RSGs. Although unevenly distributed, the legacy soil profile
583 data used in the modelling covered most of the agro-ecologies of the country.

584 Among the mapped 18 RSGs, the highest number of observed (3,935) profiles represent Vertisols,
585 followed by Luvisols, Cambisols and Leptosols, while Gleysols were represented with the lowest
586 number (63) of profiles. The modelling revealed that MODIS long-term reflectance, multiresolution
587 index of valley bottom flatness, land surface temperature, soil moisture, long-term mean annual

588 rainfall, and wetness index of the landscape are the most important covariates for predicting reference
589 soil groups in Ethiopia.

590 Our ten-fold spatial cross-validation result showed an overall accuracy of about 56 % with varying
591 accuracy levels among RSGs. The modelling result revealed that seven major soil reference groups
592 including Cambisols (34 %), Leptosols (20 %), Vertisols (18 %), Fluvisols (10 %) Nitisols (7 %),
593 Luvisols (6 %) and Calcisols (3 %) covered nearly 98 % of the total land area of the country, while
594 minor coverage of other reference soil groups (Solonchaks, Arenosols, Regosols, Andosols, Alisols,
595 Solonetz, Planosols, Acrisols, Lixisols, Phaeozems, and Gleysols) were also detected in some areas.
596 Compared to the existing soil resource map, the coverage of the first three major soil groups has
597 substantially increased which is related to the increased availability of soil profile data covering larger
598 areas of the country, implying that these soils were previously underestimated. Cambisols and
599 Vertisols which together represent nearly half of the total land area are relatively young with inherent
600 fertility, implying the high agricultural potential for the country. However, given their limitations,
601 these and the other soil types require the implementation of suitable land, water, and crop management
602 techniques to sustainably exploit their potential.

603 The EthioSoilGrids version 1.0 product from this first countrywide RSGs modelling effort requires
604 complementary activities. These include modelling and mapping that should go beyond RSGs and
605 need to include 2nd level classifications including principal and supplementary qualifiers. Furthermore,
606 soil atlas of Ethiopia with details of the soil physicochemical properties needs to be prepared together
607 with the map, for which the authors and/or others responsible need to prioritize in their future research
608 endeavours.

609

610

611

612 **Appendix A: Legacy soil profile data distribution**613 **Table A1.** Distribution of legacy soil profile data by agroecology zones.

Major agroecological zones	AEZ area coverage (%)*	Profiles observation (%)**
Warm arid lowland plains	19.76	3.40
Warm moist lowlands	15.12	10.74
Hot arid lowland plains	10.79	2.44
Warm sub-moist lowlands	9.63	6.94
Tepid moist mid highlands	8.05	20.21
Warm sub-humid lowlands	7.11	5.69
Tepid sub-humid mid highlands	6.63	15.26
Tepid sub-moist mid highlands	5.17	12.39
Warm semi-arid lowlands	2.75	3.23
Tepid humid mid highlands	2.65	2.48
Warm humid lowlands	2.29	0.45
Cool moist mid highlands	1.74	4.15
Hot sub-humid lowlands	1.67	0.07
Cool sub-moist mid highlands	1.16	3.00
Cool humid mid highlands	0.82	1.01
Warm per-humid lowlands	0.68	0.01

Major agroecological zones	AEZ area coverage (%)*	Profiles observation (%)**
Hot moist lowlands	0.59	3.56
Hot sub-moist lowlands	0.56	0.03
Cool sub-humid mid highlands	0.52	1.38
Tepid arid mid highlands	0.43	0.39
Hot semi-arid lowlands	0.40	2.05
Tepid semi-arid mid highlands	0.19	0.67
Cold moist sub-afro-alpine to afro-alpine	0.07	0.16
Cold sub-moist mid highlands	0.07	0.04
Cold sub-humid sub-afro-alpine to afro-alpine	0.06	0.03
Cold humid sub-afro-alpine to afro-alpine	0.06	0.01
Very cold humid sub-afro-alpine	0.04	0.02
Very cold sub-moist mid highlands	0.02	0.02
Very cold moist sub-afro-alpine to afro-alpine	0.01V	0.03
Hot per-humid lowlands	0.01	0.15
Tepid perhumid mid highland	0.13	0
Very cold sub-humid sub-afro alpine to afro-alpine	0.03	0

614 Note: *= total area of Ethiopia 1.14mln km² ; **=total number of profiles 14,681

615

616 **Appendix B: Environmental covariates**617 **Table B1.** List, description, spatial and temporal extent, and source of covariates used in modelling
618 the reference soil groups.

Categories	Covariates	Descriptions	Spatial resolution	Temporal resolution	Source
Climate	prep	Precipitation	4 km	1981 - 2016	ENACTS (Dinku et al.,2014)
	prep_sd	The standard deviation of precipitation	4 km	1981 - 2016	Derived from ENACTS (Dinku et al.,2014)
	tmax	Maximum Temperature	4 km	1983 - 2016	ENACTS (Dinku et al.,2014)
	tmin	Minimum Temperature	4 km	1983 - 2016	ENACTS (Dinku et al.,2014)
	trange	Temperature range	4 km	1983 - 2016	ENACTS (Dinku et al.,2014)
	tav_sd	Standard deviation of average temperature	4 km	1983 - 2016	Derived from ENACTS (Dinku et al.,2014)
	pet	Potential evapotranspiration	4 km	1981 - 2016	Derived from ENACTS (Dinku et al.,2014) using Modified Penman method
	lstd	Land surface temperature- Day (Aqua MODIS- MYD11A2 , time series monthly average)	1000 m	2002-2018	AfSIS ^a
	lstn	Land surface temperature-Night (Aqua MODIS- MYD11A2 , time series monthly average)	1000 m	2002-2018	AfSIS
	soil_moist	Soil Moisture (Derived from one-dimensional soil water balance)	4 km	1981 - 2016	Ethiopian Digital AgroClimate Advisory Platform (EDACaP)
	soil_temp	Soil temperature	30 km	1979 - 2019	ERA 5-Reanalysis ECMWF data ^b
Topography	DEM	Digital elevation model (Elevation)	90 m	-	SRTM- DEM (Vågen, 2010)

Categories	Covariates	Descriptions	Spatial resolution	Temporal resolution	Source
	twi	Topographic wetness Index	90 m	-	SAGA GIS-based SRTM-DEM derivative
	aspect	Topographic Aspect	90 m	-	SAGA GIS-based SRTM-DEM derivative
	curv	Topographic Curvature	90 m	-	SAGA GIS-based SRTM-DEM derivative
	conv	Topographic convergence index	90 m	-	SAGA GIS-based SRTM-DEM derivative
	ls	Slope Length and Steepness factor (ls_factor)	90 m	-	SAGA GIS-based SRTM-DEM derivative
	morph	Terrain Morphometry	90 m	-	SAGA GIS-based SRTM-DEM derivative
	mrvbf	Multiresolution index of valley bottom flatness	90 m	-	SAGA GIS-based SRTM-DEM derivative
	slope	Slope class (%)	90 m	-	SAGA GIS-based SRTM-DEM derivative
Vegetation	ndvi	Normalised Difference Vegetation Index (NDVI) (MODIS- MODIS MOD13Q1, time series monthly average)	250 m	2000-2021	AfSIS ^a
	evi	Enhanced Vegetation Index (EVI) (MODIS- MODIS MOD13Q1, time series monthly average)	250 m	2000-2021	AfSIS
	lulc	Land use/ landcover	30 m	2010	Water and Land Resource Centre-Addis Ababa University (WLRC-AAU, 2010)
parent material	lithology	Geology/parent material	1:2,000,000	1996	The Ethiopian Geological Survey (Tefera et al.,1996)
MODIS spectral refelectance	ref1	Red band (MODIS- MODIS MOD13Q1, time series monthly average)	250 m	2000 – 2018	AfSIS ^a
	ref2	Near-Infrared (MODIS- MODIS MOD13Q1, time series monthly average)	250 m	2000 – 2018	AfSIS

Categories	Covariates	Descriptions	Spatial resolution	Temporal resolution	Source
	ref7	Mid-Infrared (MODIS- MODIS MOD13Q1, time series monthly average)	250 m	2000 – 2018	AfSIS

619

620 **Appendix C: Probability of occurrence of reference soil groups**

621

622

Figure C1. Occurrence probability maps of Cambisols, Leptosols, Vertisols, and Fluvisols.

623

Figure C2. Occurrence probability maps of Nitisols, Luvisols, and Calcisols.

627 **Data availability.** Full data will be available upon request based on the CoW guideline (CoW, 2020;
628 <https://ethioagridata.com/>) and the MoA “Soil and Agronomy Data Management, Use and Sharing”
629 directive No. 974/2023 Ethiopia (<https://nsis.moa.gov.et/>).

630 **Author contributions.** AA, TE, KG, WA, and LT conceived and designed the study, perform the
631 analysis, and wrote the first draft, with substantial input and feedback from all authors. EM, TM, NH,
632 AY, AM, TA, FW, AL, NT, AA, SG, YA, and BA, contributed to input data preparation, data
633 encoding, and harmonization. Legacy data validation and review of subsequent versions of the paper
634 were performed by MH, WH, AA, DT, GB, MG, SB, MA, AR, YGS, ST, DA, YW, DB, EZ, SC, and
635 EE.

636 **Competing interests.** The authors declare that they have no conflict of interest.

637 **Acknowledgments.** We sincerely appreciate the coalition of the willing (CoW) members who are
638 instrumental in providing, collating, cleaning, standardizing and harmonizing the legacy soil profile
639 data used in generating the soil resource map of Ethiopia at 250 m resolution. The CoW team also
640 deserves credit for inspiring many to share data and develop an integrated national database related to
641 agronomy and soil profile data. The leadership of the Natural Resource Development Sector and Soil
642 Resource Information and Mapping Directorate of the Ministry of Agriculture (MoA) have played a
643 crucial role. These includes assigning experts from the Ministry and other organizations who worked
644 on collating, encoding, harmonizing, processing the soil survey legacy data, and modelling and
645 prediction of Reference Soil Groups using robust machine learning algorithms and high performance
646 computing servers are the foundation for the soil resource map. Various institutions, as well as the
647 late and present soil surveyors and pedologists, deserve special recognition for their contributions to
648 the generation and sharing of soil profile data. We owe a debt of gratitude to ISRIC and the bilateral
649 Ethio-The Netherlands projects (cascape and BENEFIT-REALISE) funded by the Directorate-General
650 for International Cooperation (DGIS) of the Netherlands Ministry of Foreign Affairs through the
651 Netherlands Embassy in Ethiopia, which have been crucial in providing capacity building to the MoA,
652 and national soil and geospatial experts. Much thanks are due to Professor Eyasu Elias, Arie van
653 Kekem, Dr Tewodros Tefera, Dr Mulugeta Diro, Johan Leenaars, Bas Kempen, Stephan Mantel, and
654 Maria Ruiperez Gonzalez who have been organizing and providing training on soil classifications and
655 digital soil mapping to the MoA, and national soil and geospatial experts, over the Ethio-The
656 Netherlands bilateral projects’ period. The senior pedologists and soil surveyors who provided
657 invaluable support to check and harmonize thousands of soil profiles and laboratory results are
658 sincerely appreciated. They worked very hard with positive energy for which we are very grateful. In
659 addition, the same group of experts and additional ones who supported the validation of the
660 preliminary soil resource map deserve credit for their commitment to contributing their experiences.
661 We thank Dr Degefe Tebebe , Dr Sileshi Gudeta, and Neil Munro for supporting in the extraction of
662 climate covariates , providing critical technical support , and comments that helped improve the paper.
663 Our sincere appreciation also goes to the continued and persistent support of GIZ-Ethiopia mainly
664 through the project- Supporting Soil Health Interventions in Ethiopia (SSHI), which supported and
665 facilitated the activities of the CoW. The Alliance of Bioversity and CIAT is highly acknowledged for
666 coordinating CoW and its efforts and supporting the implementation of activities that are of high
667 national importance. We would also like to sincerely thank the Excellence in Agronomy (EiA) CGIAR

668 Initiative, which has brought huge contributions to this project in terms of funding and building skill
669 of the various teams. The Water, Land and Ecosystems (WLE) and Climate Change, Agriculture and
670 Food Security (CCAFS) programs of the CGIAR also provided support in various forms. Recently,
671 our work is benefiting from the Accelerating Impacts of CGIAR Climate Research in Africa
672 (AICCRA) project supported by the World Bank in terms of data, analytics, and resources to support
673 data linkage and integration.

674 **Financial support.** This work is financially supported by the Deutsche Gesellschaft für Internationale
675 Zusammenarbeit (GIZ) through the project “Supporting Soil Health Interventions in Ethiopia,” funded
676 by the Bill and Melinda Gates Foundation. This work was supported, in whole or in part, by the Bill
677 & Melinda Gates Foundation [INV-005460]. Under the grant conditions of the Foundation, a Creative
678 Commons Attribution 4.0 Generic License has already been assigned to the Author Accepted
679 Manuscript version that might arise from this submission.

680

681 **References**

682 Abayneh, E.: Application of Geographic Information System (GIS) for soil resource study in Ethiopia,
683 in: Proceedings of the National Sensitization Workshop on Agro metrology and GIS, 17-18
684 December 2001, Addis Ababa, Ethiopia, 162-169, 2001.

685 Abayneh, E.: Characteristics, Genesis and Classification of Reddish Soils from Sidamo Region of
686 Ethiopia, PhD Thesis, Universiti Putra Malaysia, 2005.

687 Abayneh, E., Zauyah, S., Hanafi, M. M., and Rosenani, A. B.: Genesis and classification of
688 sesquioxidic soils from volcanic rocks in sub-humid tropical highlands of Ethiopia, *Geoderma*,
689 136(3-4), 682–695, <https://doi.org/10.1016/j.geoderma.2006.05.006>, 2006.

690 Abayneh, E., and Berhanu, D.: Soil Survey in Ethiopia: Past, Present and the Future, in: Proceedings
691 of the 8th Conference of the Ethiopian Society of Soil Science, Soils for sustainable
692 development, 27-28 April, 2006, Addis Ababa, Ethiopia, 2007.

693 Abdenna, D., Yli-Halla, M., Mohamed, M., and Wogi, L.: Soil classification of humid Western
694 Ethiopia: A transect study along a toposequence in Didessa watershed, *Catena*, 163,184-195,
695 <https://doi.org/10.1016/j.catena.2017.12.020>, 2018.

696 Abegaz, A., Ashenafi, A., Tamene, L., Abera, W., and Smith, Jo. U.: Modeling long-term attainable
697 soil organic carbon sequestration across the highlands of Ethiopia. *Environ. Dev. Sustain.*, 24,
698 131–5162, <https://doi.org/10.1007/s10668-021-01653-0>, 2022.

699 Abera, W., Tamene, L., Tesfaye, K., Jiménez, D., Dorado, H., Erkossa, T., and Ramirez-Villegas, J.
700 : A data-mining approach for developing site-specific fertilizer response functions across the
701 wheat-growing environments in Ethiopia, *Experimental Agriculture*, 1-1, 2022.

702 AfSIS: Africa Soil Information Service project, Covariates for land and climate developed from
703 remotely sensed data, Earth institute, Columbia University, New York,
704 <http://africasoils.net/services/data/remote-sensing/land/>, 2020.

705 Alemayehu, R., Van Daele, K., De Paepe, P., Dumon, M., Deckers, J., Asfawossen, A., and Van
706 Ranst, E.: Characterizing weathering intensity and trends of geological materials in the Gilgel
707 Gibe catchment, southwestern Ethiopia, *Journal of African Earth Sciences*, 99 (2), 568-580,
708 <https://doi.org/10.1016/j.jafrearsci.2014.05.012>, 2014.

709 Ali, A., Tamene, L., and Erkossa, T.: Identifying, Cataloguing, and Mapping Soil and Agronomic Data
710 in Ethiopia, CIAT Publication No. 506, International Center for Tropical Agriculture (CIAT),
711 Addis Ababa, Ethiopia, <https://hdl.handle.net/10568/110868>, 2020.

712 Ali, A., Abayneh , E., and Sheleme, B.: Characterizing soils of Delbo Wegene watershed, J. Soil Sci.
713 Environ. Manage., 1 (8),184-199, 2010.

714 Asmamaw, L., and Mohammed, A.: Characteristics and classification of the soils of Gerado
715 catchment, Northeastern Ethiopia, EJNRS, 12(1 and 2), 1-22, 2012

716 Batjes, N., Ribeiro, E., and van Oostrum, Ad.: Standardized soil profile data to support global mapping
717 and modeling (WoSIS snapshot 2019), Earth Sys. Sc. Data., 12, 299-320, 2020.

718 Baveye, P.C., Jacques, B., and John, G.: Soil “Ecosystem” Services and Natural Capital: Critical
719 Appraisal of Research on Uncertain Ground, Front. in Environ. Sci., 4:41,
720 <https://www.frontiersin.org/article/10.3389/fenvs.2016.00041>, 2016.

721 Belay ,T.: Characteristics and Landscape relationships of Vertisols and Vertic Luvisols of Melbe,
722 Tigray, Ethiopia. SINET: Ethiopian Journal of Science 19 (1): 93-115, 1996.

723 Belay, T.: Variabilities of Soil Catena on Degraded Hill Slopes of Wtiya Catchment, Wello, Ethiopia,
724 SINET: J.Sc.,, 20 (2), 151-175, 1997.

725 Belay ,T.: Pedogenesis and soil-geomorphic relationships on the Piedmont slopes of Wurgo Valley,
726 South Welo, Ethiopia, SINET: J.Sc., 21(1), 91-111, 1998.

727 Belay, T.: Characteristics and classification of soils of Gora Daget forest, South welo highlands,
728 Ethiopia, SINET: J.Sc., 23(1), 35-51, 2000.

729 Berhanu, D.: A survey of studies conducted about soil resources appraisal and evaluation for
730 rural development in Ethiopia, IAR, 1980.

731 Berhanu, D.: The soils of Ethiopia: Annotated bibliography, Regional Soil Conservation Unit (RSCU),
732 Swedish International Development Authority (SIDA), Tech. handbook no. 9, 1994.

733 Berhanu, D, and Ochtman, L. : Soil resource appraisal and evaluation studies for rural development in
734 Ethiopia, a country report presented at the east African soil correlation committee Nairobi,
735 Kenya, pp 13–16,1974.

736 Billi, P.: Geomorphological landscapes of Ethiopia, in: Landscapes and Landforms of Ethiopia, World
737 Geomorphological Landscapes, Springer, Dordrecht, 3–32, <https://doi.org/10.1007/978-94-017-8026-1>, 2015.

738 Breiman, L.: RandomForests, Machine Learning, 45, 5–32,<https://doi.org/10.1023/A:1010933404324>, 2001.

739 Brungard, C. W., Boettinger, J. J., Duniway, M. C., Wills, S. A., and Edwards, W. T. C.: Machine

742 learning for predicting soil classes in three semi-arid landscapes, *Geoderma*, 239–240, 68–83,
743 <https://doi.org/10.1016/j.geoderma.2014.09.019>, 2015.

744 Brunner, M.: A National Soil Model of Ethiopia: A Geostatistical approach to Create a National Soil
745 Map of Ethiopia on the Basis of an SRTM 90 DEM and SOTWIS Soil Data, A Master's Thesis,
746 the Univ. of Bern, Switzerland, 2012.

747 Coalition of the Willing (CoW): Coalition of the Willing for soil and agronomy data access,
748 management and sharing, Data Sharing Guidelines, Ethiopian Institute of Agricultural
749 Research (EIAR), Addis Ababa, Ethiopia, 28 p. , <https://hdl.handle.net/10568/107988>, 2020.

750 Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V.,
751 and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model
752 Dev., 8, 1991–2007, <https://doi.org/10.5194/gmd-8-1991-2015>, 2015.

753 Dinku, T., Block, P., Sharoff, J., Hailemariam, K., Osgood, D., del Corral, J., Rémi Cousin, R., and
754 Thomson, M. C.: Bridging critical gaps in climate services and applications in Africa. *Earth*
755 *Perspectives*, 1(1), 1-13, <https://doi.org/10.1186/2194-6434-1-15>, 2014.

756 Donahue, R. L.: Ethiopia: Taxonomy, cartography and ecology of soils, Michigan State Univ., African
757 Stud. Center and Inst.Int.Agric.,Comm., Ethiopian Stud., Occasional Papers Series,
758 Monograph 1, 1972.

759 Driessens, P. M., Deckers, J., Spaargaren, O., and Nachtergael, F.: Lecture notes on the major soils of
760 the world, world soil resources reports No. 94, FAO, Rome, www.fao.org/3/a-y1899e, 2001.

761 Elias, E.: Soils of the Ethiopian Highlands: Geomorphology and Properties, CASCAPE Project,
762 ALTERRA, Wageningen UR, the Netherlands, library.wur.nl/WebQuery/isric/2259099, 2016.

763 Enyew, B. D., and Steeneveld, G. J.: Analysing the impact of topography on precipitation and flooding
764 on the Ethiopian highlands, *JGeol. Geosci*, 3(2), 2014.

765 Erkossa, T., Laekemariam, F., Abera, W., and Tamene, L.: Evolution of soil fertility research and
766 development in Ethiopia: From reconnaissance to data-mining approaches, *Experimental*
767 *Agriculture*, 58, E4. doi:10.1017/S0014479721000235, 2022.

768 FAO: Assistance to Land Use-Planning, Ethiopia: Provisional Soil Association Map of Ethiopia, Field
769 document No. 6, The United Nations Development Programme and Food and Agriculture
770 Organization, FAO, Rome, 1984a.

771 FAO: Assistance to Land Use-Planning, Ethiopia: Geomorphology and soils, Field Document AG DP/
772 ETH/78/003, The United Nations Development Programme and FAO, FAO, Rome, 1984b.

773 FAO: FAO/Unesco Soil Map of the World, revised legend, World Resources Report 60, FAO, Rome,
774 Reprinted, with corrections, as Tec. Pap. 20, ISRIC, Wageningen, 1989,
775 Library.wur.nl/WebQuery/isric/2264662, 1988.

776 FAO: Guideline for Soil Description, Fourth edition, FAO, Rome, Italy, 2006.

777 FAO: The Soil and Terrain Database for north-eastern Africa, Crop production systems zones of the
778 GAD sub region, Land and water digital media series 2, FAO, Rome.1998.

779 Fazzini, M., Bisci, C., and Billi, P.: The Climate of Ethiopia, in: Landscapes and Landforms of
780 Ethiopia, World Geomorphological Landscapes, edited by: Billi, P., Springer, Dordrecht, the
781 Netherlands, 65 – 87, https://doi.org/10.1007/978-94-017-8026-1_3, 2015.

782 Fikre, M.: Pedogenesis of major volcanic soils of the southern central Rift Valley region, Ethiopia,
783 MSc. Thesis. University of Saskatchewan, Saskatoon, Canada, 2003.

784 Fikru, A.: Need for Soil Survey Studies, in: Proceedings of the first soils science research review
785 workshop, 11-14 February 1987, 1988.

786 Fikru, A.: Soil resources of Ethiopia, in: Natural Resources Degradation a Challenge to Ethiopia, First
787 Natural Resources Conservation conference, IAR, 1980.

788 Hengl, T., and MacMillan, R. A.: Predictive Soil Mapping with R, OpenGeoHub foundation,
789 Wageningen, the Netherlands, www.soilmapper.org, ISBN: 978-0-359-30635-0, 2019.

790 Hengl, T., Heuvelink, G. B. M., Kempen, B., Leenaars, J. G. B., Walsh, M. G., Shepherd, K. D., Sila,
791 A., MacMillan, R. A., Mendes de Jesus, J., Tamene, L., and Tondoh, J. E.: Mapping soil
792 properties of Africa at 250 m resolution: random forest significantly improve current
793 predictions, PLoS ONE 10 (6), <https://doi.org/10.1371/journal.pone.0125814>,2015.

794 Hengl, T., Mendes de Jesus, J., Heuvelink, G. B., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A.,
795 Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas,
796 R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G., Ribeiro, E., Wheeler, I., Mantel, S., and
797 Kempen, B.: SoilGrids250m: Global gridded soil information based on machine
798 learning, PloS one, 12(2), e0169748, <https://doi.org/10.1371/journal.pone.0169748>, 2017.

799 Hengl, T., Miller, M., Križan, J., Shepherd, K. D., Sila, A., Kilibarda, M., Antonijević, O., Glušica,
800 L., Dobermann, A., Haefele, S. M., McGrath, S. P., Acquah, G. E., Collinson, J., Parente, L.,
801 Sheykhmousa, M., Saito, K., Johnson, J. M., Chamberlin, J., Silatsa, F., Yemefack, M., Wendt
802 J., M.R.A., and Crouch, J.: African soil properties and nutrients mapped at 30 m spatial

803 resolution using two-scale ensemble machine learning, *Scientific reports*, 11(1), 6130,
804 <https://doi.org/10.1038/s41598-021-85639-y>, 2021.

805 Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink , G. B. M, and Gräler B.: Random forest as a
806 generic framework for predictive modeling of spatial and spatio-temporal variables, *PeerJ*, 6,
807 <https://doi.org/10.7717/peerj.5518>, 2018.

808 Heung, B., Hung, C. H., Zhang, J., Knudby, A., Bulmer, C. E. and Schmidt, M. G.: An overview and
809 comparison of machine-learning techniques for classification purposes in digital soil mapping,
810 *Geoderma*, 265, 62-77, 2016.

811 Hounkpatin, K .O. L., Schmidt, K., Stumpf, F., Forkuor, G., Behrens, T., Scholten, T., Amelung, W.,
812 and Welp, G.: Predicting reference soil groups using legacy data: A data pruning and Random
813 Forest approach for tropical environment (Dano catchment, Burkina Faso), *Sci Rep*. 2018; 8,
814 9959, <https://doi.org/10.1038/s41598-018-28244-w>, 2018.

815 Hurni H.: Agro-ecological Belts of Ethiopia: Explanatory Notes on three maps at a scale of
816 1:1,000,000, *Soil Cons. Res. Pro.*, University of Bern, (Switzerland) in Association with the
817 Ministry of Agriculture, Addis Ababa, 1998.

818 Iticha, B., and Chalsissa, T.: Digital soil mapping for site-specific management of soils, *Geoderma*,
819 351 (85-91), *Geoderma*, <https://doi.org/10.1016/j.geoderma.2019.05.026>, 2019.

820 IUSS Working Group WRB.: *World Reference Base for Soil Resources 2014, update 2015*
821 International soil classification system for naming soils and creating legends for soil maps,
822 *World Soil Resources Reports No. 106*, FAO, Rome, 2015.

823 Jarvis, A., Reuter, H. I., Nelson, A., and Guevara , E.: Hole-filled SRTM for the globe Version 4,
824 CGIARCSI SRTM 90m Digital Elevation Database v4.1.,
825 <http://www.cgiarcsi.org/data/elevation/item/45-srtm-90m-digital-elevation-database-v41>,
826 2011.

827 Kempen, B., Brus, D. J., Heuvelink, G. B. M., and Stoorvogel, J. J.: Updating the 1:50,000 Dutch
828 soil map using legacy soil data: A multinomial logistic regression approach, *Geoderma*,
829 151(34), 311–326, <https://doi.org/10.1016/j.geoderma.2009.04.023.>, 2009.

830 Kempen, B., Brus, D. J., Stoorvogel, J. J., Heuvelink, G. B. M., and de Vries, F.: Efficiency
831 comparison of conventional and digital soil mapping for updating soil maps, *SSSA J.*, 76 (6),
832 2097–2115, <https://doi.org/10.2136/sssaj2011.0424>, 2012.

833 Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World map of the Köppen-Geiger climate

834 classification updated, Meteorologische Zeitschrift, 15. 259-263. 10.1127/0941-
835 2948/2006/0130, 2006.

836 Kuhn, M.: Building predictive Models in R using the caret package, Jour. of Stat. Soft., 28(5), 1 – 26,
837 doi:<http://dx.doi.org/10.18637/jss.v028.i05>, 2008.

838 Leenaars, J. G. B., van Oostrum, A.J.M., and Ruiperez ,G.M.: Africa Soil Profiles Database, Version
839 1.2. A compilation of georeferenced and standardised legacy soil profile data for Sub-Saharan
840 Africa (with dataset), ISRIC Report 2014/01, Africa Soil Information Service (AfSIS) project
841 and ISRIC – World Soil Information, Wageningen, library.wur.nl/WebQuery/isric/2259472,
842 2014.

843 Leenaars, J. G. B., Eyasu, E., Wösten, H., Ruiperez González, M., Kempen, B., Ashenafi, A., and
844 Brouwer, F.: Major soil-landscape resources of the caspae intervention woredas, Ethiopia:
845 Soil information in support to scaling up of evidence-based best practices in agricultural
846 production (with dataset), CASCAPE working paper series No. OT_CP_2016_1, Caspae.
847 <https://edepot.wur.nl/428596>, 2016.

848 Leenaars, J. G. B., Elias, E., Wösten, J. H. M., Ruiperez-González, M., and Kempen, B.: Mapping the
849 major soil-landscape resources of the Ethiopian Highlands using random forest, Geoderma,
850 361, <https://doi.org/10.1016/j.geoderma.2019.114067>, 2020a.

851 Leenaars, J. G. B., Ruiperez, M., González, M., Kempen, B., and Mantel, S.: Semi-detailed soil
852 resource survey and mapping of REALISE woredas in Ethiopia, Project report to the
853 BENEFIT-REALISE programme, December, ISRIC-World Soil Information, Wageningen, 2020b.

854 McBratney, A. B., Santos, M. M., and Minasny, B.: On digital soil mapping, Geoderma, 117 (1-2), 3
855 52, 2003.

856 Mesfin, A.: Nature and Management of Ethiopian Soils, ILRI, 272, 1998.

857 Mishra, B. B., Gebrekidan, H., and Kibret, K.: Soils of Ethiopia: Perception, appraisal and constraints
858 in relation to food security, JFAE, 2(3 and 4): 269-279, 2004.

859 Mitiku, H.: Genesis, characteristic and classification of the Central Highland soils of Ethiopia, Ph.D.
860 Thesis, State University of Ghent, Belgium, 1987.

861 Mohammed, A., and Belay, T.: Characteristics and classification of the soils of the Plateau of Simen
862 Mountains National Park (SMNP), Ethiopia, SINET: EJSc.,31 (2), 89-102, 2008.

863 Mohammed, A. and Solomon ,T. : Characteristics and fertility quality of the irrigated soils of Sheneka,
864 Ethiopia, EJNR,12 (1 and 2), 1-22, 2012.

865 Mulder, V. L., Lacoste, M., Richer de Forges, A. C., and Arrouays, D.: GlobalSoilMap France: high
866 resolution spatial modelling the soils of France up to two meter depth. *Science of the Total
867 Environment* 573, 1352-1369, 2016.

868 Mulualem, A., Gobezie, T.B., Kasahun, B., and Demese, M.: Recent Developments in Soil Fertility
869 Mapping and Fertilizer Advisory Services in Ethiopia, A Position Paper,
870 <https://www.researchgate.net/publication/327764748/>, 2018.

871 Mulugeta, T., Seid, A., Kefyalew, T., Mulugeta, F., and Tadla , G.: Characterization and Classification
872 of Soils of Askate Subwatershed, Northeastern Ethiopia, *Agri., For. and Fisheries*, 10 (3) ,
873 112-122, doi: 10.11648/j.aff.20211003.13, 2021.

874 Nyssen, J., Tielens, S., Tesfamichael, G., Tigist, A., Kassa, T., Wauw, J., Degeyndt, K.,
875 Descheemaeker, K., Kassa, A., Mitiku, H., Amanuel, Z.: Understanding spatial patterns of soils
876 for sustainable agriculture in northern Ethiopia's tropical mountains, *PLoS ONE*, 14(10),
877 <https://doi.org/10.1371/journal.pone.0224041>, 2019.

878 Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., and Rossiter,
879 D.: Soil Grids 2.0: producing soil information for the globe with quantified spatial uncertainty,
880 2020.

881 R Core Team R: A Language and Environment for Statistical Computing, R Foundation for Statistical
882 Computing, Vienna, 2020.

883 Rossiter, D. G., Poggio, L., Beaudette, D., and Libohova, Z.: How well does digital soil mapping
884 represent soil geography? An investigation from the USA, *SOIL*, 8, 559–586,
885 <https://doi.org/10.5194/soil-8-559-2022>, 2022.

886 Sheleme, B.: Topographic positions and land use impacted soil properties along Humbo Larena-Ofa
887 Sere toposequence, Southern Ethiopia, *JSSEM*, 8(8),135-147,
888 <https://doi.org/10.5897/JSSEM2017.0643>, 2017.

889 Shi, Jingjing; Yang, Lin; Zhu, A-Xing; Qin, Chengzhi; Liang, Peng; Zeng, Canying; Pei, Tao (2018).
890 Machine-Learning Variables at Different Scales vs. Knowledge-based Variables for Mapping Multiple
891 Soil Properties. *Soil Science Society of America Journal*, 82(3), 645–.
892 doi:10.2136/sssaj2017.11.0392

893 Shimeles, D., Mohamed, A., and Abayneh, E.: Characteristics and classification of the soils of
894 Tenocha Wenchacher Micro catchment, South west Shewa, Ethiopia. *EJNRS*, 9 (1), 37- 62,
895 2007.

896 Soil Science Division Staff: Soil survey manual, edited by: Ditzler, C., Scheffe, K., and
897 Monger, H.C., USDA Handbook 18, Government Printing Office, Washington, D.C., 2017.

898 Svetnik, V., Liaw, A., Tong, C., Culberson, J.C., Sheridan, R.P., and Feuston, B.P.: Random forest: a
899 classification and regression tool for compound classification and QSAR modeling, *J. of Che.*
900 *Info. and Com. Sc.*, 43, 1947–1958, doi: 10.1021/ci034160g, 2003.

901 Tamene, L. D., Amede, T., Kihara, J., Tibebe, D., and Schulz, S.: A review of soil fertility management
902 and crop response to fertilizer application in Ethiopia: towards
903 development of site- and context-specific fertilizer recommendation, CIAT
904 Publication No. 443, International Center for Tropical Agriculture (CIAT), Addis
905 Ababa, Ethiopia, hdl.handle.net/10568/82996, 2017.

906 Tamene, L., Erkossa, T., Tafesse, T., Abera, W., and Schultz, S.: A coalition of the willing powering
907 data-driven solutions for Ethiopian agriculture, CIAT Publication No. 518, CIAT, Addis
908 Ababa, Ethiopia, 2021.

909 Tefera, M., Chernet, T., and Workineh, H.: Geological Map of Ethiopia, Addis Ababa, Ethiopia:
910 Federal Democratic Republic of Ethiopia, Ministry of Mines and Energy, Ethiopian Institute
911 of Geological Surveys, 1999.

912 Tolossa, A.R.: Vertic Planosols in the Highlands of South-Western Ethiopia: Genesis, Characteristics
913 and Use, Ghent University, Faculty of Sciences, 2015.

914 Vågen, T.G.: Africa Soil Information Service: Hydrologically Corrected/Adjusted SRTM DEM
915 (AfrHySRTM), International Center for Tropical Agriculture –Tropical Soil Biology and
916 Fertility Institute (CIAT-TSBI), World Agroforestry Centre (ICRAF), Center for International
917 Earth Science Information Network (CIESIN), Columbia University,
918 <https://cmr.earthdata.nasa.gov/search/concepts/C1214155420-SCIOPS>, 2010.

919 Van de Wauw, J., Baert, G., Moeyersons, J., Nyssen, J., De Geyndt, K., Nurhussen, T., Amanuel, A.,
920 Poesen, J., and Deckers, J.: Soil-landscape relationships in the basalt-dominated highlands of
921 Tigay, Ethiopia, *Catena*, 75:117–27, 2008.

922 Virgo, K.J., and Munro, R.N.: Soil and erosion features of the Central Plateau region of Tigrai,
923 Ethiopia, *Geoderma*, 20,131–57, 1978.

924 Wadoux, A.M.J.C., Minasny, B., and McBratney, A.B.: Machine learning for digital soil mapping:
925 Applications, challenges and suggested solutions, *Earth Sci. Rev.*, 210, 103359, 2020.

926 Wright, M. N., and Ziegler, A.: Ranger: A fast implementation of random forests for high

927 dimensional data in C++ and R, JSS, 77(1), <https://doi.org/10.18637/jss.v077.i01>, 2017.

928 Water and Land Resource Centre-Addis Ababa University (WLRC-AAU): Land use/land cover

929 mapping, change detection and characterization of Ethiopia, Addis Ababa, 2018.

930 Westphal, E.: Agricultural Systems in Ethiopia, Agricultural Research Report 826, 1975.

931 Zewdie, E.: Properties of major Agricultural Soils of Ethiopia, Lambert Academic Publishing, 2013.

932 Zewdie, E.: Selected physical, chemical, and mineralogical characteristics of major soils occurring in

933 Chercher highlands, Eastern Ethiopia, EJNRS, 1(2), 173 – 185, 1999.