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Reference Soil Groups Map of Ethiopia Based on Legacy Data and Machine
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Abstract. Up-to-date digital soil resource information and its comprehensive understanding are
crucial to supporting crop production and sustainable agricultural development. Generating such
information through conventional approaches consumes time and resources, and is difficult for
developing countries. In Ethiopia, the soil resource map that was in use is qualitative, dated (since
1984), and small-scaled (1:2 M) which limit its practical applicability. Yet, a large legacy soil profile
data accumulated over time and the emerging machine learning modelling approaches can help in
generating a high-quality quantitative digital soil map that can provide better soil information. Thus,
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a group of researchers formed a coalition of the willing for soil and agronomy data sharing and collated
about 20,000 soil profile data and stored them in a central database. The data were cleaned and
harmonised using the latest soil profile data template and 14,681 profile data were prepared for
modelling. Random Forest was used to develop a continuous quantitative digital map of 18 World
Reference Base (WRB) soil groups at 250 m resolution by integrating environmental covariates
representing major soil-forming factors. The map was validated by experts through a rigorous process
involving senior soil specialists/pedologists checking the map based on purposely-selected district
level geographic windows across Ethiopia. The map is expected to have tremendous value in soil
management and other land-based development planning, given its improved spatial resolution and
quantitative digital representation.

Keywords: soil profiles, environmental covariates, modelling, expert validation, Reference Soil

Group

1 Introduction

Soils are important resources that support the development and production of various economic, social,
and ecosystem services, and are useful in climate change mitigation and adaptation (Baveye et al.,
2016). Data on soils’ physical and chemical characteristics and their spatial distribution are needed to
define and plan their functions over time and space, which are important steps towards sustainable use

and management of soils (Elias, 2016; Hengl et al., 2017).

In Ethiopia, soil surveys and mapping have been conducted at various scales with varying scopes,
approaches, methodologies, qualities, and levels of detail (Abayneh, 2001; Abayneh and Berhanu,
2007; Berhanu, 1994; Elias, 2016; Zewdie, 2013). The most recent country-wide digital soil mapping
efforts focused primarily on soil characteristics (Ali et al., 2020; Iticha and Chalsissa, 2019; Tamene
et al., 2017), although soil class maps are equally important for allocating a particular soil unit for
specific use (Leenaars et al., 2020a; Wadoux et al., 2020). Many attempts have been made to improve
digital soil information systems (Hengl et al., 2021, 2017, 2015; Poggio et al., 2020). However, the
initiatives were based on limited and unevenly distributed soil profile data (e.g., 1.15 soil profiles per
1,000 km? for Ethiopia) which restricts the accuracy and applicability of the products.

In Ethiopia, thousands of soil profile data have been collected since the 1960s (Erkossa et al., 2022),
but these data were scattered across different institutions and individuals (Ali et al., 2020).
Furthermore, country-wide quantitative and gridded spatial soil type information does not exist (Elias,

2016). The Ethiopian Soil Information System (EthioSIS) project attempted to develop a countrywide
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digital soil map focusing on topsoil characteristics, including plant nutrient content, but overlooked
soil resource mapping (Ali et al., 2020; Elias, 2016), despite a strong need for a high-resolution soil

resource map (Mulualem et al., 2018).

Ethiopia has an area of about 1.14 mill. km? consisting of varied environments, making its soils
extremely heterogeneous. Capturing the heterogeneity using conventional soil survey and mapping
approaches is an expensive and time-consuming endeavour (Hounkpatin et al., 2018). This can be
circumvented using available legacy soil profile data accumulated over decades and tapping into the
potential of advanced analytical techniques to develop high-resolution digital soil maps (Hounkpatin
etal., 2018; Kempen, 2012, 2009).Therefore, the objectives of this study were to (1) develop a national
legacy soil profile dataset that can be used as an input for various digital soil mapping exercises, and

(2) generate an improved 250 m digital Reference Soil Groups (RSGs) map of Ethiopia.

2 Methods

2.1 The study area

The study area covered the entire area of Ethiopia (1.14 mill. km?) located between 3°N and 15° N,
and between 33° E and 48° E (Figure 1). The topography of the country is marked by a large altitudinal
variation, ranging from 126 meter below sea level at Dalol in the northeast to 4,620 m at Ras Dashen
Mountain in the northwest (Billi, 2015; Enyew and Steeneveld, 2014). Ethiopia’s wide range of
topography, climate, parent material, and land use types created conditions for the formation of
different soil types (Abayneh, 2005; Berhanu and Ochtman, 1974; Donahue, 1972; Mesfin, 1998;
Nyssen et al., 2019; Virgo and Munro, 1978; Zewdie, 2013, 1999). More than 33% of the country is
covered by the central, upper and highland complex (Abegaz et al., 2022), which embraces Africa's

most prominent mountain system (Hurni, 1998).
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Figure 1. Location map of Ethiopia, overview map © Esri World Topographic Map.

The country’s complex topography strongly determines both rainfall and temperature patterns, by
modifying the influence of the large-scale ocean-land-atmosphere pattern, thus creating diverse
localised climates. Spatially, rainfall is characterised by a general decreasing trend in the direction
from the west- to east, north, northeast, south and southeast. The lowlands in the southeast and
northeast, covering approximately 55% of the country’s land area, are characterised by arid and semi-
arid climates. Annual rainfall ranges from less than 300 mm in the south-eastern and north-western
lowlands to over 2,000 mm in the southwestern (southern portion of the western highlands). The
eastern lowlands get rain twice a year, in April-May and October—November, with two dry periods in
between. The total annual precipitation in this region varies from less than 500 to 1,000 mm. The driest

of all regions is the Denakil Plain, which receives less than 500 mm and sometimes none (Fazzini et
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al., 2015). Temperatures are also greatly influenced by the rapidly changing altitude and the mean
monthly values vary from ~35°C in the northeast lowlands to less than 7.5°C over the north and central

highlands.

The country is characterised by a wide variety of geological formations (Abyneh, 2005; Alemayehu
et al., 2014; Elias., 2016; Jarvis et al., 2011; Zewdie, 2013). These include (i) recent and old volcanic
activities; (ii) the highlands consisting of igneous rocks (mainly basalts); (iii) steep-sided valleys
characterised by strong colluvial and alluvial deposits; (iv) metamorphic rocks exposed by denudation

process; and (V) various sedimentary rocks like limestone and sandstone in the relatively lower areas.

Diverse biophysical factors affecting the spatial distribution of vegetated land cover which in turn both
as single and combined factors result in diverse soil types and properties across Ethiopia’s landscapes
(Hurni, 1998; Nyssen et al., 2019; WLRC, 2018). The spatio-temporal vegetation cover of the country
has been characterised by a long history of landuse-landcover changes(WLRC, 2018). In terms of the
type and spatial coverage of major landuse/landcover classes, woody vegetation (forest, woodland,
and shrub and bush lands) covers about 57% of the country in accordance with the national 2016 map
(WLRC, 2018). This is followed by cultivated land (20%) and grasslands (12%). Barren lands are
estimated to cover about one-tenth of the area of the country while other minor lands with ecological
significance (i.e., wetlands, water bodies and sub-afro-alpine and afro-alpine ) cover about 1.2% of

the country’s land mass.
2.2 Legacy soil profile data collation and preparation

The soil profile data generated over decades through various soil survey missions were Kkept in a
variety of formats with limited accessibility. There has been no institution with a mandate to coordinate
the generation, collation, harmonisation, and sharing of soil profile data. This led to the formation of
a group of individuals and institutions who were willing to exchange soil and agronomy data.
Established in 2018, the group known as the Coalition of the Willing (CoW) was committed to
addressing the challenges posed by the lack of the soil and agronomy data access and sharing in the
country (Tamene et al., 2021).

The CoW conducted a national soil and agronomy data ecosystem mapping which revealed that a
plethora of legacy soil resource data sets do exist across different institutions and individuals (Ali et

al., 2020). The assessment also revealed that a sizable proportion of the data holders were willing to
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share the data in their custody, provided that some regulations are put in place to administer the data.
The CoW developed and approved internal data sharing guidelines (CoW, 2020), and facilitated data
collation campaigns, which involved both formal and informal approaches to data holders.

Through a data collation campaign, soil profile data collected between the 1970s and 2021 were
acquired from over 88 diverse sources (Ali et al., 2020; Tamene et al., 2021). Initially, 8,000 profile
data points were collated and subjected to improved modelling techniques to create a provisional WRB
reference soil group map of Ethiopia. This was presented to various partners and data-holding
institutions to demonstrate the power of data sharing. This created awareness and enabled us to
mobilise and collate over 20,000 legacy soil profile data. These data were then added to the national

data repository.

The data had varying levels of completeness in terms of soil field and environmental descriptions and
laboratory analysis. These required a rigorous expert-based quality assessment and standardisation
before compiling into a harmonised format. The expanded version of the Africa Soil Profile (AfSP)
database (Leenaars et al., 2014) template was used for standardising and harmonising the data. Out of
the collated soil profile data, 14,681 georeferenced data points were extracted based on completeness
and cleanness for the purposes of modelling. The cleaned soil profile data set contained, at least, the
reference soil group (RSG) nomenclature as outlined in the WRB legend. While the original soil
profile records were set in different coordinate systems, all were projected into the adopted standard
georeferencing system, namely WGS84, decimal degrees in the QGIS (3.20.2) environment (QGIS
Development Team, 2021). To verify their position, soil profile locations were plotted using a standard
WGS84 coordinate system to verify that points are matching with the site description,

geomorphological settings, and at the very least the source project boundary outline.

The accuracy of the data depends on the quality and reliability of the survey data itself which in turn
requires expert knowledge and experience in soil description and classification (Leenaars et al.,
2020a). In this study, data cleaning, validation, reclassification, and verification were carried out by a
team of prominent national pedologists and soil surveyors, including those involved in the generation

of some of the soil profile data themselves (Figure 2).
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Figure 2. Schematic presentation of data acquisition and workflow.

In addition, the Ministry of Agriculture (MoA) soil survey and mapping experts and other volunteers
have validated the legacy soil profile observations. This led to the reclassification of the soil types as
deemed necessary. Such validation and reclassification involved re-examining the geomorphological
setup of the soil profile locations using Google Earth as well as reviewing the site and soil descriptions
and the corresponding laboratory data, and reviewing the proposed soil type. The harmonised data sets
in the database were used as input soil profile data for modelling and mapping IUSS WRB reference

soil groups.

2.3 Preparation and selection of environmental covariates
2.3.1 Covariates acquisition and preparation

In order to develop spatially continuous soil class/type maps, data on environmental covariates that
represent directly or indirectly the soil-forming factors have to be integrated with soil profile data
(Hengl and MacMillan, 2019). Environmental covariates are spatially explicit proxies of soil-forming
factors based on the soil-environment relationship (McBratney et al., 2003, Shi et al., 2018).

Acquisition and preparation of covariates is a crucial step in digital soil mapping using machine
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learning algorithms (McBratney et al., 2003; Miller et al., 2021). In this study, 68 potential candidate
environmental variables representing soil-forming factors (climate, organisms, relief, parent material,
and time) were derived from diverse remote sensing products and thematic maps (Hengl and
MacMillan, 2019; McBratney et al., 2003).

Relief and topography-related covariates were derived from 90-meter Shuttle Radar Topography
Mission (SRTM) digital elevation model (DEM) (Vagen, 2010). Climate-related variables including
long-term mean, minimum, maximum, and standard deviation temperature, and precipitation data for
the period between 1983 and 2016 (Dinku et al., 2014) were acquired from Enhancing National
Climate Services (ENACTS-NMA) initiatives with 4 km resolutions (Dinku et al., 2014). Moderate
Resolution Imaging Spectroradiometer (MODIS) imagery raw bands and derived indices (Vagen,
2010), were downloaded from USGS EarthExplorer (https://earthexplorer.usgs.gov/) to represent
vegetation-related factors. National geological (Tefera et al., 1996), and land use and land cover
(WLRC-AAU, 2018) thematic maps of Ethiopia were gathered to represent parent material and

organisms, respectively.

Downscaling (disaggregating) or upscaling (aggregating) of rasters were also performed to match the
target resolution. A 250 m spatial resolution was chosen to accommodate both the spatial resolution
of the major covariates inputs and make it applicable for large-scale analysis. All layers were masked
for buildings and water bodies by the national boundary of Ethiopia and a stacked layer was created
using raster package (R Core Team, 2020) to extract covariate values at the locations of soil profiles.
One-hot encoding technique using dummyVars function available in Caret package (Kuhn, 2008) was
used to pre-process and convert categorical covariates into a binary vector. Each element of the binary
vector represents the presence or absence of that category. One-hot encoding is beneficial because it
allows machine-learning algorithms to interpret categorical variables as numerical features. The
covariate pre-processing, visual inspection for inconsistencies, and resampling to a target grid of 250
m were conducted in QGIS [3.20.2] (QGIS Development Team, 2021), SAGA GIS [7.8.2] (Conrad et
al., 2015) and R [version 4.05] (R Core Team, 2020) software packages. All input data were projected
to a common Lambert azimuthal equal-area projection with the latitude of origin 8.65 and centre of
meridian 39.64 which is the centre point for Ethiopia. This projection was selected since it is effective
in minimising area distortions over land. Each covariate was adjusted to have an identical spatial

resolution, extent and projection using two resampling methods. Continuous covariates were
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resampled using the bilinear spline method, whereas categorical covariates were resampled using the

nearest neighbour method.

2.3.2 Covariates’ selection

Selecting an optimal set of covariates for effectively represent the soil-environment relationship is a
key step in Digital Soil Mapping (DSM) since improper selection of covariates will affect the quality
of model outputs (Shi et al., 2018; Huang et al. 2020). In this study, near-zero variance assessment
was conducted using nearZeroVar function available in R caret package (Kuhn, 2008) to identify and
remove environmental variables that have little or no variance. In addition, preliminary Random Forest
model training was performed to assess and identify covariates having high variable importance. After
expert judgement, a total of 27 environmental variables (24 continuous and 3 categorical) were
selected for modelling and predicting Reference Soil Groups.

2.4 Modelling and mapping soil types/reference soil groups

2.4.1 Model tuning and quantitative evaluation
In digital soil mapping, machine-learning techniques have been extensively used to determine the

relationship between soil types and environmental variables (McBratney et al., 2003). Many machine-
learning models were developed in the past decades for digital soil mapping to spatially predict soil
classes based on existing soil data and soil-forming environmental covariates (Heung et al., 2016).
Random Forest (RF), a tree-based ensemble method, is one of the most promising machine learning
techniques available for digital soil mapping (Breiman, 2001; Heung et al., 2016), which has gained
popularity due to its high overall accuracy and has been widely used in predictive soil mapping
(Brungard, 2015; Hengl et al., 2018). Examples of the main strengths of the RF model are its ability
to handle numerical and categorical data without any assumption of the probability distribution; and
its robustness against nonlinearity and overfitting (Breiman, 2001; Svetnik et al., 2003). While
building the RF model, data was split into training (80 %) and testing (20 %) components using
random sampling for training the model and evaluating its performance, respectively (Kuhn, 2008).
Hyper-parameter optimization and repeated cross-validation on the training dataset were performed
for optimal model application using the ranger method of Caret package. The three tuning parameters
for ranger method are mtry, splitrule, and .min.node.size. Generally this function is used to tune the

parameters in modelling in an automated fashion, as this will automatically check all the possible
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tuning parameters and return the optimised parameters on which the model gives the best accuracy.
Model tuning was performed with a repeated 10-fold cross-validation procedure applying multiple
combinations of hyper-parameters for the ranger method. This is a fast implementation of RF
particularly suited for high-dimensional data (Wright and Ziegler, 2017). Then the number of
covariates used for the splits (mtry), splitting rules (splitrule) and minimum node size (min.node.size)
were optimised. The parameter ntree was adjusted to 1,000 in the model, and mtry values (10, 15, 20),
min.node.size values (5, 10, 15), and splitrule values (“variance’’, “extratrees’’, and “maxstat”) were
fed for the optimization procedure. The accuracy of the testing dataset was related to the model
performance for the new dataset, indicating the capacity of the model to predict at the unsampled
location. A confusion matrix was also used to calculate a cross-tabulation of observed and predicted

classes with associated statistics i.e., producer’s accuracy and user’s accuracy.
2.4.2 Software and computational framework

In this study, various open-source software packages that provide a comprehensive set of tools and
diverse capabilities were used for data preparation, analysis and visualisation. Data pre-processing and
preparation were performed using QGIS (QGIS Development Team, 2021) and SAGA GIS (Conrad
et al., 2015). For statistical analysis and machine learning modelling, R (R Core Team, 2020) and
relevant libraries were installed on a Windows server 2016 standard with 250 GB of working memory

to handle the challenges associated with large-scale data processing and analysis.

2.4.3 Expert evaluation of spatial patterns of the beta-version soil map
Visual inspection of the DSM output over the terrain was used to identify abnormalities and assess

how effectively it depicts landscape components (Rossiter et al., 2022). For this, we employed an
expert-based qualitative assessment of the model output. This technique was used to complement
model-based accuracy assessment and confirm agreement or indicate areas of concern. This was
implemented by a panel of senior soil specialists/pedologists checking the map based on purposely
selected district level geographic windows across Ethiopia, representing different agro-ecological
zones known to have diverse soil occurrences, and familiar to the panel of experts. Accordingly, an
expert validation workshop was conducted using the first version of the reference soil groups (RSGs)
map. About 45 multi-disciplinary scientists including soil surveyors, pedologists, geologists, and

geomorphologists were drawn from national and international research, development, and higher
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learning institutions to review the draft RSG map in plenary. This was followed by breakout sessions
where groups of experts evaluated the map based on their experience and knowledge of soil-landscape
relations of the country and examined geographic windows.

Most importantly, disagreements regarding RSGs occurrence and patterns of the modelling outputs
across topo-sequences and contrasting soil-forming factor sequences were identified and discussed.
Further, inferences on parts of the DSM framework that require improvement were recommended.
After finalising the evaluation at the group’s level assessment, each group presented the results in the
plenary followed by a discussion to get feedback from other participants. Following the plenary
discussions, the participants created a group of six senior pedologists to work on the recommendations
including changing the quality mask layer, validation of the additional data obtained during the event,
and assessment of re-modelling outputs.

After the second model was re-run, the group of senior pedologists together with geospatial experts
re-evaluated the output using the selected districts based on the feedback from the first review, which
was mainly on areas where there were “minor” and “major” concerns. Consequently, some
improvements were made e.g., in the areas where Vertisols, Fluvisols, and Leptosols were
overestimated. Further, underestimated RSGs (Alisols, Solonetz, Planosols, Acrisols, Lixisols,
Phaeozems, and Gleysols) showed a slight increase in area coverage and pattern improvements.
However, the total area of Leptosols and Cambisols increased from the first run due to the partial
exclusion of the mask layer used in the first round of modelling. The mask layer used in the first run
was criticised for quality issues as it excluded significant soil areas and due to its weakness in
capturing non-soil areas such as rock outcrops, salt flats, swamps and sand dunes. Nevertheless, the
spatial patterns of these soils occurring across previously considered “non-soil areas’” were examined
by the panel of experts. In parallel, geospatial and soil experts checked the raster map of the RSGs in
the GIS environment to ensure areas with ‘no concern’ before re-running the model are kept the same
or changes are accepted by the panel of experts. The map from the second run is presented in this

paper as EthioSoilGrids version 1.0 product.
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3 Results and Discussion

3.1 Soil profile datasets

Using the IUSS WRB, 2015, the preliminary identified 14,742 georeferenced legacy soil profiles were
classified/reclassified into twenty-three reference soil groups (RSGs). Nearly 90% of the soil profile
points represented Vertisols, followed by Luvisols, Cambisols, Leptosols, Fluvisols, and Nitisols,
which were found to be the dominant soil types in Ethiopia (Figure 3). The remaining 10% represented
the Regosols, Alisols, Andosols, Arenosols, Calcisols, Solonetz, Lixisols, Phaeozems, Solonchaks,
Acrisols, Planosols, Gleysols, Umbrisols, Ferralsols, Gypsisols, Plinthosols, and Stagnosols.

According to this study, about 72% of the IUSS WRB (2015) RSGs were confirmed to occur in
Ethiopia. This reconfirms the characterization of Ethiopia as a land of soil diversity having endowed
with a diverse range of soil types (Elias, 2016; Mishra et al., 2004). One of the limitations with legacy
soil data in categorical mapping is the imbalanced soil samples, in that all classes were not equally
represented (Wadoux et al., 2020). For this study, soil profiles with less than 30 observations were
objectively excluded from the model after examining the accuracy and spatial distribution of each
reference soil group. Five reference soil groups (Umbrisols, Ferralsols, Gypsisols, Plinthosols, and
Stagnosols) were excluded from the model and the EthioSoilGrids version 1.0 map.
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Figure 3. Number of soil profile points per WRB reference soil groups.
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After excluding the built-up) and water surface areas the average soil profile density was 13.1 per
1,000 km2 (Figure 4), but the actual density varied across the different parts of the country. The
variation tends to follow river basins, sub-basins, and agricultural land-use types-based studies from
which most of the legacy data were pulled.. For instance, in 30 intervention districts of the Capacity
Building for Scaling up of Evidence-Based Best Practices in Agricultural Production in Ethiopia
(CASCAPE) project, the average profile density was about 87 profiles per 1,000 km? for a total area
of about 26,830 km? (Leenars et al., 2020a). Similarly, semi-detailed soil mapping missions in 15
districts conducted through the Bilateral Ethiopia-Netherlands Effort for Food, Income and Trade
(BENEFIT)-REALISE project generated about 217 observations per 1,000 km? (Leenars et al.,
2020b).

A soil type and depth map compilation and updating mission at a 1:250,000 scale by the Water Land
Resource Centre (WLRC) of Addis Ababa University collated and used about 3,949 legacy soil
profiles for the entire country (Ali et al., 2020), which is about 3.5 profiles per 1,000 km?. Although
the distribution is not even and the eastern lowlands are sparsely represented, the number of data used
in this study is 8.5 times higher than the 1,712 legacy soil profiles data currently existing in the Africa
soil profile database (Batjas et al., 2020; Leenaars et al., 2014).
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Figure 4. Spatial distribution of collated legacy soil profile data.

The soil profiles distribution across the 32 agro-ecological zones (AEZ) of Ethiopia revealed that all,
except two—tepid per-humid mid-highland (0.13% landmass) and very cold sub-humid sub-afro alpine
to afro-alpine (0.03% landmass)—were represented by soil profile observations. Furthermore, about
95% of the profile observations represented 91% of the AEZs aerial coverage (Appendix A). The
distribution of legacy soil profiles varied across AEZs. In general, the top-ranked lowland AEZs with
roughly 56% area coverage were represented by 23% of the total profile observations, whereas top-
ranked highland AEZs with 20% area coverage received 47% of profile observations. For instance,
warm desert, warm moist, hot arid, and warm sub-moist lowlands with area coverage of around 20%,
15%, 11%, and 10%, were represented roughly by 3%, 11%, 2%, and 7% of the total profiles,

respectively. Tepid moist mid highlands (8% area coverage), tepid sub-humid mid highlands (7% area
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coverage), and tepid sub-moist mid highlands (5% area coverage) each were represented by 20%,

15%, and 12% of the profiles, respectively.

3.2 Modelling and Mapping

3.2.1 Variable importance
The reference soil group spatial pattern is primarily influenced by long-term average surface

reflectance, flow-based DEM indices, and precipitation. Figure 5 shows variables of importance for
determining RSGs spatial prediction. The top-ranked variables were (i) long-term MODIS Near-
Infrared (NIR) reflectance; (ii) multiresolution index of valley bottom flatness, (iii) long-term mean
day-land surface temperature; (iv) long-term mean soil moisture; (v) standard deviation of long-term

precipitation; (vi) long-term mean precipitation; and (vii) topographic wetness index.

MODIS long-term mean spectral signatures showed high relative importance. According to Hengl et
al. (2017), accounting for seasonal vegetation fluctuation and inter-annual variations in surface
reflectance, long-term temporal signatures of the soil surface, derived as monthly averages from long-
term MODIS imagery, were more effective. Furthermore, Hengl and MacMillan (2019) explained that
long-term average seasonal signatures of surface reflectance provide a better indication of soil

characteristics than only a single snapshot of surface reflectance.

The Multi-Resolution Valley Bottom Flatness Index, a DEM-derived topography index, is the second
top-ranked covariate driving soil variability across Ethiopia. This hydrological/soil removal and
accumulation/deposition index is used to distinguish valley floor and ridgetop landscape positions
(Soil Science Division Staff, 2017) highly responsible for multiple soil-forming processes to operate
over a particular landscape, resulting in a wide range of soil development. The influence of topography
on spatial soil variation is manifested in every landscape of Ethiopia (Belay, 1997; Mesfin, 1998;
Nyssen et al., 2019; Zewdie, 2013).

Long-term daily mean land surface temperature, mean soil moisture, rainfall standard deviation and
mean annual rainfall were among the top-ranked covariates for predicting reference soil groups’ spatial
variation across the country. In Ethiopia, different soil genesis studies revealed that climate has a
significant influence on soil development and properties and is, therefore, responsible for having
widely varying soils in the country (Abayneh, 2006, 2005; Fikru, 1988, 1980; Zewdie, 2013).

15


https://soilmapper.org/soil-covs-chapter.html#ref-Hengl2017SoilGrids250m

359

360  Among the most important covariates for predicting reference soil groups in the Ethiopian highlands,
361 are monthly average soil moisture for January (ranked 3'), long-term average soil moisture (ranked
362 4™M), and monthly average soil moisture for August (ranked 5™) (Leenars et al., 2020a). In the current
363  study, soil moisture was among the ten top ranked covariates in modelling and explaining long-

364  distance soil type variability across the country.
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366  Figure 5. Random forest covariate relative importance for modelling RSGs.
367 Note: prep=Precipitation; prep_sd=The standard deviation of precipitation; tmax=Maximum

368  Temperature; tmin=Minimum Temperature; trange=Temperature range; tav_sd=Standard deviation of
369 average temperature; pet=Potential evapotranspiration; Istd=Land surface temperature- Day;
370 Istn=Land surface temperature-Night; soil_moist=Soil Moisture ; soil_temp=Soil temperature; DEM
371 =Digital elevation model (Elevation); twi =Topographic wetness Index; aspect=Topographic Aspect;

372 curv=Topographic Curvature; conv=Topographic convergence index; Is=Slope Length and Steepness
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factor (Is_factor); morph=Terrain Morphometry; mrvbf=Multiresolution index of valley bottom
flatness; slope=Slope class (%); ndvi=Normalised Difference Vegetation Index (NDVI);
evi=Enhanced Vegetation Index (EVI); lulc=Land use/ landcover; lithology=Geology; ref1=Red band
:ref2=Near-Infrared; ref7=Mid-Infrared.

In this study, lithology showed a relatively low influence on soil variability may be due to the use of
a coarse-scale and less detailed lithology map, which may not sufficiently capture the spatial

variability of the parent materials.

3.2.2 Model performance
The parameter optimization process resulted in mtry = 20, split rule= extra trees and minimum node

size= 5. The overall accuracy of the model was 56.24% which ranged between 54.43% and 58.1%
with a 95% confidence interval. The kappa values based on the internal cross-validation and testing
dataset showed that the overall model performance produced using 10—fold cross-validation with the
repeated fitting was 48%. Considering similar area-based digital soil class mapping efforts, the overall
accuracy was in line with the accuracies that were typically reported for soil class maps developed
with random forest model (Leenaars et al., 2020a) and statistical methods (Heung et al., 2016; Holmes
et al.,, 2015). Table 1 shows the confusion matrix at validation/testing points i.e., 20 % of the
observation. Further, the matrix indicates the producer’s accuracy (class representation of observed
versus predicted) and user’s accuracy were not similar for all RSGs. The map purity is in the order of
Lixisols, Calcisols, Alisols, Phaeozems, Vertisols, Andosols, Solonchaks, Fluvisols, Arenosols,
Leptosols, Luvisols, Nitisols, and Cambisols. However, Vertisols, Calcisols, and Andosols are the
observed classes that are best represented by the map followed by Fluvisols, Alisols, Nitisols,

Leptosols, Luvisols and Cambisols.

Global Soil Grids at 250 m resolution used machine learning algorithms to map the global WRB
reference soil groups with map purity and weighted kappa of 28% and 42%, respectively (Hengl et al.,
2017). The Soil Grids 250 m WRB soil groups/classes prediction output-spatial soil patterns were not
evaluated based on expert knowledge while in this study we did an extensive back and forth qualitative
assessment by a panel of pedologists. The quantitative accuracy in the present study (about 56%)
coupled with an expert-based qualitative evaluation of the predicted maps indicated the development

and achievement of a substantially enhanced national product for users of spatial soil resource
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information. This finding is a step forward and acceptable considering that Soil Grids are not expected
to be as accurate as locally produced maps and models that use much more local point data and finer
local variables (Mulder et al., 2016). Further, the data and findings in this study can help improve the
soil maps of Africa as it partially addresses the concern by Hengl et al. (2017) who recognised that
WRB RSGs modelling in the global Soil Grids 250 m is critically uncertain for parts of Africa. This
is mainly attributed to limited access to more local point data by regional and global modelling

initiatives, unlike the present study which accessed a large number of legacy soil profile datasets.
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411  Table 1. Confusion matrix of random forest RSG prediction (at validation/testing observations).
412

Reference
>
Q
. %) S
i%) 2 [%) = %) £L IS K%) %) = Q 3
2, 3 8 3 2 g € 3 2 2 2 & g v 5 ¥ 3 &
icti 2 3 S c S 2 = 2 k= @ 2 3 3 o 3 c < 2 = -
Prediction = k%) ° S k) IS = > o >4 ) = © < > =] k=] = @ 8
[} = c = < < = —_ [} = =] = = < o} ° ° Q) 1%} [S)
< < < < (@) (@) L O] — — — z o o o 9] (95} > D =
Acrisols 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 3
0.33
Alisols 0 40 0 0 0 0 1 1 0 0 9 4 0 0 2 0 0 2 59
0.68
Andosols 0 0 28 1 1 3 5 0 2 0 2 0 0 0 0 0 1 1 44
0.64
Avrenosols 0 0 0 11 0 2 1 0 0 0 5 0 0 0 0 0 0 1 20
0.55
Calcisols 0 0 0 0 21 0 1 0 0 0 2 0 0 0 0 0 0 5 29
0.72
Cambisols 2 3 6 9 1 197 28 2 35 2 47 16 5 1 16 3 3 28 404
0.49
Fluvisols 1 0 3 5 1 34 144 0 9 0 15 7 0 0 1 5 5 17 247
0.58
Gleysols 0 0 0 0 0 0 1 2 0 0 1 0 0 1 0 0 0 0 5
0.40
Leptosols 0 1 4 3 3 47 11 0 176 0 27 7 1 0 32 0 0 24 336
0.52
Lixisols 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
1.00
Luvisols 2 16 3 8 0 34 13 2 33 3 216 30 3 0 25 1 0 41 430
0.50
Nitisols 6 8 0 0 1 23 8 3 18 8 29 132 0 1 8 0 1 21 267
0.49
Phaeozems 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 3
0.67
Planosols 0 0 0 0 0 0 0 0 0 0 1 1 0 5 1 0 0 1 9
0.55
Regosols 0 0 0 0 0 7 1 0 7 1 8 1 0 0 22 0 0 5 52
0.42
Solonchaks 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 1 0 5
0.60
Solonetzs 0 0 0 0 1 4 1 0 0 0 0 0 0 0 0 1 6 0 13
0.46
Vertisols 3 1 3 5 5 92 32 2 61 3 81 31 5 5 25 2 6 641 1,003
0.64
Producer 007 058 060 026 062 044 058 017 051 006 049 058 013 038 0.17 020 025 081 056
Accuracy
Total 15 69 47 42 34 443 247 12 342 18 445 229 16 13 132 15 24 787 - 2,930

413 3.2.3 Modelling and Mapping: EthioSoilGrids Version 1.0

414  The study identified eighteen reference soil groups in Ethiopia, mapped at 250 m resolution (Figure
415  6). The model prediction showed that seven soil reference groups including Cambisols, Leptosols,
416  Vertisols, Fluvisols, Nitisols, Luvisols, and Calcisols covered nearly 98% of the total land area of the

417  country (Figure 7). Five soil reference groups (Solonchaks, Arenosols, Regosols, Andosols, and

19



418
419

420
421
422
423
424
425
426
427
428

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446

Alisols) were estimated to cover about 2% of the land area, while trace coverages of Solonetz,

Planosols, Acrisols, Lixisols, Phaeozems, and Gleysols were also found in some pocket areas.

In terms of spatial distribution, Nitisols and Luvisols dominated the northwestern and southwestern
highlands while the southeastern lowlands were dominantly covered by Cambisols, Calcisols, and
Fluvisols with some Solonchaks. The Vertisols extensively cover the north and south-western
lowlands along with the Ethio-Sudan border areas and central highland plateaus. The probability of
occurrence of each RSG was mapped (Appendix C) in each modelling spatial window (i.e., the cell
size of 250-meter X 250 m). The dominant RSGs were aggregated based on the most probable RSGs
in each spatial modelling window. There was high correspondence between the top seven ranked
prediction probabilities and observed soil types as confirmed visually by overlaying observed classes

and prediction probabilities.

The overall occurrence and the relative position of each of the RSG along the topo-sequence and its
association with other RSGs agree with previous works (Abayneh, 2006; Ali et al., 2010; Abdenna et
al., 2018; Asmamaw and Mohammed, 2012; Belay, 2000, 1998, 1997, 1996; Driessen et al., 2001;
Elias, 2016; FAO 1984a; Fikre, 2003; Mitku, 1987; Mohammed and Belay, 2008; Mohammed and
Solomon, 2012; Mulugeta et al., 2021; Nyssen et al., 2019; Sheleme, 2017; Shimeles et al., 2007;
Tolossa, 2015; Zewdie, 2013). However, in some cases, the RSGs’ position along the topo-sequence
and association with other RSGs require further investigation. The observed disparities might be
attributed to the positional accuracy of legacy point observations, modelling approach, and most
importantly the level of detail and scale/resolution of the environmental variables used in this study.
We used the currently available coarse resolution national geological map and hence soil parent
material might be inadequately represented in the model, which probably resulted in irregular RSGs
sequences. For instance, the main driving factors to establish and explain soil-landscape variability in
May-Leiba catchment of northern Ethiopia were geology (soil parent material) and different mass

movements (Van de Wauw et al., 2008). These factors led to Cambisols— Vertisols catenas
on basalt and Regosols—Cambisols—Vertisols catenas on limestone formations. Similar studies
identified parent material strongly determines the soil type (e.g. Vertisol, Luvisol, Cambisol) (Nyssen
et al., 2019). In general, in areas where there is complex soil diversity and distribution of soils, one of

the most important parameters is to identify parent material including effective techniques to capture
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and delineate mass movement bodies, and human-induced soil erosion and deposition areas (Leenars
etal., 2020a; Nyssen et al., 2019; Van de Wauw et al., 2008).

34I°E 36I°E 38°E 40]°E 42[°E 44I°E 46|°E 48°E
N
= A g
=7 &
Legend
Reference Soil Groups
(IUSS WRB, 2015)
Acrisols I Luvisols
2 I Alisols I Nitisols g
= I Andosols Phaeozems | —
77 Arenosols [l Planosols
Calcisols [l Regosols
Cambisols [ Solonchaks
- [ Fluvisols [ Solonetzs >
&1 Gleysols [Nl Vertisols &
[ Leptosols [l Waterbody
. I Lixisols
z | B
oz o
Z: | |2
= ©
Zi | =
o 3
T T T T T T T
34°E 36°E 38°E 40°E 42°E 44°E 46°E 48°E

Figure 6. Major reference soil groups of Ethiopia (EthioSoilGrid V1.0).

Considering the third position of Cambisols in the order of frequency occurrence of RSGs per point
observations (following Vertisols and Luvisols), these soils seem to be over-represented on the map
(ranked 1%) apparently at the expense of Vertisols and Luvisols, and to some extent in places of
Leptosols and other RSGs. This might be attributed to the fact that Cambisols create a geographical
continuation with Vertisols and/or Luvisols at the lower slopes and Leptosols/ Regosols at the higher
slopes, suggesting the presence of some bordering soil qualities in respective transitional zones (Ali et
al., 2010; Asmamaw and Mohammed, 2012; Sheleme, 2017; Zewdie, 2013).
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The proportion of area mapped as Cambisols (34 %) revealed new insights compared with the
information from the most cited spatial soil maps: Cambisols ranked 2" (21 %), 2" (16 %), 41 (9 %),
and 4™ (8 %) as reported by Berhanu (1980), FAO (1984b), FAO (1998), and Soil Grids- Hengl et al
(2017), respectively. This might be due to: (i) the number and distribution of profile observations,
which is more extensive than the previous ones, (ii) the type and level of details of covariates
considered; (iii) variations and rearrangements in the keys for classification of the RSGs among soil
classification versions used in previous studies and misclassification/confusion of Vertisols with

Vertic Cambisols, as legacy soil profile data coming from diverse sources.
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Figure 7. The area coverage (in %) for the major WRB RSGs (Note: the remaining 10 RSGs-
Arenosols (0.44 %), Regosols (0.35 %), Andosols (0.31 %), Alisols (0.16 %), Solonetzs (0.04 %),
Planosols (0.04 %), Acrisols (0.02 %), Lixisols (0.02 %), Phaeozems (0.02 %), and Gleysols (0.01 %)
were not plotted because of their relatively small area coverage).
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3.3 Expert validation of the soil map

Expert knowledge of soil-landscape relations and soil distribution remains important to evaluate the
predictive soil mapping results and assess if predicted spatial patterns make sense from a pedological
viewpoint (Hengl et al., 2017; Poggio et al., 2020; Rossiter et al., 2022). An important step in
qualitative model evaluation is, therefore, expert assessment whereby professionals with broad
experience in soil survey and mapping can evaluate and improve the quality of the soil resource map.
This can highlight areas of agreement or concern across the landscape (Rossiter et al., 2022). The
expert validation workshop provided useful insights and tangible improvements to the development
of the map. While the plenary discussion provided an overview of the approaches followed in
developing the map, the group discussions helped to have an in-depth review of the selected polygons
of the map assigned to them. Participants were split into five groups (with 8-10 members each) and
have chosen up to 60 polygons representing areas with which at least one of the group members has
sufficient information, including data sources. Overall, the groups have checked a total of 126

polygons (Figure 8) which were fairly distributed across the country.
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Figure 8. The spatial distribution of districts validated by stakeholders and feedback categories

according to the level of concerns raised.

The group members displayed the polygons one by one in a GIS environment and discussed the
predicted dominant and associated soil reference soil groups and labelled them in one of three
confirmation categories: 1. confirmed with ‘no concern’, 2. confirmed with “minor concern”, and 3.
confirmed with ‘major concern’. Confirmation with ‘no concern’ was made when all members of a
group agreed on both the types, relative coverage and patterns of the predicted soils within the polygon.
Confirmation with ‘minor concern’ was made when all or some of the team members agreed on the
predicted soil types within the polygons but did not agree on the order of abundance or the probability
occurrence of one or two soils including observed spatial patterns, while confirmation with ‘major
concern’ was made when all members of the team did not agree on the predicted soil type, or when

the presence of another soil type, other than the predicted ones is noted.
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All three groups have rated the accuracy of the map at 60 +%; of the 126 polygons, they have expressed
no concern for 63 %, minor concern for 23 % and a major concern for 14 % of the polygons.
Furthermore, differences in the prevalence of RSGs and patterns of the modeling outputs across
different soil forming factor sequences, as well as inferences about which areas of the DSM framework
still need work, were identified and elaborated by the expert input, and presented in the subsequent

sections.

3.4 Evaluation of results, limitations and future direction

Up-to-date soil resource spatial information is critically missing at a required scale and extent in
Ethiopia. As a result, resource management strategies miss their targets. Furthermore, the absence of
such data at a required resolution and extent, forced decision support tool developers to pick and use
the data they can access and afford. As a result, model outputs appear more site-specific or
representation becomes homogenous over the very heterogeneous landscapes that exist in reality. On
the other hand, in large areas and complex landscapes such as Ethiopia, it is very difficult to address
the demand for reasonably accurate and detailed soil-type maps using a conventional approach due
to the costs involved, and resources and time it requires. For instance, given the vastness of the country
and heterogeneous landscapes, a new conventional soil survey mission requires at least 170,000
profile point observations to map the entire terrestrial land mass of Ethiopia at a scale of 1: 250,000
with at least 1 observations per square centimetre. Moreover, the soil profile data requirement
definitely could have been much higher as we increase the scale of mapping and density of
observations. In the present study, machine-learning techniques combined with expert input were
implemented to produce a countrywide soil resource map of Ethiopia at reasonably higher accuracy,
less time and cost than that of conventional methods. In addition, rescue, compilations and
standardization of about 14,681 geo-referenced legacy soil profiles that can be included in the National
Soil Information System (NSIS) of Ethiopia and the World Soil Information Centre will support future
national, regional and global DSM efforts. The approach used demonstrates the power of data and
analytics to map the soil resources of Ethiopia and the output is an exemplary use case for similar

digital content development efforts in Ethiopia and beyond.

Moreover, in this study the quality monitoring processes and methods were followed to filter dubious
soil profiles, and soil classification and harmonization protocols. Then after, the study followed a

robust modelling framework and generated new insights into the relative area coverage of WRB RSGs
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of Ethiopia. In addition, the study provided coherent and up-to-date digital quantitative gridded spatial
soil resource information to support the successful implementation of various digital agricultural

solutions and decision support tools (DSTS).

The spatially explicit limitation of the present study is revealed by expert-based qualitative evaluation
of spatial patterns across objectively selected geographic windows and prominent contrasting
landscapes of Ethiopia. This qualitative assessment indicated areas of concern in terms of how well
EthioSoilGrids version 1.0 represents soil geography across a mosaic of the country’s landscapes. For
instance, in the north-eastern lowlands of Ethiopia, mainly along the “Denakil” depression, Fluvisols,
Cambisols and Vertisols were found on the map in areas where normally other soil types were expected
to occur. In this area, the expected prediction and area coverage of Leptosols has been probably
overshadowed by Fluvisols and Cambisols. Similarly, in some parts of western Ethiopia landscapes,
the prediction of Vertisols overshadows other RSGs which resulted in area coverage underestimation
of Fluvisols (along the “Akobo”, “Gilo”, and “Baro” rivers and their tributaries) and Alisols. Likewise,
in the central parts of northwestern Ethiopia, the prediction of Nitisols has been overshadowed by
Vertisols and Luvisols resulting in probable underestimation of the Nitisols area coverage.

The relatively low model performance and some classification errors in some of the examined
geographic windows (e.g. the Denakil depression , along Akobo, Baro, and Gilo rivers and the Somali
region) is, probably due to the paucity of samples from those areas (Figure 4), the inadequacy of the
dataset by RSGs, and over-representation of the dataset by some RSGs such as Vertisols, Luvisols,
and Cambisols. Balanced datasets are ideal to allow a decision tree algorithms to produce better
classification but for datasets with uneven class size, the generated classification model might be
biased towards the majority class (Hounkpatin et al., 2018; Wadoux et al., 2020). In addition,
uncertainty around quality of included covariates, not considered covariates in the modelling process
including management, use of validation methods that do not sufficiently control the effect of clustered
samples, and small sample size for some RSGs could have possibly biased modelling results in some

geographic areas.

To improve the modelling performance, future studies could explore (1) adding data for under-
represented geographic areas, land uses and covariate spaces, (2) opportunities to include other
covariates (parent material and management) that could capture the variability of the country

heterogeneous landscapes, (3) dimension reduction of covariates (4) use of remedial measures for

26



560
561
562
563
564
565
566
567
568
569
570
571
572
573

574

575
576
577
578
579
580
581
582
583

584
585
586
587

imbalances in sample sizes, (5) comparing different cross-validation methods, (6) use of an ensemble
modelling approach and/or robust modelling technique that accommodates neighbourhood size and
connectivity analyses, (7) use of better resolution/quality mask layer to segregate non-soil areas (rock
outcrops, salt flats, sand dunes and water bodies) from mapping areas, and (8) implementation of
quantitative and qualitative comparison of national, regional, and global legacy soil maps/soil grids
with new DSM products in terms of how well DSM products represent soil geography. In addition ,
future digital soil mapping strategies in Ethiopia may require to consider new soil sampling missions
in under-represented areas, adopt standard soil sampling, description guidelines and soil classification
systems including soil physico-chemical and mineralogical analysis, and combine local soil
nomenclature/classification systems with RSGs and develop a map of RSGs with qualifiers. At the
moment the under-sampled and under-represented areas are the Somali region, the Denakil and the
western and northwestern border areas of Ethiopia (Figure 4). Regardless of these limitations and to
the best of our knowledge the EthioSoilGrids v1.0 product provides the most complete soil information

available for Ethiopia.

4 Conclusions

Coherent and up-to-date country-wide digital soil information is essential to support digital
agricultural transformation efforts. This study involved collation, cleaning, harmonization, and
validation of the legacy soil profile data sets, involving soil scientists with different backgrounds
individually and in groups. To develop the 250 m digital soil resource map, a machine learning
modelling approach and expert validation were applied to the harmonised soil database and
environmental covariates affecting soil-forming processes. Accordingly, about 20,000 soil profile data
have been collated, out of which, about 14,681 were used for the modelling and mapping of eighteen
RSGs out of the identified twenty-three RSGs. Although unevenly distributed, the legacy soil profile
data used in the modelling covered most of the agro-ecologies of the country.

Among the mapped 18 RSGs, the highest number of observed (3,935) profiles represent Vertisols,
followed by Luvisols, Cambisols and Leptosols, while Gleysols were represented with the lowest
number (63) of profiles. The modelling revealed that MODIS long-term reflectance, multiresolution

index of valley bottom flatness, land surface temperature, soil moisture, long-term mean annual
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rainfall, and wetness index of the landscape are the most important covariates for predicting reference

soil groups in Ethiopia.

Our ten-fold spatial cross-validation result showed an overall accuracy of about 56 % with varying
accuracy levels among RSGs. The modelling result revealed that seven major soil reference groups
including Cambisols (34 %), Leptosols (20 %), Vertisols (18 %), Fluvisols (10 %) Nitisols (7 %),
Luvisols (6 %) and Calcisols (3 %) covered nearly 98 % of the total land area of the country, while
minor coverage of other reference soil groups (Solonchaks, Arenosols, Regosols, Andosols, Alisols,
Solonetzs, Planosols, Acrisols, Lixisols, Phaeozems, and Gleysols) were also detected in some areas.
Compared to the existing soil resource map, the coverage of the first three major soil groups has
substantially increased which is related to the increased availability of soil profile data covering larger
areas of the country, implying that these soils were previously underestimated. Cambisols and
Vertisols which together represent nearly half of the total land area are relatively young with inherent
fertility, implying the high agricultural potential for the country. However, given their limitations,
these and the other soil types require the implementation of suitable land, water, and crop management

techniques to sustainably exploit their potential.

The EthioSoilGrids version 1.0 product from this first countrywide RSGs modelling effort requires
complementary activities. These include modelling and mapping that should go beyond RSGs and
need to include 2" level classifications including principal and supplementary qualifiers. Furthermore,
soil atlas of Ethiopia with details of the soil physicochemical properties needs to be prepared together
with the map, for which the authors and/or others responsible need to prioritize in their future research

endeavours.
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Appendix A: Legacy soil profile data distribution

Table Al. Distribution of legacy soil profile data by agroecology zones.

Major agroecological zones

AEZ area
coverage (%)*

Profiles
observation (%)**

Warm arid lowland plains

Warm moist lowlands

Hot arid lowland plains

Warm sub-moist lowlands

Tepid moist mid highlands

Warm sub-humid lowlands

Tepid sub-humid mid highlands

Tepid sub-moist mid highlands

Warm semi-arid lowlands

Tepid humid mid highlands

Warm humid lowlands

Cool moist mid highlands

Hot sub-humid lowlands

Cool sub-moist mid highlands

Cool humid mid highlands

Warm per-humid lowlands

19.76

15.12

10.79

9.63

8.05

7.11

6.63

5.17

2.75

2.65

2.29

1.74

1.67

1.16

0.82

0.68

3.40

10.74

2.44

6.94

20.21

5.69

15.26

12.39

3.23

2.48

0.45

4.15

0.07

3.00

1.01

0.01
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Major agroecological zones

AEZ area
coverage (%)*

Profiles
observation (%6)**

Hot moist lowlands

Hot sub-moist lowlands

Cool sub-humid mid highlands

Tepid arid mid highlands

Hot semi-arid lowlands

Tepid semi-arid mid highlands

Cold moist sub-afro-alpine to afro-alpine

Cold sub-moist mid highlands

Cold sub-humid sub-afro-alpine to afro-alpine

Cold humid sub-afro-alpine to afro-alpine

Very cold humid sub-afro-alpine

Very cold sub-moist mid highlands

Very cold moist sub-afro-alpine to afro-alpine

Hot per-humid lowlands

Tepid perhumid mid highland

Very cold sub-humid sub-afro alpine to afro-
alpine

0.59

0.56

0.52

0.43

0.40

0.19

0.07

0.07

0.06

0.06

0.04

0.02

0.01Vv

0.01

0.13

0.03

3.56

0.03

1.38

0.39

2.05

0.67

0.16

0.04

0.03

0.01

0.02

0.02

0.03

0.15
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Note: *= total area of Ethiopia 1.14mln km? ; **=total number of profiles 14,681



616  Appendix B: Environmental covariates

617  Table B1. List, description, spatial and temporal extent, and source of covariates used in modelling
618 the reference soil groups.

Categories Covariates | Descriptions Spatial Temporal Source
resolution resolution
Climate prep Precipitation 4 km 1981 - 2016 ENACTS (Dinku et al.,2014)
prep_sd The standard deviation 4 km 1981 - 2016 Derived from ENACTS
of precipitation (Dinku et al.,2014)
tmax Maximum Temperature | 4 km 1983 - 2016 ENACTS (Dinku et al.,2014)
tmin Minimum Temperature 4 km 1983 - 2016 ENACTS (Dinku et al.,2014)
trange Temperature range 4 km 1983 - 2016 ENACTS (Dinku et al.,2014)
tav_sd Standard deviation of 4 km 1983 - 2016 Derived from ENACTS
average temperature (Dinku et al.,2014)
pet Potential 4 km 1981 - 2016 Derived from ENACTS
evapotranspiration (Dinku et al.,2014) using
Modified Penman method
Istd 1000 m 2002-2018 AfSIS @
Land surface
temperature- Day (Aqua
MODIS- MYD11A2,
time series monthly
average)
Istn Land surface 1000 m 2002-2018 AfSIS
temperature-Night (Aqua
MODIS- MYD11A2 , time
series monthly average)
soil_moist Soil Moisture (Derived 4 km 1981 - 2016 Ethiopian Digital
chirv\gt‘:r‘:)';?;?s;’”a' AgroClimate Advisory
Platform (EDACaP)
soil_temp Soil temperature 30 km 1979 - 2019 ERA 5-Reanalysis ECMWF
data®
Topography DEM Digital elevation model 90 m - SRTM- DEM (Végen,
(Elevation) 2010)
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Categories Covariates | Descriptions Spatial Temporal Source
resolution resolution
twi Topographic wetness 90m - SAGA GIS-based
Index SRTM-DEM derivative
aspect Topographic Aspect 90 m - SAGA GIS-based
SRTM-DEM derivative
curv Topographic Curvature 90 m - SAGA GIS-based
SRTM-DEM derivative
conv Topographic 90m - SAGA GIS-based
convergence index SRTM-DEM derivative
Is Slope Length and 90 m - SAGA GIS-based
Steepness factor SRTM-DEM derivative
(Is_factor)
morph Terrain Morphometry 90 m - SAGA GIS-based
SRTM-DEM derivative
mrvbf Multiresolution index of | 90 m - SAGA GIS-based
valley bottom flatness SRTM-DEM derivative
slope Slope class (%) 90 m - SAGA GIS-based
SRTM-DEM derivative
Vegetation ndvi Normalised Difference 250 m 2000-2021 AfSIS @
Vegetation Index
(NDVI) (MODIS- MODIS
MOD13Q1, time series monthly
average)
evi Enhanced Vegetation 250 m 2000-2021 AfSIS
Index (EVI) (MODIS-
MODIS MOD13Q1, time series
monthly average)
lulc Land use/ landcover 30m 2010 Water and Land Resource
Centre-Addis Ababa
University (WLRC-AAU,
2010)
parent lithology Geology/parent material | 1:2,000,000 1996 The Ethiopian Geological
material Survey (Tefera et al.,1996)
MODIS refl Red band 250 m 2000-2018 | Afsis®
spectral (MODIS- MODIS MOD13Q1,
refelectance time series monthly average)
ref2 Near-Infrared 250 m 2000 — 2018 | AfSIS

(MODIS- MODIS MOD13Q1,
time series monthly average)
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Categories Covariates | Descriptions Spatial Temporal Source
resolution resolution
ref7 Mid-Infrared 250 m 2000 — 2018 | AfSIS

(MODIS- MODIS MOD13Q1,
time series monthly average)
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Appendix C: Probability of occurrence of reference soil groups

A

Cambisols Vertisols
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' High: 1

Low: 0
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Figure C1. Occurrence probability maps of Cambisols, Leptosols, Vertisols, and Fluvisols.
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Figure C2. Occurrence probability maps of Nitisols, Luvisols, and Calcisols.
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Data availability. Full data will be available upon request based on the CoW guideline (CoW, 2020;
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