

1 **RC1- Skye Wills**

2 We thank Skye Wills (RC 1) for taking the time to review our manuscript. We respond to the issues
3 raised as indicated below:

4 I commend the authors for this large and important effort and I appreciate the chance to
5 review this work. This is a worthy effort that should be published and shared widely.

6 Response 1: Thank you for taking the time to review our manuscript and we are grateful for the
7 positive comments.

8 I am very keen to explore the intersection between digital tool and expert knowledge in soil
9 survey. However, reading this manuscript, I found myself with some additional questions and
10 points of clarification needed. At numerous points, information was provided, but out of the
11 order the reader might expect. This is at least partially due to the iterative nature of the
12 project; but I found that some of the results were like part of the methods and some of the
13 results read like conclusions. The repetition of information might cause a reader to skip
14 sections and miss important pieces of information. I think with some additional explanation
15 and minor edits, this paper will be ready for publication.

16 Response 2: Thank you for the comments. We improved issues related to redundancy, mix-up of
17 statements in the methods, results and conclusions in the revised manuscript.

18 ***We have considered the comments and revised the manuscript. Kindly, see
19 sections 2.4.1; 2.4.3; 3.1; 3.2.1; 3.2.2; 3.2.3; 3.3; 3.4; and 4.0.***

20 Please find specific comments by line number:

21 Line 57: What number of profiles were used in the notable efforts referred to above
22 (soilgrids 1 and 2)? How many of the thousands collected were included. This information
23 would link the two parts of the intro – soil maps and soil profile collection.

24 Response 3: During legacy data collection campaign, over 20,000 profile data were collated (line
25 107). However, 14,742 profiles (Fig.4, line 265 to 267) were georeferenced with reference soil group
26 naming. Following exclusion of five reference soil groups from the modelling, only 14, 681 profiles
27 (line 112) were used for developing Ethio-Soil Grids v 1.0. In fact, some profiles data might have
28 been dropped during the modelling process due to lack of data values with the corresponding
29 covariate(s) as depicted in the confusion matrix. However, the global soil grids (1 and 2) development
30 is based on the Africa soil profile database/global soil profile database in which only about 1,712
31 profiles (line 283) covering Ethiopia were used. These soil profile information are included in the
32 development of EthioSoilGrid 1.0

33 Line 59: What do you mean that gridded spatial soil info is hardly available. Do you mean
34 they were inaccessible, hard to use, incomplete? Please be explicit in explaining why the
35 previous products were not adequate.

36 Response 4: We wanted to say that a national quantitative and spatially continuous predicted
37 reference soil group/soil type map does not exist. We admit that hardly available is confusing and in
38 the revised manuscript, it is revised by “does not exist”. We explain why the previous products were

39 not adequate in lines 48 to 69, as you noticed, especially in line 64. Further, we will revisit the
40 statements.

41 ***The statement has been changed as“Furthermore, country-wide quantitative and***
42 ***gridded spatial soil type information does not exist (Elias, 2016)”.....***

43 Line 64: This paragraph makes more sense to me prior to the previous paragraph – to line 59.

44 Response 5: Thank you for this feedback. Your concern regarding line 59 will be addressed as
45 indicated in response 4.

46 Line 71: What do you mean by improved?

47 Response 6: We wanted to mean we will develop an improved 250m soil grid map, which is more
48 accurate as compared to the available global and regional soil grids.

49 Line 121: this is the accuracy of the profile data. Figure 2. What is Data Ecosystem Mapping?
50 Does this include getting the metadata for each profile correct according to the covariates?

51 Response 7: The data ecosystem sketch is an effort to summarise the efforts involved starting from
52 data sourcing to single standardised database. Data ecosystem mapping is the activity conducted to
53 locate which data is available including the type of format and the level of completeness. It included
54 getting metadata of each profile data. Harmonization of the coordinate reference system according to
55 the covariate and different soil classification systems was worked out in the “Standardization phase”
56 of the process.

57 Line 152: Are the terrain variables used listed anywhere..... I see I think this
58 paragraph is confusing as many of the details I was looking for are in the next paragraph. I
59 recommend creating one paragraph or a separate climate and topography paragraph. Please
60 list the DEM derivatives.

61 ***All the covariates have been listed and key for abbreviations has been included as footnote***
62 ***under Figure 5.***

63 Response 8: All the variables including DEM variables listed in Appendix B. We will consider
64 creating separate paragraphs for climate and topography.

65 Line 176: Did you consider evaluating your covariates for correlation and limiting the
66 number used? Why or why not?

67 Response 9: We selected covariates representing the soil-forming factors based on expert knowledge
68 and a review of the literature. We used near zero variance analysis to reduce variables that are not
69 contributing to the RSG modelling and mapping. We didn't test covariates for correlation because we
70 opted to include any covariates as long as it contributes to the prediction. This is in line with the
71 suggestion by Helfenstein et al (2022) who stated that Ensemble decision tree models are robust
72 against highly correlated data and we consider prediction accuracy more important than model
73 interpretability. Based on the suggestion of the reviewer, however, we have explicitly indicated that
74 correlation between the covariates is not done in the analysis.

75 Helfenstein, A., Mulder, V. L., Heuvelink, G. B., & Okx, J. P. (2022). Tier 4 maps of soil pH at 25 m
76 resolution for the Netherlands. *Geoderma*, 410,
77 115659. <https://doi.org/10.1016/j.geoderma.2021.115659>

78 Line 179: this paragraphs seems more introductory and not part of explaining your process.

79 Response 10: Thank you, we revised it accordingly.

80 ***The statement has been removed.***

81 Line 194: Are you saying previous studies have used this technique? I think you could
82 eliminate this sentence.

83 Response 11: Thank you this is deleted.

84 Line 199: were optimized how? Is there a metric you were evaluating? Does the Caret
85 package give you some sort of evaluation?

86 Response 12: “expand.grid” function in Caret package was used to create a set of different tuning
87 features while training the model. The three tuning parameters for Ranger method in Caret package
88 are mtry, splitrule, min.node.size. Generally this function is used to tune the parameters in modelling
89 in an automated fashion, as this will automatically check all the possible tuning parameters and return
90 the optimized parameters on which the model gives the best accuracy.

91 Line 202: Did you state how you separated the training and testing sets and what the ‘new’
92 dataset is? You should define those sets, and how they were selected and used.

93 Response 13: The function “createDataPartition” was used to create balanced splits of the data. As the
94 y argument (response variable) to this function is a factor, the random sampling occurs within each
95 class and preserves the overall class distribution of the data.

96 Line 224: typo ‘-runto’

97 should have a space ‘-run to’

98 Response 14: Thank you. Corrected accordingly..

99 Line 254: Consider something more definitive and eliminate ‘the results suggest’. I think
100 these are straightforward results that need no wiggle words like ‘suggest’.

101 Response 15: We will correct it as commented. ***Corrected as suggested/commented***

102 Line 255: I am not sure the word ‘museum’ is what I would use here. Perhaps ‘display’ or
103 ‘diversity’ is more appropriate?

104 Response 16: Thank you and revised accordingly.

105 ***The statement has been revised as “.... a land of soil diversity....”***

106 Line 268: Is this section not part of the methods? This describes how you collected and
107 evaluated profiles, which is covered earlier.

108 Response 17: In this section, we are describing the spatial density of the new database, which is one
109 of the key results of this work. In doing so, we present these results by comparing with existing and
110 previous databases used for developing similar soil group maps. We think these are appropriate results
111 to be presented in this section. Therefore, we do ask the kind understanding of the reviewer to allow
112 us to maintain this description as it is and where it is.

113 Line 323: This is a great description of the setting and climate; but I think it might fit better
114 in the methods or introduction. Figure 6. My preference is to rename the covariates or list the
115 abbreviations in the figure captions. It is cumbersome for the reader to have to toggle
116 between this figure and an appendix.

117 Response 18: In this section, the effort is to explain the different covariates that are important in
118 predicting the soil type. In order of their importance, we tried to explain what would be the reason
119 why these factors are important in defining the soil type based on our experience and existing
120 literature. That is what and why the climate is detailed in this section. Based on your comment, we
121 added the description of the variable in the caption of figure 6 for easy referencing.

122 ***List of variables has been added in the caption of figure5.***

123 Line 357: could the low influence of lithology have anything to do with WRB class breaks
124 and how they intersect with the scale of parent material variability?

125 Response 19: It is the relative importance which is low, and may be related to the use of a coarse-
126 scale and less detailed lithology map, which may not sufficiently capture the spatial variability of the
127 parent materials.

128 Line 361: can you take mtry and the comma out of this sentence, does it still mean the same
129 thing?

130 Response 20: we revised this for clarity. It is basically mtry = 20, split rule = extra trees and minimum
131 node size = 5. For better clarity, the sentence will be revised. See also Response 12.

132 Line 362: Did you test the accuracy of previous maps or find other reported accuracies of
133 maps from the area (not just general averages)?

134 Response 21: We didn't test the accuracy of previous maps rather we used the reported accuracies
135 from published sources.

136 Line 375: I am very curious what the accuracy of Global Soil Grids is using your updated soil
137 profiles. Without that information, it is difficult to know how successful this effort using
138 expert knowledge has been.

139 Response 22: Here we wanted to communicate that qualitative assessment of spatial patterns was not
140 done for SoilGrids 2017 which considers soil type mapping. This is to indicate similar accuracy might
141 lead to different spatial patterns and hence expert-based qualitative evaluation is of paramount
142 importance.

143 Line 401: the portion of this paragraph dealing with landscapes/top-sequences belongs with the
144 paragraph below (line 409) focused on topo-sequences.

145 Response 23: Thank you for the observation, this is revised accordingly.

146 Line 426: Are the soil qualities (I think you mean properties) transitional or are the covariates
147 transitional (or both?).

148 Response 24: yes properties, properties transitional implies it is because of the covariates/soil forming
149 factors and hence we can say both.

150 Line 441: I think this is an 'and' not a 'but'. Did you consider adjusting your training dataset
151 for more balanced set of soil profiles?

152 Response 25: For randomly sampling and splitting the dataset into training and testing set, we tried
153 different set.seed values to ensure inclusion of each RSGs in both splitted sets and better accuracy.
154 See also Response 13

155 Line 445: this paragraph read very much like a concluding statement, was that the intention?

156 Response 26: Thank you - we have revised accordingly. Some parts of this paragraph are revised and
157 maintained there. The other descriptions which look like conclusions are taken to the conclusion
158 section.

159 ***This comment has been addressed under the respective sections in the revised manuscript!***

160 Line 458 – Section 458. It would be much more powerful to compare the expert evaluation of
161 this map vs. the expert evaluation of previous maps. Was any re-evaluation done after re-
162 running the model. Did the output from the tests change throughout the process? Were the
163 scales used to evaluate by experts useful to the scale of your model?

164 Response 27: After re-running the model, about ten soil scientists and geospatial experts re-evaluate
165 the output using 20-25 districts. Further, the geospatial and soil experts checked the raster map of the
166 RSGs in GIS environment to ensure areas with no concern before re-running the model are kept the
167 same or changes are acceptable. The quality of input data (profile data, covariates, mask layer) was
168 assessed to improve the overall accuracy. As a general working norm, the expert's qualitative
169 assessment was set to consider the representation of mappable soil types at the target resolution/scale.

170 **RC2- Sky Wills**

171 Dear Sky Wills (RC2),

172 Kindly please refer to our response (AC6) to RC1, as both RC1 and RC2 are the same.

173 Kind regards,

174 Ashenafi Ali (on behalf of the co-authors)

175 **RC3- Anonymous**

176 We thank anonymous Referee #2 for valuable suggestions and comments, which have greatly
177 contributed to the enhancement of our manuscript. Our responses are provided in each
178 comment and suggestion by the referee:

179 **Overall evaluation:**

180 • I feel that the paper is a great effort by the authors to draw together a set of soils data
181 for Ethiopia and improve the spatial resolution of the mapping. I think just pulling
182 together the data set is a big achievement.

183 **Response 1:** Thank you for the positive feedback and compliments on our work

184 • However, I feel the paper lacks a critical evaluation of the results and of the
185 subsequent learning and recommendations that could be made. To do this it needs an
186 assessment of where the modelling worked well and where it didn't and explanations of
187 why these results may have occurred.

188 **We have considered the comments and revised the manuscript. Kindly, see sections: 3.1;**
189 **3.2.1; 3.2.2; 3.2.3; 3.3; 3.4; and 4.0.**

190 **Response 2:** Thank you for the comment. The modelling accuracy was assessed based on the
191 standard cross-validation technique that involves the overall map accuracy. It is a resource
192 and time-demanding (which also was not the scope of the present study) to consider model-
193 free and design-unbiased accuracy assessment which is believed to be achieved with
194 probability sampling, while taxonomic correctness is one of the key determinant factors to be
195 considered in such class/Reference Soil Groups (RSGs) mapping.

196 Digital soil mapping (DSM) product users have indicated critical concerns to what degree
197 DSM products represent the actual soil landscape spatial patterns, as similar/close
198 quantitative accuracy statistics might show different soil class spatial patterns. To address this
199 concern, we employed an expert-based qualitative assessment of the model output. This
200 technique was used to complement model-based accuracy assessment and confirm/indicate
201 where the modeling specifically worked well and where it didn't. This was implemented by a
202 panel of senior soil specialists/pedologists checking the map based on objectively selected
203 geographic windows across Ethiopia, representing different agroecological zones known to
204 have diverse soil occurrences, and familiar to the panel of experts. Accordingly, the outcome
205 of the evaluation which is an indicator of the model performance across geographic windows
206 presented in terms of aggregated ratings (lines 229 and 230): 1. confirmed with '*no concern*',
207 2. confirmed with '*minor concern*', and 3. confirmed with '*major concern*'. However, we

208 accept the comments and we will elaborate on the findings of the qualitative evaluation as per
209 pedological-based interpretations/assessments both in the examined geographic windows and
210 prominent contrasting landscapes of Ethiopia.

211 To provide some reflection on the basis of spatial windows, for instance, in the northeastern
212 lowlands of Ethiopia, mainly along the “Denakil” depression, it is observed that the model
213 overestimated Fluvisols; and confused Fluvisols with Vertisols. Further, mainly Solonchaks,
214 believed to be peculiar features of that particular landscape and Leptosols are under-
215 represented. In some parts of the southeastern lowlands of Ethiopia, Calcisols spatial
216 distribution is under-represented and Cambisols were overestimated. The modeling didn’t
217 work well in these cases which may be attributed to the low number of soil profile
218 observations (Figure 5) in those areas. This implies that we need additional soil profile
219 observations. The above discussion will be added in the revised version under the new
220 heading **3.4. Evaluation of results and future direction.**

221 ***Section 3.4 has been added:***

222 **3.4 Evaluation of results, limitations and future direction**

223 *“Up to date soil resource spatial information is critically missing at a required scale and
224 extent in Ethiopia. As a result, resource management strategies miss their targets.
225 Furthermore, absence of such data at a required resolution and extent , forced decision
226 support tool developers to pick and use the data they can access and afford. As a result,
227 model outputs appear more site specific or representation becomes homogenous over the
228 very heterogeneous landscapes that exist in reality. On the other hand, in large areas and
229 complex landscapes such as Ethiopia, it is very difficult to address the demand for
230 reasonably accurate and detailed soil type maps using conventional approach due to the
231 costs involved, and resource and time it requires. For instance, given the vastness of the
232 country and heterogeneous landscapes , a new conventional soil survey mission requires at
233 least 170,000 profile point observations to map the entire terrestrial land mass of Ethiopia
234 at a scale of 1: 250,000 with at least 1 observations per square centimetre. Moreover, the soil
235 profile data requirement definitely could have been much higher as we increase the scale
236 of mapping and density of observations. In the present study, machine-learning technique
237 combined with expert input were implemented to produce a country-wide soil resource
238 map of Ethiopia at reasonably higher accuracy, less time and cost than that of*

239 conventional methods. In addition, rescue, compilations and standardization of about 14,
240 681 geo-referenced legacy soil profiles that can be included in the National Soil Information
241 System (NSIS) of Ethiopia and the world soil information centre will support future national,
242 regional and global DSM efforts. The approach used demonstrates the power of data and
243 analytics to map the soil resources of Ethiopia and the output is an exemplary use case for
244 similar digital content development efforts in Ethiopia and beyond.

245 Moreover, in this study quality monitoring process and method were followed to filter
246 dubious soil profiles, and soil classification and harmonization protocols. Then after, the
247 study followed a robust modelling framework and generated new insights into the relative
248 area coverage of WRB RSGs of Ethiopia. In addition, the study provided coherent and up-
249 to-date digital quantitative gridded spatial soil resource information to support successful
250 implementation of various digital agricultural solutions and decision support tools (DSTs).

251 Spatially explicit limitation of the present study revealed by expert based qualitative
252 evaluation of spatial patterns across objectively selected geographic windows and prominent
253 contrasting landscapes of Ethiopia. This qualitative assessment indicated areas of concern in
254 terms of how well EthioSoilGrids version 1.0 represent soil geography across a mosaic of the
255 country's landscapes. For instance, in the north-eastern lowlands of Ethiopia, mainly along
256 the "Denakil" depression, Fluvisols, Cambisols and Vertisols were found on the map in
257 areas where normally other soil types were expected to occur. In this area, expected
258 prediction and area coverage of Leptosols has been probably overshadowed by Fluvisols and
259 Cambisols. Similarly, in some parts of western Ethiopia landscapes, prediction of Vertisols
260 overshadows other RSGs which resulted in area coverage underestimation of Fluvisols
261 (along the "Akobo", "Gilo", and "Baro" rivers and their tributaries) and Alisols. Likewise,
262 in the central parts of northwestern Ethiopia, prediction of Nitisols has been overshadowed
263 by Vertisols and Luvisols resulting in probable underestimation of the Nitisols area coverage.

264 The relatively low model performance and some classification errors in some of the
265 examined geographic windows (e.g. Denakil depression, along Akobo, Baro, and Gilo rivers
266 and the Somali region) is , probably due to the paucity of samples from those areas
267 (Figure 4), inadequacy of the dataset by RSGs, and over-representation of the dataset by
268 some RSGs such as Vertisols, Luvisols, and Cambisols. Balanced datasets are ideal to allow
269 decision trees algorithms to produce better classification but for datasets with uneven class
270 size, the generated classification model might be biased towards the majority class

271 (Hounkpatin et al., 2018; Wadoux et al., 2020). In addition, uncertainty around quality of
272 included covariates, not considered covariates in the modelling process including
273 management, use of validation methods that do not sufficiently control the effect of clustered
274 samples, and small sample size for some RSGs could have possibly biased modelling results
275 in some geographic areas.

276 To improve the modelling performance, future studies could explore (1) adding data for
277 under-represented geographic areas, land uses and covariate spaces, (2) opportunities to
278 include other covariates (parent material and management) that could capture variability
279 of the country heterogeneous landscapes, (3) dimension reduction of covariates (4) use of
280 remedial measures for imbalances in sample sizes, (5) comparing different cross-
281 validation methods, (6) use of an ensemble modelling approach and/or robust modelling
282 technique that accommodates neighbourhood size and connectivity analyses, (7) use of better
283 resolution/quality mask layer to segregate non-soil areas (rock outcrops, salt flats, sand
284 dunes and water bodies) from mapping areas, and (8) implementation of quantitative and
285 qualitative comparison of national, regional, and global legacy soil maps/soil grids with
286 new DSM products in terms of how well DSM products represent soil geography. In addition
287 , future digital soil mapping strategies in Ethiopia may require to consider new
288 soil sampling missions in under-represented areas, adopt standard soil sampling,
289 description guidelines and soil classification systems including soil physico-chemical and
290 mineralogical analysis, and combine local soil nomenclature/classification systems with
291 RSGs and develop a map of RSGs with qualifiers. At the moment the under-sampled and
292 under-represented areas are the Somali region, the Denakil and the western and north-
293 western border areas of Ethiopia (Figure 4). Regardless of these limitations and to the best of
294 our knowledge the EthioSoilGrids v1.0 product we presented here provides the most
295 complete soil information available for Ethiopia.”

296 • I think the discussion of the maps with experts is a really useful way of validating the
297 maps and more could be made of the results of these discussions.

298 **We have considered the comments and revised the manuscript. Kindly, see**
299 **sections: 2.4.1; 2.4.3; 3.1; 3.2.1; 3.2.2; 3.2.3; 3.3; 3.4; and 4.0.**

300 **Response 3:** We accepted the comments, we will add more soil-landscape-based elaborations
301 (kindly see Response 2) based on examined geographic windows and well-known national
302 spatial patterns, as the team involves a panel of senior soil surveyors/experts/pedologists who

303 have been involved in many soil survey and mapping missions across a mosaic of Ethiopia's
304 landscapes.

305 • There needs to be a discussion about where results are unexpected/expected and how
306 that links back to figure 5 and the availability of the input soil profile data and covariates
307 in different areas.

308 ***Through discussion, incorporating comments and suggestions have been included in the***
309 ***revised manuscript. Kindly, see sections: 3.4 and 4.0.***

310 **Response 4:** Thank you for this comment, we will address it (kindly see also Response 2).
311 There are areas where fewer soil observations (explained in lines 285 to 287) and sparse
312 geographical coverage affect the modelling performance. This was observed and reported by
313 the panel of experts zoomed-in assessment across areas labelled as 'minor' and 'major'
314 concerns and across some landscapes such as in the eastern lowlands. Besides, geographic
315 coverage of quality input soil profile data, adequate representation of the feature space could
316 affect the model performance. Sometimes given the covariate issue and examining spatial
317 details relatively similar, some unexpected spatial patterns might be due to issues related to
318 the adequacy of representing the feature space. In addition, the granularity, level of detail and
319 quality of the covariates towards the model performance will be further elaborated, in such a
320 way as to highlight areas that are worth consideration for future similar studies and efforts to
321 improve the map accuracy.

322 • The paper needs to highlight what we can learn from mapping in Ethiopia for mapping
323 in similar landscapes. If this can be added I think it would be a really valuable addition to
324 e DSM literature.

325 ***Further, through discussion incorporating comments and suggestions have been included***
326 ***in the revised manuscript. Kindly, see sections: 3.4 and 4.0.***

327 **Response 5:** One of the key insights gained from this study is the critical role of collating
328 existing soil profile data. It is important to recognize that conducting repetitive soil
329 characterization and classification exercises or an effort to update existing legacy soil maps
330 through new soil survey campaigns can be both costly and time inefficient. Similarly, for
331 countries like Ethiopia which are very vast and characterized by diverse soil forming factors
332 and soil resources, a conventional mapping approach would be much more resource and time-
333 demanding. Therefore, it is imperative to explore alternative approaches that maximize the
334 utilization of available and optimal soil profile data and digital soil mapping techniques
335 which the paper aims to address.

336 In addition, addressing the issue of data standardization within data collation methodologies
337 is of utmost importance. By establishing standardized data collection practices, we can ensure
338 the compatibility and comparability of collated data for effective utilization in digital soil
339 mapping (DSM) models throughout Africa. The paper emphasizes the significance of

340 implementing data collection standards and practices in Ethiopia and other Sub-Saharan
341 African regions. This will enable the generation of a sufficiently large number of
342 observations, which are essential for developing data-driven DSM models and other precision
343 agronomy applications.

344 It is essential to note that the recommendations presented in this paper extend beyond
345 Ethiopia's borders and hold relevance for other countries in Sub-Saharan Africa. These
346 recommendations provide valuable insights and guidance for the adoption of standardized
347 data collection practices across the region. By embracing these recommendations, researchers
348 and practitioners can ensure the generation of high-quality data, thereby facilitating the
349 development of robust and effective DSM models and precision agronomy approaches. Some
350 of these learnings will be added and discussed in the revised manuscript.

351 ***Further, through discussion incorporating comments and suggestions have been included
352 in the revised manuscript. Kindly, see sections: 3.4 and 4.0.***

353 ***“Up-to-date soil resource spatial information is critically missing at a required scale and
354 extent in Ethiopia. As a result, resource management strategies miss their targets.
355 Furthermore, the absence of such data at a required resolution and extent, forced decision
356 support tool developers to pick and use the data they can access and afford. As a result,
357 model outputs appear more site-specific or representation becomes homogenous over the
358 very heterogeneous landscapes that exist in reality. On the other hand, in large areas and
359 complex landscapes such as Ethiopia, it is very difficult to address the demand for
360 reasonably accurate and detailed soil-type maps using a conventional approach due to the
361 costs involved, and resources and time it requires. For instance, given the vastness of the
362 country and heterogeneous landscapes, a new conventional soil survey mission requires at
363 least 170,000 profile point observations to map the entire terrestrial land mass of Ethiopia at
364 a scale of 1: 250,000 with at least 1 observations per square centimetre. Moreover, the soil
365 profile data requirement definitely could have been much higher as we increase the scale of
366 mapping and density of observations. In the present study, machine-learning techniques
367 combined with expert input were implemented to produce a countrywide soil resource map of
368 Ethiopia at reasonably higher accuracy, less time and cost than that of conventional
369 methods. In addition, rescue, compilations and standardization of about 14,681 geo-
370 referenced legacy soil profiles that can be included in the National Soil Information System
371 (NSIS) of Ethiopia and the World Soil Information Centre will support future national,
372 regional and global DSM efforts. The approach used demonstrates the power of data and***

373 *analytics to map the soil resources of Ethiopia and the output is an exemplary use case for*
374 *similar digital content development efforts in Ethiopia and beyond.*

375 *Moreover, in this study the quality monitoring processes and methods were followed to filter*
376 *dubious soil profiles, and soil classification and harmonization protocols. Then after, the*
377 *study followed a robust modelling framework and generated new insights into the relative*
378 *area coverage of WRB RSGs of Ethiopia. In addition, the study provided coherent and up-to-*
379 *date digital quantitative gridded spatial soil resource information to support the successful*
380 *implementation of various digital agricultural solutions and decision support tools (DSTs). ”*

381 **Specific queries:**

382 ● Could the resolution of the input data explain why the results may not be as expected in
383 certain areas?

384 **Response 6:** Yes, among other factors, if we have separately examined the effects of the
385 covariates, the spatial resolution and level of detail could contribute to why the results are
386 unexpected in certain areas. For instance, within the given spatial level of examination, the
387 sequence of some RSGs showed different patterns which could be captured by better
388 resolution parent material map in the SCORPAN model. We will highlight this issue in the
389 revised manuscript.

390
391 ● In the discussion of the confusion matrix (Table 1) the authors could look at where
392 there are large differences between soils pedologically and where a miss mapping of soils
393 might lead to different management decisions in areas.

394 **Response 7:** Thank you for raising this issue and for the comments. In the confusion matrix
395 (Table 1), the quantitative classification errors (omission and commission errors) need to be
396 interpreted/checked in terms of the soil's pedological similarity/differences which is
397 commonly called 'taxonomy distance'. It is such an evaluation that will add value to
398 interpreting the errors from producers' and users' perspectives and check areas of concern to
399 implement management decisions. In soil class mapping where classification accuracy is
400 represented by a confusion matrix, literature indicated, it is likely that not all errors are
401 equally serious. Some errors are more serious than others in terms of soil properties, soil-
402 forming process, ease of map making and application of the map. For instance, from the
403 user's perspective, Vertisols predictions were distributed to incorrect Leptosols and Nitisols
404 classes which implies leading to significantly different management decisions in terms of soil

405 depth, aeration, and acidity. The same applies to miss mapping of Arenosols as Luvisols and
406 Vertisols. The miss-mapping interpretation needs to be supported based on the soil's
407 taxonomic distance, which determines class similarity and dissimilarity determining different
408 management decisions and hence, implying, fractional recognition needs to be given to some
409 incorrect allocations represented in the confusion matrix.

410 • The paper mentions a rerun of the modelling after the workshop. Can the authors
411 explain what was changed to improve the results between the 2 runs and which versions
412 of the runs are presented in this paper.

413 **Response 8:** After re-running the model, about ten soil scientists and geospatial experts (lines
414 242 and 243) re-evaluated the output using districts selected based on the feedback from the
415 first review, which was mainly on areas where there was “minor” and “major” concerns. For
416 instance, in areas where Vertisols, Fluvisols, and Leptosols were reported to be
417 overestimated, improvements were observed. Further, underestimated RSGs (Alisols,
418 Solonetz, Planosols, Acrisols, Lixisols, Phaeozems, and Gleysols) showed slight area
419 coverage and pattern improvements. However, the total area for Leptosols and Cambisols
420 increased from the first run due to the partial exclusion of the mask layer used in the first
421 round modeling effort. The mask layer used in the first run was criticized for quality issues as
422 it excluded significant soil areas and its limitation to capturing non-soil areas such as rock
423 outcrops/rocky surfaces, salt flats, swamps and sand dunes across the different landscapes.
424 Nevertheless, the spatial patterns of these soils occurring across previously considered “non-
425 soil areas” were examined by the panel of experts. In parallel, geospatial and soil experts
426 checked the raster map of the RSGs in the GIS environment to ensure areas with ‘no concern’
427 before re-running the model are kept the same or changes are accepted by the panel of
428 experts. The map from the second run is presented in this paper.

429
430 • I think its structure needs some thought specifically. The results of the validation
431 described in section 2.4.2 need to be part of the results rather than the methods.

432 ***Sections 2.4.2 and 3.3 have been revised and improved.***

433 **Response 9:** Thank you for the comment. In section 2.4.2. we presented how we did the
434 qualitative validation procedures (i.e. expert evaluation) and the outcome of this process is
435 presented in the result section (sec 3.3). We thought this flow was much easier to follow the
436 paper. Therefore, we kindly ask the reviewer to allow us to maintain the current structure of
437 these sections.

438 **Points of clarification:**

439 • **Line 59:** What is meant by “hardly available”

440 **Response 10:** As elaborated for Referee 1 (See Response 4 of AC 7) we wanted to say that a
441 national quantitative and spatially continuous predicted reference soil group/soil type map
442 does not exist. We admit that hardly available is confusing and in the revised manuscript, **it**
443 **has been revised by “does not exist”.**

444 • **Line 113:** What criteria were used to define if a profile is complete and clean?

445 **Response 11:** The criteria used were basic profile information/data required for classification
446 of RSGs. For clarity, the statement will be amended as: cleanliness, i.e., profile points with
447 basic data/information for classification of RSGs.

448 • **Line 223:** How were the polygons for review selected?

449 **Response 12:** In order to represent every part of the country, the polygons/geographic
450 windows for qualitative assessment were purposely selected by a panel of senior soil
451 specialists/pedologists/soil surveyors before breakout sessions and proceeded to group works.
452 **The revised version has been be updated by adding the phrase “purposely”.** The experts were
453 drawn from different corners of the country and had been involved in different soil survey
454 missions across Ethiopia. Hence, each suggested geographic window was debated and agreed
455 upon based on soil diversity, contrasting/unique soil-landscape relations, availability of
456 familiar experts in the panel, and agro-ecological zone coverage.

457 • **Line 233:** How are the authors looking to improve the version of the map from the first
458 version?

459 ***Kindly, see sections: 3.4 and 4.0.***

460 **Response 13:** Thank you for raising this issue. The first version of the map will be improved
461 by ensuring additional input profile data from under-represented geographic and feature
462 spaces, and covariates with improved resolution, quality and level of detail including through
463 the implementation of different covariate selection procedures. Application of a robust
464 modeling technique that accommodates neighbourhood size and connectivity analyses
465 requires due consideration by future studies. It is also recommended to implement
466 unbalanced data treatment and de-clustering techniques to overcome issues likely to arise
467 from class imbalances and biased datasets in such kinds of soil class/type mapping efforts.
468 The above statement will be added in the revised version under the new section, 3.4.
469 Evaluation of results and future direction.

470 *Kindly see section 3.4 in the revised manuscript “..... To improve the modelling*
471 *performance, future studies could explore (1) adding data for under-represented*
472 *geographic areas, land uses and covariate spaces, (2) opportunities to include other*
473 *covariates (parent material and management) that could capture variability of the*
474 *country heterogeneous landscapes, (3) dimension reduction of covariates (4) use of remedial*
475 *measures for imbalances in sample sizes, (5) comparing different cross-validation*
476 *methods, (6) use of an ensemble modelling approach and/or robust modelling technique that*
477 *accommodates neighbourhood size and connectivity analyses, (7) use of better*
478 *resolution/quality mask layer to segregate non-soil areas (rock outcrops, salt flats, sand*
479 *dunes and water bodies) from mapping areas, and (8) implementation of quantitative and*
480 *qualitative comparison of national, regional, and global legacy soil maps/soil grids with*
481 *new DSM products in terms of how well DSM products represent soil geography. In addition*
482 *, future digital soil mapping strategies in Ethiopia may require to consider new*
483 *soil sampling missions in under-represented areas, adopt standard soil sampling,*
484 *description guidelines and soil classification systems including soil physico-chemical and*
485 *mineralogical analysis, and combine local soil nomenclature/classification systems with*
486 *RSGs and develop a map of RSGs with qualifiers. At the moment the under-sampled and*
487 *under-represented areas are the Somali region, the Denakil and the western and north-*
488 *western border areas of Ethiopia (Figure 4). Regardless of these limitations and to the best of*
489 *our knowledge the EthioSoilGrids v1.0 product we presented here provides the most*
490 *complete soil information available for Ethiopia.”*

491 • Line 247 – 253: Do the number of samples used represent what would be expected in terms
492 of areas of specific soils in Ethiopia or are the input data biased to specific land cover or soil
493 types.

494 **Response 14:** In general, ignoring the temporal resolution, i.e., from the 1970s to the 2020s,
495 the number of samples is expected to cover areas of important agroecological zones and land
496 use/covers. However, in terms of areas of specific soils of Ethiopia, while the 1st, and the 2nd
497 largest input data were from Vertisols and Luvisols, their relative area coverages were in 3rd
498 and 6th positions, respectively. This bias might have happened because of the soil survey
499 interests. For example, many surveys focused on Vertisols and Luvisols for the purpose of
500 agricultural intensification/mechanization and irrigation in areas where these soils are
501 situated. This signifies the need to focus on future soil data collection to consider soils with
502 fewer input data compared to their relative area coverage. Moreover, this study utilizes the

503 most extensive soil profile observation data available to date for the generation of a
504 comprehensive soil-type map of Ethiopia. Despite the inherent uncertainties associated with
505 data representation, this is the first significant endeavor based on such a large-scale
506 observation effort. This description will be added to the revised version under the new section
507 3.4. Evaluation of results and future direction.

508 • Line 274-278: Do the authors see a difference in the quality of the results where they
509 had an increased density of input profiles?

510 **Response 15:** In general yes, but not in all the cases, for instance, based on geographic and
511 feature space coverage and RSGs diversity.

512

513 • Figure 6: Add an axis label to the X axis

514 **Response 16:** Thank you for the comment. We will label it.

515 • Line 409-418: The authors need to discuss in more detail the reasons why certain
516 points in the topographic sequences do match other work and where they don't and offer
517 potential explanations of why.

518 **Response 17:** Thank you; we will elaborate further as suggested.

519 ***Kindly, see sections: 2.4.2; 3.2.2; 3.2.3; 3.3; 3.4 and 4.0.***

520 ***Elaborated as:***

521 ***“However, in some cases, the RSGs’ position along the topo-sequence and association with
522 other RSGs require further investigation. The observed disparities might be attributed to the
523 positional accuracy of legacy point observations, modelling approach, and most importantly
524 the level of detail and scale/resolution of the environmental variables used in this study. We
525 used the currently available coarse resolution national geological map and hence soil parent
526 material might be inadequately represented in the model, which probably resulted in
527 irregular RSGs sequences. For instance, the main driving factors to establish and explain
528 soil-landscape variability in May-Leiba catchment of northern Ethiopia were geology (soil
529 parent material) and different mass movements (Van de Wauw et al., 2008). These factors led
530 to Cambisols–Vertisols catenas on basalt and Regosols–Cambisols–Vertisols catenas on
531 limestone formations. Similar studies identified parent material strongly determines the soil
532 type (e.g. Vertisol, Luvisol, Cambisol) (Nyssen et al., 2019). In general, in areas where there
533 is complex soil diversity and distribution of soils, one of the most important parameters is to
534 identify parent material including effective techniques to capture and delineate mass***

535 *movement bodies, and human-induced soil erosion and deposition areas (Leenars et al.,*
536 *2020a; Nyssen et al., 2019; Van de Wauw et al., 2008)."*

537 • **Line 428-435:** This section assumes that the new soil grids that have been generated are
538 better than the "soil grids" without explaining what the insight comes from the new modeling
539 and why it's important. It would also be valuable if the authors could offer insight into which
540 of the 3 reasons the results may be different.

541 The below statement has been added:

542 *"....This is mainly attributed to limited access to more local point data by regional and*
543 *global modelling initiatives, unlike the present study which accessed a large number of*
544 *legacy soil profile datasets...."*

545 ***Kindly, see sections: 2.4.3; 3.2.2; 3.2.3; 3.3; 3.4 and 4.0.***

546 **Response 18:** Thank you for the comment. We will elaborate further. Kindly please note that
547 we based our comparison on the reported map accuracies, implementation of expert-based
548 qualitative assessment of spatial patterns, and number and distribution of input soil profile
549 observations. We will elaborate more and recommend the need for quantitative comparisons
550 of legacy soil maps (including "soilgirds") in terms of how well they represent soil
551 geography. Hence, users will get insights into the applicability of various DSM products at
552 different spatial scales and geographic windows.

553 • Line 441-444: Is it likely that the data used in this study are biased and can the authors
554 offer a recommendation on what new data might be needed in which areas to improve the
555 results.

556 ***Kindly, see sections: 2.4.3; 3.2.2; 3.2.3; 3.3; 3.4 and 4.0.***

557 **Response 19:** Part of this query is addressed in the above (kindly see Reference 14). Keeping
558 the temporal resolution constant, as the data source between the 1970s and 2020s, the input
559 data are biased to specific land uses (cultivated/arable and grazing lands) and agroecological
560 zones of Ethiopia (see lines 290 to 301). Hence, additional legacy data are required from less
561 represented land uses such as forests, shrubs and bushlands. However, in some geographic
562 areas such as the north and southeastern lowlands and in some agroecological zones where
563 there is no/under-representation of input data, additional new data are required from more
564 land uses.

565 • Lines 473-479 it is unclear whether the rerun version of the map is what has been presented
566 in the current paper whether that is something that is to follow. If it isn't presented can the
567 authors explain why not.

568 **Response 20:** Thank you for the comment, we will elaborate further. This query is addressed
569 in the above (kindly see Response 8). The map from the second run is presented in this paper.

570 **CC1- Seleshi W Gudeta**

571 Date: 27 June 2022

572 Dear Editor Subject: Response to interactive comment on our manuscript entitled: Ali et al.:
573 Reference Soil Groups Map of Ethiopia Based on Legacy Data and Machine Learning Technique:
574 EthioSoilGrids 1.0

575 By Ashenafi Ali et al.

576 Dear Editor,

577 Below, the contents of community comment 1 (CC1) by Seleshi W Gudeta are provided in black
578 text and our responses are marked in blue text.

579 Dear Seleshi W Gudeta,

580 Thank you for taking the time to review our manuscript. We will address the comments and
581 revise the paper accordingly.

582 Dear Editor,

583 Comment 1. This is a very useful work and I congratulate the authors for taking the initiative.

584 **Response 1:** We are grateful for the positive comments indicating that the work is very useful.

585 Comment 2. I have the following concerns, which I believe the authors will address for this work
586 to be useful.

587 (1) My main concern relates to the discrepancy between the map they produced in Figure 7 and
588 the Soil Atlas of Africa (see Jones et al., 2013), which is currently the authoritative reference
589 material. For their map to be useful, it is important to reconcile with the map and wherever
590 discrepancies exist it will be helpful to explain.

591 **Response 2:** We thank Seleshi W Gudeata for the comments. The following are our responses:

592 We acknowledge that the Soil Atlas of Africa is still useful to provide harmonisation and
593 improvement, however, it is too general for diverse soil information users at local levels. It is
594 derived from the Harmonized World Soil Database (HWSD) with expert-based modifications.
595 The HWSD for East Africa, including Ethiopia, combines existing data/maps from the Soil and
596 Terrain (SOTER) and SOTER-based soil parameter estimates (SOTWIS), while the soil map in
597 SOTER has the following limitations:

598 • it is based on qualitative (polygon) maps, which were based on the previous maps.

599 • the SOTER soil nomenclature doesn't meet the present demand since it is based on FAO
600 1974 and FAO soil map of the world revised legend 1988 (reprint FAO-1990).

601 • since it is on a smaller scale, it depicts the dominant soil types from a larger area coverage
602 and masked important soil units which would have been reported if a larger scale had been
603 used. For example, in the HWSD, in the delineation of a given soil type, only the major one is
604 reported, while up to 9 soil types coexist in each delineation.

605 • the geographic location of the dominant and associated soil types is not defined as it is
606 based on a qualitative approach

607 Conclusion: The existing spatial soil information of Ethiopia is based either on a
608 conventional/traditional qualitative approach using the mental model for extrapolation or
609 quantitative/ digital soil mapping with limited unevenly distributed profile observations.
610 Currently, we do not have a consistent spatial soil types information for Ethiopia, which
611 necessitated the development of EthioSoilGrids 1.0.

612 On the other hand, the development of the EthioSoilGrids 1.0 is based on the following state-of-
613 the-art techniques and procedures:

614 • it is based on rigorous quantitative spatial predictive model (Machine learning) that
615 combine information from soil observations with environmental variables/covariates and
616 remote sensing products.

617 • the mapping of soil types is based on the quantitatively defined probability of occurrence
618 of each reference soil group (RSGs) per modelling window (250 meters).

619 • it is based on a much larger number of soil profile observations than any other soil
620 mapping initiatives layering Ethiopia.

621 • the process of its development involved soil profile-based harmonization and translation
622 to IUSS WRB 2015.

623 • it followed a hybrid approach, i.e., a combination of digital soil mapping, and expert
624 validation of the soil types and their spatial patterns for generating consistent and updatable
625 national spatial SoilGrid.

626 Therefore, given the above differences, in the approaches followed, scale, data source, etc, one
627 should expect the difference between the Soil Atlas of Africa and the EthioSoilGrids 1.0. In other
628 words, the latter is developed not to match the former, but to come up with improved and quality
629 soil information, an objective fully achieved. Consequently, we are not surprised that the two
630 products do not coincide since that was the assumption when the work was initiated. By the way,
631 this is not the first report on Ethiopian soils' information showing such discrepancies as
632 compared to the global products; for example -the spatial soil grids layering Ethiopia based on
633 digital soil mapping techniques (e.g., SoilGrids, 2017) a similar approach followed in the
634 preparation of EthioSoilGrid 1.0, reflected differences in RSGs area coverage.

635 **Comment:** Below is some of the discrepancies:

636 **Comment 2.1:** Cambisols are represented by a small proportion of the area in isolated pockets of
637 Ethiopia according to the Soil Atlas of Africa. On the other hand, in this manuscript, Cambisols
638 are the top-ranked in Figure 8. The explanation given for this in the manuscript is unsatisfactory.

639 **Response 2.1**

640 Cambisols' most abundance is acceptable, because Cambisols are developed in areas where
641 pedogenetic development is slow (i) because of continuous erosion, but is in equilibrium with the
642 weathering process, or continuous erosion and depositional cycles are common. As the result,
643 they covered significant parts of the highlands of Ethiopia at the foot-slopes of undulating
644 mountainous or hilly terrains, where erosion and weathering processes are in equilibrium, or
645 erosion and deposition cycles are common. (ii) because of low precipitation, or weathering-
646 resistant parent materials. In this case, Cambisols occur in the large area of the lowlands of
647 Ethiopia on weathering-resistant calcareous limestone, and on colluvial and alluvial deposits,
648 where precipitation is low.

649 It is worth noting that the total number of profile observations per reference soil group (RSGs) in
650 which Cambisols ranked third (with $n=2219$) following Luvisols ($n= 2,229$) and Vertisols
651 (3,935). In fact, in some of the existing conventionally made country-wide legacy soil maps of
652 Ethiopia, Cambisols were reported to cover e.g., 21% and 16% of the land mass of Ethiopia.

653 **Comment 2.2:** Areas bordering Djibouti and Eritrea that are predominantly covered by Leptosols
654 (according to the Soil Atlas of Africa) are now covered by Fluvisols according to this manuscript.
655 Many of these mountainous areas are not expected to have Fluvisols because Fluvisols naturally
656 form in fluvial, lacustrine or marine deposits and periodically flooded areas.

657 **Response 2.2.** Yes, as noted by Seleshi W Gudeta, Pedogenetically Fluvisols are developed on
658 flood plains, riverbanks, and lacustrine deposits. Since the areas bordering Djibouti and north-
659 eastern lowlands (Afar and Somali lowlands) are under the influence of floods; where deposits
660 from Awash, Wabishebele and Genale rivers are frequent, the predominance of Fluvisols is
661 expected. Note that Leptosols are well represented on the volcanic mountains of Fantale, Boseti
662 Guda and Ziqualla in the Awash valley, volcanic hills of the Afar lowlands, and the eastern
663 escarpment of the central and northeastern rift valley, which are situated in these areas.

664 **Comment 2.3:** Areas in eastern and south-eastern Ethiopia bordering Somalia that are
665 predominantly covered by Calcisols and Gypsisols (according to the Soil Atlas of Africa) have a
666 continuous cover of Cambisols and some Fluvisols according to this manuscript. That cannot be
667 possible.

668 **Response 2.3:** On comments about the formation and distribution of Cambisols and Fluvisols, we
669 addressed the above in responses 2.1 and 2.2.

670 EthioGridSoil 1.0- is based on measured point observations collated from these areas after
671 excluding RSGs with less than thirty observations including Gypsisols which had only 11
672 profiles. In this case, Gypsisols are excluded from mapping. Regarding Calcisols, as indicated by
673 Seleshi W Gudeta, the probability of occurrence map (Figure C1 of Appendix C) depicts
674 Calcisols dominantly occurring in eastern and south-eastern Ethiopia, bordering Somalia.
675 However, when the relative abundance of RSGs per modelling window is assessed, Calcisols'
676 area coverage as the dominant soil type as depicted in Figure 7, is the 7th most abundant soil in
677 Ethiopia.

678 By the same token, in the polygon-based soil mapping like Soil Atlas of Africa, where a polygon
679 is mapped as one soil unit does not mean that the polygon 100% represents that specific soil unit,
680 but it also contains associations which are not depicted as dominant. Further, both the dominant
681 and association geographic locations are not defined and hence do not directly indicate the
682 specific location of each soil type.

683 **Comment 2.4:** Areas in north-western Ethiopia bordering Sudan that are predominantly covered
684 by Nitisols, Luvisols and Alisols (according to the Soil Atlas of Africa) have almost a continuous
685 cover of Vertisols according to this manuscript. That also does not make sense given that
686 Vertisols form in depressions and level plains.

687 **Response 2.4:**

688 The north-western part of Ethiopia bordering Sudan from the Tekeze river (Humera area) down
689 to the Baro basin is dominated by Vertisols while Luvisols and Nitisols intermingled before these
690 two RSGs become dominant in relatively near distance/landscapes. The proportion of each soil
691 type varies across the landscape. However, both the quantitative and qualitative assessments in
692 those areas showed good agreement at this level of accuracy while the occurrence probability of
693 each RSG is reported.

694 **Comment 2.5:** Andosols were shown in Eastern Ethiopia where they are not expected to occur
695 (Andosols are formed from volcanic ejecta) and are common in the Rift Valley. Their occurrence
696 outside is uncharacteristic.

697 **Response 2.5:**

698 Andosols are confirmed to occur outside the rift valley especially in the highland volcanic regions
699 in the presence of organic matter. In Ethiopia, Andosols occur along the rift valley and on
700 highlands for examples on Bale mountains, Siemen Mountains (RasDashen), Choke Mountain,
701 Abune Yosef Mountain and other mountains of the country. Below are some of the published
702 references for confirmation:

703 Reference:

704 Assen, M., and Belay, T. 2008. Characteristics and classification of the soils of the plateau of
705 simen mountains national park (smnp), Ethiopia.

706 Belay ,T.1995. Morphological, physical and chemical characteristics of Mollisol Andosols of Tib
707 Mountains, Central Ethiopian Highlands. SINET: Ethiop. J. Sci. 18 (2): 143–169.

708 Simane, B., Zaitchik, B.F, and Mutlu, O. 2013. Agroecosystem Analysis of the Choke Mountain
709 Watersheds, Ethiopia" Sustainability 5, no. 2: 592-616.
710 <https://doi.org/10.3390/su5020592>.

711 Gebrehiwot, K., Desalegn, T., Woldu, Z., Sebsebe, D., and Ermias, T.2018. Soil organic carbon
712 stock in Abune Yosef afroalpine and sub-afroalpine vegetation, northern Ethiopia. Ecol
713 Process 7, 6 (2018). <https://doi.org/10.1186/s13717-018-0117-9>.

714 In our study, the overall occurrence and the relative position of each of the reference soil groups
715 along the topo sequence and its association with other RSGs agree with previous works and
716 pedological expected/established schematic sequences. However, there were cases where the
717 RSGs' position along the topo-sequence and association with other reference soil groups required
718 further investigation, which was not adequately captured and explained in this study. This might

719 be attributed to the positional accuracy of legacy point observations, modelling approach, and
720 most importantly the level of details and scale/resolution of the environmental variables used in
721 this study. For clarity, we will specify areas that require explanation arising from the above-stated
722 likely reasons.

723 **Comment 3:** The colour coding in the map is confusing. For example, Acrisols, Cambisols and
724 Leptosols were shown with colours that look alike. For this map to be useful it will be good if it
725 is done with the same colour coding as the Soil Atlas of Africa and the Harmonisation of the soil
726 map of Africa described in Dewitte.

727 Jones, A., Breuning-Madsen, H., Brossard, M., Dampha, A., Deckers, J., Dewitte, O., Hallett, S.,
728 Jones, R., Kilasara, M., Le Roux, P., Micheli, E., Montanarella, L., Spaargaren, O., Tahar, G.,
729 Thiombiano, L., Van Ranst, E., Yemefack, M. and Zougmore, R. (Eds.), (2013). *Soil Atlas of*
730 *Africa. European Commission*, 176 pp., European Commission Luxembourg. DOI:
731 10.2788/52319

732 Dewitte, O., Jones, A., Spaargaren, O., Breuning-Madsen, H., Brossard, M., Dampha, A.,
733 Deckers, J., Gallali, T., Hallett, S., Jones, R., Kilasara, M., Le Roux, P., Michéli, E.,
734 Montanarella, L., Thiombiano, L., van Ranst, E., Yemefack, M. and Zougmore, R. (2013).
735 Harmonisation of the soil map of Africa at the continental scale. *Geoderma* 212: 138-153. DOI:
736 10.1016/j.geoderma.2013.07.007.

737 **Response 3:**

738 As commented, we will address the colour coding and ensure distinct contrast among RSGs.

739 **Comment 4:** My appeal to the authors is to compare the soil profile data used for creating the
740 map with the data used for the Soil Atlas of Africa.

741 **Response 4:**

742 See the preceding responses!

743 **Comment 5:** It is also important to check whether imbalances in sample sizes among soil types
744 (e.g., preponderanc of vertisols and fewer Gypsisols) has influenced the analysis.

745 **Response 5:**

746 Kindly note that again Gypsisols are confirmed to occur based on the point profile observations
747 but excluded from the modelling and not mapped in EthioSoilGrids version 1.0 product.
748 However, as admitted in Line 441 to 444 of the manuscript, balanced datasets are ideal for
749 modelling and mapping but the effect of datasets with uneven class along with various data
750 treatment (pruning) techniques are recommended for future studies. The reason for this was that
751 as we know there are different unbalanced categorical data treatment techniques targeting
752 majority or minority classes leading to different predicted map accuracy and different overall,
753 producers and users' accuracy.

754

755 **CC2- Yitbarek Wolde**

756 Dear Yitbarek Wolde,

757 Thank you very much. All of this will be addressed during the resubmission phase.

758 *This comment has been addressed as per the comment.*

759 Best regards,

760 Ashenafi Ali and co-authors.

761 **CC3- Sileshi W Gudeta**

762 Dear Sileshi W Gudeta,

763 Thank you very much. We have considered all comments and we are improving.

764 *Kindly, see sections: 2.4.3; 3.2.2; 3.2.3; 3.3; 3.4 and 4.0.*

765 Best regards,

766 Ashenafi Ali and co-authors.

767 **CC4- Fuat Kaya**

768 We thank Fuat Kaya for having an interest in the work and voluntary community
769 review. We respond to the key issues raised as indicated below:

770 Dear Associate Editor,

771 I have carefully read the study As the voluntary "commentor" of the article "Reference Soil
772 Groups Map of Ethiopia Based on Legacy Data and Machine Learning Technique:
773 EthioSoilGrids 1.0".

774 Since I am not an official referee, my comments are sincere.

775 The authors should be commended for their work in Ethiopia, feeling sincerely about the data
776 sharing process.

777 **Response 1:** We are grateful for the positive comments

778 However, the authors have edited this article to produce only one output. I have concerns
779 about research questions. There are many challenges to address in digital soil mapping. And
780 these challenges are voiced by the DSM community. Here's an example: Ten challenges for
781 the future of pedometrics.

782 (<https://www.sciencedirect.com/science/article/pii/S0016706121002354>).

783

784 **Response 2:** Thank you for bringing this to our attention, we are aware of the publication you
785 indicated and found it helpful.

786 In this regard, I invite the author, who does the modeling in this valuable team, to model the
787 events globally with two more accepted algorithms in SoilGrids 1.0 and SoilGrids 2.0.

788 [789 the globe with quantified spatial uncertainty-----Used](https://soil.copernicus.org/articles/7/217/2021/--SoilGrids 2.0: producing soil information for)

790 [791 — Global Soil Information Based on Automated Mapping](https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105992---SoilGrids1km)

792 **Response 3:** This work considered the SoilGrids 250m (2017) as a base which succeeded the
793 development of the SoilGrids 1km (<https://www.isric.org/explore/soilgrids/faq-soilgrids-2017>). As indicated in the Soil Grids2.0 (<https://soil.copernicus.org/articles/7/217/2021/>), the
795 numeric soil variables were only modelled and mapped (but not the soil reference groups/soil
796 types). We understand that SoilGrids250m (2017) is the framework in which soil type/class
797 modelling and mapping are done using Random Forest (RF), and as shown in lines 178 to
798 188 of this manuscript, RF was used for EthioGrid 1.0.

799 Specific comments:

800 Line 1:

801 As far as We know, This map not "conventional", well this map "digital" map.
802
803 I think "digital" must added to title.

804 **Response 4:** It is possible to qualify the map by adding "Digital" to the title. However, digital
805 maps can be generated either based on a predictive/digital soil mapping framework or
806 digitalised conventional maps. Therefore to avoid confusion, we prefer to qualify the map as
807 it is generated based on the legacy soil data and machine learning techniques which explicitly
808 indicate that the digital soil mapping approach was followed.

809 Line 35:

810 Really, honestly, "awesome" work for this team to collaboratively extract and collate the
811 data. But, We (DSM community and public) know, Soilgrids 1.0 and 2.0 versions have been
812 released. Publishing by running a single algorithm here is just to produce an output. There is
813 a need for an approach to address current DSM issues. We know that there is something
814 "Unknown" in Big data. And we will discover the unknown in Data with machine learning
815 algorithms. So why one algorithm. Comparative results are necessary for this study to make
816 accurate inferences for regional results.mutinomial logistic regression for Soilgrids 1.0 and
817 quantile random forests for Soilgrids 2.0. If reference soil groups are estimated in the field
818 with these algorithms, their outputs will be appreciated by the DSM community at the
819 international level.

820 **Response 5:** Yes, the data extraction and compilation process is something that we are proud
821 of. Regarding the algorithm used as explained under response 3, the scope of the work is not
822 to compare algorithms, but to develop SoilGrid1.0 using a selected algorithm.

823 Line 70:

824 the last part of the introduction, the authors define a brief research purpose/question. In the
825 last paragraph of the Introduction chapter, the Authors wrote that ... objectives of this study.
826 In this part of the article, I rather expected a clearly formulated research goal. I suggest that in
827 the article it is precisely stated what the purpose of the research is, using the example
828 statement: "The goal of the study / research was ...". When formulating the research goal (s),
829 it would be worth writing what was the cognitive (scientific) goal and what was the utilitarian
830 (useful) goal. Before stating the purpose of the study, it would be worth formulating the
831 research problem. The research problem may constitute a premise to indicate a gap in the
832 current state of knowledge. It is worth writing what the current gaps in knowledge the
833 Authors would like to fill in on the basis of planned and conducted research.

834 **Response 6:** Thank you for this specific comment, we will revisit and clear up confusing
835 statements.

836 Line 178:

837 Is it just "model accuracy" ?

838 How do we evaluate uncertainty?

839 To evaluate classification-based algorithms that produce probabilistic predictions, D.G. I
840 recommend Rossiter's valuable work.

841 <https://www.sciencedirect.com/science/article/pii/S0016706116303901#bb0110>

842 Please control "confusion index" released by Burroug et al. (1997 --
843 <https://www.sciencedirect.com/science/article/pii/S0016706197000189>) And the other 2
844 sources applied quantify in different regions, large and small areas.

845 <https://www.sciencedirect.com/science/article/pii/S0016706116304864>

846 <https://www.tandfonline.com/doi/full/10.1080/02571862.2022.2059115>

847 **Response 7:** The accuracy assessment (overall, user's and producer's accuracy) method and
848 uncertainty are indicated in lines 361 to 365. Among the reviewed techniques, we have used
849 the most commonly used cross-validation technique and accordingly the 95% confidence
850 interval is indicated (lines 362 and 363). These are in line with the approach followed by
851 global/regional soil grid development frameworks. However, as you indicated, there are
852 various accuracy assessment techniques or issues that need to be considered in selecting an
853 accuracy assessment of modelling soil classes e.g. accounting for taxonomy distance (which
854 has also different sub-techniques), spatial cross-validation which is presumed to have
855 limitations, dealing with clustered samples for assessing map accuracy by cross-validation,
856 and dealing with imbalanced data in categorical mapping which might lead to issues on the
857 accuracy of majority and minority classes. We recommend future studies to consider these
858 issues in line 441 to 444.

859 Line 263:

860 What "reference" soil group did the models predict in areas with these classes? Is there a
861 taxonomic relationship here? Please read this title paper: Accounting for taxonomic distance
862 in accuracy assessment of soil class predictions

863 **Response 8:** Thank you for the recommendation. The reference soil groups indicated in line
864 263 were excluded from the modelling and hence comparison was not made. However, we
865 now get insights to include some RSGs left unmapped and improve the accuracy of this beta
866 version. As indicated in the confusion matrix even those soil groups modelled and mapped
867 have depicted different accuracy values and we noticed that some reference soil groups are
868 mapped at the expense of others which enables to interpret taxonomic relationships.

869 Line 305:

870 Climate, Organism and topgrapy. If it is related to them, how would it be to compile it with a
871 sentence?

872 **Response 9:** It indicates the relative importance of the predictor variables in determining the
873 spatial distribution of reference soil groups across the landscapes of Ethiopia. It is an effort to
874 go beyond prediction and incorporate model interpretations i.e. extract information on the
875 relationships among variables found by the models. However, as is clearly indicated in
876 various kinds of literature, model interpretations are not straightforward/simple in
877 complex/ensemble models e.g. Wadoux et al. (2022): Beyond prediction: methods for
878 interpreting complex models of soil variation,
879 <https://www.sciencedirect.com/science/article/abs/pii/S0016706122002609?via%3Dihub>

880 Line 420, Figure 7:Very nice map. Most probable class maps, I think, for True phrase

881 **Response 10:** We are grateful for the appreciation.

882 **CC5- Sky Wills**

883 Dear Sky Wills (CC5),

884 Kindly please refer to our response to RC1; RC1 and CC5 are the same.

885 Kind regards,

886 Ashenafi Ali (on behalf of the co-authors)