

1 **Interactive Biogenic Emissions and Drought Stress Effects on**
2 **Atmospheric Composition in NASA GISS ModelE**

3 Elizabeth Klovinski¹, Yuxuan Wang¹, Susanne E. Bauer², Kostas Tsigaridis^{2,3}, Greg Faluvegi^{2,3},
4 Igor Aleinov^{2,3}, Nancy Y. Kiang², Alex Guenther⁴, Xiaoyan Jiang⁴, Wei Li¹, Nan Lin⁵

5 ¹ Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA

6

7 ² NASA Goddard Institute for Space Studies, New York, NY, USA

8

9 ³ Center for Climate Systems Research, Columbia University, New York, NYC, USA

10

11 ⁴ Department of Earth System Science, University of California – Irvine, Irvine, CA, USA

12

13 ⁵ Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua
14 University, Beijing, China

15

16 Corresponding author: Yuxuan Wang (ywang246@central.uh.edu)

17 **Key Points:**

18

- 19 A new method to capture regional changes of isoprene drought stress is implemented for
20 global usage in NASA GISS ModelE and is evaluated at the MOFLUX Ameriflux site
located in Missouri.
- 21 The inclusion of isoprene drought stress from 2003-2013 leads to a ~2.7% reduction in
22 global decadal average of isoprene emissions in ModelE with up to ~20% reduction in
23 drought-stricken regions.
- 24 The model-tuned parameterization of isoprene drought stress reduces the overestimation
25 of ΩHCHO in the southeastern U.S and improves simulated O_3 during drought periods.

26

27 **Abstract.** Drought is a hydroclimatic extreme that causes perturbations to the terrestrial
28 biosphere, and acts as a stressor on vegetation, affecting emissions patterns. During severe
29 drought, isoprene emissions are reduced. In this paper, we focus on capturing this reduction
30 signal by implementing a new percentile isoprene drought stress (y_d) algorithm in NASA GISS
31 ModelE based on the MEGAN3 (Model of Emissions of Gases and Aerosols from Nature
32 Version 3) approach as a function of a photosynthetic parameter ($V_{c,max}$) and water stress (β).
33 Four global transient simulations from 2003-2013 are used to demonstrate the effect without y_d
34 (Default_ModelE) and with online y_d (DroughtStress_ModelE). DroughtStress_ModelE is
35 evaluated against the observed isoprene measurements at the Missouri Ozarks Ameriflux
36 (MOFLUX) site during the 2012 severe drought where improvements in correlation coefficient
37 indicate it is a suitable drought stress parameterization to capture the reduction signal during
38 severe drought. The application of y_d globally leads to a decadal average reduction of ~2.7%
39 which is equivalent to ~14.6 Tg yr^{-1} of isoprene. The changes have larger impacts in regions such
40 as the Southeast U.S.. DroughtStress_ModelE is validated using satellite ΩHCHO column from
41 the Ozone Monitoring Instrument (OMI) and surface O_3 observations across regions of the U.S.
42 to examine the effect of drought on atmospheric composition. It was found the inclusion of
43 isoprene drought stress reduced the overestimation of ΩHCHO in Default_ModelE during the

44 2007 and 2011 southeastern U.S. droughts and lead to improvements in simulated O₃ during
45 drought periods. We conclude that isoprene drought stress should be tuned on a model-by-model
46 basis, because the variables used in the parameterization responses are relative to the land
47 surface model hydrology scheme (LSM) and the effects of y_d application could be larger than
48 seen here due to ModelE not having large biases of isoprene during severe drought.
49

50 **Plain Language Summary:** Severe drought stresses vegetation and causes reduced emission of
51 isoprene. We study the impact of including a new isoprene drought stress (y_d) parameterization
52 into NASA GISS ModelE called (DroughtStress_ModelE), which is specifically tuned for
53 ModelE. Inclusion of y_d leads to better simulated isoprene emissions at the MOFLUX site
54 during the severe drought of 2012, reduced overestimation of OMI satellite ΩHCHO
55 (formaldehyde column) and improved simulated O₃ (ozone) during drought.
56

57 1. Introduction

58 In present day conditions terrestrial ecosystems release about 1000 Tg C yr⁻¹ of biogenic
59 volatile organic compounds (BVOCs) into the atmosphere and there is an additional smaller
60 emission from marine ecosystems (Guenther *et al.* 2012). The majority of BVOCs emitted from
61 vegetation are isoprene and monoterpenes (Guenther *et al.* 2006; Guenther *et al.* 2012).
62 Representing over half of emitted BVOCs, isoprene is the dominant species globally with
63 reported ranges of 440-600 Tg C yr⁻¹ (Guenther *et al.* 2012) with high emission factors from
64 some, but not all, broadleaf trees including species of oak, willow, palm oil, and eucalyptus
65 (Benjamin *et al.* 1996; Geron *et al.* 2000). Isoprene is produced from carbon substrates generated
66 during photosynthesis and contributes to abiotic stress tolerance from water and temperature
67 stress (Loreto and Sharkey 1990; Monson *et al.* 2021). Isoprene emissions peak during warm,
68 sunnier months of the growing season (MAR-OCT) (Opacka *et al.* 2021). Isoprene has a
69 chemical lifetime of approximately one hour via oxidation by the hydroxyl radical (OH),
70 producing organic aerosols and oxidation products that contribute to ozone (O₃) formation
71 (Carlton *et al.* 2009). Biogenic isoprene emissions affect atmospheric composition and climate,
72 and in turn depend on environmental factors including light, temperature, photosynthetically
73 active radiation (PAR), leaf area index (LAI), water stress, ambient O₃, and CO₂ concentrations.
74 Thus, the response of isoprene emissions to weather extremes and changing climates is highly
75 uncertain.

76 Drought is a common abiotic stress to terrestrial ecosystems characterized by low soil
77 moisture, usually associated with high temperature and low precipitation. However, even boreal
78 forests undergo winter drought due to frozen soils. Recent work has shown a strong correlation
79 between drought severity and fine-mode aerosols in the U.S. and estimated that regions
80 undergoing severe drought see up to 17% surface enhancement of aerosols during the growing
81 season (Wang *et al.* 2017). This suggests a strong perturbation of drought to atmospheric
82 aerosols, likely caused by changing BVOC emissions due to drought stress. Limited field and lab
83 measurements have shown that during drought, isoprene has a unique emission response where

Deleted: drivers

Deleted: Climate change-related higher temperatures and CO₂ concentrations are separately expected to increase emissions of BVOCs, which will impact tropospheric ozone and secondary organic aerosols (SOA) formation. Increasing SOA will have a negative climate forcing effect through increased scattering of sunlight, causing an aerosol direct forcing, and increased cloud condensation nuclei (CCN), causing aerosol indirect forcing effects (Twomey 1974; Sporre *et al.* 2019). The consideration of drought effects on BVOC emissions, as investigated in this study, will counterbalance affect the estimates of aerosol direct and indirect these effects, due to isoprene reductions caused by drought stress.

Deleted: During drought, increases in SOA and O₃ are to be expected (Wang *et al.* 2017; Zhao *et al.* 2019), and with isoprene reductions we expect a reduction in the magnitude of increase of both pollutants.

Deleted: SOA acts as negative radiative forcing under future temperature and CO₂ increases (Zhu *et al.* 2017) and tropospheric O₃ and total O₃ acts as a positive radiative forcing (Skeie *et al.* 2020).

107 initial increase in temperature causes an increase in emission, but prolonged or severe drought
108 causes a decrease of emissions due to the shutdown of physiological processes (Potosnak *et al.*
109 2014). This behavior is not reproduced by commonly used BVOC emission models such as the
110 Model of Emissions of Gases and Aerosols from Nature Version 2.1 (MEGAN2.1), which has a
111 simple drought algorithm which is often not used due to the unavailability of the required driving
112 variables in chemistry climate models (CCMs), and the Biogenic Emission Inventory System
113 (BEIS), which does not include a drought algorithm as an option.
114

115 Isoprene flux observations at the Missouri Ozarks (MOFLUX) Ameriflux site in Missouri (SI
116 Fig. S1) recorded a moderate drought in summer 2011 (Potosnak *et al.* 2014) and a particularly
117 severe drought event in summer 2012 (Seco *et al.* 2015). To the best of our knowledge, these are
118 the only in situ isoprene flux measurements capturing a drought anywhere. Using the MOFLUX
119 observations, Jiang *et al.* (2018) developed an isoprene drought stress activity factor for
120 MEGAN3 (Model of Emissions of Gases and Aerosols from Nature Version 3) designed to
121 reduce emissions of isoprene during drought. The previous MEGAN2.1 isoprene drought
122 parameterization utilized soil moisture and soil wilting point threshold to include impacts of
123 drought on photosynthetic processes. The MEGAN3 isoprene drought stress activity factor is a
124 more process-based parameterization based on a photosynthetic parameter ($V_{c,max}$) and water
125 stress (β) from the Community Land Model (CLM) as coupled with the CAM-Chem climate
126 model (Jiang *et al.* 2018). $V_{c,max}$ is the maximum carboxylation capacity of a leaf (usually in units
127 of micromole CO₂ per leaf area per time); that is, it is the ability of a plant to convert CO₂ into
128 sugar, and hence determine productivity of carbon substrates for biogenic volatile organic
129 compounds (BVOCs) production when no other conditions are limiting. β is a scaling factor
130 between zero to one, used in CLM to reduce $V_{c,max}$ due to plant water stress. MEGAN3 isoprene
131 drought stress was also incorporated into the CSIRO chemical transport model (C-CTM) with
132 Australian land surface models Mk3.6 Global Climate Model and the Soil-Litter-Iso model with
133 a focus on Australia (Emmerson *et al.* 2019). Both prior modeling studies (Jiang *et al.* 2018;
134 Emmerson *et al.* 2019) only looked at the drought effects on O₃; here we study the combined
135 effect of drought on O₃ and formaldehyde column.

136
137 The accurate simulation of stress-affected emissions of isoprene during extreme hydroclimate
138 events (i.e. drought) is crucial to understanding vegetation-climate-chemistry feedbacks, because
139 isoprene is a precursor to tropospheric O₃ and SOA, both being climate forcers as well as air
140 pollutants. Here we focus on deriving a model-specific tuned isoprene drought stress factor that
141 is coupled into the existing MEGAN2.1 framework in NASA GISS ModelE, an Earth System
142 Model, to model the effect of drought on isoprene emissions and their effect on atmospheric
143 composition. The model-specific tuning is required due to different land system models
144 parameterizing key variables of $V_{c,max}$ and β in different ways with varying distributions. The
145 model's drought effects will be extensively evaluated over the US, due to the availability of
146 observational evidence during drought (Wang *et al.* 2017). While the MOFLUX data are the only

147 available measurements of isoprene emissions during drought, formaldehyde (HCHO), the high
148 yield oxidation product of isoprene, can be used as a proxy for isoprene emissions (Zhu *et al.*
149 2016). **Section 2** describes the modelling approaches used to represent drought impacts on
150 isoprene emissions. **Section 3** describes the comparison of modeled isoprene emissions to
151 observations at the MOFLUX site during drought along with necessity of building a model
152 specific isoprene drought stress parameterization. **Section 4** details the comparisons between
153 simulation with model specific tuned isoprene drought stress (DroughtStress_ModelE) and
154 observational O₃, PM_{2.5} (particulate matter $\leq 2.5 \mu\text{m}$), and tropospheric formaldehyde columns
155 (ΩHCHO) over North America.

156

157 2. Methods and Data

158 2.1. The biogenic emission model MEGAN

159 MEGAN is a widely used BVOC emissions model that is implemented in many CCMs. Here
160 we describe briefly MEGAN2.1 as implemented in ModelE. MEGAN2.1 calculates the net
161 primary emissions for 20 compound classes, which are speciated into over 150 species such as
162 isoprene, monoterpenes, etc. (Guenther *et al.* 2012). The emissions rate ($\mu\text{g grid cell}^{-1} \text{ h}^{-1}$) of
163 each compound into the above canopy atmosphere from a model grid cell is calculated:

164

$$165 \text{Emission} = EF \times y \times S \quad (1)$$

166

167 where EF ($\mu\text{g m}^{-2} \text{ h}^{-1}$) is emission factor per compound, y is the dimensionless emission activity
168 factor that accounts for emission response to phenological and meteorological conditions, and S
169 is the grid cell area (m^2).

170

171 The emission activity factor y for each compound is calculated following the MEGAN2.1
172 parameterization (Guenther *et al.* 2006; Guenther *et al.* 2012; Henrot *et al.* 2017).

173

$$174 y = y_{CE} \times y_A \times y_d \times y_{CO_2} \quad (2)$$

175

176 Where y_{CE} is the canopy environment coefficient, assigned a value of one for standard
177 conditions, and it takes into account variations associated with LAI ($\text{m}^2 \text{ m}^{-2}$), photosynthetic
178 photon flux density (PPFD) ($\mu\text{mol of photons in 400-700 nm range m}^{-2} \text{ s}^{-1}$), and temperature (K).
179 y_A is the leaf age emission activity factor, parameterization of which is based on coefficients of
180 the decomposition of the canopy into new, growing, mature, and senescing leaves for current and
181 previous months' LAI (Guenther *et al.* 2006; Guenther *et al.* 2012). y_d is the isoprene drought
182 stress activity factor and y_{CO_2} is the isoprene emission activity factor associated with CO₂
183 inhibition (for all other compounds y_d and $y_{CO_2} = 1$) ([Heald *et al.* 2009](#)). The biogenic emission
184 module implemented in ModelE follows the ECHAM6-HAMMOZ online MEGAN2.1
185 implementation (Henrot *et al.* 2017) in a CCM. Within ModelE the MEGAN2.1 module maps
186 the 16 plant functional types (PFTs) from Ent TBM (Terrestrial Biosphere Model) (Kim *et al.*
187 2015) into 16 MEGAN PFTs, and contains 13 chemical compound classes. ModelE uses a
188 modified MEGAN2.1 following (Henrot *et al.* 2017) to provide a framework to simulate

Formatted: Font: 12 pt

Formatted: Font: 12 pt, Italic

Formatted: Font: 12 pt

189 isoprene emissions, and uses prescribed emissions factors per PFT to simulate emissions per
190 compound class.

191
192 In Henrot *et al.* (2017) to avoid using a detailed canopy environment model calculating light
193 and temperature at each canopy depth, the Parameterized Canopy Environmental Emission
194 Activity (PCEEA) approach from Guenther *et al.* (2006) is used to replace y_{CE} with a
195 parameterized canopy environment activity factor ($y_{LAI} \times y_P \times y_T$). With this approach the light
196 dependent and light independent factors are multiplied by y_{LAI} not LAI so they are not directly
197 proportional to LAI. This approach allows for calculation of light dependent emissions following
198 isoprene emission response to temperature, where its assumed the light dependent factor (LDF)
199 equals one for isoprene and light independent emissions follow the monoterpene exponential
200 temperature response. Please see Guenther *et al.* (2006); Guenther *et al.* (2012); Henrot *et al.*
201 (2017) for activity factor parameterizations. At any given time step in ModelE, the emissions
202 formula for a compound class (c) and PFT (i), in units of $\text{kg m}^{-2} \text{ s}^{-1}$ is given by:

203
204
$$\text{Emission}_{i,c} = (1 \times 10^{-9}/3600) \times (EF_{i,c} \times PFTboxf_i) \times y_{LAI} \times y_A \times y_d \times y_{CO_2} \times ((1 - LDF) \times y_{TLI} + LDF \times y_P \times y_{TLD}) \times SF_c \times MWC_c \quad (3)$$

205 where $EF_{i,c}$ is the emissions factor ($\mu\text{g m}^{-2} \text{ hr}^{-1}$) for a given PFT and compound class, $PFTboxf_i$ is
206 the fraction of the grid cell (ranging from zero to one) covered by PFT i , and SF_c is a linear scale
207 factor for compound class c . The activity factors, y , listed in Equation (3) are unitless and
208 account for the emissions response to leaf area index (LAI), aging (A), drought (d), CO_2 (CO_2),
209 and PPFD (P). The LDF, weights the contributions from light independent (y_{TLI}) and light
210 dependent (y_{TLD}) emissions response to temperature. MWC_c stands for a molecular weight
211 conversion to remove non-carbon mass, if appropriate. $(1 \times 10^{-9}/3600)$: the numerator converts
212 units from $\text{ug/m}^2/\text{hr}$ to $\text{kg/m}^2/\text{s}$ and the denominator is the timestep conversion for seconds in an
213 hour. Note that although the drought activity factor y_d is present in ModelE, it is set to equal one
214 in all cases prior to this work, meaning no drought effects on BVOC emissions in the model.

215
216 For example, the emission formula for the compound class of isoprene in ModelE for
217 PFT i is as follows (where LDF=1):

218
219
$$\text{Isoprene}_i = (1 \times 10^{-9}/3600) \times (EF_{i,isoprene} \times PFTboxf_i) \times y_{LAI} \times y_A \times y_d \times y_{CO_2} \times (y_P \times y_{TLD}) \times SF_{isoprene} \times (60.05/68.12) \quad (4)$$

220 221 2.2 MEGAN2.1 Isoprene Drought Stress Emission Algorithm

222 Guenther *et al.* (2006) introduced isoprene drought stress as a soil moisture dependent
223 algorithm called y_{SM} . This isoprene drought stress activity factor relied upon soil moisture and
224 wilting point to apply drought stress to isoprene emissions. The algorithm for soil moisture
225 isoprene drought stress is as follows:

Deleted: is a timestep conversion for

Formatted: Font: (Default) Times New Roman, 12 pt,
Font color: Auto

Deleted: seconds in an hour.

Formatted: Font color: Auto

231

232 $y_{SM} = 1 \text{ when } \theta > \theta_1$ (5a)

233 $y_{SM} = \frac{\theta - \theta_w}{\Delta\theta_1} \text{ when } \theta_w < \theta < \theta_1$ (5b)

234 $y_{SM} = 0 \text{ when } \theta < \theta_w$ (5c)

235

236 where θ is soil moisture (volumetric water content $\text{m}^3 \text{ m}^{-3}$), θ_w is the point beyond which plants
 237 cannot extract water from soil, known as the wilting point, $\text{m}^3 \text{ m}^{-3}$, $\Delta\theta_1$ ($=0.06$ in Guenther et al.
 238 2006 and $=0.04$ in Guenther et al. 2012) is an empirical parameter, and θ_1 is defined as $\theta_w +$
 239 $\Delta\theta_1$. Soil moisture and wilting point are not widely available parameters in models, and y_{SM} was
 240 not widely adopted to represent isoprene drought stress as studies showed substantial uncertainty
 241 associated with soil moisture predicted response of isoprene emission to water stress and in
 242 selection of wilting point values (Müller *et al.* 2008; Tawfik *et al.* 2012; Sindelarova *et al.* 2014;
 243 Huang *et al.* 2015; Jiang *et al.* 2018). There also exist challenges associated with validating soil
 244 moisture datasets due to the limited spatial coverage of in-situ root-zone measurements in the
 245 contiguous United States (Ochsner *et al.* 2013). A study found that the accurate simulation of
 246 soil moisture in land surface models was highly model-dependent, due to the differing horizontal
 247 and vertical spatial resolution of such models at large scales (Koster *et al.* 2009). Potosnak *et al.*
 248 (2014) determined that the selection of different wilting point values greatly impacted the
 249 drought impacts on biogenic isoprene emission. With these associated challenges, it was rare to
 250 find isoprene drought stress implemented in CCMs, thus a new isoprene drought activity factor
 251 needed to be developed that could be easily incorporated into a variety of models that had a land
 252 surface model (LSM) or terrestrial biosphere model (TBM).

253

254 2.3 MEGAN3 Isoprene Drought Stress Emission Algorithm

255 Jiang *et al.* (2018) developed a new isoprene drought stress activity factor in MEGAN3 that
 256 focuses on photosynthetic carboxylation capacity and water stress to model reductions of
 257 vegetative isoprene during drought. Vegetation responds to high water stress by undergoing

258 physiological, morphological, and biochemical changes (Seleiman *et al.* 2021). During high

259 water stress plants experience leaf area reduction and loss of leaves, decreasing photosynthetic

260 rate due to stomatal closure, decreasing stomatal conductance, transpiration, and evaporative

261 cooling. There is also during drought decreasing rubisco efficiency, which is the enzyme used for

262 carbon fixation of atmospheric CO₂ into useable sugar molecules during photosynthesis

263 (Seleiman *et al.* 2021). These are just a few of the ways vegetation respond to water stress, which

264 impact isoprene emissions.

265 The algorithm was developed using isoprene flux observations during the severe drought of the summer of 2012 and less severe drought of 2011 (Potosnak *et al.* 2014;
 266 Seco *et al.* 2015) at MOFLUX. The MOFLUX site is located in the University of Missouri
 267 Baskett Wildlife Research area in central Missouri which is known as the isoprene volcano
 268 (Wells *et al.* 2020). The MOFLUX site is comprised primarily of deciduous broadleaf trees,
 269 primarily oaks, known to emit high quantities of isoprene. All meteorological data from the site
 270 comes from the Ameriflux website (<https://ameriflux.lbl.gov/sites/siteinfo/US-MOz#overview>).

271

Formatted: Font color: Auto

Deleted:

273 We refer to the original MEGAN3 drought stress developed by Jiang *et al.* (2018) to be
274 **DroughtStress_MEGAN3_Jiang**, and the corresponding parameterization for isoprene activity
275 factor during drought where (y_d) is a function of PFT and where the values of $V_{c,max}$ and β are
276 specified by PFT is:

277 $y_d = 1, \text{when } \beta \geq 0.6$ (6a)

278 $y_d = \frac{(V_{c,max} \times \beta)}{\alpha}, \text{when } \beta < 0.6, \alpha = 37$ (6b)

279 $0 \leq y_d \leq 1$ (6c)

280 $Isoprene_i = (1 \times 10^{-9} / 3600) \times (EF_{i,isoprene} \times PFTbox_i) \times y_{LAI} \times y_A \times y_d \times y_{CO_2} \times (y_P \times y_{TLD}) \times$
281 $SF_{isoprene}$ (7)

282 The drought stress activity factor, y_d , in DroughtStress_MEGAN3_Jiang was originally
283 developed using the Community Land Model Version 4.5 (CLM4.5) (Jiang *et al.* 2018). The
284 photosynthetic parameter used is $V_{c,max}$, which is the maximum rate of leaf-level carboxylation.
285 In ModelE, $V_{c,max}$ is scaled with an enzymatic kinetics response to temperature, and drought
286 stress reduces leaf stomatal conductance, thereby reducing photosynthetic activity through CO_2
287 diffusion limitation rather than by reduction of $V_{c,max}$. In CLM4.5, $V_{c,max}$ is a function of nitrogen
288 (Jiang *et al.* 2018). Water stress in CLM4.5 is based on soil texture (Clapp and Hornberger
289 1978), and it is a function of soil water potential of each soil layer, wilting factor, and PFT root
290 distribution. Water stress (β) ranges from zero when a plant is completely stressed to one when a
291 plant is not undergoing stress. In CLM4.5, $V_{c,max}$ is scaled online by β before being applied into
292 the isoprene drought activity parameterization, thus this scaling step is not reflected in the
293 equations shown by Jiang *et al.* (2018). Since ModelE does not scale $V_{c,max}$ by β (instead,
294 ModelE scales leaf stomatal conductance by β), to reproduce the original scheme by Jiang *et al.*
295 (2018) as much as possible in ModelE, we scaled $V_{c,max}$ with β inside the equation of isoprene
296 drought activity factor as in Eq. (6b). y_d as defined in Eq. (6) is then applied in ModelE as an
297 activity factor into the MEGAN2.1 isoprene emissions equation per every plant functional type
298 (PFT) and the modeling results from this simulation are referred to as
299 **DroughtStress_MEGAN3_Jiang**. The y_d ranges from zero to one and is designed to reduce
300 isoprene emissions during severe and prolonged drought.

301 **2.4 NASA GISS ModelE Climate Chemistry Model**
302 NASA GISS ModelE2.1 is an Earth System Model (ESM) with a horizontal and vertical
303 resolution of 2° degrees in latitude and 2.5° degrees in longitude with 40 vertical layers from the
304 surface to 0.1 hPa (Kelley *et al.* 2020). The climate model is configured in CMIP6 (Coupled
305 Model Intercomparison Project Phase 6) configuration (Miller *et al.* 2021) with fully coupled
306 atmospheric composition with interactive gas-phase chemistry. The model described here is
307 driven by historical Atmospheric Model Intercomparison Project simulations (AMIP), using
308 prescribed ocean temperature and sea ice datasets. There are two aerosol schemes to choose

313 from: MATRIX (“Multiconfiguration Aerosol TRacker of mIXing state”) (Bauer *et al.* 2008) a
314 microphysical aerosol scheme and OMA (One-Moment Aerosol) mass-based aerosol scheme
315 (Koch *et al.* 2006; Miller *et al.* 2006; Bauer *et al.* 2007; Tsigaridis *et al.* 2013; Bauer *et al.* 2020).
316 Here we use the OMA scheme, due to its better representation of secondary organic aerosol
317 chemistry (Tsigaridis *et al.* 2013). SOA is calculated using the CBM4 chemical mechanism to
318 describe the gas phase tropospheric chemistry together with all main aerosol components
319 including SOA formation and nitrate, and is calculated using four tracers in the model. Isoprene
320 (VOCs) contribute to the formation of SOA. OMA has 34 tracers for the representation of
321 aerosols that are externally mixed, except for mineral dust that can be coated (Bauer *et al.* 2007),
322 and has prescribed constant size distribution (Bauer *et al.* 2020). OMA aerosol schemes are
323 coupled to the stratospheric and tropospheric chemistry scheme (Shindell *et al.* 2013) which
324 includes inorganic chemistry of O_x , NO_x , HO_x , CO, and organic chemistry of CH_4 and higher
325 hydrocarbons, with explicit treatment of secondary OA (organic aerosol), and the stratospheric
326 chemistry scheme which includes chlorine and bromine chemistry together with polar
327 stratospheric clouds. O_3 and aerosols impact climate via coupling to the radiation scheme, and
328 aerosols serve as cloud condensation nuclei (CCN) for cloud activation. The model includes the
329 first indirect effect. Sea salt, dimethyl sulfide (DMS), and biogenic dust emission fluxes are
330 calculated interactively, while anthropogenic dust is not represented in ModelE2.1. Other
331 anthropogenic fluxes are from the Community Emissions Data System Inventory (CEDS)
332 (Hoesly *et al.* 2018) and biomass burning is from GFED4s (Global Fire Emissions Database with
333 small fires) inventory (van Marle *et al.* 2017) for 1850–2014.
334

335 Vegetation activity in ModelE is simulated with a dynamic global vegetation model, the Ent
336 Terrestrial Biosphere Model (Ent TBM) (Kim *et al.* 2015). In standard ModelE experiments, the
337 Ent TBM prescribes satellite-derived vegetation canopy structure (plant functional type, canopy
338 height, monthly leaf area index) (Ito *et al.* 2020) as boundary conditions for coupling the
339 biophysics of canopy radiative transfer, photosynthesis, vegetation and soil respiration, and
340 transpiration with the land surface model and atmospheric model. These processes provide
341 surface fluxes of CO_2 and water vapor, and surface albedo is specified by cover type and season.
342 ModelE uses the MEGAN2.1 BVOC emissions model to simulate interactive biogenic emissions
343 from vegetation (Guenther *et al.* 2006; Guenther *et al.* 2012). Ent TBM water stress is calculated
344 as a scaling factor between zero and one as a function of relative extractable water (REW) for the
345 given soil texture and PFT-dependent levels of REW for onset of stress and wilting (Kim *et al.*
346 2015); this scaling has been updated since Kim *et al.* (2015) to be a function of the water stress
347 factor of only the wettest soil layer in the PFT’s root zone. Ent TBM uses a leaf-level model of
348 coupled Farquhar-von Caemmerer photosynthesis/Ball-Berry stomatal conductance (Farquhar
349 and von Caemmerer 1982; Ball and Berry 1985). The model calculates an unstressed leaf
350 photosynthesis rate and stomatal conductance, then applies its water stress scaling factor to scale
351 down leaf stomatal conductance, to emulate how hormonal signaling by roots under water stress
352 induces stomatal closure. Since there is a coupling of transpiration and CO_2 uptake through

353 stomatal conductance, water stress thereby also reduces photosynthesis rate through the
354 limitation on CO₂ diffusion into the leaf; this is different from CLM4.5's approach, which
355 instead reduces $V_{c,max}$. Canopy radiative transfer in the Ent TBM scales leaf processes to the
356 canopy scale by calculating the vertical layering of incident photosynthetically active radiation
357 on sunlit versus shaded leaves. The different PFTs in Ent TBM have different critical soil
358 moisture values for the onset of stress (when stomatal closure begins in response to drying soils)
359 and their wilting point (when the plant is unable to withdraw moisture from the soil and complete
360 stomatal closure occurs). It should be noted that the GISS land surface model is wetter than
361 observed soil moisture (Kim *et al.* 2015). $V_{c,max}$ is a function of a Q₁₀ temperature function in
362 ModelE. Since nitrogen dynamics are not represented yet in the Ent TBM, leaf nitrogen is fixed
363 and therefore $V_{c,max}$ is not dynamic with nitrogen as in CLM4.5. The Q₁₀ coefficient is often used
364 to predict the impact of temperature increases on the rate of metabolic change (Rasmusson *et al.*
365 2019).

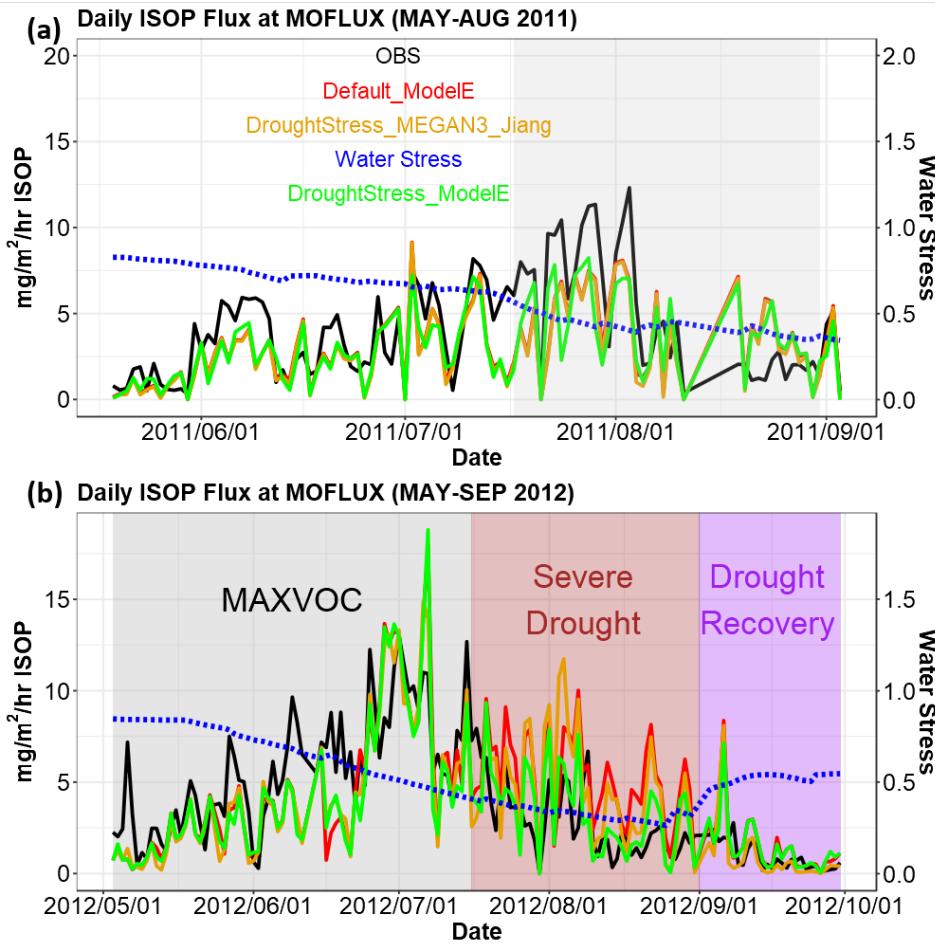
366
367 To emulate the MEGAN/CLM representation of drought stress, in this study, in the Ent TBM
368 leaf model, we applied a reduction in $V_{c,max}$ with water stress as shown in Eq. (6b). It is important
369 to note that the reduction of $V_{c,max}$ with water stress in Eq. (6b), is not used outside the isoprene
370 drought stress parameterization, so the $V_{c,max}$ reduction is not applied to the calculation of
371 photosynthetic CO₂ uptake; this avoids applying another secondary indirect scaling to
372 conductance, since the Ent TBM already applies its water stress factor to reduce stomatal
373 conductance.

374
375 For this study, ModelE2.1 was configured with a transient atmosphere and ocean using a
376 prescribed sea surface temperature (SST) and sea ice (SSI) according to observations. The
377 transient simulations contain continuously-varying greenhouse gases in order to represent a
378 realistic mode in present day. To facilitate direct comparison with atmospheric composition
379 observations as in this study, meteorology is nudged to the National Centers for Environmental
380 Prediction (NCEP) reanalysis winds. Four transient ModelE simulations were run for the period
381 of 2003-2013 with a three-year spin-up using MEGAN2.1 with varying configurations for
382 isoprene drought stress to be described below. The authors found that the default MEGAN
383 implementation in ModelE2.1 underestimates isoprene and monoterpene emissions, thus
384 appropriate scaling factors (SF_c) were applied to match literature for global annual emission
385 estimates, 1.8 for isoprene and 3 for monoterpenes to match literature estimates of around ~500
386 Tg C of isoprene and ~130 Tg C of monoterpenes (Arneth *et al.* 2008; Guenther *et al.* 2012).

387
388 **2.5 Observations of Isoprene Emissions at MOFLUX during Drought of 2011-2012**

389 The MOFLUX site located at 38.7441°N, -92.2000°W (latitude, longitude) is comprised
390 mostly of deciduous broadleaf forests dominated by oak-hickory forest and the climate is
391 classified as humid subtropical with no dry season and hot summers. The site experienced a mild
392 drought in the mid to late summer of 2011 and an extreme to exceptional drought from the mid

393 to late summer of 2012 when concurrent biogenic isoprene flux measurements were taken. The
394 2011 drought was not as severe as the drought of summer of 2012. The ecosystem response of
395 isoprene has two stages including a mild phase of drought stress where emissions are stimulated
396 by increases in leaf temperature due to reduced stomatal conductance while in the second stage
397 of drought, the more severe phase of drought stress, emissions are suppressed by reduction in
398 substrate availability or isoprene synthase production (Potosnak *et al.* 2014; Seco *et al.* 2015).
399


400 In 2011, the spring was wet but the drought started to appear in June due to lack of rainfall
401 while temperatures broke records and continued through July (Potosnak *et al.* 2014; Jiang *et al.*
402 2018). [The U.S. Drought Monitor \(USDM\) produces color-coded maps indicating drought](#)
403 [severity across the U.S. and is produced through a partnership of the National Drought](#)
404 [Mitigation Center at the University of Nebraska-Lincoln, the U.S. Department of Agriculture,](#)
405 [and the National Ocean and Atmospheric Administration \(NOAA\). The USDM drought maps](#)
406 [have five classifications to indicate drought condition: \(D0\) indicating abnormally dry, \(D1\)](#)
407 [moderate drought, \(D3\) extreme drought, and \(D4\) exceptional drought.](#) However, the USDM
408 did not capture this drought signal from June - July and only showed abnormally dry periods
409 from August 2 - August 16, and never went into extreme (D2) or severe drought stage (D3). This
410 suggests 2011 summer was a useful case only for studying drought response of isoprene during
411 weak drought conditions. The highest observed isoprene fluxes were from July 11 – August 3
412 shown in Fig. 1a. Potosnak *et al.* (2014) reported that from July 14 - August 10 their MEGAN2.1
413 simulations consistently underestimated isoprene emissions during onset of drought and
414 overestimated as drought progressed from August 18 to September 2. From August 3 – August
415 23 there was a total of 65 mm of precipitation, which led to an increase in observed soil
416 moisture. It was suggested that since observed soil moisture increases during the period of
417 drought progression when isoprene is decreasing (August 18 - September 2) relative to the onset
418 of drought (July 14 - August 10), this indicates the response to drought stress during this year is
419 time dependent, and a time-independent algorithm based on soil moisture will not capture the
420 relevant processes during a less severe drought year. It was also noted that MEGAN2.1
421 underpredicts during the cooler months of May-June and underpredicts during the warmer month
422 of July (Potosnak *et al.* 2014), and only overpredicts during small portions of August-September
423 as denoted by a grey box in Fig. 1a. With this pattern of underprediction observed in MEGAN2.1
424 simulations and also seen in Default_ModelE, as well as weak drought conditions as stated
425 above, 2011 is not an ideal year to tune an isoprene drought stress algorithm to target the
426 reduction period caused by drought stress.
427

428 In 2012, there were three unique periods that displayed the development of a severe drought
429 that make it ideal to tune an isoprene drought stress algorithm. Shown in Fig. 1b is the daily
430 averaged isoprene flux broken up into three periods. We define the MAXVOC episode from
431 May 1 - July 16, severe drought period (July 17-August 31) shaded in brown in Fig. 1b, and the
432 drought recovery period (September 1-31). Although Seco *et al.* (2015) defined MAXVOC from

Formatted: Font: (Default) Times New Roman, 12 pt,
Font color: Auto

Deleted: (U.S. Drought Monitor)

434 June 18 – July 31, they identified July 16 as the transitional stage between MAXVOC episode
435 and severe drought. Thus, our work used July 16 to separate MAXVOC and severe drought
436 periods. The periods of pre-drought (prior to May 31) and mild drought identified by Seco *et al.*
437 (2015) from May 31- June 14 are included in the MAXVOC period, because during this time
438 period a typical seasonal pattern of increasing emissions with increasing temperatures is shown,
439 and there is no indication of decreasing emissions due to drought stress. The mild drought period
440 (May 31- June 14) corresponds to USDM periods of abnormally dry and moderate drought.
441 Isoprene emissions continue to increase during the beginning of summer, which is supported by
442 several studies that show isoprene emissions during the first stages of drought increase even
443 though there is a decrease in CO₂ fixation, which is attributed to drought induced stomatal
444 closure and rising leaf temperature and decreasing transpirational cooling and CO₂ concentration
445 in the leaf (Rosenstiel *et al.* 2003; Pegoraro *et al.* 2004; Potosnak *et al.* 2014; Seco *et al.* 2015).
446 Separating MAXVOC and severe drought period allows for the algorithm development to target
447 the latter severe drought stage where isoprene reduction occurs, while not reducing emissions
448 during the early, and less severe, stages of drought. During the severe drought period, total
449 annual precipitation was the lowest in a decade while soil water content reached its minimum at
450 the end of August when the drought peaked (Jiang *et al.* 2018). During the severe drought there
451 is a marked decrease in isoprene flux shown by the brown shaded box coinciding with lower β
452 values. It is well established that isoprene emissions are linked to high temperatures (Singsaas
453 and Sharkey 2000), and without the contributing factor of drought there should be a rising
454 increase in isoprene emissions in July and August. The severe drought period encompasses
455 periods of severe and extreme drought identified by the USDM. July 3 marks the first week
456 indicated by USDM of severe drought and July 31 marks the first week of extreme drought.
457 During severe drought isoprene production is suppressed by reductions in substrate availability
458 and isoprene synthase transcription (Potosnak *et al.* 2014). Rain events at the end of August led
459 to drought recovery and soil water content started to increase, which is indicated by increasing β
460 values shown in the drought recovery period indicated in purple in Fig. 1b. Overall, 2012 shows
461 a complete development of drought conditions that affect isoprene emissions and will provide
462 useful constraints on the drought stress factor parameterization: a MAXVOC period that
463 encompasses pre- and mild drought periods, a severe drought period (July 17 – August 31), and a
464 drought recovery period (September 1-30). [Included in the supplement SI Fig. S8 is distributions](#)
465 [of daily averaged isoprene flux split in MAXVOC, severe drought period, and drought recovery](#)
466 [period for simulations Default ModelE and DroughtStress ModelE compared to observations.](#)

468 Figure 1. Daily isoprene emissions flux at MOFLUX (MAY-AUG 2011 and MAY-SEP 2012) LST timeseries are shown.
 469 Black shows observed isoprene emissions (abbreviated as ISOP), red shows Default_ModelE without isoprene drought
 470 stress, orange shows DroughtStress_MEGAN3_Jiang, and green shows DroughtStress_ModelE with units of mg/m²/hr of
 471 isoprene. (a) Shaded in the grey region from JUL 17 through AUG 31 of 2011, is the period where water stress falls below
 472 0.4 for short periods. (b) Shaded in grey is the MAXVOC period, and shaded in brown is the period of severe/extreme
 473 drought from July 17 through August 2012, and shaded in purple is the drought recovery period.

474

475

2.6 Offline Isoprene Emissions Model

476 An offline model was created based on the isoprene emissions formula Eq. (4) of the
477 MEGAN module contained in ModelE in order to develop the new parametrization in a timely
478 fashion without waiting for online transient simulations to complete. ModelE was first run in a
479 default transient simulation with MEGAN2.1 where no isoprene drought stress was applied,
480 referred to as **Default_ModelE**, from which the MEGAN activity factors and variables required
481 to drive the offline calculation of isoprene emissions were output and archived. Default_ModelE
482 was compared to observed temperature at MOFLUX in SI Fig. S10, S12a as temperature is the
483 main biogenic driver of isoprene (Mishra and Sinha 2020; Jiang *et al.* 2018). Default_ModelE
484 was also compared to sensible heat and latent heat in SI Fig. S11 as the exchange of latent and
485 sensible heat fluxes is one of the most important aspects of land-atmosphere coupling as these
486 energy fluxes are affected by partitioning of net radiation absorbed by the surface, which
487 influence atmospheric dynamics, influence boundary layer structure, cloud development, and
488 rainfall (Gu *et al.* 2016). We verified LAI at the MOFLUX site during 2012 in SI Fig. S12b
489 using the NOAA Climate Data Record AVHRR (Advanced Very High Resolution Radiometer)
490 LAI dataset (Vermote 2019) that we averaged on a monthly scale and regressed from
491 0.05°x0.05° to match ModelE's horizontal resolution. Other monthly averaged meteorological
492 variables at MOFLUX during 2012: temperature, LAI, relative humidity, shortwave incoming
493 solar radiation, CO₂ flux, vapor pressure deficit (VPD), and canopy conductance are compared to
494 observed when observations are available in SI Fig. S12. Soil moisture by layer is shown in SI
495 Fig. S14. The offline model was then driven by these outputs at the half hourly timestep to match
496 with the 30-minute timestep in the online calculation of physics and the MEGAN module. The
497 offline model was verified by making sure outputs of isoprene emissions matched the online
498 Default_ModelE simulation. With the verified offline model, different parameterizations of
499 isoprene drought stress could be tested and cross verified with observations at MOFLUX. The
500 offline model is used to derive a model specific α and β threshold (Eq. (6a-6c)) for ModelE in
501 order to create the appropriate parameterization of a model specific isoprene drought stress in
502 ModelE known as **DroughtStress_ModelE**, described in Section 3.3. Since models calculate
503 water stress and $V_{c,max}$ in different ways, the offline model is the necessary step to derive model-
504 specific water stress thresholds to target drought periods and ensure α and β are being applied
505 correctly.

506

507 2.7 ModelE Sensitivity Simulations

508 Four transient global ModelE simulations were configured for the period of 2003-2013 with
509 a three-year spin-up, as described in **Table 1**. A default simulation (Default_ModelE) that set y_d
510 =1 was performed where no isoprene drought stress parameterization was applied. A second
511 simulation named DroughtStress_MEGAN3_Jiang was performed as a sensitivity test to
512 determine the efficacy of the DroughtStress_MEGAN3_Jiang algorithm Eq. (6a-6c), which is
513 not tuned specifically for ModelE, and was originally developed by Jiang *et al.* (2018) as a non-
514 model specific tuned isoprene drought stress formula to be used widely in models. A third
515 simulation was performed with the offline derived ModelE tuned isoprene drought stress

Formatted: Font: Italic

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto

Formatted: Font: (Default) Times New Roman, 12 pt, Not Bold, Font color: Auto

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto

Formatted: Font: (Default) Times New Roman, 12 pt, Not Bold, Font color: Auto

Deleted:

Formatted: Font color: Blue, Pattern: Clear (White)

517 parameterization to best fit MOFLUX observations (MOFLUX_DroughtStress) using Eq. (8a-
 518 8c) to be described in Section 3.2. A fourth simulation called DroughtStress_ModelE was
 519 performed using a subset of parameters derived from MOFLUX_DroughtStress but a different
 520 drought activation method in Section 3.3 using Eq. (10a-10b).

521
 522 **Table 1. ModelE Online Transient Simulation Descriptions**

Simulation Name	Drought Stress	Isoprene Emission Eqn.	β Threshold	α
1) Default_ModelE	NO	Eq. (4)	N/A	N/A
2) DroughtStress_MEGAN3_Jiang	YES Eq. (6a-6c)	Eq. (7)	$\beta < 0.6$	37
3) MOFLUX_DroughtStress	YES Eq. (8a-8c)	Eq. (9)	$0.25 < \beta < 0.40$	100
4) DroughtStress_ModelE	YES Eq. (10a-10b)	Eq. (9)	$\beta < 4^{\text{th}}$ percentile	100

Deleted: 1

523
 524 **3. Development of Model specific Drought Stress Parameterization**
 525 **3.1. MOFLUX Single Site Observational Comparison to Model**
 526 Shown in Fig. 1a is the 2011 timeseries of biogenic isoprene flux at the MOFLUX site of two
 527 online simulations Default_ModelE (red) and DroughtStress_MEGAN3_Jiang (orange)
 528 compared to observations (black). In 2011, Default_ModelE tended to underestimate isoprene
 529 flux during onset of drought (July 14 - August 10) and had minor periods of overestimation
 530 during drought progression (August 18 – September 2) which was also seen by MEGAN2.1
 531 simulations of Potosnak *et al.* (2014). DroughtStress_MEGAN3_Jiang simulation applied
 532 isoprene drought stress from mid-July through September when β fell below the 0.6 threshold
 533 identified by Jiang *et al.* (2018). In the DroughtStress_MEGAN3_Jiang simulation it is shown
 534 that during the drought progression stage, DroughtStress_MEGAN3_Jiang isoprene is reduced
 535 compared to Default_ModelE, but reductions are not strong enough to align with lower observed
 536 values for a majority of this period. The timeseries shows that there is little deviation between
 537 the Default_ModelE and DroughtStress_MEGAN3_Jiang during the 2011 mild drought.
 538

539 Shown in Fig. 1b is the 2012 timeseries of biogenic isoprene flux at the MOFLUX site of two
 540 online simulations Default_ModelE and DroughtStress_MEGAN3_Jiang compared to
 541 observations, with β (blue). Default_ModelE typically underestimates isoprene flux during the
 542 MAXVOC period, overestimates during the severe drought period, and reproduces the drought
 543 recovery period sufficiently except for September 6 where the model greatly overestimates
 544 leading to a peak not matched by observations. During the severe drought period the
 545 Default_ModelE mean bias (MB) $\cong 2.20 \text{ mg/m}^2/\text{hr}$ and the normalized mean bias (NMB) \cong
 546 76.10% . β daily average values fell below the 0.60 threshold on June 20 and continued below the
 547 threshold through September 3. With the β falling below 0.60, the

557 DroughtStress_MEGAN3_Jiang simulation starts reducing isoprene during the MAXVOC
558 period and continues to reduce through the drought recovery period. This leads to compounding
559 the underestimation during the MAXVOC period, small corrections to overestimation during
560 severe drought but missing the peak overestimations, and too large of reductions of isoprene
561 during drought recovery period. During the severe drought period the MB of
562 DroughtStress_MEGAN3_Jiang was $\cong 1.61 \text{ mg/m}^2/\text{hr}$ and the NMB was $\cong 55.81\%$.
563 DroughtStress_MEGAN3_Jiang thus decreased the overestimation by $\sim 20.29\%$ during the
564 severe drought period. The timeseries comparison for 2012 indicates the parameters in the Jiang
565 et al. parameterization resulted in only minor improvements in ModelE for the severe drought
566 period, because they were tuned for CLM4.5. The DroughtStress_MEGAN3_Jiang simulation
567 shows that the α and β need to be tuned on a model-by-model basis. Based on these minor
568 improvements, and the differences in how $V_{c,max}$ and β are calculated in CLM4.5 versus Ent
569 TBM, it was clear a model tuned parameterization could be used to further improve the
570 relationship of simulated isoprene emissions during drought.
571

572 3.2 Site Tuned MOFLUX_DroughtStress Parameterization

573 Using the offline isoprene emissions model (Section 2.6) driven by catalogued variables from
574 each time step of the **Default_ModelE** simulation and the MOFLUX biogenic isoprene flux
575 measurements for 2012, we describe here how a water stress threshold to target severe/extreme
576 drought periods and a model appropriate empirical variable (α) were derived to create the
577 isoprene drought stress parameterization based upon the framework of Eq. (6a-6c), called
578 **MOFLUX_DroughtStress**. MOFLUX_DroughtStress was developed to target the 2012 severe
579 drought period shown in Fig. 1b as this period is when the model overestimates despite
580 observations showing decreasing emissions during drought. The water stress threshold range
581 targeting the severe drought period determines when the isoprene drought stress is applied and it
582 is bounded to exclude the period of drought recovery and the onset of drought when isoprene
583 emissions are still increasing. The range of β specific to ModelE is 0.25 to 0.40 during the severe
584 drought period, which differs from the CLM4.5 threshold of 0.60 as it is a model specific
585 parameterization. Isoprene drought stress in MOFLUX_DroughtStress is thus applied only when
586 $\beta < 0.40$, and at all other β values $y_d = 1$.
587

588 To find the empirical variable, α , an offline sensitivity analysis was conducted using the
589 offline isoprene emissions model with 0.25 to 0.40 as the β threshold to activate isoprene
590 drought stress. The PFT weighted value of $V_{c,max}$ and β were used to calculate the y_d in the
591 offline isoprene emissions model. A range of α values from 60 to 160 were tested in Eq. (8a-8c)
592 to find y_d . y_d dependence on the value of α was fed into Eq. (9) to output offline isoprene
593 emissions. The offline modeled emissions from Eq. (9) were evaluated against observed isoprene
594 fluxes at MOFLUX, and it was determined that $\alpha = 100$ gave the best fit and strongest
595 relationship between the offline modeled emissions and measured isoprene at MOFLUX. $\alpha = 100$
596 had the lowest NMB closest to zero during the severe drought period, and the most improved

597 [slope, y-intercept, and correlation coefficient during the summer of 2012](#). The α variable, though
598 empirically derived, is strongly related to the model specific $V_{c,max}$ which is why our alpha differs
599 from DroughtStress_MEGAN3_Jiang, where $\alpha=37$. Based on the offline emissions comparisons
600 to observed it was determined that **MOFLUX_DroughtStress** is defined as follows:

601 $y_d = 1 (\beta \geq 0.4)$ (8a)

602 $y_d = \frac{(v_{c,max} \times \beta)}{\alpha} (0.25 < \beta < 0.40)$ where $\alpha=100$ (8b)

603 $y_d = 1 (\beta \leq 0.25)$ (8c)

604 $Isoprene_i = (1 \times 10^{-9} / 3600) \times (EF_{i,isoprene} \times PFTbox_i) \times y_{LAI} \times y_A \times y_d \times y_{CO_2} \times (y_P \times y_{TLD}) \times$
605 $SF_{isoprene}$ (9)

606 Where y_d uses the area weighted average over PFTs of v_{cmax} and β in Eq. (8a-c), and thus y_d in
607 Eq. (9) is not a function of PFT, which differs from DroughtStress_MEGAN3_Jiang Eq. (7)
608 where y_d is a function of PFT.

609 MOFLUX_DroughtStress simulation with isoprene drought stress applied Eq. (8a-8c) is
610 found to reduce the MB at the MOFLUX site to ≈ 0.04 mg/m²/hr during the 2012 severe drought
611 period, indicating the parameterization is able to correct the model overestimation of isoprene
612 emissions. [Scatterplots and timeseries of the simulation MOFLUX_DroughtStress during MAY-SEP 2012 are included in SI Fig. S2](#). The NMB decreased to $\approx 1.53\%$, indicating a $\sim 74.57\%$
613 reduction compared to Default_ModelE. Large improvements were not expected for 2011 as this
614 algorithm was designed to target severe/extreme drought. Despite the better agreement between
615 measured and modeled fluxes in MOFLUX_DroughtStress at the MOFLUX site, the regional
616 analysis described below determined that water stress values are region specific and a new
617 approach was needed in order to make the algorithm applicable for other regions in the global
618 model.

625 3.3 New Percentile Threshold Isoprene Drought Stress Parameterization

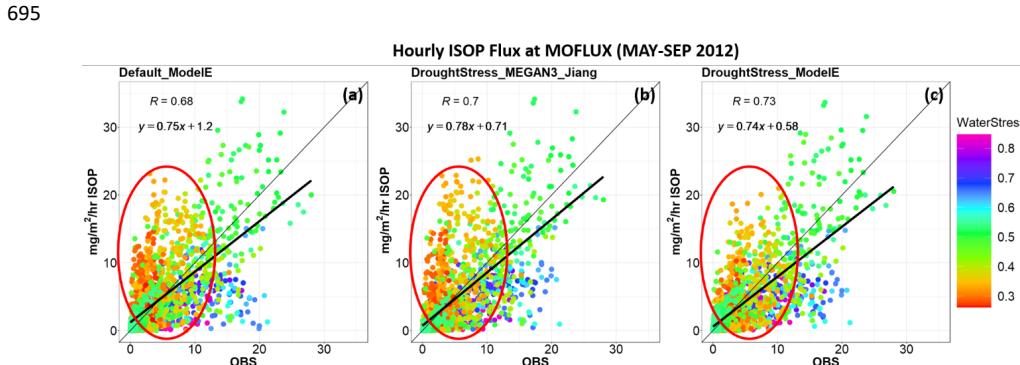
626 After implementing MOFLUX_DroughtStress in ModelE, we found for JUN-AUG 2011
627 isoprene emissions reductions for the southeastern (SE) U.S. defined as (96-75°W, 25-38°N) of
628 approximately -3.5%, -7.2%, -5.7% respectively. These regional reductions were smaller than
629 expected as the SEUS 2011 was a spatially extensive severe drought over a largely forested and
630 vegetated region. The US Drought Monitor (USDM) reported that the southeast area in moderate
631 to exceptional drought for JUN-AUG 2011 was 63%, 61%, and 55% respectively. Other studies
632 for other regions of the world have reported during severe drought that reductions in isoprene
633 vary by region and have a large uncertainty. For example, Huang et al. (2015) reported using
634 different soil moisture products [that resulted in](#) isoprene reductions of 12-70% for Texas. Others
635 showed reductions up to a maximum of 17% (Jiang et al. 2018; Wang et al. 2021). The reason
636 why MOFLUX_DroughtStress falls on the lowest end of reported isoprene reductions for the

637 regional analysis is probably because drought stress activation was calibrated to water stress
638 ranges at a single site. As water stress is expected to vary regionally, a new regional method was
639 needed in order to simulate drought stress effects globally.

640
641 A new parameterization was designed to not only work at MOFLUX since this is the site
642 used for validation, but capture isoprene drought signals for other regions. To do so, we first
643 simulated daily averaged water stress during the growing season for ten years (2003-2012) at
644 MOFLUX, a total of 2450 days. It was determined that water stress was less than the 0.4
645 threshold for 102 days, a percentage of ~ 4.16%. For simplicity, we rounded the percentage to
646 4%. The new approach then relied upon finding the 4th percentile water stress value across ten
647 years of daily water stress per grid and for each individual month in order to build a
648 parameterization that would capture regional and seasonal variability in water stress in ModelE.
649 This new drought stress parameterization is known as DroughtStress_ModelE and uses the same
650 alpha ($\alpha=100$) as MOFLUX_DroughtStress and is applied as weighted average per PFT. What
651 makes this different from the previous approach, MOFLUX_DroughtStress, is that the water
652 stress threshold used to apply drought stress is based on the model's unique lowest 4th percentile
653 of water stress on a grid-by-grid basis and is not based on the absolute values of water stress at a
654 single site (i.e., MOFLUX) [and is a statistical tuning method](#). The 4th percentile of daily water
655 stress was used as the trigger for drought stress activation. The parameterization for
656 **DroughtStress_ModelE** is Eq. (10a-10b):

657
658 $y_d = 1 \text{ when } (\beta \geq 4^{\text{th}} \text{ percentile}) \quad (10a)$

659 $y_d = \frac{(v_{c,\text{max}} \times \beta)}{\alpha} \text{ when } (\beta < 4^{\text{th}} \text{ percentile}), \text{ where } \alpha=100 \quad (10b)$


660
661 A global transient simulation was run from (2003-2013) applying Eq. (10a-10b) globally,
662 called DroughtStress_ModelE in order to determine the effects of the isoprene drought stress
663 parameterization and to see if it captures the signal of the 2011 SE drought.
664 DroughtStress_ModelE for JJA 2011 showed isoprene emissions percent reductions for the SE of
665 approximately -9.6%, -5.9%, and -12.7% respectively. These reported reductions are a factor of
666 two greater than MOFLUX_DroughtStress for the same period, and are in the mid-range of
667 reported isoprene reductions during drought. A complete timeseries of isoprene emissions at
668 MOFLUX for all four simulations as described by **Table 1** is shown in SI Fig. S2a-b for 2011
669 and 2012.

670
671 **3.4 DroughtStress_ModelE Evaluation at MOFLUX**

672 During 2011 at the MOFLUX site, there were only small differences between
673 Default_ModelE and DroughtStress_ModelE. The scatterplots of isoprene emissions at the
674 MOFLUX site for the summer of 2011 show the hourly correlation coefficient between modeled
675 and observed isoprene fluxes showed minor improvement from 0.77 to 0.78, with minor changes
676 in slope and y-intercept (SI Fig. S3a,c). The diurnal cycles for 2011 included in (SI Fig. S4a)

677 showed that neither MOFLUX_DroughtStress nor DroughtStress_ModelE altered the diurnal
 678 cycle in comparison to Default_ModelE. For 2011, all four simulations underestimate the diurnal
 679 cycle for MAY-AUG. Large improvements due to the applications of the Eq. (10a-10b) were not
 680 expected for 2011 as this algorithm was designed to target severe/extreme drought and not less
 681 severe drought conditions.

682 During the severe drought period of 2012 at MOFLUX, the β values fell below the 4th
 683 percentile thresholds for July-August, and isoprene drought stress was applied leading to
 684 reductions in the overestimation shown by Default_ModelE. DroughtStress_ModelE had a MB
 685 $\cong 0.42 \text{ mg/m}^2/\text{hr}$ and a NMB $\cong 14.5\%$ [during the severe drought period](#). DroughtStress_ModelE
 686 reduced overestimation by $\sim 61.6\%$ [during the severe drought period](#) compared to
 687 Default_ModelE, which is a similar statistical improvement compared to
 688 MOFLUX_DroughtStress during the severe drought period as the parameterizations were
 689 designed in a similar manner. The scatterplots of isoprene emissions at the MOFLUX site for the
 690 summer of 2012 show the hourly correlation coefficient between observations and simulations
 691 increased from 0.68 in Default_ModelE to 0.73 in DroughtStress_ModelE (Fig. 2a,c). In Fig. 2
 692 changes are clearly seen in the cluster of β values lower than 0.4 (shown by red oval) indicating
 693 a reduction in overestimation during severe drought.

696 Figure 2. Scatterplots (a-c) show hourly simulated isoprene emissions compared to observed for MAY-SEP 2012 at the
 697 MOFLUX site and the units are mg/m²/hr of isoprene. Column 1-3 indicate simulations Default_ModelE,
 698 DroughtStress_MEAN3_Jiang, and DroughtStress_ModelE respectively. The hourly averaged points are color coded by
 699 water stress.

700 DroughtStress_ModelE with decreases in y-intercept, increasing correlation coefficient, and
 701 minor change in slope compared to Default_ModelE suggests it has better performance in
 702 simulating isoprene emissions during severe and extreme drought at MOFLUX during the
 703 summer of 2012. [The hourly scatterplots during the 2012 severe drought period are included in](#)
 704 [SI Fig. S13](#). The daily correlation coefficient increased from 0.64 to 0.73 during [the 2012](#)

706 drought in DroughtStress_ModelE (SI Fig. S5a,c) and in SI Fig. S13 during the severe drought
 707 period the daily correlation increases from 0.40 to 0.48. In addition, DroughtStress_ModelE
 708 reproduces the diurnal cycle of isoprene emission from MAY-SEP 2012 shown in (SI Fig. S4b)
 709 and corrects the overestimation of the Default_ModelE during the peak hours 10-15 LST. It was
 710 found that DroughtStress_ModelE tended to reduce the overestimation of Default_ModelE for
 711 the daily peak of isoprene flux and move it closer to observed during the severe drought period
 712 as shown in SI Fig. S9. Overall, there is an acceptable level of agreement between measured and
 713 modeled fluxes in DroughtStress_ModelE indicating it is a suitable model-tuned
 714 parameterization for estimating isoprene emissions during severe drought at the MOFLUX site.

Deleted: severe

715 716 4. Model response to drought parameterization: Global/Regional Evaluation of 717 DroughtStress_ModelE

718 The impact of applying isoprene drought stress in DroughtStress_ModelE globally on the
 719 annual emissions of isoprene from 2003-2013 is shown in **Table 2**. The yearly global reduction
 720 of isoprene emissions ranges from ~ -0.9% to -4.3%. The global decadal average from 2003-
 721 2013 is ~533 Tg yr⁻¹ of isoprene in Default_ModelE and ~518 Tg yr⁻¹ of isoprene in
 722 DroughtStress_ModelE, a reduction of 2.7%, which is equivalent to ~14.6 Tg yr⁻¹ of isoprene.
 723 On a global scale these changes average under 3%, but for high isoprene emission regions such
 724 as the Southeast U.S. during drought periods there are larger impacts as shown below in Fig. 6.

Formatted: Font color: Auto

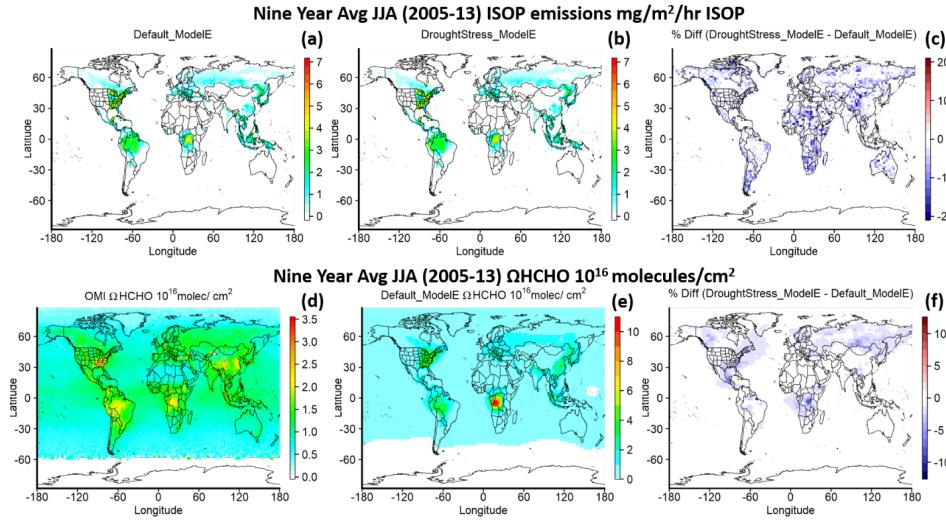
Deleted: Overall, there is model agreement between measured and modeled fluxes in DroughtStress_ModelE indicating it is a suitable model-tuned parameterization for estimating isoprene emissions during severe drought at the MOFLUX site.

725
 726 Table 2. Global Annual Tg of Isoprene (2003-2013)

Global Annual Isoprene Emissions (Tg)				
Year	Default_ModelE	DroughtStress_ModelE	Diff (Tg Isoprene)	% Diff
2003	557.5	533.4	24.1	-4.3
2004	557.6	535.4	22.2	-4.0
2005	578.6	562.1	16.5	-2.9
2006	537.5	522.9	14.6	-2.7
2007	527.2	515.8	11.4	-2.2
2008	499.2	494.9	4.3	-0.9
2009	522.3	508.4	13.9	-2.7
2010	542.5	526	16.5	-3.0
2011	508.3	498.8	9.5	-1.9
2012	516.1	503.4	12.7	-2.5
2013	512.5	497.5	15	-2.9

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto

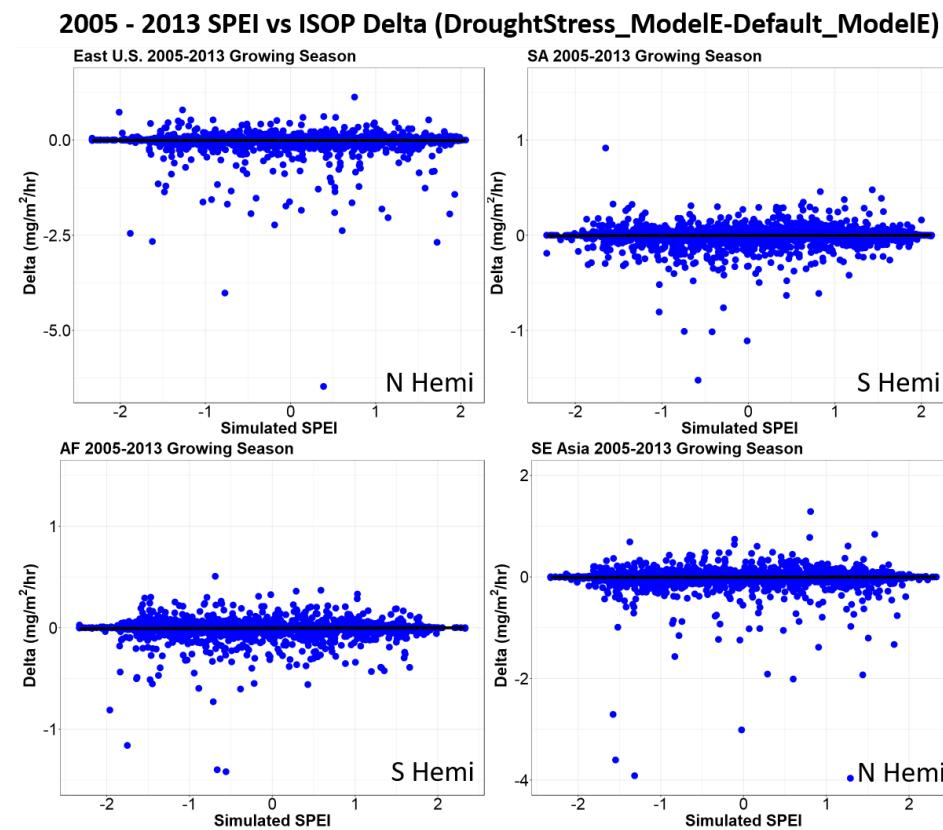
Deleted: On a global scale these changes average under 3%, but for high isoprene emission regions such as the Southeast U.S. during drought periods there are larger impacts as shown below.


727
 728 Figure 3 shows the global nine-year average of isoprene emissions and tropospheric HCHO
 729 column densities (Ω HCHO) of the lowest twenty layers of the model during JJA from 2005-
 730 2013. Due to extremely limited in situ measurements of isoprene emissions during drought,
 731 satellite-retrieved Ω HCHO, the high yield oxidation product of isoprene, can be used as a proxy
 732 for isoprene emissions on the monthly scale (Zhu *et al.* 2016). Here we used Ω HCHO from OMI

743 (Ozone Monitoring Instrument) on the Aura satellite starting in 2005. Level 3 total column
744 weighted mean was regridded from its original resolution of $0.1^\circ \times 0.1^\circ$ to match ModelE's
745 horizontal resolution of $2^\circ \times 2.5^\circ$, and the daily data was aggregated to monthly mean
746 (https://cmr.earthdata.nasa.gov/search/concepts/C1626121562-GES_DISC.html) (Chance 2019).
747 OMI satellite data was filtered with the data_quality_flag, cloud fractions less than 0.3, solar
748 zenith angles less than 60, and values within the range of -0.5 to 10×10^{16} molecules cm^{-2} were
749 used (Zhu *et al.* 2016). A factor of 1.59 is applied to the OMI vertical column density (VCD) to
750 correct the mean bias (Kaiser *et al.* 2018). As this is the first evaluation of tropospheric ΩHCHO
751 in ModelE, a gridded level 3 dataset was used for analysis without applying air mass factor
752 (AMF) using ModelE predicted HCHO profiles, which according to Zhu *et al.* (2016) can lead to
753 an increase in $\sim 38\%$ uncertainty in the southeast U.S.. Figures 3c,3f show the percent difference
754 of isoprene emissions and ΩHCHO and shown in blue are the decreases in
755 DroughtStress_ModelE globally. Figures 3d-e is OMI ΩHCHO and Default_ModelE simulated
756 ΩHCHO . It is important to note the difference in scales as Default_ModelE is overestimating
757 ΩHCHO in regions such as the SE U.S. for every June-July from the 2005-2013 period with a
758 regional mean scale factor of ~ 0.56 and ~ 0.80 when the SE boundary is extended westward to
759 include portions of Texas. These overestimates in the SE U.S. are also reported by (Kaiser *et al.*
760 2018) where they saw a 50% overestimate by GEOS-Chem with MEGAN2.1 simulations
761 compared to SEAC⁴RS observations. While applying isoprene drought stress leads to reductions
762 in ΩHCHO as shown by Fig. 3f, this reduction is limited to drought-stricken regions and periods
763 and not designed to correct for the systematic biases of HCHO in ModelE. The overestimation of
764 ΩHCHO in Default_ModelE will require further study and could be due to several reasons such
765 as emissions error, incorrect spatial gradient of OH, or possibly a too strong sensitivity to
766 temperature (Wells *et al.* 2020, Zhu *et al.* 2017, Wang *et al.* 2022)). This version of ModelE also
767 lacks direct emissions of HCHO from anthropogenic sources, which may result in the lower
768 vertical deposition, and, due to the short lifetime, the higher than observed HCHO column over
769 portions of the U.S., and lower in other regions. It was found that nudged simulations show a
770 large overestimation of HCHO column compared to free-running simulations using model winds.
771 As this study only shows modest decreases in HCHO column we can only conclude that adding
772 isoprene drought stress into a model may reduce HCHO column depending on atmospheric
773 chemistry, but under certain NO_x and VOC limited environments may have another effect.

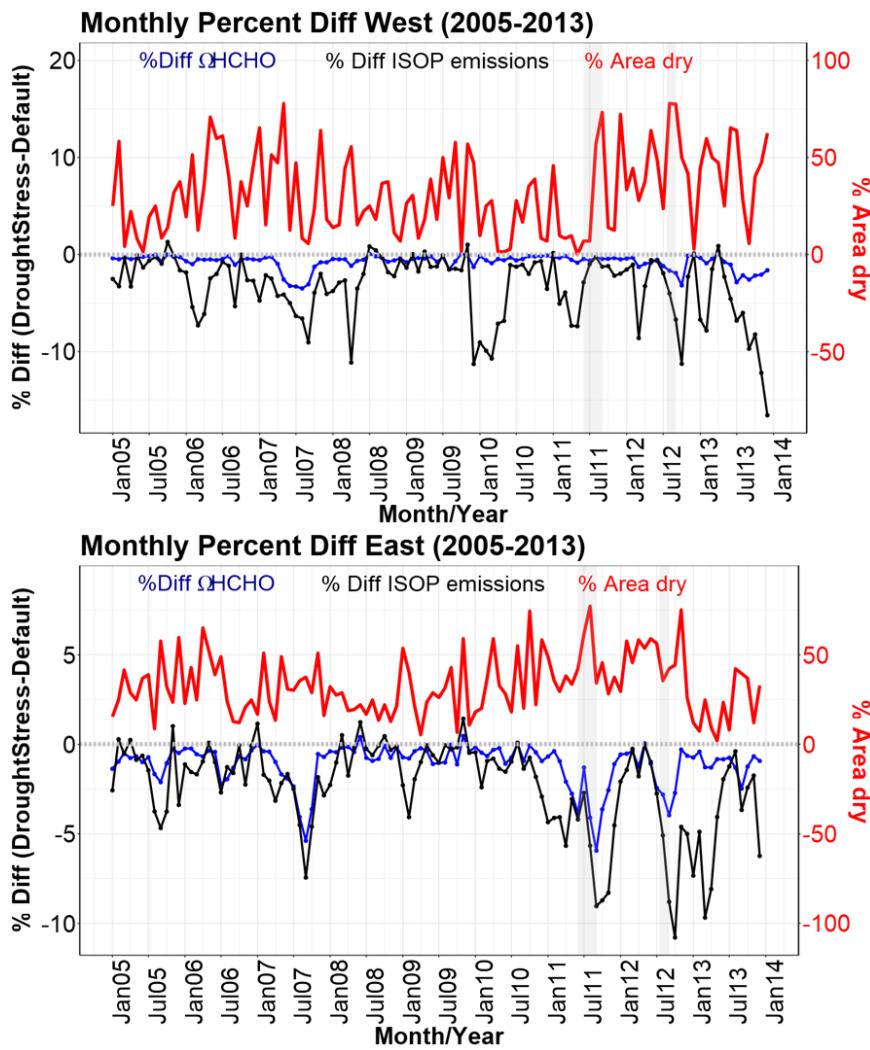
Deleted: , which
Deleted: cannot be applied t
Deleted: o
Formatted: Font: Italic
Deleted:

Deleted: oxidation, or incorrect application of the sink of
glyoxal
Deleted: Volkamer *et al.* 2007;
Formatted: Font: Italic
Formatted: Font: Italic


Formatted: Subscript
Formatted: Font:

782 **Figure 3. Global nine-year average of JJA from 2005-2013 of isoprene emissions (first row) for Default_ModelE (a),**
 783 **DroughtStress_ModelE (b) and percent difference between DroughtStress_ModelE and Default_ModelE (c), and**
 784 **ΩHCHO (second row) for OMI (d), Default_ModelE (e) and percent difference between DroughtStress_ModelE and**
 785 **Default_ModelE (f). Note the different color scales between (d) and (e).**

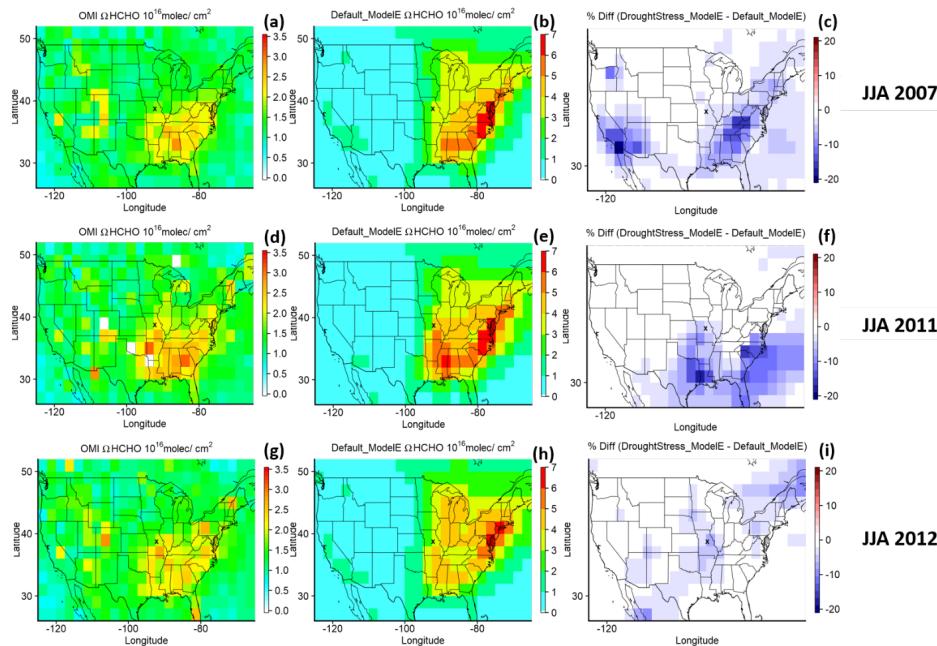
786
 787 Four global isoprene emission hotspots are selected to showcase the changes in isoprene
 788 emissions. The geographic regions are defined as East U.S. (Eastern U.S.: 65-105°W, 25-50°N),
 789 SA (Amazon: 40-80°W, 30°S-7°N), AF (Central Africa: 10-40°E, 15°S-10°N), and SE Asia
 790 (Southeast Asia: 100-150°E, 11°S-38°N) as shown in (SI Fig. S6). Figure 4 shows the
 791 relationship of dryness categorized by SPEI (Standardized Precipitation-Evapotranspiration
 792 Index) and relative difference in isoprene emissions between DroughtStress_ModelE and
 793 Default_ModelE from 2005-2013 for the growing season in the northern hemisphere and
 794 spring/summer in the southern hemisphere for the four global isoprene hotspots. SPEI is a
 795 multiscalar climatic index that represents duration of drought in a region and is based on a
 796 climatic water balance approach which considers the impact of temperature and
 797 evapotranspiration (Beguería *et al.* 2010; Vicente-Serrano *et al.* 2010; Beguería *et al.* 2014). To
 798 identify the extent of drought impacts and differentiate from normal variability in the
 799 hydrological cycle, one-month SPEI is used to identify drought periods of duration extending
 800 beyond a single month. Default_ModelE simulation variables were used to calculate modeled
 801 SPEI at the resolution of 2°×2.5°. Positive SPEI typically indicates wet conditions and dry
 802 conditions are indicated by negative values. Drought conditions are indicated by SPEI ≤ -1.3,
 803 normal conditions -0.5 ≤ SPEI ≤ 0.5, and wet conditions SPEI ≥ 1.3 following the (Wang *et al.*
 804 2017) approach. For the four regions the average percent difference in isoprene emissions for


805 March-October for northern hemisphere regions and September-February for southern
 806 hemisphere regions from 2005-2013 is $\sim -2.62\%$ for the East U.S., the Amazon (SA) $\sim -3.01\%$,
 807 Central Africa (AF) $\sim -2.64\%$, and Southeast Asia (SE Asia) $\sim -3.10\%$. The scatterplots for the
 808 four hotspots show decreasing isoprene emissions across all dryness conditions. The decreases in
 809 isoprene emissions for the four regions are not seen exclusively when SPEI indicates dry
 810 conditions, which indicates simulated water stress as shown by model does not align exactly with
 811 SPEI drought indicated conditions.
 812

813 Figure 4. The scatterplots of four global isoprene hotspot and their relative differences in isoprene emissions ($\text{mg/m}^2/\text{hr}$)
 814 isoprene) in relationship to simulated SPEI from 2005-2013 during the growing season is shown. The four regions of focus
 815 are Eastern U.S. (East), Amazon (SA), Central Africa (AF), and Southeast Asia (SE Asia). The regions of East and SE
 816 Asia are in the northern hemisphere and the growing seasons is from (March-October). The hotspots of SA and AF are in
 817 the southern hemisphere and the growing season is during spring/summer (September-February).
 818

819 Narrowing the focus from global to the U.S., to illustrate the long-term difference between
820 DroughtStress_ModelE and Default_ModelE, a timeseries from 2005-2013 is shown in Fig. 5 of
821 the continental U.S. for two regions West (105-125°W, 25-50°N) and East (65-105°W, 25-50°N)
822 indicating the percent difference in ΩHCHO and isoprene emissions corresponding to percent
823 area that is dry (SPEI < -0.5). The map showing the regions West and East is located in (SI Fig.
824 S7). The western U.S. (West) despite having a much smaller magnitude of isoprene emissions
825 does see reductions in isoprene which is mimicked on a lesser scale by reductions in ΩHCHO .
826 For the Eastern U.S. (East) there are visible decreases in the percent reduction of isoprene
827 emission and ΩHCHO during the 2007, 2011, and 2012 drought years. Focusing on the East
828 timeseries, the maximum percent difference between simulations DroughtStress_ModelE and
829 Default_ModelE for isoprene occurred from AUG-OCT 2007 approximately -4.5%, -7.4%, and -
830 4.6% with corresponding decreases in ΩHCHO of ~ -4.1%, -5.4%, and -3.6% respectively. For
831 2011 the maximum percent difference in isoprene emissions occurred SEP-NOV and was ~ -
832 9.0%, -8.7%, -8.3% and the percent difference in ΩHCHO was ~ -5.9%, -3.6%, and -2.6%. For
833 2012 the maximum percent difference occurred from AUG-OCT and the difference in isoprene
834 was ~ -5.1%, -8.8%, and -10.8% and the difference in ΩHCHO was ~ -2.8%, -4.0%, and -2.7%.
835

Deleted: For the Eastern U.S. (East) there are clear decreases in isoprene emissions and ΩHCHO during the droughts of 2007, 2011, and 2012.



839 Figure 5. The percent difference of ΩHCHO and isoprene emissions from 2005-2013 in relationship to percent area dry
 840 for two regions of the U.S. West (top figure) and East (bottom figure) is shown. Percent area dry is indicated by SPEI < -
 841 0.5. The first grey shaded rectangle indicates the time period of the 2011 drought at MOFLUX from June to August 2011.
 842 The second grey shaded rectangle indicates the 2012 severe drought at MOFLUX from July 17 through August. These
 843 time periods are added to the timeseries to highlight when they occurred.

844
 845 Figure 6 displays spatial maps of ΩHCHO during the summer (JJA) of three drought years
 846 2007, 2011, and 2012. The summers of 2007 and 2011 were drought periods in the U.S. with

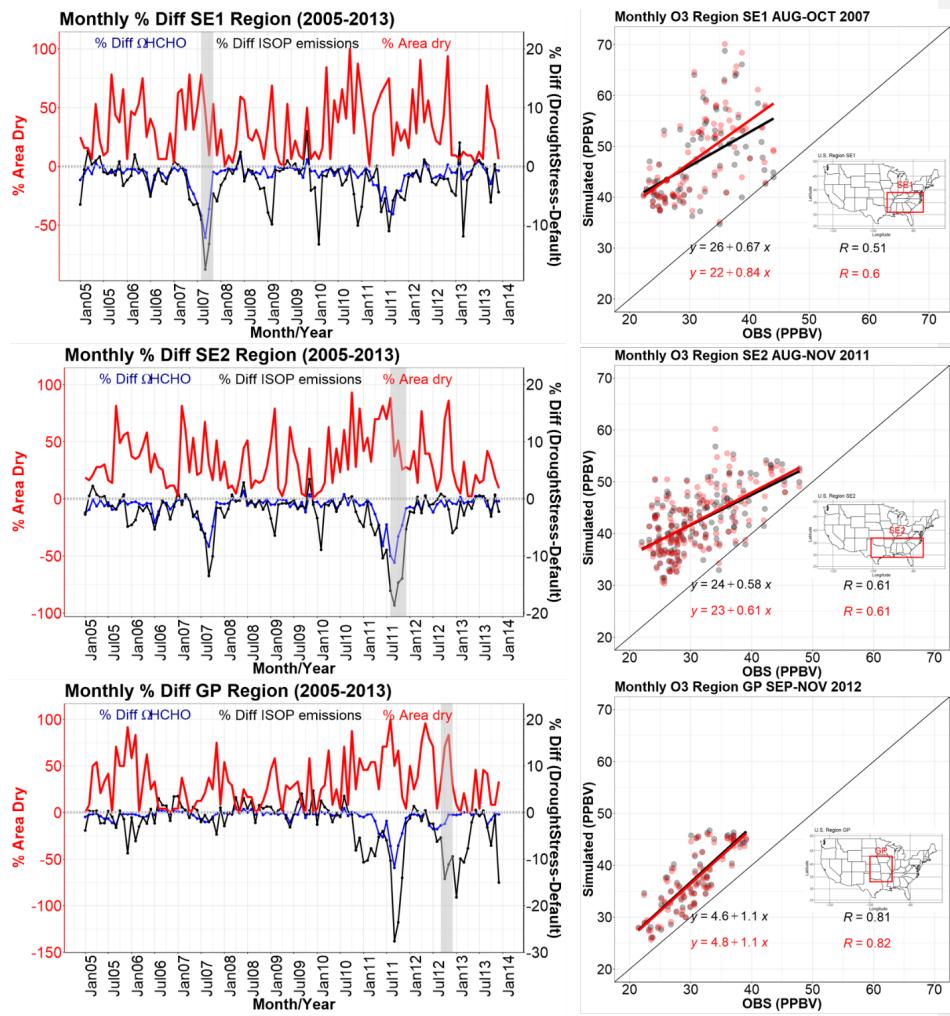
847 2007 being a less severe drought than 2011 in the SE U.S. The drought of 2012 was focused
 848 more on the Great Plains (GP) region. The spatial maps show the reduction in Ω HCHO in panels
 849 6c, 6f, and 6i due to the inclusion of isoprene drought stress. Based on the spatial differences in
 850 Ω HCHO, three regions of the greatest reduction in percent difference in Ω HCHO column are
 851 selected for the three drought years of 2007, 2011, and 2012, respectively. The three geographic
 852 regions are shown in Fig. 7 and defined as SE1 (Southeast Region1: 75-93°W, 31-39°N), SE2
 853 (Southeast Region2: 75-101°W, 29-37°N), and GP (Great Plains: 89-100°W, 33-43°N). During
 854 JJA for 2007 the SE1 region has an average percent difference in Ω HCHO of -6.46%, during JJA
 855 2011 the SE2 region has a percent difference of -7.58%, and the GP region during JJA 2012 has
 856 average percent difference of -3.29%.

857

858 **Figure 6.** The Ω HCHO column in units of molecules/cm² for OMI, Default_ModelE, and the percent difference between
 859 DroughtStress_ModelE and Default_ModelE across the U.S. during the summer of drought years 2007, 2011, and 2012 is
 860 shown. X indicates the location of the MOFLUX site on the spatial maps.

861
 862 Figure 7 shows the timeseries for the three regions of SE1 during 2007, SE2 for 2011, and
 863 GP for 2012 drought. In the SE1 region during the period of maximum isoprene difference from
 864 AUG-OCT 2007 shaded in grey on the timeseries, DroughtStress_ModelE reduced NMB of
 865 Ω HCHO by ~19.3%. The isoprene percent difference for this period was approximately -9.0%, -
 866 17.5%, and -13.2%. The Ω HCHO percent difference for the SE1 region from AUG-OCT 2007

867 was approximately -8.4%, -12.1%, and -7.3%. In the SE2 region the maximum isoprene
868 difference period for AUG-NOV 2011, DroughtStress_ModelE decreased Ω HCHO NMB by
869 ~15.3%. The monthly isoprene percent difference for SE2 during this period was approximately
870 -16.1%, -18.6%, -14.7%, and -13.9% while the Ω HCHO percent difference was ~ -10.0%, -
871 11.2%, -6.6%, and -4.6% respectively. In the GP region during SEP-NOV 2012, the isoprene
872 percent difference for GP during SEP-NOV 2012 was approximately -5.4%, -14.2%, and -11.1%
873 and the Ω HCHO percent difference was ~ -2.8%, -2.4%, and -0.4% respectively. The small
874 change in HCHO column despite estimated larger changes in isoprene emissions is probably due
875 to the suppression of oxidants such as hydroxyl radicals (OH) by isoprene under low-NO_x
876 conditions in the GP region (Wells *et al.* 2020).


877
878 It is well established that biogenic isoprene, the most abundant BVOC, is a highly reactive
879 species. In the presence of nitrogen oxides (NO_x), BVOCs contribute to the formation of
880 tropospheric O₃. Oxidation of BVOCs also produces secondary organic aerosols, a major
881 component of fine particulate matter (PM_{2.5}). PM_{2.5} and O₃ have been previously linked to
882 change during drought with adverse effects on air quality (Wang *et al.* 2017). During drought
883 there is elevated O₃ and PM_{2.5}, compared to non-drought periods (Wang *et al.* 2017; Zhao *et al.*
884 2019; Naimark *et al.*, 2021). Higher ozone compared to non-drought years is due to the reduction
885 of vegetative deposition due to reduced stomatal conductance, higher temperatures stimulating
886 precursors, and enhanced NO₂ (Naimark *et al.* 2021). By including isoprene drought stress into
887 the simulations, isoprene emissions are decreased which will change O₃, the direction of change
888 depends on NO_x-limited or VOC-limited regimes (Li *et al.* 2022). In summary, we better
889 predicted isoprene emission response to drought by including isoprene drought stress. It is thus
890 important to show the impact of drought-induced changes in isoprene emissions on O₃ and
891 PM_{2.5}. The scatterplots in Fig. 7 show the relationship between observed and simulated O₃ during
892 the drought period of maximum percent difference highlighted on the timeseries for the
893 corresponding region. PM_{2.5} comparison to observed is not shown here due to Default_ModelE
894 underestimating PM_{2.5} across all three regions SE1, SE2, and GP, and thus no improvements
895 were seen due to the inclusions of DroughtStress_ModelE. The observational O₃ data is a
896 combination of hourly data from the EPA-AQS (U.S. Environmental Protection Agency (EPA)
897 Air Quality System), CASTNET (Clean Air Status and Trends Network), and NAPS (National
898 Air Pollution Surveillance) networks. The observational O₃ datasets was gridded and interpolated
899 for comparison to a gridded model (Schnell *et al.* 2014). The hourly gridded observations were
900 then averaged onto a monthly scale for comparison with model results. Shown in Fig. 7 the SE1
901 region saw improvement in O₃ from AUG-OCT 2007, where the correlation coefficient (R)
902 increased from 0.51 in Default_ModelE to 0.60 in DroughtStress_ModelE and the slope of the
903 linear regression also improved significantly. The SE2 region from AUG-NOV 2011 saw a slight
904 improvement in the slope of the linear regression but no change in R. The GP region from SEP-
905 NOV 2012 saw a slight improvement in R but no change in the correlation slope between
906 Default_ModelE and DroughtStress_ModelE. During non-drought periods of 2008, 2010, and

907 2013 compared to their respective drought periods of 2007, 2011, and 2012 there was no large
 908 changes in O_3 or $\Omega HCHO$ statistics as expected since isoprene drought stress is only supposed to
 909 affect drought periods. During the drought periods of 2007, 2011, and 2012 the model predicts
 910 higher mean O_3 and $\Omega HCHO$ than the non-drought years of 2008, 2010, and 2013. The analysis
 911 of these drought years and periods of the greatest percent difference leads to the conclusion of
 912 isoprene drought stress improves $\Omega HCHO$ simulation and O_3 simulation during drought periods.
 913

Deleted: effect

Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto

Deleted: During the drought periods of 2007, 2011, and 2012 the model predicts higher mean O_3 and $\Omega HCHO$ than the non-drought years.

914 Figure 7. The timeseries from 2005-2013 of percent area dry on y-axis shown in red and percent difference in $\Omega HCHO$
 915 (blue) and isoprene emissions (black) between DroughtStress_ModelE and Default_ModelE for the 3 regions SE1, SE2,

920 and GP on the second y-axis is shown. Shaded in grey are the time periods of maximum percent difference of isoprene
921 emissions during the drought years. The scatterplots show the relationship between observed O₃ (ppbv) and simulated O₃
922 during the shaded grey time periods on the timeseries for Default_ModelE in black and DroughtStress_ModelE in red for
923 the SE1 during 2007, SE2 during 2011, and GP during 2012. Maps showing the geographic regions are inset into the
924 scatterplots. The regions spatial extent is based on region of maximum percent difference in Fig. 6c,f,i.
925

926 5. Discussion and conclusions

927 Drought is a hydroclimatic extreme that causes perturbations to the terrestrial biosphere. As a
928 stressor for vegetation, drought can induce changes to vegetative emissions known as BVOCs
929 (Biogenic Volatile Organic Compounds). Biogenic isoprene represents about half of total BVOC
930 emissions and is a precursor to ozone (O₃) and secondary organic aerosol (SOA), both of which
931 are climate forcing species. In order to simulate isoprene flux during drought and the feedbacks
932 associated with these complex BVOC-chemistry-climate interactions, we implemented the
933 MEGAN (Model of Emissions of Gases and Aerosols from Nature) isoprene drought stress
934 parameterization, y_d , into NASA GISS (Goddard Institute of Space Studies) ModelE, a leading
935 Earth System Model. Four online transient simulations were performed from 2003-2013, a
936 Default_ModelE without y_d , DroughtStress_MEGAN3_Jiang using the parameterization
937 developed by (Jiang *et al.* 2018), and a model-tuned parameterization developed for ModelE
938 based on the MOFLUX Ameriflux site observations (MOFLUX_DroughtStress). The fourth
939 simulation implemented isoprene drought stress using a grid-by-grid approach to capture
940 regional changes in isoprene during drought known as DroughtStress_ModelE. The model-tuned
941 parameterization (MOFLUX_DroughtStress and DroughtStress_ModelE) was developed using
942 an offline model of emissions to create a model specific empirical variable and water stress
943 threshold, since key variables $V_{c,max}$ (photosynthetic parameter) and water stress (β) are
944 parameterized differently across models. Observational measurements of isoprene flux during
945 the severe drought of 2012 at the MOFLUX site were used for validation of parameterization. It
946 was found that DroughtStress_ModelE corrects the overestimation of emissions during the phase
947 of severe drought at MOFLUX. Previously, this reduction during drought was not included in
948 BVOC emission models due to the lack of a drought stress term. Globally the decadal average
949 from 2003-2013 in Default_ModelE was ~533 Tg of isoprene and ~518 Tg of isoprene in
950 DroughtStress_ModelE. DroughtStress_ModelE was validated using observational satellite
951 ΩHCHO column from the Ozone Monitoring Instrument (OMI) and using O₃ observations
952 across regions of the U.S. to examine the effect of drought on atmospheric composition. It was
953 found that the inclusion of isoprene drought stress reduced the overestimation of ΩHCHO in
954 Default_ModelE during the 2007 and 2011 southeastern U.S. droughts and led to improvements
955 in simulated O₃ during drought periods. The inclusions of a grid specific percentile isoprene
956 drought stress is model specific and the reduction of isoprene seen in models will depend on each
957 models mean bias and parameterizations of $V_{c,max}$ and water stress. ModelE's modest signal can
958 be explained by underestimating isoprene emissions during the early stages of drought and by
959 not having a high mean bias during severe drought.

960
961 Our analysis of isoprene drought stress leads to the recommendation that each model should
962 arrive at a tuning of their water stress parameters based on the magnitude of water stress
963 occurring during simulated drought and a unique alpha should be derived. Each land surface
964 model (LSM) has a unique hydrology scheme (with different soil layering approaches and soil
965 physics treatments), and any variables that depend on response to soil moisture -- whether
966 chemical, physical, or biological -- must be tuned due to the fact that soil moisture in LSMs is
967 being averaged over a grid cell whereas in nature soil moisture is heterogeneous at spatial scales
968 down to the plot level. The resulting parameterization, since it relies on model specific variables,
969 would be well suited for future or historical simulations. The current approach also requires
970 vegetation-coupled land surface models that have photosynthesis models that use $V_{c,max}$ and β ,
971 and many current general circulation models (GCM) with less process-based vegetation schemes
972 do not have these variables readily available.
973

974 Besides tuning responses to drought, the light response of isoprene emissions may not be
975 well captured in a simple factor like the PCEEA. Vegetation models differ in their approach to
976 leaf-to-canopy scaling. Some ESMs vegetation models have more sophisticated canopy radiative
977 transfer submodels that capture layering and sunlit/shaded leaf area. Future isoprene modeling
978 investigations could make use of the ability of these canopy models to calculate isoprene
979 emissions with leaf-level responses to the heterogeneous light in canopies. Unger *et al.* (2013)
980 implemented such a leaf-to-canopy scaling of isoprene emissions previously in the Ent TBM
981 through a leaf-level isoprene model as a function of leaf-level gross primary production (GPP).
982 Since the Ent TBM scales stomatal conductance with drought stress, and hence also GPP, this
983 intrinsically results in isoprene emissions responsiveness to drought stress. The main challenge
984 will be to find consensus about the fundamental process-based physics of isoprene emissions
985 at the leaf level. The method of Unger *et al.* (2013) was not used for this paper in order to
986 preserve the MEGAN3 features and test this particular isoprene drought stress parameterization.
987

988 A limitation of our tuning method for applying isoprene drought stress is that there does not
989 appear to be a strong relationship between SPEI and water stress, which makes it challenging to
990 determine when the algorithm should be applied during severe drought. This is why the current
991 application is limited and based on the single MOFLUX site where water stress values and the
992 corresponding decreases of isoprene during severe drought were observed. Possible future work
993 of the satellite Cross-track Infrared Sound (CrIS) isoprene measurements (Wells *et al.* 2020)
994 may be used to develop a drought algorithm that is not based on a single site and provide a more
995 dynamic drought stress algorithm for capturing the decrease of emissions during severe drought.
996 The reduction of isoprene in the model also depends on how dry (low values of water stress) the
997 model is. If the model is too dry or if isoprene emissions are already overestimated there will be
998 larger reductions in isoprene than reported here in ModelE, with larger feedbacks on O₃, SOA,
999 and ΩHCHO column. Models that are not severely overestimating during severe drought will

1000 show modest reductions like ModelE. It is important to note that the application of isoprene
1001 drought stress in this paper is designed to reduce emissions during severe drought. Future work
1002 could focus more on the parameterization of isoprene emissions during mild or early stages of
1003 drought when isoprene emissions might be increasing and as we see in ModelE the model
1004 underestimates during this period. Overall, the strength of the reduction signal of isoprene
1005 depends on the model, and for models overestimating isoprene the application of isoprene
1006 drought stress into the model could improve model simulations significantly. Recent published
1007 work has also brought up the importance of drought duration as an important factor to consider
1008 in further isoprene drought stress parameterization (Li *et al.* 2022). Future work on developing
1009 drought parameterizations should focus on capturing the increasing signal of isoprene at the start
1010 of drought, the reduction signal during severe drought, while also considering a time component
1011 because eventually plants can reach a stage of emission cessation.

1012
1013 In summary, this paper demonstrates why isoprene response to drought stress is model
1014 specific and should be tuned on a model-by-model basis, and details a new method for
1015 implementing isoprene drought stress to reduce isoprene emissions during severe drought in
1016 ModelE. This new method uses a grid-by-grid percentile threshold based on simulated water
1017 stress and can be used by many models to show regionals changes in isoprene emissions during
1018 severe drought and their associated feedbacks on ΩHCHO and O_3 . With more severe droughts
1019 predicted in the United States for the 21st century (Dai 2013), this is a first look into model
1020 performance for analyzing how BVOC emissions change during drought conditions using GISS
1021 ModelE for regions in the U.S.

1022
1023 **6. Acknowledgements**
1024 E.K., Y.W. and A.G. would like to acknowledge the support and funding from the NASA
1025 ACMAP Program (80NSSC19K0986). E.K. and Y.W. would also like to acknowledge the
1026 support and funding of NASA Fellowship Grant (80NSSC18K1704) and thank support of NASA
1027 technical advisors at Goddard Institute of Space Studies. Resources supporting this work were
1028 provided by the NASA High-End Computing (HEC) Program through the NASA Center for
1029 Climate Simulation (NCCS) at the Goddard Space Flight Center. GISS authors acknowledge
1030 funding from the NASA Modeling and Analysis program.

1031
1032 **7. Data availability**
1033 ModelE is publicly available at <https://simplex.giss.nasa.gov/snapshots/> and O_3 and $\text{PM}_{2.5}$
1034 observational data available for download via
1035 https://aqs.epa.gov/aqsweb/documents/data_mart_welcome.html. Observational isoprene
1036 measurements at MOFLUX are from Potosnak *et al.* 2014 and Seco *et al.* 2015 and are available
1037 upon request from co-author Alex Guenther. MOFLUX is part of the Ameriflux network and
1038 other observational data is available for download at <https://ameriflux.lbl.gov/sites/siteinfo/US-MOz#BADM>. Satellite ΩHCHO is available publicly at
1039 https://cmr.earthdata.nasa.gov/search/concepts/C1626121562-GES_DISC.html.

1040
1041 **8. Author contribution**
1042

1043 EK and YW conceived the research idea. EK wrote the initial draft, conducted the simulations,
1044 and performed the analysis. EK and GF conducted model development. All authors contributed
1045 to the interpretation of the results and the preparation of the paper.
1046

1047 9. Competing interests

1048 The authors declare that they have no conflict of interest.
1049

1050 References

1051 Arneth, A., Monson, R. K., Schurgers, G., Niinemets, Ü. and Palmer, P. I.: Why are estimates of
1052 global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)?,
1053 *Atmospheric Chemistry and Physics*, 8(16), 4605–4620, doi:10.5194/acp-8-4605-2008, 2008.
1054

1055 Ball, T. and Berry, J.: A Simple Empirical Model of Stomatal Control. *Plant Physiology* 77(n.
1056 Supplement 4): 91, 1985.

1057 Bauer, S. E., Mishchenko, M. I., Lacis, A. A., Zhang, S., Perlitz, J. and Metzger, S. M.: Do
1058 sulfate and nitrate coatings on mineral dust have important effects on radiative properties and
1059 climate modeling?, *Journal of Geophysical Research*, 112(D6), doi:10.1029/2005jd006977,
1060 2007.

1061 Bauer, S. E., Tsigaridis, K., Faluvegi, G., Kelley, M., Lo, K. K., Miller, R. L., Nazarenko, L.,
1062 Schmidt, G. A. and Wu, J.: Historical (1850–2014) Aerosol Evolution and Role on Climate
1063 Forcing Using the GISS ModelE2.1 Contribution to CMIP6, *Journal of Advances in Modeling
1064 Earth Systems*, 12(8), doi:10.1029/2019ms001978, 2020.

1065 Bauer, S. E., Wright, D. L., Koch, D., Lewis, E. R., Mcgraw, R., Chang, L.-S., Schwartz, S. E.
1066 and Ruedy, R.: MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol
1067 microphysical module for global atmospheric models, *Atmospheric Chemistry and Physics*,
1068 8(20), 6003–6035, doi:10.5194/acp-8-6003-2008, 2008.

1069 Beguería, S., Vicente-Serrano, S. M. and Angulo-Martínez, M.: A Multiscalar Global Drought
1070 Dataset: The SPEIbase: A New Gridded Product for the Analysis of Drought Variability and
1071 Impacts, *Bulletin of the American Meteorological Society*, 91(10), 1351–1356,
1072 doi:10.1175/2010bams2988.1, 2010.

1073 Beguería, S., Vicente-Serrano, S. M., Reig, F. and Latorre, B.: Standardized precipitation
1074 evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools,
1075 datasets and drought monitoring, *International Journal of Climatology*, 34(10), 3001–3023,
1076 doi:10.1002/joc.3887, 2014.

1077 Benjamin, M. T., Sudol, M., Bloch, L. and Winer, A. M.: Low-emitting urban forests: A
1078 taxonomic methodology for assigning isoprene and monoterpene emission rates, *Atmospheric
1079 Environment*, 30(9), 1437–1452, doi:10.1016/1352-2310(95)00439-4, 1996.
1080

1081

1082

1083

1084

1085

1086

1087 Carlton, A. G., Wiedinmyer, C. and Kroll, J. H.: A review of Secondary Organic Aerosol (SOA)
 1088 formation from isoprene, *Atmospheric Chemistry and Physics*, 9(14), 4987–5005,
 1089 doi:10.5194/acp-9-4987-2009, 2009.

1090

1091 Chance, K.: OMI/Aura Formaldehyde (HCHO) Total Column Daily L3 Weighted Mean Global
 1092 0.1deg Lat/Lon Grid V003, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information
 1093 Services Center (GES DISC), Accessed: [2021-04-07], 10.5067/Aura/OMI/DATA3010, 2019.

1094

1095 Clapp, R. B. and Hornberger, G. M.: Empirical equations for some soil hydraulic properties,
 1096 *Water Resources Research*, 14(4), 601–604, doi:10.1029/wr014i004p00601, 1978.

1097

1098 Dai, A.: Increasing drought under global warming in observations and models, *Nature Climate
 1099 Change*, 3(1), 52–58, doi:10.1038/nclimate1633, 2013.

1100

1101 Emmerson, K. M., Palmer, P. I., Thatcher, M., Haverd, V. and Guenther, A. B.: Sensitivity of
 1102 isoprene emissions to drought over south-eastern Australia: Integrating models and satellite
 1103 observations of soil moisture, *Atmospheric Environment*, 209, 112–124,
 1104 doi:10.1016/j.atmosenv.2019.04.038, 2019.

1105

1106 Farquhar, G. D. and von Caemmerer, S.: Modelling of Photosynthetic Response to
 1107 Environmental Conditions. *Physiological Plant Ecology II: Water Relations and Carbon
 1108 Assimilation*. O. L. Lange, P. S. Nobel, C. B. Osmond and H. Ziegler. Berlin, Heidelberg,
 1109 Springer Berlin Heidelberg: 549–587, 1982.

1110 Geron, C., Guenther, A., Sharkey, T. and Arnts, R. R.: Temporal variability in basal isoprene
 1111 emission factor, *Tree Physiology*, 20(12), 799–805, doi:10.1093/treephys/20.12.799, 2000.

1112

1113 Gu, L., Meyers, T., Pallardy, S.G., Hanson, P.J., Yang, B., Heuer, M., Hosman, K.P., Riggs, J.S.,
 1114 Sluss, D., Wullschleger, S.D., 2006. Direct and indirect effects of atmospheric conditions and
 1115 soil moisture on surface energy partitioning revealed by a prolonged drought at a temperate
 1116 forest site. *Journal of Geophysical Research: Atmospheres* 111.. doi:10.1029/2006jd007161.

1117

1118 Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I. and Geron, C.: Estimates of
 1119 global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols
 1120 from Nature), *Atmospheric Chemistry and Physics*, 6(11), 3181–3210, doi:10.5194/acp-6-3181-
 1121 2006, 2006.

1122

1123 Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K. and
 1124 Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1
 1125 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions,
 1126 *Geoscientific Model Development*, 5(6), 1471–1492, doi:10.5194/gmd-5-1471-2012, 2012.

1127

1128 Heald, C. L., Wilkinson, M. J., Monson, R. K., Alo, C. A., Wang, G. and Guenther, A.:
 1129 Response of isoprene emission to ambient CO₂ changes and implications for global budgets,
 1130 *Global Change Biology*, 15(5), 1127–1140, doi:10.1111/j.1365-2486.2008.01802.x, 2009.

1131

Formatted: Font color: Black

Formatted: Font: Times New Roman, 12 pt, Font color: Auto

Formatted: Normal (Web), Tab stops: Not at 3.25" + 4.28"

Formatted: Font: Times New Roman, 12 pt, Font color: Auto

Deleted: ¶

Formatted: Pattern: Clear

1133 Henrot, A.-J., Stanelle, T., Schröder, S., Siegenthaler, C., Taraborrelli, D. and Schultz, M. G.:
1134 Implementation of the MEGAN (v2.1) biogenic emission model in the ECHAM6-HAMMOZ
1135 chemistry climate model, *Geoscientific Model Development*, 10(2), 903–926, doi:10.5194/gmd-
1136 10-903-2017, 2017.

1137

1138 Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert,
1139 J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-
1140 I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R. and Zhang, Q.: Historical (1750–
1141 2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions
1142 Data System (CEDS), *Geoscientific Model Development*, 11(1), 369–408, doi:10.5194/gmd-11-
1143 369-2018, 2018.

1144

1145 Huang, L., Mcgaughey, G., Mcdonald-Buller, E., Kimura, Y. and Allen, D. T.: Quantifying
1146 regional, seasonal and interannual contributions of environmental factors on isoprene and
1147 monoterpene emissions estimates over eastern Texas, *Atmospheric Environment*, 106, 120–128,
1148 doi:10.1016/j.atmosenv.2015.01.072, 2015.

1149

1150 Ito, G., Romanou, A., Kiang, N. Y., Faluvegi, G., Aleinov, I., Ruedy, R., Russell, G., Lerner, P.,
1151 Kelley, M. and Lo, K.: Global Carbon Cycle and Climate Feedbacks in the NASA GISS
1152 ModelE2.1, *Journal of Advances in Modeling Earth Systems*, 12(10),
1153 doi:10.1029/2019ms002030, 2020.

1154

1155 Jiang, X., Guenther, A., Potosnak, M., Geron, C., Seco, R., Karl, T., Kim, S., Gu, L. and
1156 Pallardy, S.: Isoprene emission response to drought and the impact on global atmospheric
1157 chemistry, *Atmospheric Environment*, 183, 69–83, doi:10.1016/j.atmosenv.2018.01.026, 2018.

1158

1159 Kaiser, J., Jacob, D. J., Zhu, L., Travis, K. R., Fisher, J. A., González Abad, G., Zhang, L.,
1160 Zhang, X., Fried, A., Crounse, J. D., St. Clair, J. M. and Wisthaler, A.: High-resolution inversion
1161 of OMI formaldehyde columns to quantify isoprene emission on ecosystem-relevant scales:
1162 application to the southeast US, *Atmospheric Chemistry and Physics*, 18(8), 5483–5497,
1163 doi:10.5194/acp-18-5483-2018, 2018.

1164

1165 Kelley, M., Schmidt, G. A., Nazarenko, L. S., Bauer, S. E., Ruedy, R., Russell, G. L., Ackerman,
1166 A. S., Aleinov, I., Bauer, M., Bleck, R., Canuto, V., Cesana, G., Cheng, Y., Clune, T. L., Cook,
1167 B. I., Cruz, C. A., Del Genio, A. D., Elsaesser, G. S., Faluvegi, G., Kiang, N. Y., Kim, D., Lacis,
1168 A. A., Leboissetier, A., Legrande, A. N., Lo, K. K., Marshall, J., Matthews, E. E., Mcdermid, S.,
1169 Mezuman, K., Miller, R. L., Murray, L. T., Oinas, V., Orbe, C., García-Pando, C. P., Perlitz, J.
1170 P., Puma, M. J., Rind, D., Romanou, A., Shindell, D. T., Sun, S., Tausnev, N., Tsigaridis, K.,
1171 Tselioudis, G., Weng, E., Wu, J. and Yao, M.: GISS-E2.1: Configurations and Climatology,
1172 *Journal of Advances in Modeling Earth Systems*, 12(8), doi:10.1029/2019ms002025, 2020.

1173

1174 Kim, Y., Moorcroft, P. R., Aleinov, I., Puma, M. J. and Kiang, N. Y.: Variability of phenology
1175 and fluxes of water and carbon with observed and simulated soil moisture in the Ent Terrestrial
1176 Biosphere Model (Ent TBM version 1.0.1.0.0), *Geoscientific Model Development*, 8(12), 3837–
1177 3865, doi:10.5194/gmd-8-3837-2015, 2015.

1178

1179 Koch, D., Schmidt, G. A. and Field, C. V.: Sulfur, sea salt, and radionuclide aerosols in GISS
1180 ModelE, *Journal of Geophysical Research*, 111(D6), doi:10.1029/2004jd005550, 2006.

1181

1182 Koster, R. D., Guo, Z., Yang, R., Dirmeyer, P. A., Mitchell, K. and Puma, M. J.: On the Nature
1183 of Soil Moisture in Land Surface Models, *Journal of Climate*, 22(16), 4322–4335,
1184 doi:10.1175/2009jcli2832.1, 2009.

1185

1186 Li, W., Wang, Y., Flynn, J., Griffin, R. J., Guo, F. and Schnell, J. L.: Spatial Variation of Surface
1187 O₃ Responses to Drought Over the Contiguous United States During Summertime: Role of
1188 Precursor Emissions and Ozone Chemistry, *Journal of Geophysical Research: Atmospheres*,
1189 127(1), doi:10.1029/2021jd035607, 2022.

1190

1191 Loreto, F. and Sharkey, T. D.: A gas-exchange study of photosynthesis and isoprene emission in
1192 *Quercus rubra* L., *Planta*, 182(4), 523–531, doi:10.1007/bf02341027, 1990.

1193

1194 Miller, R. L., Cakmur, R. V., Perlitz, J., Geogdzhayev, I. V., Ginoux, P., Koch, D., Kohfeld, K.
1195 E., Prigent, C., Ruedy, R., Schmidt, G. A. and Tegen, I.: Mineral dust aerosols in the NASA
1196 Goddard Institute for Space Sciences ModelE atmospheric general circulation model, *Journal of
1197 Geophysical Research*, 111(D6), doi:10.1029/2005jd005796, 2006.

1198

1199 Miller, R. L., Schmidt, G. A., Nazarenko, L. S., Bauer, S. E., Kelley, M., Ruedy, R., Russell, G.
1200 L., Ackerman, A. S., Aleinov, I., Bauer, M., Bleck, R., Canuto, V., Cesana, G., Cheng, Y.,
1201 Clune, T. L., Cook, B. I., Cruz, C. A., Del Genio, A. D., Elsaesser, G. S., Faluvegi, G., Kiang, N.
1202 Y., Kim, D., Lacis, A. A., Leboissetier, A., Legrande, A. N., Lo, K. K., Marshall, J., Matthews,
1203 E. E., Mcdermid, S., Mezuman, K., Murray, L. T., Oinas, V., Orbe, C., Pérez García-Pando, C.,
1204 Perlitz, J. P., Puma, M. J., Rind, D., Romanou, A., Shindell, D. T., Sun, S., Tausnev, N.,
1205 Tsigaridis, K., Tselioudis, G., Weng, E., Wu, J. and Yao, M.: CMIP6 Historical Simulations
1206 (1850–2014) With GISS-E2.1, *Journal of Advances in Modeling Earth Systems*, 13(1),
1207 doi:10.1029/2019ms002034, 2021.

1208

1209 [Mishra, A. K. and V. Sinha \(2020\). "Emission drivers and variability of ambient isoprene,
1210 formaldehyde and acetaldehyde in north-west India during monsoon season." *Environmental
1211 Pollution* 267: 115538.](#)

1212

1213 Müller, J.-F., Stavrakou, T., Wallens, S., De Smedt, I., Van Roozendael, M., Potosnak, M. J.,
1214 Rinne, J., Munger, B., Goldstein, A. and Guenther, A. B.: Global isoprene emissions estimated
1215 using MEGAN, ECMWF analyses and a detailed canopy environment model, *Atmospheric
1216 Chemistry and Physics*, 8(5), 1329–1341, doi:10.5194/acp-8-1329-2008, 2008.

1217

1218 Monson, R. K., Weraduwage, S. M., Rosenkranz, M., Schnitzler, J.-P. and Sharkey, T. D.: Leaf
1219 isoprene emission as a trait that mediates the growth-defense tradeoff in the face of climate
1220 stress, *Oecologia*, 197(4), 885–902, doi:10.1007/s00442-020-04813-7, 2021.

1221

1222 Ochsner, T. E., Cosh, M. H., Cuenca, R. H., Dorigo, W. A., Draper, C. S., Hagimoto, Y., Kerr,
1223 Y. H., Larson, K. M., Njoku, E. G., Small, E. E. and Zreda, M.: State of the Art in Large-Scale

Deleted: ¶

1225 Soil Moisture Monitoring, Soil Science Society of America Journal, 77(6), 1888–1919,
1226 doi:10.2136/sssaj2013.03.0093, 2013.

1227

1228 Opacka, B., Müller, J.-F., Stavrakou, T., Bauwens, M., Sindelarova, K., Markova, J. and
1229 Guenther, A. B.: Global and regional impacts of land cover changes on isoprene emissions
1230 derived from spaceborne data and the MEGAN model, Atmospheric Chemistry and Physics,
1231 21(11), 8413–8436, doi:10.5194/acp-21-8413-2021, 2021.

1232

1233 Pегораро, Е., Рей, А., Гринберг, І., Гарлі, Р., Грейс, І., Малхі, Й. and Генщер, А.: Effect of
1234 drought on isoprene emission rates from leaves of *Quercus virginiana* Mill., Atmospheric
1235 Environment, 38(36), 6149–6156, doi:10.1016/j.atmosenv.2004.07.028, 2004.

1236

1237 Potosnak, M. J., Lestourgeon, L., Pallardy, S. G., Hosman, K. P., Gu, L., Karl, T., Geron, C. and
1238 Guenther, A. B.: Observed and modeled ecosystem isoprene fluxes from an oak-dominated
1239 temperate forest and the influence of drought stress, Atmospheric Environment, 84, 314–322,
1240 doi:10.1016/j.atmosenv.2013.11.055, 2014.

1241

1242 Rasmussen, L. M., Gullström, M., Gunnarsson, P. C. B., George, R. and Björk, M.: Estimation
1243 of a whole plant Q10 to assess seagrass productivity during temperature shifts, Scientific
1244 Reports, 9(1), doi:10.1038/s41598-019-49184-z, 2019.

1245

1246 Rosenstiel, T. N., Potosnak, M. J., Griffin, K. L., Fall, R. and Monson, R. K.: Increased CO₂
1247 uncouples growth from isoprene emission in an agriforest ecosystem, Nature, 421(6920), 256–
1248 259, doi:10.1038/nature01312, 2003.

1249

1250 Schnell, J. L., Holmes, C. D., Jangam, A. and Prather, M. J.: Skill in forecasting extreme ozone
1251 pollution episodes with a global atmospheric chemistry model, Atmospheric Chemistry and
1252 Physics, 14(15), 7721–7739, doi:10.5194/acp-14-7721-2014, 2014.

1253

1254 Seco, R., Karl, T., Guenther, A., Hosman, K. P., Pallardy, S. G., Gu, L., Geron, C., Harley, P.
1255 and Kim, S.: Ecosystem-scale volatile organic compound fluxes during an extreme drought in a
1256 broadleaf temperate forest of the Missouri Ozarks (central USA), Global Change Biology,
1257 21(10), 3657–3674, doi:10.1111/gcb.12980, 2015.

1258

1259 [Seleiman, M. F., Al-Suhaimi, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T.,
1260 Abdul-Wajid, H. H. and Battaglia, M. L.: Drought Stress Impacts on Plants and Different
1261 Approaches to Alleviate Its Adverse Effects, Plants](#), 10(2), 259, 2021. ← Formatted: Tab stops: Not at 3.25" + 4.28"

1262

1263 Sharkey, T. D. and Singsaas, E. L.: Why plants emit isoprene, Nature, 374(6525), 769–769,
1264 doi:10.1038/374769a0, 1995.

1265

1266 Sharkey, T. D., Wiberley, A. E. and Donohue, A. R.: Isoprene Emission from Plants: Why and
1267 How, Annals of Botany, 101(1), 5–18, doi:10.1093/aob/mcm240, 2007.

1268

1269 Shindell, D. T., Pechony, O., Voulgarakis, A., Faluvegi, G., Nazarenko, L., Lamarque, J.-F.,
1270 Bowman, K., Milly, G., Kovari, B., Ruedy, R. and Schmidt, G. A.: Interactive ozone and

1271 methane chemistry in GISS-E2 historical and future climate simulations, *Atmospheric Chemistry*
1272 and *Physics*, 13(5), 2653–2689, doi:10.5194/acp-13-2653-2013, 2013.

1273 Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., Müller, J.-F.,
1274 Kuhn, U., Stefani, P. and Knorr, W.: Global data set of biogenic VOC emissions calculated by
1275 the MEGAN model over the last 30 years, *Atmospheric Chemistry and Physics*, 14(17), 9317–
1276 9341, doi:10.5194/acp-14-9317-2014, 2014.

1277
1278 Singsaas, E. L. and Sharkey, T. D.: The effects of high temperature on isoprene synthesis in oak
1279 leaves, *Plant, Cell & Environment*, 23(7), 751–757, doi:10.1046/j.1365-3040.2000.00582.x,
1280 2000.

1281
1282 Tawfik, A. B., Stöckli, R., Goldstein, A., Pressley, S. and Steiner, A. L.: Quantifying the
1283 contribution of environmental factors to isoprene flux interannual variability, *Atmospheric*
1284 *Environment*, 54, 216–224, doi:10.1016/j.atmosenv.2012.02.018, 2012.

1285
1286 Tsigaridis, K., Koch, D. and Menon, S.: Uncertainties and importance of sea spray composition
1287 on aerosol direct and indirect effects, *Journal of Geophysical Research: Atmospheres*, 118(1),
1288 220–235, doi:10.1029/2012jd018165, 2013.

1289
1290 Unger, N., Harper, K., Zheng, Y., Kiang, N. Y., Aleinov, I., Arneth, A., Schurgers, G.,
1291 Amelynck, C., Goldstein, A., Guenther, A., Heinesch, B., Hewitt, C. N., Karl, T., Laffineur, Q.,
1292 Langford, B., A. McKinney, K., Misztal, P., Potosnak, M., Rinne, J., Pressley, S., Schoon, N. and
1293 Serça, D.: Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-
1294 chemistry-climate model, *Atmospheric Chemistry and Physics*, 13(20), 10243–10269,
1295 doi:10.5194/acp-13-10243-2013, 2013.

1296
1297 Van Marle, M. J. E., Kloster, S., Magi, B. I., Marlon, J. R., Daniau, A.-L., Field, R. D., Arneth,
1298 A., Forrest, M., Hantson, S., Kehrwald, N. M., Knorr, W., Lasslop, G., Li, F., Mangeon, S., Yue,
1299 C., Kaiser, J. W. and Van Der Werf, G. R.: Historic global biomass burning emissions for
1300 CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–
1301 2015), *Geoscientific Model Development*, 10(9), 3329–3357, doi:10.5194/gmd-10-3329-2017,
1302 2017.

1303
1304 Vermote, Eric; NOAA CDR Program. (2019): *NOAA Climate Data Record (CDR) of AVHRR* ←
1305 *Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)*,
1306 *Version 5. LAI 2012*. NOAA National Centers for Environmental Information.
1307
1308 <https://doi.org/10.7289/V5TT4P69>. Accessed July 25, 2022.

1309
1310 Vicente-Serrano, S. M., Beguería, S. and López-Moreno, J. I.: A Multiscalar Drought Index
1311 Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index, *Journal*
1312 *of Climate*, 23(7), 1696–1718, doi:10.1175/2009jcli2909.1, 2010.

1313
1314 Wang, P., Liu, Y., Dai, J., Fu, X., Wang, X., Guenther, A. and Wang, T.: Isoprene Emissions
1315 Response to Drought and the Impacts on Ozone and SOA in China, *Journal of Geophysical*
1316 *Research: Atmospheres*, 126(10), doi:10.1029/2020jd033263, 2021.

Deleted: ¶

Skeie, R. B., Myhre, G., Hodnebrog, Ø., Cameron-Smith, P. J., Deushi, M., Hegglin, M. I., Horowitz, L. W., Kramer, R. J., Michou, M., Mills, M. J., Olivé, D. J. L., Connor, F. M. O., Paynter, D., Samset, B. H., Sellar, A., Shindell, D., Takemura, T., Tilmes, S. and Wu, T.: Historical total ozone radiative forcing derived from CMIP6 simulations, *npj Climate and Atmospheric Science*, 3(1), doi:10.1038/s41612-020-00131-0, 2020. ¶

Deleted: ¶

Sporre, M. K., Blichner, S. M., Karset, I. H. H., Makkonen, R. and Berntsen, T. K.: BVOC–aerosol–climate feedbacks investigated using NorESM, *Atmospheric Chemistry and Physics*, 19(7), 4763–4782, doi:10.5194/acp-19-4763-2019, 2019. ¶

Deleted: ¶

Twomey, S.: Pollution and the planetary albedo, *Atmospheric Environment* (1967), 8(12), 1251–1256, doi:10.1016/0004-6981(74)90004-3, 1974. ¶

Formatted: Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: Not at 3.25" + 4.28"

Deleted: ¶

Volkamer, R., San Martini, F., Molina, L. T., Salcedo, D., Jimenez, J. L. and Molina, M. J.: A missing sink for gas-phase glyoxal in Mexico City: Formation of secondary organic aerosol, *Geophysical Research Letters*, 34(19), doi:10.1029/2007gl030752, 2007. ¶

1342
1343 Wang, Y., Xie, Y., Dong, W., Ming, Y., Wang, J. and Shen, L.: Adverse effects of increasing
1344 drought on air quality via natural processes, *Atmospheric Chemistry and Physics*, 17(20),
1345 12827–12843, doi:10.5194/acp-17-12827-2017, 2017.

1346
1347 [Wang, P., Holloway, T., Bindl, M., Harkey, M. and De Smedt, I.: Ambient Formaldehyde over](#)
1348 [the United States from Ground-Based \(AQS\) and Satellite \(OMI\) Observations, Remote Sensing,](#)
1349 [14\(9\), 2191, doi:10.3390/rs14092191, 2022.](#)

1350
1351 Wells, K. C., Millet, D. B., Payne, V. H., Deventer, M. J., Bates, K. H., De Gouw, J. A., Graus,
1352 M., Warneke, C., Wisthaler, A. and Fuentes, J. D.: Satellite isoprene retrievals constrain
1353 emissions and atmospheric oxidation, *Nature*, 585(7824), 225–233, doi:10.1038/s41586-020-
1354 2664-3, 2020.

1355
1356 Zhao, Z., Wang, Y., Qin, M., Hu, Y., Xie, Y. and Russell, A. G.: Drought Impacts on Secondary
1357 Organic Aerosol: A Case Study in the Southeast United States, *Environmental Science &*
1358 *Technology*, 53(1), 242–250, doi:10.1021/acs.est.8b04842, 2019.

1359
1360 Zhu, L., Jacob, D. J., Kim, P. S., Fisher, J. A., Yu, K., Travis, K. R., Mickley, L. J., Yantosca, R.
1361 M., Sulprizio, M. P., De Smedt, I., González Abad, G., Chance, K., Li, C., Ferrare, R., Fried, A.,
1362 Hair, J. W., Hanisco, T. F., Richter, D., Jo Scarino, A., Walega, J., Weibring, P. and Wolfe, G.
1363 M.: Observing atmospheric formaldehyde (HCHO) from space: validation and intercomparison
1364 of six retrievals from four satellites (OMI, GOME2A, GOME2B, OMPS) with SEAC4RS
1365 aircraft observations over the southeast US, *Atmospheric Chemistry and Physics*, 16(21), 13477–
1366 13490, doi:10.5194/acp-16-13477-2016, 2016.

1367
1368 [Zhu, L., Mickley, L. J., Jacob, D. J., Marais, E. A., Sheng, J., Hu, L., Abad, G. G. and Chance,](#)
1369 [K.: Long-term \(2005–2014\) trends in formaldehyde \(HCHO\) columns across North America as](#)
1370 [seen by the OMI satellite instrument: Evidence of changing emissions of volatile organic](#)
1371 [compounds, Geophysical Research Letters](#), 44(13), 7079–7086, doi:10.1002/2017gl073859,
1372 [2017.](#)

1373
1374 Zhu, J., Penner, J. E., Lin, G., Zhou, C., Xu, L. and Zhuang, B.: Mechanism of SOA formation
1375 determines magnitude of radiative effects, *Proceedings of the National Academy of Sciences*,
1376 114(48), 12685–12690, doi:10.1073/pnas.1712273114, 2017.

Formatted: Font: (Default) Times New Roman, 12 pt,
Font color: Auto

Deleted: ¶

Formatted: Font: (Default) Times New Roman, 12 pt,
Font color: Auto