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Abstract.

We evaluate the prediction skill of the Max-Planck-Institute Earth System Model (MPI-ESM) decadal hindcast system

for German Bight storm activity (GBSA) on a multiannual to decadal scale. We define GBSA every year via the most ex-

treme three-hourly geostrophic wind speeds, which are derived from mean sea-level pressure (MSLP) data. Our 64-member

ensemble of annually initialized hindcast simulations spans the time period 1960-2018. For this period, we compare de-5

terministically and probabilistically predicted winter MSLP anomalies and annual GBSA with a lead time of up to ten

years against observations. The model shows limited deterministic skill for single prediction
:::::::
produces

::::
poor

::::::::::::
deterministic

:::::::::
predictions

::
of

::::::
GBSA

:::
and

::::::
winter

::::::
MSLP

::::::::
anomalies

:::
for

:::::::::
individual years, but significant positive deterministic skill for long

:::
fair

:::::::::
predictions

:::
for

:::::
longer

:
averaging periods. For

:
A

::::::
similar

:::
but

:::::::
smaller

::::
skill

::::::::
difference

::::::::
between

::::
short

::::
and

::::
long

::::::::
averaging

:::::::
periods

:::
also

:::::::
emerges

:::
for

:
probabilistic predictions of high and low storm activity

::::
storm

:::::::
activity.

:::
At

::::
long

::::::::
averaging

::::::
periods

:::::::
(longer

::::
than10

:
5
:::::
years), the model is skillful at both short and long averaging periods, and outperforms persistence-based

::::
more

:::::::
skillful

::::
than

::::::::::
persistence-

:::
and

:::::::::::::::
climatology-based

:
predictions. For short lead years , the skill of the probabilistic prediction for high and low

storm activity notably exceeds the deterministic skill
::::::::::
aggregation

::::::
periods

::
(4

:::::
years

:::
and

:::::
less),

:::::::::::
probabilistic

:::::::::
predictions

:::
are

:::::
more

::::::
skillful

::::
than

:::::::::
persistence

:::
but

::::::::::::
insignificantly

:::::
differ

::::
from

::::::::::::
climatological

::::::::::
predictions. We therefore conclude that, for the German

Bight, skillful decadal predictions of regional storm activity can be viable with a large ensemble and a carefully designed15

approach
::::::::::
probabilistic

:::::::
decadal

:::::::::
predictions

::::::
(based

:::
on

:
a
::::
large

:::::::::
ensemble)

::
of

::::
high

::::::
storm

::::::
activity

:::
are

::::::
skillful

:::
for

::::::::
averaging

:::::::
periods

:::::
longer

::::
than

::
5

:::::
years.

:::::::
Notably,

:
a
::::::::::::
differentiation

::::::::
between

:::
low,

::::::::
medium,

:::
and

::::
high

:::::
storm

:::::::
activity

::
is

::::::::
necessary

::
to

::::::
expose

:::
this

::::
skill.

1 Introduction

In low-lying coastal areas that are affected by mid-latitude storms, coastal protection , planning, and management may greatly

benefit from predictions of storm activity on a decadal timescale.
:::::::
Decadal

:::::::::
predictions

::::::
bridge

::::
the

::::
gap

:::::::
between

::::::::
seasonal20

:::::::::
predictions

:::
and

:::::::
climate

::::::::::
projections

:::
and

::::
may

::::
for

:::::::
example

:::
aid

:::
the

::::::::
planning

::
of

:::::::::::
construction

::::
and

:::::::::::
maintenance

:::::::
projects

:::::
along

::
the

::::::
coast. The German Bight in the southern North Sea represents an example of such an area. Here, the low-lying ,

::::::
where

:::
the

coastlines are heavily and frequently affected by storm surges caused by mid-latitude storms.
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Climate projections suggest that many components of the Earth system undergo changes that can be attributed to the25

anthropogenically caused global warming trend
:::::::::::
anthropogenic

::::::
global

::::::::
warming (IPCC, 2021). For certain types of extreme

events,
:::
like

:::::
heavy

:::::::::::
precipitation

::
or

::::
heat

:::::::::
extremes, a link between the frequency of occurrence and the change in Earth’s tem-

perature has already been established (e.g. Lehmann et al., 2015; Suarez-Gutierrez et al., 2020; Seneviratne et al., 2021).

However
:::
For

:::::
storm

:::::::
activity, studies for the past century showed that storm activity

:
a
::::
lack

::
of

:::::::::
significant

::::::::
long-term

::::::
trends over

the Northeast Atlantic in general and the German Bight in particulardoes not exhibit any significant long-term trends, but30

instead
:
.
:::::::
Instead,

:::::
storm

:::::::
activity

::
in

:::
this

::::::
region

:
is subject to a pronounced multidecadal variability (Schmidt and von Storch,

1993; Alexandersson et al., 1998; Bärring and von Storch, 2004; Matulla et al., 2008; Feser et al., 2015; Wang et al., 2016;

Krueger et al., 2019; Varino et al., 2019; Krieger et al., 2020). This dominant internal variability suggests great potential value
:
a

::::
great

:::::::
potential

:::
for

::::::::
improved

::::::::::::
predictability in moving from uninitialized emission-based climate projections towards initialized

climate predictions. In this study, we demonstrate that initialized climate predictions are useful to predict German Bight storm35

activity (GBSA) on a multiannual to decadal timescale.

There have been considerable advancements in the field of decadal predictions of climate extremes in recent years. For ex-

ample, the research project MiKlip (Marotzke et al., 2016)
::::::::::::::::::::::::::::::::::::::::::::
(MittelfristigeKlimaprognosen, Marotzke et al., 2016) focused on

the development of a global decadal prediction system based on the Max-Planck-Institute Earth System Model (MPI-ESM)40

under CMIP5 forcing. Using experiments from the MiKlip project, Kruschke et al. (2014) and Kruschke et al. (2016) found

significant positive prediction skill for cyclone frequency in certain regions of the North Atlantic Sector and for certain pre-

diction periods, even for ensembles of ten or fewer members. While Kruschke et al. (2016) used a probabilistic approach to

categorize cyclone frequency into tercile-based categories, they did not explicitly assess the skill of the model for each separate

category
:::::::
category

:::::::::
separately. Haas et al. (2015) found significant skill in MPI-ESM for upper quantiles of wind speeds at lead45

times of 1-4 years, but also noted that the skill decreases with lead time and is lower over the North Sea than over the adjacent

land areas of Denmark, Germany, and the Netherlands. ?
::::::::::::::::::
Moemken et al. (2021) confirmed the capability of the MPI-ESM

decadal
:
a
::::::::::
dynamically

::::::::::
downscaled

::::::::::
component

::
of

::::
the

::::::
MiKlip

:
prediction system for additional wind-related variables, such

as winter season wind speed and a simplified winter season storm severity index (e.g. Pinto et al., 2012). However, ? also

:::::::::::::::::::
Moemken et al. (2021) noted that wind-based indices are usually less skillful than variables based on temperature or precipi-50

tation, and are also heavily lead-time dependent
::::::::::::::::
(Reyers et al., 2019). Furthermore, the prediction skill of wind-based indices

shows strong spatial variability, which prevents any generalization of the current state of prediction capabilities for regionally

confined climate extremes.

In addition to the high variability of the decadal prediction skill for wind-based indices, the depiction of near-surface wind55

in models strongly depends on the selected parameterization. Therefore, we circumvent the use of a wind-based index for

evaluating the prediction skill for regional storm activity, and focus on a proxy that is based on horizontal differences of mean

sea-level pressure (MSLP) and the resulting mean geostrophic wind speed instead. The index was first proposed by Schmidt

and von Storch (1993) to avoid the use of long-term wind speed records, which oftentimes show inhomogeneities due to
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changes in the surroundings of the measurement site, and has already been used to reconstruct historical storm activity in the60

German Bight (e.g. Schmidt and von Storch, 1993; Krieger et al., 2020). The geostrophic storm activity index is based on the

assumption that the statistics of the geostrophic wind represent the statistics of the near-surface wind, an assumption which

was shown by Krueger et al. (2019) to be valid
:::::
which

::::
was

:::::::::
confirmed

:::
by

:::::::::::::::::::::::::
Krueger and von Storch (2011). The validity of the

assumption is especially given over flat surfaces, like the open sea, where ageostrophic disturbances
::::::::::
disturbances

::::
from

:::::::
friction

are negligible. We therefore assume
::::
draw

:::
on

:::
the

::::::
finding that the geostrophic wind-based index represents a suitable proxy for65

near-surface storm activity and can be used to derive some of the most relevant statistics of storm activity in the German Bight.

Furthermore, the index is particularly well suited for small regions, since averaging
:::::::::
calculating

:::
the

::::::
MSLP

:::::::
gradient over a small

area preserves much of the spatial
:::::
allows

:::
for

:::
the

::::::::
detection

::
of

::::::::::
small-scale variability of the pressure field, which is crucial for

estimating geostrophic wind statistics.

70

Besides the choice of parameters
:::::::
variables, the ensemble size also plays an important role in decadal prediction systems.

The experiments performed in MiKlip consisted of up to 10 members in the first two model generations, and 30 members in

the third generation (Marotzke et al., 2016). Sienz et al. (2016) showed that larger ensembles generally result in better pre-

dictability, especially in areas with low signal-to-noise ratios. However, Sienz et al. (2016) also noted the number of ensemble

members alone does not compensate for other potential shortcomings of the model. In a more recent study, Athanasiadis et al.75

(2020) found that larger ensemble sizes increase the decadal prediction skill for the North Atlantic Oscillation and high-latitude

blocking. Furthermore, the use of a large ensemble benefits the generation
:::::::
increases

:::
the

::::::::
reliability

:
of probabilistic predictions.

The concept of a probabilistic approach is the presumption that a shift in the
::::::
change

::
in

:::
the

:::::
shape

::
of

:::
the ensemble distribution

can be used to predict likelihoods of actual shifts in
::::::
changes

::
of

:
climatic variables.

:
In

:::::::
contrast

:::
to

:::::::::::
deterministic

::::::::::
predictions,

::::::::::
probabilistic

:::::::::
predictions

:::
are

::::
also

::::
able

::
to

::::::
provide

::::::::::
uncertainty

::::::::::
information. With increasing ensemble size, and a resulting higher80

count of members in the tails of the prediction
:::::::
predictive

:
distribution, probabilistic predictions for extreme events, i.e. periods

with very high or low storm activity, become viable
::::::
feasible

::::::::::::::::::::::::::::::::::::::::::
(e.g., Richardson, 2001; Mullen and Buizza, 2002). Therefore, we

build on these findings by increasing the ensemble size in this study to a total of 64 members.

In this study, we assess the prediction skill for GBSA of a 64-member ensemble of yearly initialized decadal hindcasts,
::::
i.e.,85

:::::::
forecasts

:::
for

:::
the

::::
past,

:
based on the MPI-ESM-LR

::::::::
MPI-ESM. Since GBSA is connected to the large-scale circulation (Krieger

et al., 2020), we first analyze the ability of the decadal prediction system (DPS) to deterministically predict large-scale MSLP

in the North Atlantic by comparing model ensemble mean output to data from the ERA5 reanalysis (Hersbach et al., 2020)

(Sect. 3.1.1). In the German Bight, most of the annual storm activity can be attributed to the winter season. Therefore, we focus

on the winter (December-February, DJF) mean MSLP and show how a high deterministic skill for winter MSLP translates to90

a high deterministic skill of model system for GBSA (Sect. 3.1.2). The deterministic skill is quantified
:::::::
quantify

::
the

:::::::
quality

::
of

::::::::::
deterministic

::::::::::
predictions

:
by correlating time series of predictions (ensemble mean) and observations. We

::::
show

::::
how

:::::::
positive

:::::::::
correlations

:::::::
emerge

::
in

:::::::::
predictions

::
of

::::
both

::::::
winter

::::::
MSLP

:::
and

::::::
GBSA

:::::
(Sect.

::::::
3.1.2).

:::
We then evaluate the probabilistic prediction

skill of the DPS for
::::::::::
probabilistic

::::::::::
predictions

::
of

:
MSLP and GBSA (Sect. 3.2.1 and 3.2.2), expressed via the Brier Skill Score
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(BSS)
:::::::::::::::
(BSS, Brier, 1950), and discuss the advantages and limits of the probabilistic approach .

:::
our

::::::::
approach

:::::
(Sect.

:::::
3.3).95

Concluding remarks are given in Sect. 4.

2 Methods and Data

2.1 The Observational Reference

We use the time series of annual GBSA from Krieger et al. (2020) as an observational reference for the evaluation of pre-

diction skill. The time series is based on standardized annual 95th percentiles of geostrophic wind speeds over the German100

Bight. The geostrophic winds are derived from triplets of three-hourly MSLP observations at eight measurement stations at

or near the North Sea coast in Germany, Denmark, and The Netherlands. MSLP measurements are provided by the Interna-

tional Surface Pressure Databank (ISPD) version 3 (Cram et al., 2015; Compo et al., 2015), as well as the national weather

services of Germany (Deutscher Wetterdienst; DWD) (DWD, 2019), Denmark (Danmarks Meteorologiske Institut; DMI)

(Cappelen et al., 2019)
:::::::::::::::::::::::::::::::
(Deutscher Wetterdienst, DWD, 2019),

::::::::
Denmark

:::::::::::::::::::::::::::::::::::::::::::::::
(Danmarks Meteorologiske Institut, Cappelen et al., 2019)105

, and the Netherlands (Koninklijk Nederlands Meteorologisch Instituut; KNMI) (KNMI, 2019). The thereby derived observational

time series for
:::::::::::::::::::::::::::::::::::::::::::::::::::
(Koninklijk Nederlands Meteorologisch Instituut, KNMI, 2019)

:
.
:::
The

::::
time

:::::
series

:::
of German Bight storm activ-

ity
::::::
derived

::::
from

::::::::::
observations

:
covers the period 1897-2018.

Furthermore, we employ data from the ERA5 reanalysis (Hersbach et al., 2020), which has recently been extended backwards110

to 1950. The reanalysis data enables the prediction skill assessment over areas where in-situ observations are incomplete or too

infrequent, for example over the North Atlantic Ocean.

2.2 MPI-ESM-LR Decadal Hindcasts

We investigate the decadal hindcasts of the MPI-ESM coupled climate model in version 1.2 (Mauritsen et al., 2019), run in

low-resolution (LR) mode. The MPI-ESM-LR consists of coupled models for ocean and sea-ice (MPI-OM) (Jungclaus et al.,115

2013), atmosphere (ECHAM6) (Stevens et al., 2013), land surface (JSBACH) (Reick et al., 2013; Schneck et al., 2013), and

ocean biogeochemistry (HAMOCC) (Ilyina et al., 2013). As we investigate the predictability of storm activity, which is derived

from mean sea-level pressure, we focus on the atmospheric output given by the atmospheric component ECHAM6. The LR

mode of ECHAM6 has a horizontal resolution of 1.875◦ (T63 grid), as well as 47 vertical levels between 0.1hPa and the

surface (Stevens et al., 2013). The horizontal extent of the grid boxes is approximately 210 km x 210 km at the Equator, and120

125 km x 210 km over the German Bight, which is still fine enough for the German Bight to cover multiple gridpoints. The

model is forced by external radiative boundary conditions, which correspond to the historical CMIP6 forcing until 2014, and

the SSP2-4.5 scenario starting in 2015 (contrary to CMIP5 and the RCP4.5 scenario used in the MiKlip experiments).
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The ensemble members are initialized every November 1st from 1960 to 2019. The
::::::::::
initialization

::::
and

::::::::
ensemble

:::::::::
generation125

::::::
scheme

::
is
::::::
based

::
on

::
a
::::::
system

:::::::::
developed

::::
and

::::::
tested

:::::
within

:::::::
MiKlip

::::
(the

:::::::
"EnKF"

:::::::
system

::
in

::::::::::::::::::
Polkova et al. (2019)

:
).

:::
For

::::
our

::::
study

::
it
:::
has

:::::
been

:::::::
updated

::::
from

:::::::
CMIP5

::
to

:::::::
CMIP6

:::::::
external

::::::
forcing,

::::
and

::::::::
extended

::::
from

:::
16

::
to

:
80 initial states are taken from

::::::::
ensemble

::::::::
members.

::::
The

::::
basis

::
of

::::
this

::::::
scheme

::
is
:::::::
formed

::
by

:
a 16-member simulation assimilating both

::::::::
ensemble

:::::::::::
assimilation,

:::::
which

:::::
from

::::
1958

:::
to

:::::
2019

:::::::::
assimilates

:
the observed oceanic and atmospheric state (Brune and Baehr, 2020). Here

:::
into

::::
the

:::::
model

:::::::::::::::::::::
(Brune and Baehr, 2020).

:::
In

::::::::
particular, an oceanic Ensemble Kalman filter is used with an implementation of the130

Parallel Data Assimilation Framework (Nerger and Hiller, 2013), and atmospheric nudging is applied. In addition, four

different perturbations are
:::
All

:::
80

::::::::
ensemble

::::::::
members

::
of

:::
the

:::::::::
predictions

:::
are

:::::::
directly

::::::::
initialized

:::::
from

:::
the

:::::::::::
16-ensemble

:::::::
member

::::::::::
assimilation,

::::
with

::::
five

:::::::
different

:::::::::::
perturbations

:
applied to the horizontal diffusion coefficient in the upper stratosphere to gener-

ate the total amount of 5x16=80 ensemble members.
:::
For

:::::::
example,

::::::::
hindcast

:::::::
members

:::
1,

:::
17,

:::
33,

:::
49,

::
65

:::
are

:::
all

::::::::
initialized

:::::
from

::::::::::
assimilation

:::::::
member

::
1,

:::
but

::::
with

:::::::
different

:::::::::::
perturbation

::
in

:::
the

:::::
upper

::::::::::
stratosphere

:::
(no

::::::::::
perturbation

:::
for

:::::::
member

::
1,
::::

four
::::::::
different135

:::::::
non-zero

:::::::::::
perturbations

:::
for

:::
the

:::::
other

:::::::::
members). Since we require three-hourly output (see Sect. 2.2.2), which is not available

for the first 16 members of the 80-member ensemble, we constrict our analysis to the remaining 64 members. In the following,

we will refer to these members as members 1-64. Due to the observational time series of German Bight storm activity from

Krieger et al. (2020) ending in 2018, we only evaluate hindcast predictions until 2018.
:::
For

::::::::
example,

:::
the

:::
last

:::
run

::::::::::
considered

::
in

:::
the

::::::::
evaluation

:::
for

::::
lead

::::
year

:::
10

:::::::::
predictions

::
is
:::
the

::::
one

:::::::::
initialized

::
in

:::::
2008,

:::::::
whereas

:::
the

::::
lead

::::
year

::
1

::::::::
evaluation

:::::
takes

:::
all

::::
runs140

::::::::
initialized

::::
until

:::::
2017

:::
into

:::::::
account.

:

2.2.1 Definition of Lead Times

All hindcast runs are integrated for 10 years and 2 months, each covering a time span from November of the initialization year

(lead year 0) to December of the tenth following year (lead year 10). For consistency, we only consider full calendar years for

the comparison, leaving us with ten complete years per intialization year and ensemble member. The ten individual prediction145

years are hereinafter defined as lead year i, with i denoting the difference in calendar years between the prediction and the

initialization. By this definition, lead year 1 covers months 3-14 of each integration, lead year 2 covers months 15-26, and so

on. Lead year ranges are defined as time averages of multiple subsequent lead years i through j within a model run, and are

called lead years i-j in this study. To compare hindcast predictions for certain lead year ranges to observations, we average

annual observations over the same time period (see Supplementary Material for more details).150

It should be noted that winter (DJF) means are always labeled by the year that contains the months of January and February.

A DJF prediction for lead year 4 therefore contains the December from lead year 3 plus the January and February from lead

year 4. Likewise, a DJF prediction for lead years 4-10 contains every December from lead years 3 through 9, as well as every

January and February from lead years 4 through 10.155

In this study, we
:::
aim

::
at

:::::::
drawing

::::::
general

::::::::::
conclusions

:::::
about

:::
the

:::::::::
prediction

:::
skill

:::
for

:::::
North

:::::::
Atlantic

::::::
MSLP

:::::::::
anomalies

:::
for

::::
long

:::
and

:::::
short

::::::::
averaging

:::::::
periods.

:::::::::
Therefore,

:::
we

:
focus on lead years 4-10, as well as lead year 7, as examples for long and short

5



averaging periods
::
for

:::
the

::::::::
prediction

::::
skill

:::
for

::::::
MSLP

::::::::
anomalies, respectively. The choice of lead years 4-10 is based on selecting

a sufficiently long averaging period that is representative of the characteristics of multi-year averages. Lead year 7 is chosen160

as it marks the center year within the lead year 4-10 period.
::
We

::::::
would

:::
like

:::
to

::::
note

:::
that

:::
the

::::::
choice

::
of
::::

lead
:::::

years
:::::
4-10

:::
and

::
7

:
is
::::::::

arbitrary,
:::
but

::::
we

:::
also

:::::::
analyse

:::::
other

::::::::::
comparable

::::
lead

::::
year

:::::::
periods

::::
(e.g.,

::::
2-8

:::
and

:::
5)

::
to

::::::
ensure

::::::::
sufficient

:::::::::
robustness

::
of

::::
our

::::::::::
conclusions.

::::::::
However,

:::
we

::::::
refrain

::::
from

::::::::
explicitly

:::::::
showing

::::::
results

:::
for

:::::
every

::::
lead

::::
time

::
for

:::::::
reasons

::
of

:::::::
brevity.

:::
For

:::::::
German

:::::
Bight

:::::
storm

::::::
activity,

::::::
which

::::
does

:::
not

::::::
contain

::::::
spatial

:::::::::::
information,

::
we

:::::
show

:::
the

::::
skill

:::
for

::
all

::::::::::::
combinations

::
of

::::
lead

:::
year

:::::::
ranges.

2.2.2 Pressure Reduction and Geostrophic Wind Calculation
:::
and

::::::::
German

:::::
Bight

::::::
Storm

:::::::
Activity165

Following Krieger et al. (2020)
:::
For

:::
our

:::::::
analysis, we use three-hourly MSLP data from the decadal hindcast ensemble and derive

geostrophic winds from the horizontal MSLP gradients
:::
over

:::
the

:::::
North

::::::::
Atlantic

:::::
basin,

::::::::
including

:::
the

:::::::
German

:::::
Bight. As three-

hourly MSLP is only available as an output variable for the
::::::::
ensemble members 33-64, but not for 1-32, we use surface pressure

p, surface geopotential Φ and surface temperature T output from the model and apply a height correction. The
::::::::
Following

:::::::::::::::::::::::
Alexandersson et al. (1998)

::
and

::::::::::::::::::
Krueger et al. (2019),

:::
the

:
equation for the reduction of p to the MSLP p0 reads170

p0 = p ·

(
1−

Γ Φ
g

T

)
κ

κ−1
M·g
R·Γ
:::

, (1)

with the Earth’s gravitational acceleration g = 9.80665m s−2, the assumed wet-adiabatic lapse rate Γ = 0.0065Km−1,

and the assumed isentropic coefficient κ= 1.235.
:::
the

:::::
molar

:::::
mass

::
of

:::
air

:::::::::::::::::::
M = 28.9647gmol−1,

::::
and

:::
the

:::
gas

::::::::
constant

::
of

:::
air175

::::::::::::::::::::::
R= 8.3145Jmol−1 K°−1.

::
A

::::::::::
consistency

:::::
check

:::::::
between

::::::::
ensemble

::::::::
members

:::::
1-32

::::::::
(manually

:::::::
reduced

::
to

:::
sea

:::::
level)

::::
and

:::::
33-64

::::::
(MSLP

::::::::
available

::
as

::::::
model

::::::
output)

:::::::
resulted

:::
in

::::::::
negligible

::::::::::
differences

::
in

::::::
MSLP

::::
(not

:::::::
shown).

:::::::::
Therefore,

:::
we

:::::::
assume

::::
that

:::
the

:::::::
pressure

::::::::
reduction

::::
does

::::
not

::::::::::
significantly

::::::::
influence

::::
our

:::::
results

::::
and

::::
treat

:::
the

::::::
entire

::
64

::::::::
member

::::::::
ensemble

::
as

::
a
::::::::::::
homogeneous

:::::
entity.

180

:::
We

:::::::
generate

::::
time

::::::
series

::
of

:::::::
German

:::::
Bight

::::::
storm

::::::
activity

::::::::
(GBSA)

::
in

:::
the

::::::::::::
MPI-ESM-LR

::::::::
hindcast

::::
runs.

:
Owing to the low

resolution of the model, we choose the three closest gridpoints that span a triangle encompassing the German Bight .
::::
(Fig.

:::
1).

The coordinates of the selected gridpoints are specified in Table 1. The gridpoints are selected so that the resulting triangle is

sufficiently close to an equilateral triangle. This requirement is necessary to avoid a large error propagation of pressure uncer-

tainties, which would cause a shift of the wind direction towards the main axis of the triangle (Krieger et al., 2020).
::
We

::::
use185

::::::::::
three-hourly

::::::
MSLP

::::
data

::::
from

:::
the

:::::::
decadal

:::::::
hindcast

::::::::
ensemble

::
at

:::
the

:::::
three

:::::
corner

::::::
points

::
of

:::
the

:::::::
triangle

:::
and

::::::
derive

::::::::::
geostrophic

:::::
winds

::::
from

:::
the

::::::
MSLP

:::::::
gradient

::
on

::
a
:::::
plane

::::::
through

:::::
these

::::
three

::::::
points,

:::::::::
following

::::::::::::::::::::::
Alexandersson et al. (1998)

:
.

We generate time series of German Bight storm activity in the MPI-ESM-LR hindcast runs. According to Krieger et al. (2020)

, we define German Bight storm activity190
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:::::
GBSA

::
is

::::::
defined

:
as the standardized annual 95th percentiles of three-hourly geostrophic wind speeds.

:::
For

::::
each

:::::::::::
combination

::
of

::::::::
ensemble

:::::::
member,

:::::::::::
initialization

:::::
year,

:::
and

:::::::
forecast

::::
lead

::::
year,

:::
we

:::::::::
determine

:::
the

::::
95th

:::::::::
percentile

::
of

::::::::::
geostrophic

:::::
wind

:::::
speed

::::::::::
(exemplarily

::::::
shown

:::
for

::::
one

:::::::::::
combination

::
in

::::
Fig.

:::
2).

::::
The

::::::::::::::
percentile-based

::::::::
approach

:::::::::::
incorporates

::::
both

:::
the

:::::::
number

::::
and

:::
the

::::::
strength

:::
of

::::::
storms,

:::::::
thereby

:::::::
ensuring

::::
that

::::
both

:::::
years

::::
with

:::::
many

:::::::
weaker

::::::
storms

:::
and

:::::
years

::::
with

:::::
fewer

:::
but

::::::::
stronger

::::::
storms

:::
are

:::::::::
represented

::
as
:::::::::::

high-activity
::::::
years.

::::::::
However,

:::
the

:::::
proxy

::
is

:::
not

::::
able

::
to
:::::::::::
differentiate

:::::::
whether

::::
high

:::::
storm

:::::::
activity

::
is

::::::
caused

::
by

::
a195

::::
large

:::::::
number

::
of

::::::
storms

::
or

:::
by

::::
their

:::::
high

::::
wind

::::::
speed.

::::
The

::::::
annual

::::
95th

:::::::::
percentiles

:::
of

::::::::::
geostrophic

::::
wind

:::::
speed

::::
take

:::
on

::::::
values

:::::::
between

::
18

::::
and

:::::::
29ms−1

::::
with

:::
an

:::::::
average

::
of

::::::::::
22.87ms−1

:::::
(Fig.

::
3),

::::::
which

::
is

::::
close

::
to
:::
the

::::::::::::
observational

::::::
average

:::
of

::::::::::
22.19ms−1

::::::
derived

::
by

::::::::::::::::::
Krieger et al. (2020)

::
for

:::
the

::::::
period

:::::::::
1897-2018.

We accomplish the standardization by first calculating the mean and standard deviation of annual 95th percentiles of200

geostrophic wind speeds from the runs initialized in 1960-2009 for lead year 1 and each member. We then subtract the means

from the annual 95th percentiles, and divide by the standard deviations. Since the lead year 1 predictions started in 1960-2009

cover the period of 1961-2010, our standardization period matches the reference time frame used for storm activity calculation

in Krieger et al. (2020).

205

Table 1. Coordinates of the three gridpoints used for storm activity calculation in the model.

Gridpoint Latitude (◦ N) Longitude (◦ E)

North 55.02 9.38

West 53.16 5.63

Southeast 53.16 9.38

0° 5°E 10°E 15°E

50°N 50°N

52°N 52°N

54°N 54°N

56°N 56°N

58°N 58°N

Figure 1.
::::
Map

::
of

::::::::::
Northwestern

::::::
Europe,

::::::
showing

:::
the

::::::
location

::
of

:::
the

::::::
German

:::::
Bight

::::::
triangle.
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Figure 2.
::::::::
Exemplary

:::::::::
distribution

::
of

:::::::
predicted

:::::::::
three-hourly

:::::::::
geostrophic

::::
wind

:::::
speeds

:::
for

:::
lead

:::
year

::
1
::::
from

::::::
member

:::
17,

:::::::
initialized

::
in

:::::
1960.

:::
The

:::::
vertical

::::
line

::::
marks

:::
the

::::
95th

::::::::
percentile,

:::::
which

:
is
::::
used

::
in

::
the

:::::::::
calculation

::
of

::::
storm

::::::
activity.
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Figure 3.
::::
Violin

::::
plot

::
of

:::
the

:::::::::
distribution

::
of

:::::
annual

::::
95th

::::::::
percentiles

:::
of

:::::::::
geostrophic

::::
wind

:::::
speeds

::::
from

:::
all

:::::::
members

:::
and

:::
all

:::::::::::
initializations,

:::::::
separated

::
by

::::
lead

:::
year.

::::
Lead

:::::
years

::::::
increase

::::
from

:::
left

::
to

::::
right

::::
along

:::
the

:::::
x-axis.

:::
The

:::::
width

::
of

:::
the

::::
violin

:::::::
indicates

:::
the

::::::::
normalized

::::::
density

::
for

::
a

:::::
certain

::::
wind

:::::
speed.

::::::::
Horizontal

:::::
dashes

::::
mark

:::::::
maxima,

:::::
means

:::
and

::::::
minima

:::
for

::::
each

:::
lead

::::
year.

:::::
While

:::
the

:::::::
analysis

::
of

::::::
GBSA

::::
only

:::
uses

::::::
MSLP

::::
data

::::
from

:::::
three

::::::::
gridpoints

::
in

:::
the

:::::::
German

:::::
Bight,

:::
we

::::
also

::::::
analyse

:::
the

:::::::::
prediction

:::
skill

:::
for

::::::
MSLP

:::::::::
anomalies

::::
over

:::
the

:::::
entire

:::::
North

:::::::
Atlantic.

:

2.3 Evaluation of Prediction Skill
:::::
Model

::::::::::::
Performance

In this study, we evaluate the model’s predictions skill
::::::::::
performance

:
for both deterministic and probabilistic predictions.

::::
First,

::
we

::::::::
evaluate

:::::::::::
deterministic

:::::::::
predictions

:::
to

:::::::
quantify

:::
the

::::::
ability

:::
of

:::
the

::::::
model

::
to

::::::
capture

::::
the

:::::::::
variability

::
of

:::::::
GBSA.

:::::::
Second,

:::
we210

::::::
analyze

:::::::::::
probabilistic

:::::::::
predictions

::
to

:::::::
examine

:::::::
whether

:::
the

::::
large

::::::::
ensemble

::
is

::::
able

::
to

:::::::
skillfully

:::::::::::
differentiate

:::::::
between

:::::::
extremes

::::
and
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Figure 4.
::::
Time

:::::
series

::
of

:::::::::
observations

:::::
(grey,

::::::
dashed)

:::
and

:::::::
ensemble

:::::
mean

::::::::
predictions

::::::
(black,

::::
solid)

::
of

::::::
German

:::::
Bight

::::
storm

::::::
activity

:::::::
(GBSA)

::
for

::::
lead

::::
years

::::
4-10

::
(a)

::
and

::::
lead

:::
year

:
7
:::

(b)
:
.

:::::::::::
non-extremes.

:
These two prediction types require different evaluation metrics.

2.3.1
::::::::
Anomaly

::::::::::
Correlation

For deterministic predictions, we calculate Pearson’s anomaly correlation coefficient (ACC) between predicted and observed215

quantities:

ACC =

∑N
i=1(fi − f̄)(oi − ō)√∑N

i=1(fi − f̄)2
∑N

i=1(oi − ō)2
, (2)

with the predicted and observed quantities fi and oi, as well as the long-term averages of predictions and observations f̄ and220

ō. The
:::::
ACC

:::
can

::::
take

::
on

::::::
values

::::
from

:
1
::
to
:::
-1,

::::
with

:
1
:::::::::
indicating

:
a
::::::
perfect

::::::::::
correlation,

:
0
:::::::
equating

::
to

:::
no

:::::::::
correlation,

::::
and

::
-1

:::::::
showing

:
a
::::::
perfect

::::::::::::
anticorrelation.

::::
The statistical significance of the ACC is determined

::::::
through

::
a
::::::::
1000-fold

::::::
moving

:::::
block

::::::::::::
bootstrapping

::::
with

::::::::::
replacement

:::::::::::::::::::::
(Kunsch, 1989; Liu, 1992)

:
,
:::::
where

:::
the

:::::
0.025

:::
and

:::::
0.975

::::::::
quantiles

::
of

:::::::::::
bootstrapped

::::::::::
correlations

:::::
define

:::
the

:::::
range

::
of

:::
the

::::
95 %

:::::::::
confidence

:::::::
interval.

::::
The

:::::
block

::::::
length

:
is
:::
set

::
to

::::::
k = 4,

::::::::
following

:::
the

:::::::::
suggestion

::
of

:::::::::::
k =O(N

1
3 )

::::::::::::
(Lahiri, 2003)

::
for

::
a

9



::::::
number

::
of

:::::::::
datapoints

::
N

:::::::
between

:::
50

:::
and

:::
60,

:::::::::
depending

::
on

:::
the

:::::::
variable

:::
and

:::
the

::::::
length

::
of

:::
the

::::::::
averaging

::::::
period.

::::
The

:::::
mean

:::::
ACC225

:
is
:::::::::
calculated by applying a Fisher z-transformation (Fisher, 1915) to the correlations, computing the 95 % confidence intervals

::::::::::
bootstrapped

:::::::::::
correlations,

::::::::
averaging

::::
over

:::
all

:::::
values

:
in z-space, and transforming them

::
the

:::::::
average

:
back to the original space.

The transformation of correlations ACC to z-scores z and its inverse are defined as z = arctanh(ACC) and ACC = tanh(z),

where tanh and arctanh are the hyperbolic tangent function and its inverse, respectively.

230

2.3.2
:::::
Brier

::::
Skill

:::::
Score

Probabilistic predictions are evaluated against a reference prediction (see Sect. 2.5) by employing the strictly proper Brier Skill

Score (BSS) (Brier, 1950)
:::::::::::::::
(BSS, Brier, 1950). The BSS

:
is

::
a

:::
skill

::::::
metric

:::
for

:::::::::::
dichotomous

:::::::::
predictions

::::
and

:
is
:
defined as

BSS = 1− BS

BSref
, (3)

235

where BS and BSref denote the Brier Scores of the probabilistic model prediction and a reference prediction, respectively.

This definition results in positive BSS values whenever the model performs better than the chosen reference, and negative

values when the reference outperforms the model. A perfect prediction would score a BSS of 1. The statistical significance of

the BSS is calculated through a 1000-fold bootstrapping with replacement.
:::
We

:::::::
perform

:::
the

:::::::::::
bootstrapping

::
in

:::::::
temporal

:::::
space

:::
by240

:::::::
selecting

:::::::
random

:::::
blocks

::::
with

:::::::::::
replacement,

:::
but

:::
do

:::
not

::::::::
bootstrap

:::::
across

:::
the

::::::::
ensemble

::::::
space. In this study, we use a significance

level of 5 % to test whether skill scores are
:::::
model

::::::::::
performance

::
is

:
significantly different from the reference.

The individual Brier Scores
::::
Brier

:::::
Score BS are defined via

:
is
:::::::
defined

::
as

BS =
1

N

N∑
i=1

(fF
: i − oO

: i)
2, (4)245

with the number of predictions N , the predicted probability of an event fi ::
Fi:

and the event occurrence oi. Note that oi :::
Oi.

:::
The

::::::::
predicted

::::::::::
probability

::
Fi::

is
::::::::::
determined

:::
by

:::
the

:::::::
number

::
of

::::::::
ensemble

::::::::
members

::::
that

::::::
predict

:::
the

:::::
event

:::::::
divided

::
by

:::
the

:::::
total

::::::::
ensemble

:::
size

:::
of

:::
64.

::::
Note

::::
that

:::
Oi:

always takes on a value of either 1 or 0, depending on whether the predicted event hap-250

pened or not. Because the BS is caulated
::::::::
calculated as the normalized mean square error in the probability space, a perfect

prediction
:
it
::
is

:::::::::
negatively

:::::::
oriented

::::
with

:
a
:::::
range

::
of

:
0
::
to

::
1, i.e.a prediction that always predicts the outcome correctly, would score

a ,
:::::
better

::::::::::
predictions

:::::
score

:::::
lower BS of 0, while a prediction that is always incorrect would score a 1.

::::::
values.

:
A prediction

10



based on random guesses (fi = 0.5
::::::
flipping

::
a
::::::::
two-sided

::::
coin

::::::::
(Fi = 0.5) would score a BS of 0.25.

255

We are interested in the probabilistic prediction skills for
:::
skill

:::
of

::::::::::
probabilistic

::::::::::
predictions

::
of

:
periods of high,

:::::::::
moderate,

and low storm activity, as well as high,
:::::::::
moderate, and low winter MSLP anomalies. To differentiate between events and non-

events, the BS needs thresholds, which we set to 1σ and −1σ, with σ denoting the standard deviation of the underlying time

series.
:
1

:::
and

:::
-1.

:
We define high activity /anomaly periods as time steps above 1σ

:
1, low activity /anomaly periods as time

steps below −1σ
::
-1, and moderate activity /anomaly periods as the remaining time steps.

:::::
Since

:::
the

:::::
BSS

:::
can

::::
only

::::::
assess

:::
the260

:::
skill

:::
of

:::::::::::
dichotomous

::::::::::
predictions,

:::
we

:::::::
evaluate

::::
each

:::
of

:::
the

:::::
three

::::::::
respective

:::::::::
categories

:::::
(high,

:::::::::
moderate,

::::
low)

:::::::::
separately.

:::::
This

:::::::::::
methodology

:::::
differs

:::::
from

::::::::::::::::::
Kruschke et al. (2016)

:
,
::
as

:::
we

:::
do

:::
not

:::::::
evaluate

::::
one

::::::::::::
three-category

::::::::
forecast,

:::
but

:::::
three

:::::::::::
two-category

:::::::
forecasts

:::::::
instead.

2.4
::::::::::::::::

Re-standardization
::
of

::::::::::
Multi-year

::::::::
Averages

Winter MSLP anomalies and storm activity
::::::
GBSA time series are standardized before the analysis.

::
To

:::::
keep

:::
the

:::::::::
evaluation265

::
of

:::::::::
multi-year

::::::::
averaging

:::::::
periods

:::::::::
consistent

::::
with

::::
that

::
of
::::::

single
::::
lead

::::::
years,

:::
we

::::::::::::
re-standardize

:::
all

::::
time

:::::
series

:::::
after

::::::::
applying

::
the

:::::::
moving

::::::::
average.

:::
We

:::
do

:::
this

:::::
since

:::
the

:::::::::
thresholds

:::
of

:::
our

:::::::::::
probabilistic

:::::::::
prediction

:::::::::
categories

::::::
require

:::
the

::::::::::
underlying

::::
data

::
to

::
be

::::::::
normally

:::::::::
distributed

:::::
with

:
a
:::::
mean

::
of
::

0
::::
and

:
a
::::::::

standard
::::::::
deviation

::
of

::
1
:::
by

:::::::::
definition. For spatial fields, we perform the

standardizations and skill calculations gridpoint-wise. As GBSA is based on spatially averaged MSLP gradients
:::
the

:::::
mean

:::::
MSLP

:::::::
gradient

::
of

::
a
:::::
plane

::::::
through

:::::
three

:::::::::
gridpoints, we treat its spatial information like that of a single gridpoint and calculate270

skill metrics only once for the entire spatial average
:::::
plane.

2.5 Reference Forecasts

The BSS evaluates the skill of probabilistic predictions against a reference prediction. In this study, we use a persistence

prediction
:::
both

:
a
:::::::::::
deterministic

::::::::::
persistence

::::::::
prediction

:::
and

::
a
::::::::::
probabilistic

::::::::::::
climatological

:::::::
random

::::::::
prediction

:
as a baseline against

which we test the predictions
::::::::
prediction

:
skill of the MPI-ESM-LR, which is a common practice in climate model evaluation275

(e.g. Murphy, 1992).The

:::
The

:::::::::::
deterministic

:
persistence prediction of storm activity is generated by taking the average

:::::::
observed

:
storm activity of a

number n of years before the initialization year of the model run. n is defined to be equal to the length of the predicted lead

year range. For example, a lead year 4-10 prediction (n= 7) initialized in 1980 is compared to the persistence prediction based280

on the observed average of the years 1973-1979, whereas a lead year 7 prediction (n= 1) from the same initialization is com-

pared to the persistence prediction based on the observed storm activity of 1979. Persistence predictions of winter MSLP are

generated likewise , but with
::
but

:::
use

:
ERA5 reanalysis data instead .

::
of

:::::
direct

:::::::::::
observations.

:::
We

::::
note

::::
that

::::
since

:::
the

::::::::::
persistence

::::::::
prediction

::
is

:::
not

:::::::::::
probabilistic,

::
it

:::
can

:::::
either

:::
be

::::::
correct

::
or

:::::::
incorrect

:::
in

:
a
:::::
given

::::
year,

::::::
which

::::::::::
corresponds

::
to

:::
the

::::
term

:::::::::
(Fi −Oi) ::

in

:::
Eq.

::
4

:::::
taking

:::
on

:
a
:::::
value

::
of

:::::
either

:
0
::::::::
(correct)

::
or

:
1
::::::::::
(incorrect).285
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Figure 5. Prediction skill for winter mean (DJF) MSLP anomalies, expressed as the gridpoint-wise
:::::::::::
Gridpoint-wise anomaly correlation co-

efficient (ACC) between the
::::::::::
deterministic hindcast ensemble mean

:::::::
prediction

::
of

:::::
winter

:::::
mean

::::
(DJF)

:::::
MSLP

::::::::
anomalies

:
and ERA5

:::::::
reanalysis

:::
data

:
for lead years 4-10 (a) and lead year 7 (b).

:::
The

:::::::
German

::::
Bight

::
is
::::::
marked

:::
by

:
a
:::
red

:::
dot.

:
Anomalies are calculated for each member

individually and averaged over the entire ensemble afterwards. Stippling indicates significant correlations (p≤ 0.05).

:::
The

:::::::::::
probabilistic

:::::::::::
climatological

:::::::
random

::::::::
prediction

::::
uses

:::
the

::::::::::::
climatological

::::::::::
frequencies

::
of

:::::::
observed

::::::
events

:::::::::::::::
(e.g. Wilks, 2011)

:
.
::
As

:::
our

::::
time

:::::
series

::
of

::::::
winter

:::::
MSLP

:::::::::
anomalies

:::
and

::::::
GBSA

:::
are

:::::::
normally

:::::::::
distributed

:::
by

::::::::
definition,

:::
the

::::::::::::
climatological

::::::::::
frequencies

:::
can

::
be

:::::::
derived

::::
from

:::
the

::::::::
Gaussian

::::::
normal

::::::::::
distribution.

:::
For

::::::::
instance,

:
a
::::::::::::
climatological

::::::
random

:::::::::
prediction

:::
for

::::
high

:::::
storm

:::::::
activity,

:::::
which

::
is

::::::
defined

:::
via

:
a
::::::::
threshold

::
of

::::
one

:::::::
standard

::::::::
deviation

:::::
above

:::
the

:::::
mean,

::::::
would

:::::
always

::::::
predict

::
a
::::
fixed

:::::::::
occurrence

::::::::::
probability290

::
of

::::::::::::::::::::
Fi = 1−Φ(1) = 0.1587.

:::::
Here,

:::::
Φ(x)

::::::::
describes

:::
the

:::::::::
cumulative

::::::::::
distribution

:::::::
function

:::
of

:::
the

::::::
normal

::::::::::
distribution.

:::::
Φ(x)

:::::
gives

::
the

::::::::::
probability

:::
that

::
a

::::::
sample

:::::
drawn

:::::
from

::
the

::::::::
Gaussian

::::::
normal

::::::::::
distribution

::
at

:::::::
random

:
is
:::::::
smaller

::
or

:::::
equal

::
to

:::::::
µ+xσ,

::::
with

:
µ
::::
and

:
σ
::::::::
denoting

:::
the

::::
mean

::::
and

:::::::
standard

::::::::
deviation

::
of

:::
the

::::::::::
distribution,

:::::::::::
respectively.

3 Results and Discussion

3.1 Deterministic Predictions295

3.1.1 Mean Sea-Level Pressure

Since geostrophic storm activity is an MSLP-based index, we first investigate the
::::::::
correlation

::::::::
between

:::
the

:
model’s deter-

ministic prediction skill for
:::::::::
predictions

:::
of

:
winter (DJF) MSLP

:::
and

::::
data

:::::
from

:::
the

:::::
ERA5

:::::::::
reanalysis

::::::::
product,

::::::::
expressed

:::
as

::
the

:::::::::::::
gridpoint-wise

:::::::
anomaly

::::::::::
correlation

:::::::::
coefficient

::::::
(ACC). For lead year 4-10 winter MSLP anomalies, the model displays

significant prediction skill
::::::
ACCs

:::
are

::::::
positive

:
over larger parts of the subtropical Atlantic, as well as Northeastern Canada and300

Greenland (Fig. 5a). It also shows significant skill
:::::::
Negative

::::::
ACCs

::::::
emerge in a circular area west of the British Isles. Over the

German Bight, however, the skill
:::::
ACC for winter MSLP

::::::::
anomalies is insignificant. The pattern over the subtropical Atlantic
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Ocean agrees with the multi-model study by Smith et al. (2019), who found significant skill for winter MSLP in similar regions

at lead years 2-9. Smith et al. (2019) however also found skill over Scandinavia, where our DPS fails to provide any evidence

of skill for long averaging periods. But for
:::
The

:::::
ACC

::::::
pattern

::
of

::::
lead

::::
year

::::
4-10

::
is
::::
also

::::::
present

:::
for

::::
most

:::::
other

::::
lead

::::
year

::::::
ranges305

::::
with

::::::::
averaging

::::::
periods

::
of

::
5
::
or

:::::
more

::::
years

::::
(not

:::::::
shown).

:::
For the single lead year 7, our DPS displays significant skill

::
the

::::::
ACC

:
is
::::::::

negative over Scandinavia. Anyhow, the overall

magnitude
::::::
Across

:::
the

:::
rest

::
of

:::
the

::::::
spatial

:::::::
domain,

:::
the

:::::::
absolute

::::::
values of the ACC is

::
are

:
lower for lead year 7 , but the pattern

shows some similarity compared to lead years 4-10 (Fig. 5b) . In Scandinavia, a region of significant skill emerges, which is310

not present in the longer lead year range
:::
than

:::
for

::::
lead

:::
year

:::::
4-10,

:::
but

:::
the

::::::
pattern

:::::
shows

:::::
some

::::::::
similarity. Again, there is little to no

skill for winter MSLP in the
:::::
ACC

:
is
:::::::::::
insignificant

::::
over

:::
the German Bight. Over the majority of the spatial domain, ,

:::::::::
indicating

::
an

:::::::::
insufficient

::::
skill

:::
to

:::::::
properly

::::::
predict

::::::
winter

::::::
MSLP

:::::::::
anomalies.

::::
The

::::::::::::
characteristics

::
of

:::
the

:::::
ACC

::::::::::
distribution

::
in

::::
Fig.

:::
5b

::::
also

::::
hold

::
for

:::::
other

:::::
single

::::
lead

:::::
years,

:::::::::
suggesting

::::
that

:
longer averaging periods

:::::::
generally

:
result in higher absolute correlations, both

for regions with positive and negative correlation values.315

The general lead-year dependence of the deterministic prediction skill agrees with previous findings of Kruschke et al. (2014)

, Kruschke et al. (2016), and ? for other storm activity-related variables. In our study, the deterministic skill mainly depends on

the length of the lead time window, rather than the lead time (i.e., the temporal distance between the predicted point in time and

the model initialization). This dependency on the window length implies that the deterministic predictions are unable to predict

the short-term variability within winter MSLP. When applying longer averages, these year-to-year fluctuations are smoothed320

out, resulting in a higher prediction skill which likely arises from better predictable low-frequency variability of winter MSLP.

3.1.2 Storm Activity

We find that the DPS shows some skill
:::::
ACC

:::::::
between

::::::
ERA5

:::
and

:::::
DPS

:::::::::
predictions

:
for winter MSLP

:
is
:::::::::::
significantly

:::::::
positive

in certain regions of the North Atlantic, especially when averaged over multiple prediction years, but falls short of providing325

skillful predictions
::::
being

::::::::::
significant over the German Bight. Anyhow

::::
Still, the general prediction skill of winter MSLP, in

combination with similar prediction skill of winter MSLP gradients (not shown),
::::::::
predictive

::::::::::
capabilities

::
of

:::
the

::::
DPS

:::
for

::::::
winter

:::::
MSLP

:
motivates the investigation of GBSA predictability. To investigate GBSA predictability , we calculate the ensemble

mean GBSA. The deterministic prediction skill
::::
Fig.

:
6
::::::
shows

:::
the

:::::::::::
deterministic

:::::::::::
predictability

::
of

::::::
GBSA,

::::::::
expressed

:::
as

:::
the

:::::
ACC

:::::::
between

:::
the

::::::
model

::::::::
ensemble

:::::
mean

::::
and

:::::::::::
observations

:::
for

:::
all

:::::::
possible

::::
lead

::::
time

:::::::::::::
combinations.

:::::
Here,

:::::
single

::::
lead

:::::
years

::::
are330

::::::::
displayed

:::::
along

::
the

::::::::
diagonal,

:::::
while

:::
the

::::::
length

::
of

:::
the

::::::::
averaging

:::::
period

::::::::
increases

:::::::
towards

:::
the

::::::
bottom

::::
right

::::::
corner.

::::
The

:::::
ACC for

GBSA is insignificant for most single prediction years (except for lead years 1, 5,
::
7,

:
and 8), whereas

::
but

:
it increases towards

longer averaging periods(Fig. 6). The skill
:
.
::::
The

:::::
ACC

:
exhibits a clear dependence on the length of the averaging period,

with lead years 1-10 showing the highest overall skill
:::::
ACC among all lead year ranges (r = 0.71). Apart from lead years

2-3 and 9-10, the ensemble mean tends to become more skillful with longer averaging periods, and shows significant positive335

skill
:::::
ACCs

:
for all multi-year prediction periods. This stands in clear contrast to the results for winter MSLP predictionsin the
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Figure 6. Deterministic prediction skill of
::::::
Anomaly

:::::::::
correlation

::::::::
coefficients

:::::::
between

::
the

::::::::::
deterministic

:
DPS for

::::::
forecasts

:::
and

::::::::::
observations

::
of

German Bight storm activity for all combinations of start (y-axis) and end lead years (x-axis). Numbers in boxes indicate those correlation

coefficients that are significantly different from 0 (p≤ 0.05).

German Bight, where the model failed to be skillful
::::::
produce

:::::::::
significant

::::::
ACCs

:
for both short and long averaging periods .

::
in

::
the

:::::::
German

:::::
Bight

::::::::
(compare

::::
Fig.

::::::
3.1.1).

Similar to the predictability of winter MSLP (Sect. 3.1.1), we again find a dependency of GBSA predictability on the length340

of the averaging window. Again, we argue that this may be caused by smoothing out the short-term variability that is apparent

in reconstructed time series of annual GBSA (Krieger et al., 2020). There is, however, a notable lack of a dependency of

the deterministic skill
::::::::
However,

:::
the

:::::
ACC

::
is
:::::::

notably
:::::::::::
independent on the lead time. We would expect a deterioration of the

deterministic skill
:::::
ACC with increasing temporal distance from the initialisation, i.e. along the diagonals

::::::
diagonal

:
in Fig. 6.

Instead, we observe a relative hotspot of predictability for lead year ranges of 2 to 4 years that start at lead year 3 and 4 (i.e.,345

lead years 3-4 till 3-6 and 4-5 till 4-7). These ranges demonstrate higher predictability than comparable ranges closer to the

present, which is counter-intuitive. At this point, we are unable to come up with a convincing explanation for this behavior.

Thus, further studies are needed to investigate why the prediction skill does not steadily decline with increasing lead times. .
:

3.2 Probabilistic Predictions

Since the deterministic predictions investigated so far are based on the ensemble mean, they do not take the ensemble spread350

into account. Therefore, we now make use of the large ensemble size to also generate probabilistic predictions for high,

moderate, and low storm activity events, as well as high, moderate, and low winter MSLP anomaly events. We expect the DPS
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to be skillful in predicting probabilities since the large ensemble size allows us to detect shifts in the tails
:::::::
changes

::
in

:::
the

:::::
shape

of the ensemble distribution.

3.2.1 Mean Sea-Level Pressure355

When predicting positive winter MSLP anomalies (Fig. 7a and 7b), the DPS significantly outperforms persistence (BSS > 0)

over large parts of the Central North Atlantic and Europe for both short and long lead year ranges.
:::
lead

:::::
years

::::
4-10

:::
and

::
7.

:
Over

the North Sea, however, the BSS of the model is indistinguishable from 0 for lead years 4-10, indicating very limited skill to

correctly predict positive winter MSLP anomalies. For lead year 7 predictions of positive winter MSLP anomalies, the BSS

is slightly higher over the North Sea, with a higher model skill than that of persistence for most of the gridpoints. A similar360

pattern is found in predictions of negative anomalies (Fig. 7c and 7d), where the DPS does not show any additional skill com-

pared to persistence over the North Sea for lead years 4-10, but improves for lead year 7. Most notably, the DPS outperforms

persistence in the far North Atlantic for lead years 4-10, but fails to do so in the subtropical North Atlantic.

Predictions of moderate winter MSLP anomalies (Fig. 7e and 7f) are skillful
::::::::
compared

::
to

:::::::::
persistence

:
over most of the spa-365

tial domain. Still, a region of poor skill emerges over the German Bight and adjacent areas for lead year 4-10 predictions, while

lead year 7 predictions show a BSS significantly higher than 0. The high BSS values of moderate anomaly predictions, how-

ever, are caused by poor performance of the persistence prediction serving as a reference. The BS of this reference prediction

is significantly higher than 0.25 (not shown), demonstrating that persistence predictions are even less skillful than a random

guessing-based
:::
coin

:::::::::
flip-based prediction which assumes an occurrence probability of 50 % for every year. Hence, the BSS370

against persistence alone should not be used to infer the absolute skill of the DPS for moderate winter MSLP anomaly events.

Therefore, we additionally test the skill of the model for winter MSLP anomalies against random guessing
:::
that

:::
of

::
a

:::::::::::::::
climatology-based

::::::::
prediction

:
(Fig. ??

:
8). The model outperforms random guessing for both positive

::::
BSS

::::::::
compared

::
to
::::::::::
climatology

:
is
::::::
mostly

:::::::::::::::
indistinguishable

::::
from

::
0

:::
for

::::
both

::::
lead

:::::
years

::::
4-10

:
(Fig. ??aand ??b) and negative

:::
8a,

:::
8c,

:::
and

:::
8e)

::::
and

:
7
:

(Fig. ??c375

and ??d) winter MSLP anomalies, which is to be expected as extreme anomaly events occur much less frequently than the

assumed probability of 50
:::
8b,

:::
8d,

:::
and

::::
8f),

::::::::
indicating

::
a

::::
very

::::::
limited

::::::::
potential

::
of

:::
the

::::
DPS

::
to

::::::::::
outperform

::::::::::
climatology

::::
over

::::
vast

::::
parts

::
of

:::
the

:::::
North

::::::::
Atlantic

:::::
sector.

::::::
Large

::::::
patches

::
of

:::::::
positive

:::::
BSS

::::::
values

:::
are

:::::
found

::
in
::::

lead
::::
year

:::::
4-10

:::::::::
predictions

::
of

::::::::
negative

:::::
winter

::::::
MSLP

:::::::::
anomalies

::::
over

:::
the

::::::
tropical

:::::::
Atlantic

:::::
(Fig. % by definition.However, the model

::::
8c),

:::::::
whereas

:::::::
negative

:
BSS for

moderate
:::::
values

:::::::
emerge

::::
over

:::
the

::::
polar

::::::
North

:::::::
Atlantic

:::
for

::::
lead

::::
year

::::
4-10

:::::::::
predictions

:::
of

:::::::
positive

:::
and

::::::::
moderate

::::::
winter

::::::
MSLP380

::::::::
anomalies

:
(Fig. ??e and ??f)winter MSLP anomalies is mostly indistinguishable from 0, indicating a very limited potential

of the DPS to predict moderate
::
8a

::::
and

:::
8e),

::
as

::::
well

::
as

::::
over

:::
the

::::::
central

:::::
North

:::::::
Atlantic

:::
for

::::
lead

::::
year

::::
4-10

:::::::::
predictions

:::
of

:::::::
negative

winter MSLP anomalies better than randomly predicting them with a coin flip.
::::
(Fig.

:::
8c).

Overall, the DPS appears to predict positive and negative German Bight winter MSLP anomalies better than persistence385

for short averaging periods, while it fails to significantly outperform persistence for longer averaging periods. This inverted
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Figure 7. Probabilistic prediction
::::::::
Prediction skill for

:
of
::::::::::
probabilistic

::::::
forecasts

::
of

:
positive (a,b), negative (c,d), and moderate (e,f) winter mean

(DJF) MSLP anomalies, expressed as the Brier Skill Score (BSS) of the 64 member ensemble evaluated against a persistence prediction as

a baseline for lead years 4-10 (a,c,e) and lead year 7 (b,d,f). Thresholds for event detection are set to −1σ
:
-1
:

and 1σ
::
1.

:::
The

::::::
German

:::::
Bight

:
is
::::::
marked

::
by

::
a

::
red

:::
dot. Stippling marks areas with a BSS significantly different from 0 (p≤ 0.05).

dependency of the skill on the length of the averaging window (i.e., a higher skill for shorter periods) indicates that the
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Figure 8.
::::
Like

:::
Fig.

::
7,

:::
but

:::::::
evaluated

::::::
against

:
a
::::::::::::::
climatology-based

:::::::
prediction

::
as

:
a
:::::::

baseline.

assumption of a capability of the DPS to skillfully predict the underlying low-frequency variability is only valid for deterministic

predictions (see Sect. 3.1) , but not for probabilistic predictions. Here, the DPS appears to be more skillful for probabilistic

predictions of short averaging periodsand thus the high-frequency variability of winter MSLP anomalies. The skill of probabilistic390

predictions of moderate winter MSLP anomalies significantly exceeds that of persistence , yet this
::
In

:::::::
addition,

:::
the

:::::
DPS

::::
fails
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Figure 9. Brier Skill Score (BSS) of the 64 member ensemble for high storm activity evaluated against a persistence prediction as a baseline,

shown for all combinations of start (y axis) and end lead years (x axis). Numbers in boxes are those BSS that are significantly different from

0 (p≤ 0.05). A storm activity level of 1σ 1
:

is used as a detection threshold for high activity.

::
to

::::::::::
consistently

:::::::::
outperform

::::::::::
climatology

::::
over

:::::
large

::::
parts

::
of

:::
the

:::::
North

:::::::
Atlantic

::::::
region

:::
for

::::
both

::::
short

:::::
(lead

::::
year

::
7)

:::
and

::::
long

:::::
(lead

:::
year

:::::
4-10)

:::::::::
averaging

:::::::
periods.

::::
The

::::::::::
comparison

::
to

::::::::::
climatology

::::::::
indicates

::::
that

:::
the

::::
high

::::
skill

::
of

:::
the

::::::
model

:::::
when

:::::
tested

:::::::
against

:::::::::
persistence

:
is caused by the low skill of persistence predictions rather than high skill of the DPS.

:::
poor

:::::::::::
performance

:::
of

:::
the

:::::::::
persistence

:::::::::
prediction,

:::::
rather

::::
than

:::
the

:::::::::
prediction

::::::
quality

::
of

:::
the

::::::
model.

::::::::::::
Nevertheless,

:::
the

:::::
model

::::::
shows

::::
some

::::::::
potential

::
to

:::::
bring395

::::::::
additional

:::::
value

::
to

:::
the

::::::
decadal

::::::::::::
predictability

::
of

:::::
winter

::::::
MSLP

:::::::::
anomalies.

:

3.2.2 Storm Activity

The skill evaluation of probabilistic winter MSLP predictions shows that the BSS of the DPS for positive and negative anoma-

lies are significantly better than those of persistence for large parts of the spatial domain. However, for long averaging periods,

we do not observe a significant difference in skill between the DPS and persistence over the German Bight.
::::
Also,

:::
the

::::::
model400

:::
fails

::
to
::::::::::
outperform

::::::::::
climatology

:::
for

::::
most

::::
parts

:::
of

:::
the

:::::
North

:::::::
Atlantic

:::::
sector.

:
We now investigate the skill of probabilistic predic-

tions of high, moderate, and low storm activity events, again using persistence as our baseline
:::
and

::::::::::
climatology

::
as

:::
our

::::::::
baselines.

For high storm activity predictions, the ensemble BSS
::::::
against

:::::::::
persistence

:
is positive for all lead year combinations, in-

dicating a better performance of the DPS than persistence (Fig. 9
:
a). The BSS is significantly positive for most 1-2 year405

averaging windows, as well as for very long averaging windows .
:
(7

:::::
years

:::
or

::::::
more).

:::::
When

::::::
testing

:::
the

:::::::
model’s

::::
high

::::::
storm

::::::
activity

:::::::::
predictions

:::::::
against

:
a
::::::::::::::::
climatology-based

:::::::
forecast

::::
(Fig.

::::
9b),

:::
we

::::
find

::::
that

:::
the

:::::
model

:::::::
exhibits

:::::::::
significant

::::
skill

:::
for

:::::
most

::::::::
averaging

::::::
periods

::::
with

:
a
::::::
length

::
of

:
4
::
or

:::::
more

:::::
years,

:::
but

:::::
shows

:::
no

::::
skill

::
for

:::::
short

::::::::
averaging

:::::::
periods.

:::
The

::::::::::
distribution

::
of

:::::::::
significant
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Figure 10. Brier Skill Score (BSS) of the 64 member ensemble
:::
Like

::::
Fig.

::
9,
:::

but
:
for low storm activityevaluated against a persistence

prediction as a baseline, shown for all combinations of start (y axis) and end lead years (x axis). Numbers in boxes are those BSS that are

significantly different from 0 (p≤ 0.05). A
:::::
defined

::
as storm activity level of −1σ is used as a detection threshold for low activity.

::::
below

::
-1.
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Figure 11. Brier Skill Score (BSS) of the 64 member ensemble
:::
Like

::::
Fig.

::
9,

::
but

:
for moderate storm activityevaluated against a persistence

prediction as a baseline, shown for all combinations of start (y axis) and end lead years (x axis). Numbers in boxes are those BSS that are

significantly different from 0 (p≤ 0.05). A
:::::
defined

::
as storm activity level of 1σ is used as a detection threshold for high activity.

::::::
between

::
1

:::
and

::
-1.
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::::
BSS

::::::
values

::::::
among

:::
the

::::
lead

:::::
year

:::::::::::
combinations

::::::
against

:::::::::::
climatology

::::::
differs

:::::::
strongly

::::
from

::::
the

:::
one

::::::::
obtained

:::::::
through

::::::
testing

::::::
against

:::::::::
persistence

::::::::
(compare

::::
Fig.

::::
9a),

:::
and

:::::
much

:::::
rather

:::::::::
resembles

:::
the

:::::::::
distribution

::
of

::::::::
anomaly

:::::::::
correlation

::::::::::
coefficients

:::::::
between410

::
the

:::::::::::
deterministic

::::::::::
predictions

:::
and

:::::::::::
observations

::::
(see

::::
Fig.

:::
6).

:::::::::::
Furthermore,

:::
the

:::::
BSS

::::::
against

::::::::::
climatology

::
is
:::::
lower

::::
than

:::::::
against

:::::::::
persistence

:::
for

:::::
most

::::
lead

::::
year

:::::::
periods,

:::::::::
indicating

:::
that

:::::::::::
climatology

::::::::
generally

:::::
poses

:
a
:::::::

tougher
:::::::::
challenge

:::
for

:::
the

::::::
model

::::
than

:::::::::
persistence.

For low storm activity prediction (Fig. 10
:
a), the BSS is again positive for all lead year combinations. The BSS is signifi-415

cantly different from 0 for single year and 3-year range predictions except for lead year 2, and lowest for averaging periods of

5-7 years. There appears to be a higher skill difference between the DPS and persistence
:::
The

:::::
higher

:::::
BSS

:
for single years than

for periods of 5-7 years , indicating
:::::::
indicates

:
that the model is most valuable at skillfully

:::::::
valuable

::
at predicting short periods.

This behavior agrees with the findings in Sect. 3.2, which demonstrated significantly
::::::::::
significantly

:::::::::::
demonstrated

:::::::
positive skill

for German Bight winter MSLP anomalies for a short period (lead year 7), but not for a multi-year average (lead years 4-10).420

::::::::
However,

:::
the

:::::
model

::::
only

:::::::::::
outperforms

::::::::::
climatology

::::
(Fig.

::::
10b)

:::
for

::::
lead

::::
year

:::::
3-10,

:::::
while

::
all

:::::
other

::::
lead

:::::
years

::::
show

:::::::::::
insignificant

::::
BSS

::::::
values.

::::
This

:::::::
suggests

::::
that

:::::
while

:::
the

:::::
model

::
is

::::
able

::
to

:::
beat

::
a

::::::::::::::
persistence-based

:::::::::
prediction,

::
it

::::
does

:::
not

::::::
present

:::
any

:::::::::
additional

:::
skill

:::::::::
compared

::
to

::::::::::
climatology.

Moderate storm activity predictions (Fig. 11
:
a) also exhibit positive BSS values for all lead year ranges

::::::::
compared

:::
to425

:::::::::
persistence, and are significantly different from 0 except for lead years 8-9. However, this apparent high skill compared to

persistence is once again only caused by the relative underperformance of the persistent reference prediction. Similar to the

evaluation of winter MSLP anomalies
:::::::::
persistence

:::::::::
prediction.

::
A

::::::::::
comparison

::::
with

:::::::::::
climatology (Fig. ??) , we can challenge

the model more honestly by replacing persistence with random guessing which assesses the model’s prediction skill more

realistically
::::
11b)

::::::::
confirms

:::
that

:::
the

::::::
model

:::::::::::
significantly

::::::::::
outperforms

::::::::::
climatology

:::
for

::::
lead

::::
year

::::
2-3

::::
only,

::::
and

:::::
shows

::
a
:::::::
reduced430

:::
skill

:::
for

::::
lead

:::::
years

::
5,

:::
5-6,

::::
and

:::
10,

:::::
while

:
it
:::::
does

:::
not

:::::
differ

::
in

::::
skill

::
for

:::
all

::::::::
remaining

::::
lead

::::::
years.

::::::
Overall,

::::
the

::::
skill

::
of

:::
the

:::::::::::
probabilistic

:::::::
forecast

::::::
mostly

::::::::
depends

::
on

:::
the

::::::
choice

:::
of

::::::::
reference. While the BSS for both high

(Fig. ??)and low (Fig. ??) storm activityagain outperform random guessing as expected, the comparison of predictions of

moderate storm activity against random guessing (Fig. ??) reveals that all significantly positive BSS values vanish, and ,435

for several lead year ranges, the model BSS even turns negative. Thus, we conclude that
:::::
model

::::::::::
outperforms

::::::::::
persistence

::::
over

::
the

::::::::
majority

::
of

::::
lead

:::::
times

:::
in

::
all

:::::
three

:::::::::
categories

:::::
(high,

:::::::::
moderate,

:::::
low),

:
it
:::::

only
::::::::::
outperforms

::::::::::
climatology

:::
in

::::::::
predicting

:::::
high

:::::
storm

::::::
activity

:::
for

:::::
longer

:::::::::
averaging

::::::::
windows.

:::
For

::::::::::
probabilistic

::::::::::
predictions

::
of

::::::::
moderate

:::
and

::::
low

:::::
storm

::::::
activity,

:
the probabilistic

approach is not viable to skillfully predict moderate storm activity events.
:::::
model

::::
does

:::
not

::::::::::
outperform

::::::::::
climatology.

::::::::::
Predictions

::
of

::::
high

:::::
storm

:::::::
activity

::::
with

:::
an

::::::::
averaging

:::::::
window

:::
of

:
6
:::

or
:::::
more

:::::
years

:::
are

:::
the

::::
only

:::::
ones

:::::
where

:::
the

::::::
model

::::::::::
outperforms

:::::
both440

::::::::::
climatology

:::
and

::::::::::
persistence.

Despite the inability of the DPS to skillfully predict moderate storm activity, the results suggest that our approach of

employing a large ensemble notably aids the
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3.3
:::::::::

Discussion

:::
We

:::
find

::::
that

:::
the

:::::
ACC

:::::::
between

:::::::::::
deterministic

::::::::::
predictions

:::
and

:::::::::::
observations

::
of

::::::
winter

::::::
MSLP

::::::::
anomalies

::::
over

:::::
large

::::
parts

:::
of

:::
the445

:::::
North

:::::::
Atlantic

:::
and

::::::
GBSA

:
is
:::::::
positive

:::
and

:::::::::::
significantly

:::::::
different

::::
from

::
0

::
for

:::::
most

:::::::::
multi-year

::::::::
averaging

:::::::
periods.

::::
Over

:::
the

:::::::
German

:::::
Bight,

::::::::
however,

::::::
ACCs

::
for

::::::
winter

::::::
MSLP

:::::::
anomaly

:::::::::
predictions

:::
are

:::::::::::
insignificant.

:::
We

::::::::::
hypothesize

::::
that

:::::
while

:::
the

:::::
model

::
is

::::::
unable

::
to

::::::::::::::
deterministically

::::::
predict

:::::
winter

::::::
MSLP

:::::::::
anomalies

::::
over

:::
the

:::::::
German

::::::
Bight,

:
it
::
is
::::
able

::
to

::::::
predict

:::
the

::::::
annual

:::::
upper

::::::::::
percentiles

::
of

:::::
MSLP

::::::::
gradients

::::::::::
sufficiently

::::
well

:::
for

:::
the

::::::
ACCs

::
of

::::::
GBSA

::
to

:::::::
become

:::::::::
significant.

:::::
This

:::::
might

::
be

::::
due

::
to

:::
the

:::::
model

::::::::
showing

::::
some

:::::::::
predictive

:::::::::
capabilities

:::
for

::::::::::
sufficiently

::::
large

:::::::::
deviations

::::
from

:::
the

:::::
mean,

:::
but

:::
not

:::
for

::::::::::
fluctuations

::::::
around

:::
the

:::::
mean.

:
450

:::
The

:::::::
general

::::::::
lead-year

::::::::::
dependence

::
of

:::
the

:::::::::
magnitude

:::
of

:::
the

:::::
ACC

::::::
agrees

::::
with

::::::::
previous

:::::::
findings

::
of

:::::::::::::::::::
Kruschke et al. (2014)

:
,
::::::::::::::::::
Kruschke et al. (2016)

:
,
:::
and

::::::::::::::::::::
Moemken et al. (2021)

::
for

:::::
other

:::::
storm

:::::::::::::
activity-related

:::::::::
variables.

::
In

::::
our

:::::
study,

:::
the

::::::::::
correlation

:::::::
between

::::::::
reanalysis

::::
and

::::::::
prediction

:::::::
mainly

:::::::
depends

::
on

::::
the

:::::
length

::
of

:::
the

::::
lead

:::::
time

:::::::
window,

:::::
rather

::::
than

:::
the

::::
lead

::::
time

:::::
(i.e.,

:::
the

:::::::
temporal

:::::::
distance

:::::::
between

:::
the

::::::::
predicted

:::::
point

::
in

:::
time

::::
and

:::
the

:::::
model

::::::::::::
initialization).

:::
We

::::::::::
hypothesize

:::
that

::::
this

::::::::::
dependency

:::::
might

::
be

:::::::::
attributable

:::
to

::
the

:::::::
filtering

::
of

:::::::::::::
high-frequency

:::::::::
variability

::
by

:::
the

::::::
longer

::::::::
averaging

::::::::
windows,

::
in
:::::::::::
combination

::::
with

:::
the model’s455

prediction skill. Contrary to previous studies on the decadal predictability of wind-related quantities, we find significant skill

for extreme storm activity in the German Bight.The size of the ensemble might contribute to this skill, as similar analyses

with smaller subsets of the DPS ensemble resulted in a slightly lower prediction skill (not shown), confirming the findings

of Sienz et al. (2016) and Athanasiadis et al. (2020).
:::::
ability

::
to

:::::
better

:::::::
predict

:::
the

:::::::::
underlying

::::::::::::
low-frequency

:::::::::
oscillation

:::
in

:::
the

:::::::::
large-scale

:::::::::
circulation.

::::::
While

::::
our

:::::
model

::
is
:::::::

unable
::
to

::::::::::::::
deterministically

::::::
predict

::::
the

:::::::::
short-term

:::::::::
variability

::::::
within

::::::
records

:::
of460

::::::
GBSA,

:::::
these

::::::::::
year-to-year

::::::::::
fluctuations

:::
are

:::::::::
smoothed

:::
out

::
in

::::::::::
predictions

::
of

:::::::::
multi-year

::::::::
averages,

::::::::
resulting

::
in
::

a
::::::
higher

::::::
ACC.

::::::::::
Additionally,

:::
we

::::::
would

:::
like

::
to

::::
note

:::
that

::::::::
temporal

::::::::::::
autocorrelation

:::::
might

:::::::
account

::
for

::
a

:::
part

::
of

:::::
these

::::
high

:::::
ACC

::::::
values.

:::::::::
Smoothing

:::
that

::::::
results

:::::
from

:::
the

:::::::::
multi-year

::::::::
averaging

:::::::
process

:::::::::
introduces

::::::::::
dependence

:::
to

:::
the

::::
time

::::::
series

:::::
which

::::
may

::::
lead

:::
to

:::::::::
artificially

::::::
inflated

::::::
ACCs

::::::::
compared

::
to
::::::::::::
non-smoothed

::::
time

::::::
series.

465

:::
The

::::
lack

::
of

::
a
::::::::::
dependency

::
of

:::
the

::::::
ACC

::
on

::::
the

:::::::
temporal

:::::::
distance

:::::
from

:::
the

:::::::::::
initialization,

::::::::
however,

::::::
cannot

:::
be

::::::::
explained

:::
by

::::::::
multi-year

:::::::::
averaging.

::::
The

::::::
relative

:::::::
hotspot

::
of

:::::::::::
predictability

:::
for

::::
lead

::::
year

::::::
ranges

::
of

:
2
:::

to
:
4
:::::
years

::::::
starting

::
at
::::
lead

::::
year

::
3
:::
and

::
4
::
is

::::::::::::::
counter-intuitive,

::::::::
especially

::::
due

::
to

:::
the

::::::::::
insignificant

::::::
ACCs

:::
for

::::
lead

:::::
years

::
2,

::
3,

::
4,

:::
and

::::
2-3.

:::::
These

:::::::::::
insignificant

::::::
ACCs

:::::::
between

:::::
GBSA

:::::::::::
observations

::::
and

:::::::::::
deterministic

:::::::::
predictions

::::
hint

::
at

::
a
:::::::
possible

:::::::::::
initialization

:::::
shock

::::::::::
influencing

:::
the

:::::
model

::::::::::::
performance.

::
In

::::
fact,

:::
the

:::::::
average

::::::::::
geostrophic

::::
wind

::::::
speed

:::
for

:::
lead

:::::
years

:::
2,

::
3,

:::
and

::
4
::
is

:::::
lower

::::
than

:::
for

::::
lead

::::
year

::
1

:::::
(Fig.

::
3),

::::::::::
supporting

:::
the470

:::::::::
hypothesis.

:::::
Since

::
all

::::::
annual

:::::::::
percentiles

:::
are

:::::::::::
standardized

:::::
using

::::
lead

::::
year

:
1
::
as

::
a
::::::::
reference,

:::
we

::::::
expect

:::
the

:::::::
resulting

:::::::::::
standardized

:::::
storm

::::::
activity

:::
for

::::
lead

:::::
years

::
2,

::
3,

:::
and

::
4

::
to

::
be

:::::::
slightly

:::::
lower

::::
than

:::
for

:::
lead

::::
year

::
1.
:
However, the impact on prediction skill by a

further increase in the number of members is yet to be investigated.

Our separation of the probabilistic predictions also demonstrates the necessity to evaluate the skill for each prediction

category individually. The model shows skill in regions where previous studies that used a combined probabilistic skill score475

did not find any skill for storm-related quantities (e.g. Kruschke et al., 2016)
::::::
average

::::::::::
geostrophic

:::::
wind

::::::
speeds

:::
for

:::
lead

:::::
years

::
5

::::::
through

:::
10

:::
are

::::
also

:::::
lower

::::
than

::
for

::::
lead

::::
year

::
1,
:::
yet

:::
the

::::::
ACCs

:::
for

:::::
these

::::
lead

:::::
years

:::
are

::::::::
significant

::::::
again.

::
In

::::::::
addition,

:::
we

:::::
tested
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::::::
whether

::::::::::::
standardizing

::::
each

::::
lead

::::
year

::::
with

::
its

:::::::::
respective

::::
mean

::::
and

:::::::
standard

::::::::
deviation

:::::::
(instead

::
of

::::::
always

:::::
using

:::
lead

::::
year

:::
1)

:::
has

:
a
::::::
notable

:::::
effect

:::
on

:::
the

:::::
ACC.

::::
We

:::
find

::::
that

:::
the

:::::
ACC

:::::::
between

:::::
model

::::
and

::::::::::
observation

:
is
::::::
almost

:::::::::
unaffected

:::
by

:::
the

:::::
choice

:::
of

:::
our

::::::::::::
standardization

::::::::
reference

::::
(not

:::::::
shown).

::::::
Hence,

::
we

::::
rule

:::
out

::
an

:::::::::::
initialization

:::::
shock

::
as

:::
the

:::::
main

:::::
reason

:::
for

:::
the

:::
low

::::::
ACCs

:::
for

::::
lead480

::::
years

::
2,

::
3,
::::
and

::
4.

:::::::
Beyond

::::
that,

:::
we

:::
are

::::::
unable

::
to

:::::
come

::
up

::::
with

::
a
:::::::::
convincing

::::::::::
explanation

:::
for

:::
this

::::::::
behavior

::
at

:::
this

::::::
point.

:::::
Thus,

:::::
further

::::::
studies

:::
are

:::::::
needed

::
to

:::::::::
investigate

::::
why

:::
the

:::::
ACC

::::
does

:::
not

:::::::
steadily

::::::
decline

::::
with

:::::::::
increasing

::::
lead

::::
times.

Furthermore
:::
For

::::::::::
probabilistic

::::::::::
predictions, the choice of reference plays a crucial role in the evaluation of the DPS. Since we

test the performance of the model against that of persistence
::::::::::
persistence-

:::
and

:::::::::::::::
climatology-based

:
predictions, the BSS not only485

depends on the prediction skill of the model, but also on the skill of persistence
:::
the

:::::::
reference. Most likely, a significant BSS is

less a result of exceptional model performance, but rather indicates the limits of persistence. This dependence becomes overtly

apparent during the analysis of moderate GBSA predictability. Moderate GBSA predictability is overwhelmingly significant

::::::
skillful when evaluated against a persistent reference prediction. Anyhow this overwhelmingly

::::::::
However,

:::
this significant predic-

tion skill turns completely
::::::
mostly insignificant when evaluated against random guessing as reference prediction. The signifcant490

BSS for extreme GBSA should, consequently, also be treated cautiously.As for moderate GBSA, signifcant BSS for extreme

GBSA might turn out to be less a
:::::::::::::::
climatology-based

:::::::::
prediction.

:::
On

:::
the

::::::::
contrary,

:::
we

:::
also

::::
find

::::::
certain

::::
lead

:::::
times

::::::
where

::::
high

:::::
storm

::::::
activity

:::::::::
predictions

:::
by

:::
the

::::
DPS

::::
beat

::::::::::
climatology,

:::
but

:::
fail

::
to
::::
beat

::::::::::
persistence.

:::
The

:::::::::::
performance

::
of

::::::::::
persistence

::::
also

:::::::::
contributes

:::
to

:::
the

::::::
inverse

::::::::::
dependency

:::
of

:::
the

:::::::::::
probabilistic

::::
skill

::
on

::::
the

:::::
length

:::
of

:::
the495

::::::::
averaging

:::::::
window

::::
(i.e.,

:
a
::::::
higher

::::
skill

:::
for

::::::
shorter

:::::::
periods)

:::
that

:::::::
emerges

::
in

::::::::::
predictions

::
of

:::::::
German

:::::
Bight

:::::
MSLP

:::::::::
anomalies

:::::
when

:::::
tested

::::::
against

::::::::::
persistence.

:::::
Here,

:::
the

:::::
DPS

:::::::
exceeds

:::
the

::::
skill

::
of

::::::::::
persistence

:::
for

::::
short

:::::::::
averaging

:::::::
periods,

:::
but

::::
fails

:::
to

::
do

:::
so

:::
for

::::
long

::::::::
averaging

:::::::
periods.

:::::
This

:::::::::
contradicts

::::
the

::::::::::
assumption

::
of

:::
the

:::::::::
capability

::
of

::::
the

::::
DPS

:::
to

::::::::
skillfully

::::::
predict

:::
the

::::::::::
underlying

::::::::::::
low-frequency

:::::::::
variability

::::
(see

:::::
Sect.

::::
3.1).

:::::::::
However,

:::
the

:::::::
inverse

::::::::::
dependency

::
is

:::::
more

:::::
likely

::
a
:
result of exceptional model

performance , but might rather indicate the limits of persistence forecasts. Unfortunately, random guessing is ill-suited as a500

reference prediction to evaluate extreme GBSA predictability.Therefore,
:::::
better

::::::::::
performance

:::
by

:::
the

:
persistence still ranges

::::::::
prediction

:::
for

::::::
longer

:::::::::
averaging

:::::::
periods,

:::::
which

:::
in

:::
turn

::::::::::
challenges

:::
our

::::::
model

:::::
more

::::
than

:::
for

:::::
short

::::::::
averaging

:::::::
periods.

::::::
When

::::::::
evaluating

:::::::::::
probabilistic

:::::::::
predictions

::
of

::::
high

::::::
GBSA

::::::
against

:::::::::::
climatology,

:::
we

:::
find

::
a

::::::
similar

::::::::::
dependency

::
of

:::
the

::::
skill

::
on

:::
the

::::::
length

::
of

:::
the

::::::::
averaging

:::::::
window

::
as

::::::
within

:::::::::::
deterministic

:::::::::
predictions

::::
(i.e.,

:
a
::::::
higher

::::
skill

:::
for

:::::
longer

::::::::
periods),

::::::
further

:::::::::
confirming

::::
that

:::
the

::::::
inverse

::::::::::
dependency

::
is

::
an

::::::
artifact

::
of

:::
the

:::::::::::
performance

::
of

::::::::::
persistence.505

::::::
Despite

:::
the

:::::::::::::
aforementioned

::::::::
potential

:::::::::::
deficiencies,

::::
both

:::::::::
persistence

::::
and

::::::::::
climatology

::::
still

:::::
range

:
among the most appropri-

ate references predictions to evaluate extreme GBSA predictability– despite the aforementioned potential deficiencies. Our

:
.
:::
We

::::::::
therefore

:::::::
conclude

::::
that

:::
our

:
DPS is particularly valuable at lead times during which persistence

:::
the

::::::::
reference

:
forecasts

are sufficiently poor. Vice-versa, the benefits of a DPS are negligible at lead times during which the skill of the persistence510

:::::::
reference

:
forecast is sufficiently fair.

::::::::
Naturally,

::
we

::::::
cannot

:::::::::
determine

::
in

:::::::
advance

:::::
which

::
of

:::
the

:::
two

::::::::
reference

::::::::::
predictions

:::
will

:::
be

::::
more

::::::
skillful

::
at
:::::::::
predicting

::::::
GBSA.

::::
For

::::
most

::::
lead

::::
year

:::::::
periods,

::::::::
however,

::::::::::
climatology

:::::
poses

:
a
:::::::
tougher

::::::::
challenge

:::
for

:::
the

::::::
model
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:::
than

::::::::::
persistence,

:::
so

:::
we

:::::
argue

:::
that

::::::::::::
outperforming

::::::::::
climatology

::
is
:::
an

::::::::
indication

::::
that

:::
the

:::::
model

::::
can

:::::
bring

:::::
added

:::::
value

::
to

::::::
GBSA

:::::::::::
predictability.

515

:::
The

:::::::::
separation

::
of

:::
the

:::::::::::
probabilistic

:::::::::
predictions

::::
into

::::
three

:::::::::
categories

::::
also

:::::::::::
demonstrates

:::
the

::::::::
necessity

::
to

:::::::
evaluate

:::
the

::::
skill

:::
for

::::
each

::::::::
prediction

::::::::
category

::::::::::
individually.

:::
By

::::::::::
individually

::::::::
assessing

:::
the

::::
skill

:::
for

::::
each

:::::::
forecast

::::::::
category,

:::
we

::::
find

:::
that

:::
the

::::::
model

::
is

::::
more

::::::
skillful

::::
than

::::
both

:::::::::
persistence

::::
and

::::::::::
climatology

::
in

::::::::
predicting

::::
high

:::::
storm

::::::
activity

:::::::
periods

:::
for

::::::::
averaging

:::::::
windows

::::::
longer

::::
than

:
5
:::::
years.

:::
We

:::::::::
emphasize

::::
that

::::::::
evaluating

:::::
three

:::::::
separate

:::::::::::
two-category

:::::::
forecasts

::
is

:::
not

::
as

::::::::::
challenging

::
to

:::
the

:::::
model

::
as
::::::::::::
incorporating

::
all

:::::
three

::::::::
categories

::::
into

::::
one

:::::::::
aggregated

::::
skill

:::::::
measure

:::::
(e.g.,

:::
the

:::::::
Ranked

::::::::::
Probability

::::
Skill

::::::
Score,

::
or

::::::
RPSS).

::::
Yet,

::::
our

:::::::
analysis520

:::::
allows

::
us

:::
to

:::::
detect

:::
that

::::
our

:::::
model

::::::
shows

::::
skill

::
in

::::::
regions

:::::
where

::::::::
previous

::::::
studies

:::
that

:::::
used

:
a
::::::::
combined

:::::::::::
probabilistic

::::
skill

:::::
score

:::
did

:::
not

:::
find

:::
any

::::
skill

:::
for

:::::::::::
storm-related

::::::::
quantities

:::::::::::::::::::::::
(e.g. Kruschke et al., 2016),

:
a
::::::::::
conclusion

:::::
which

:::::
would

::::
have

:::
not

:::::
been

:::::::
possible

::
to

::::
draw

:::
by

::::::::
evaluating

::
a

:::::
single

::::::::::::
three-category

:::::::::
prediction.

:::
Our

::::::
results

:::
for

::::::::::
probabilistic

::::::::::
predictions

::::::
suggest

::::
that

:::
our

::::::::
approach

::
of

:::::::::
employing

::
a
::::
large

::::::::
ensemble

:::::::
notably

::::
aids

:::
the

:::::::
model’s525

::::::::
prediction

:::::
skill.

:::::::
Contrary

::
to
::::::::

previous
::::::
studies

:::
on

:::
the

::::::
decadal

:::::::::::
predictability

:::
of

::::::::::
wind-related

:::::::::
quantities,

:::
we

::::
find

:::::::::
significant

::::
skill

::
for

::::
high

:::::
storm

:::::::
activity

::
in

:::
the

:::::::
German

:::::
Bight,

:::::::::
especially

:::
for

::::
long

::::::::
averaging

:::::::
periods,

:::::
where

::::::
model

::::::::::
outperforms

::::
both

::::::::::
persistence

:::
and

:::::::::::
climatology.

::::
The

:::
size

:::
of

:::
the

:::::::::
ensemble

:::::
might

:::::::::
contribute

::
to
::::

this
:::::
skill,

::
as

:::::::
similar

:::::::
analyses

:::::
with

::::::
smaller

:::::::
subsets

::
of

::::
the

::::
DPS

::::::::
ensemble

:::::::
resulted

::
in
::

a
:::::::
slightly

:::::
lower

:::::::::
prediction

::::
skill

::::
(not

:::::::
shown),

::::::::::
confirming

:::
the

:::::::
findings

:::
of

::::::::::::::::
Sienz et al. (2016)

:::
and

:::::::::::::::::::::
Athanasiadis et al. (2020).

::::::::
However,

:::
the

::::::
impact

:::
on

::::::::
prediction

::::
skill

:::
by

:
a
::::::
further

:::::::
increase

::
in

:::
the

:::::::
number

::
of

::::::::
members

:
is
:::
yet

::
to

:::
be530

::::::::::
investigated.

As this study is based on a single earth system model, the inherent properties of the MPI-ESM-LR might impact our findings.

Thus, our conclusions drawn from these findings are only valid for this model. Model intercomparison studies for the decadal

predictability of regional storm activity might eliminate the influence of possible model biases and errors. These intercompar-535

isons will become possible once additional large-ensemble DPS products based on other earth system models are released.

It seems noteworthy that this study assumes annual storm activity and winter MSLP anomalies to be normally distributed,

since the standardization process in the calculation of storm activity and winter MSLP anomalies fits a normal distribution to

the data. Other distributions (e.g.,
:
a Generalized Extreme Value distribution) might also be suited for a similar analysis, and540

could provide an additional opportunity to enhance the description of storm activity and, thus, further improve the probabilistic

prediction skill in the future.

4 Summary and Conclusions

In this study, we evaluated the capabilities of a decadal prediction system (DPS) based on the MPI-ESM-LR to predict win-

ter MSLP anomalies over the North Atlantic region and German Bight storm activity (GBSA), both for deterministic and545
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probabilistic predictions. The deterministic predictions are based on the ensemble mean, whereas the probabilistic predic-

tions evaluate the distribution of the 64 ensemble members. We assessed the deterministic skill via the correlation coefficient

,
:::::::
anomaly

:::::::::
correlation

:::::::::
coefficient

:::::::
(ACC)

:::::::
between

:::::::::::
deterministic

::::::::::
predictions

:::
and

:::::::::::
observations

::
or

:::::::::
reanalysis

::::
data,

:::::::::::
respectively,

evaluated probabilistic predictions
::
for

:::::
three

:::::::
different

:::::::
forecast

::::::::
categories

:
with the Brier Score

::::
Skill

:::::
Score

::::::
(BSS), and tested the

probabilistic predictions of GBSA against a persistence-based
::::
both

:
a
::::::::::
persistence-

:::
and

::
a
:::::::::::::::
climatology-based

:
prediction.550

Through comparison with data from the ERA5 reanalysis, we found that the DPS shows poor skill for
:::::::
produces

:::::
poor deter-

ministic predictions of winter MSLP anomalies over the German Bight. Over the North Atlantic, certain regions with significant

skill
:::::
higher

::::::::::
correlations

:
emerge, but the skill

:::::::::
magnitude

::
of

:::
the

:::::
ACC

:
is heavily dependent on the length of the averaging win-

dow. In general, longer averaging periods result in higher absolute correlations. The skill
:::::::::::
predictability

:
for GBSA also depicts555

this same dependency on the lead range length, and is
::::::::
averaging

::::::
period,

::::::
where

::::::
ACCs

:::
are only significant for most non-single

yearlead times.We hypothesize that this lead time dependency might be attributable to the filtering of high-frequency variability

by the longer averaging windows, in combination with the model’s ability to better predict the underlying low-frequency

oscillation in the large-scale circulation.
::::::::
averaging

::::::
periods

:::::
larger

::::
than

::
1

::::
year.

560

In contrast to the limited deterministic skill, the DPS generates skillful probabilistic predictions for extreme low and high

::::::::::
Probabilistic

::::::::::
predictions

::
of

:
winter MSLP anomalies over the North Atlantic sector. This skill in predicting the extremes of

the distribution is significant for both long and short averaging periods
::
are

::::::
mostly

::::::
skillful

:::::
with

::::::
respect

::
to

::::::::::
persistence,

:::
but

:::
do

:::::::
generally

::::
not

::::
show

:::::::::
additional

::::
skill

:::::::::
compared

::
to

::::::::::
climatology. For the German Bight in particular, only predictions

::
for

:
short

lead year ranges are skillful
::::
with

::::::
respect

::
to

::::::::::
persistence, while predictions for longer averaging periods exhibit poor skill.As565

this stands in contrast to the deterministic predictability of winter MSLP anomalies, we want to emphasize that we do not have

a convincing explanation for this behavior and more research is needed.

This skill pattern for winter MSLP extremes translates to skillful predictions of extreme low and high GBSA, where the

model consistently outperforms persistence . Most notably, the probabilistic prediction shows good GBSAprediction skill for570

single lead years, a time domain where deterministic predictions struggle to be skillful. The skill of probabilistic predictions

is , however, limited to predictions of extreme activity. For periods with moderate storm activity, as well as moderate winter

MSLP anomalies, the probabilistic predictions

:::
For

::::::::::
probabilistic

::::::::::
predictions

::
of

:::::
high

:::::
storm

:::::::
activity,

:::::::::
averaging

:::::::
windows

:::
of

::
6

::
or

:::::
more

:::::
years

:::
are

:::::
more

::::::::
skillfully

::::::::
predicted

::
by

:::
the

:::::
DPS

::::
than

::
by

:::::
both

:::::::::
persistence

::::
and

::::::::::
climatology.

:::::
This

:::::
study

:::::::::::
demonstrates

::::
that

:::
the

::::::
model

::::
does

:::::
bring

::
an

::::::::::::
improvement575

::
to

:::::::::::
predictability

:::
of

::::::
GBSA,

::::
and

::::
that

::
a

:::::::::
separation

::::
into

:::::::
multiple

:::::::::
prediction

:::::::::
categories

::
is
::::::::

essential
::
to
:::::::::

detecting
:::::::
hotspots

:::
of

:::::::::::
predictability

::
in

:::
the

:::::
DPS

:::::
which

::::::
would

::::
have

:::::
gone

:::::::::
unnoticed

::
in

::
a
:::::
more

:::::::::
aggregated

::::
skill

::::::::::
evaluation.

:::::::::::
Furthermore,

:::
we

:::::
want

::
to

:::::::::
emphasize

:::
the

::::::
ability of the DPS does outperform persistence, but fails to show a significantly higher skillthan random

guessing
::
to

::::::::
especially

:::::
issue

:::::::
reliable

:::::::::
predictions

:::
for

:::::
high

:::::
storm

:::::::
activity,

::
as

::::
this

::
is

::::::::
arguably

:::
the

:::::
most

::::::::
important

::::::::
category

:::
for
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:::::
which

:::
we

:::::
could

::::
hope

::
to

:::::::
achieve

:::
any

:::::::::
prediction

::::
skill.580

The high skill of probabilistic predictions for short lead-year periods
::::
high

:::::
storm

:::::::
activity,

:::::::::
combined

::::
with

:::
the

::::::::
advantage

:::
of

::::::::::::
large-ensemble

:::::::
decadal

::::::::::
predictions,

:
can be expected to bring benefits to stakeholders, operators and the society in affected

areas by improving coastal management and adaptation strategies. The high skill of probabilistic GBSA predictions facilitates

the prediction of occurrence probabilities for different event categories, which might add to the applicability and usability of585

such predictions.

This study emphasizes the need to differentiate between event categories in the evaluation of GBSA predictability. Highly

aggregated probabilistic skill scores, which aim at incorporating the model performance for various categories into one single

value, might underestimate the capabilities to predict extremes, since poor performance in one event category could overshadow

a higher prediction skill in other categories.590

Additionally, the estimation of GBSA predictability heavily relies on the choice of a reference prediction. As it is difficult to

find a single reference which properly evaluates both the tails and the center of a distribution correctly, there might be a risk of

overestimating the capabilities of the DPS for certain event categories. However, further research is needed to investigate the

prediction skill sensitivity to the choice of a reference, which is beyond the scope of this study.

The findings of this study highlight the advantage of large-ensemble decadal predictions. By employing a large-ensemble595

DPS and restricting the probabilistic prediction approach to positive and negative extreme events
:::::::
carefully

::::::::
selecting

:
a
::::::
fitting

::::::::
prediction

:::::::
category, even regional climate extremes like GBSA can be skillfully predicted on multiannual to decadal timescales.

With ongoing progress in the research field of decadal predictions, and advancements in model development, we are therefore

confident that this approach opens up new possibilities for research and application, including the decadal prediction of other

regional climate extremes.600

Appendix A: Comparison of Multi-Year Averages

In order to compare hindcast predictions for different lead year ranges to observations, we average hindcast predictions and ob-

servations over the same time periods. For example, a hindcast for lead years 4-10, which by definition is formed by averaging

over a 7-year period, is always compared to a 7-year running mean of an observational dataset. The point-wise comparison of

time series is performed in such a way so that the predicted time frame matches the observational time frame. In other words,605

the lead year 4-10 prediction from a run initialized in 1960, which covers the years 1964-1970, is compared to the observational

mean of 1964-1970. To form
:
a time series from the model runs, the predictions from subsequent runs are concatenated. Thus,

the predicted lead year 4-10 time series consists of a concatenation of predictions from the runs initialized in (1960, 1961,

1962, 1963, ...), covering the years (1964-1970, 1965-1971, 1966-1972, 1967-1973, ... ).

Appendix B: Probabilistic Skill against Random Guessing610
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Probabilistic prediction skill for positive (a,b), negative (c,d), and moderate (e,f) winter mean (DJF) MSLP anomalies, expressed

as the Brier Skill Score (BSS) of the 64 member ensemble evaluated against random guessing as a baseline for lead years

4-10 (a,c,e) and lead year 7 (b,d,f). Thresholds for event detection are set to −1σ and 1σ. Stippling marks areas with a BSS

significantly different from 0 (p≤ 0.05).

Brier Skill Score (BSS) of the 64 member ensemble for high storm activity evaluated against random guessing as a baseline,615

shown for all combinations of start (y axis) and end lead years (x axis). Numbers in boxes are those BSS that are significantly

different from 0 (p≤ 0.05). A storm activity level of 1σ is used as a detection threshold for high activity.

Brier Skill Score (BSS) of the 64 member ensemble for low storm activity evaluated against random guessing as a baseline,

shown for all combinations of start (y axis) and end lead years (x axis). Numbers in boxes are those BSS that are significantly

different from 0 (p≤ 0.05). A storm activity level of −1σ is used as a detection threshold for low activity.620

Brier Skill Score (BSS) of the 64 member ensemble for moderate storm activity evaluated against random guessing as

a baseline, shown for all combinations of start (y axis) and end lead years (x axis). Numbers in boxes are those BSS that

are significantly different from 0 (p≤ 0.05). A storm activity level between −1σ and 1σ is used as a detection threshold for

moderate activity.
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