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Abstract. The Copernicus Atmosphere Monitoring Service has recently produced a greenhouse gases reanalysis (version egg4) 

that covers almost two decades from 2003 to 2020 and will be extended in the future. This reanalysis dataset includes carbon 

dioxide (CO2) and methane (CH4). The reanalysis procedure combines model data with satellite data into a globally complete 

and consistent dataset using the European Centre for Medium-range Weather Forecasts’ Integrated Forecasting System (IFS). 30 

This dataset has been carefully evaluated against independent observations to ensure validity and point out deficiencies to the 

user. The greenhouse gas reanalysis can be used to examine the impact of atmospheric greenhouse gases concentrations on 

climate change, such as global and regional climate radiative forcing, assess intercontinental transport, and also serve as 

boundary conditions for regional simulations, among other applications and scientific studies.  The caveats associated with 

changes in assimilated observations and fixed underlying emissions are highlighted, as well as their impact on the estimation 35 

of trends and annual growth rates of these long-lived greenhouse gases. 
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1 Introduction 

Atmospheric carbon dioxide (CO2) and methane (CH4) are the most abundant man-made greenhouse gases directly responsible 

for climate change (IPCC, 2021). Their long lifetime and increasing anthropogenic emissions near the surface account for their 

long-term trends (Friedlingstein et al., 2021). A lot of effort has been devoted to measuring the atmospheric concentrations 40 

from ground-based observatories (e.g. National Oceanic and Atmospheric Administration (NOAA), gml.noaa.gov; Integrated 

Carbon Observation System (ICOS), www.icos-cp.eu), which provide the gold standard for the estimation of trends, and more 

recently satellite data (Committee on Earth Observation Satellites (CEOS), Crisp et al., 2018) enhancing the spatial coverage 

of greenhouse gas observations at global scale.  Atmospheric measurements also sample the variability of CO2 and CH4 coming 

from the weather and its associated atmospheric transport (e.g. Patra et al., 2008, 2011). For this reason, Numerical Weather 45 

Prediction (NWP) models have been extensively used to represent and reconstruct the variability of atmospheric concentrations 

of various tracers (e.g. Inness et al., 2019). Here we use the Integrated Forecasting System (IFS) of the European Centre for 

Medium-range Weather Forecasts (ECMWF) which has been adapted to include CO2 and CH4 in the weather forecast (Agustí-

Panareda et al., 2017, 2019) to create a greenhouse gases (GHG) reanalysis. The reanalysis uses the data assimilation technique 

to combine CO2 and CH4 satellite data from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY 50 

(SCIAMACHY, www.sciamachy.org ), the Infrared Atmospheric Sounding Interferometer (IASI, www.eumetsat.int/iasi) and  

The Thermal and Near Infrared Sensor for Carbon Observation (TANSO, www.eorc.jaxa.jp/GOSAT/instrument_1.html) 

instruments with IFS model simulations of CO2 and CH4 (Agustí-Panareda et al., 2022). The dataset is based on a consistent 

and stable model version to provide a homogenous, continuous and gapless record of the CO2 and CH4 in the entire atmosphere 

since 2003.  55 

The IFS includes a forecasting model and a data assimilation system combined. The data assimilation system also integrates 

meteorological observations as in the fifth generation of ECMWF meteorological reanalyses, ERA5 (Hersbach et al., 2020), 

to best constrain the atmospheric variability of greenhouse gases (Massart et al., 2014, 2016). The forecasting model provides 

a 3-dimensional representation and evolution of the atmospheric CO2 and CH4 and meteorological variables (Agustí-Panareda 

et al., 2019). At the model surface the greenhouse gases are forced by a set of surface fluxes and emissions. Such modelling 60 

configuration allows to produce a realistic representation of the spatio-temporal variability of greenhouse gases in the 

atmosphere over a wide range of scales from hours to seasons and from local to global (Agustí-Panareda et al., 2022).  

 

Figure 1 showcases the global evolution of CO2 and CH4 represented by the CAMS GHG reanalysis data set over the period 

2003-2020 and the span of the used satellite data. The seasonal averages illustrate the spatial and temporal variability 65 

information contained in the reanalysis dataset which can be exploited for a range of applications in atmospheric sciences. A 

key potential use of the CAMS GHG reanalysis is to assess the impact of greenhouse gases on climate change. The reanalysis 

3-dimensional fields could be used to investigate global and regional climate radiative forcing (e.g. 

atmosphere.copernicus.eu/climate-forcing), serve as boundary conditions for regional simulations, assess intercontinental 

http://www.sciamachy.org/
http://www.eumetsat.int/iasi
http://www.eorc.jaxa.jp/GOSAT/instrument_1.html
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transport, and generally provide a reference for any other study focusing on atmospheric variability of CO2 and CH4.  However, 70 

care should be taken when using the CAMS GHG reanalysis to estimate trends and annual growth rates of these long-lived 

greenhouse gases by considering the caveats associated with the changes in the satellite retrievals of CO2 and CH4 and the fact 

that neither anthropogenic emissions nor natural fluxes are adjusted by the data assimilation system, unlike atmospheric 

inversions (e.g. Chevallier et al., 2019). 

The objective of this technical report is to document the technical aspects of the method and input data used to produce the 75 

CAMS GHG reanalysis, and to provide guidance to potential users on the strengths and limitations of the dataset. Section 2 

describes the processing chain to produce the reanalysis and its components. Section 3 focuses on the evaluation of the CAMS 

GHG reanalysis using independent observations from the TCCON and NDACC networks as well as surface in situ networks 

and AirCore profiles. A list of limitations and caveats of the CAMS GHG reanalysis associated with the changes in the 

assimilated data and the underlying model errors are compiled in Sect. 4. Finally, Sect. 5 provides a summary and outlook for 80 

future CAMS GHG reanalyses. 
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Figure 1. (a) Reanalysis timeseries of global column-averaged CO2 (red) and CH4 (purple) atmospheric mole fractions (global mean 

error ranges from -0.7 to +3.5ppm based on evaluation in section 3.3); (b) the span of the satellite data records for the corresponding 

species; (c) CO2 and (d) CH4 seasonal total column averages (DJF: December-January-February, MAM: March-April-May, JJA: 85 
June-July-August, SON: September, October, November) for the 2003-2020 period illustrate the typical seasonal cycle. Note that 

individual years can be affected by the large inter-annual variability of biogenic fluxes (e.g. during el Niño years). 
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Figure 2.  Schematic of the reanalysis cycling procedure. The flow diagram shows the steps and elements combined in the reanalysis. 90 
Surface fluxes are used as boundary condition for the atmospheric forecasts. Satellite data are combined with the forecast using 

data assimilation to produce an analysis (corrected 4D fields) to initialize the next forecast. 
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2 Methods 

This section gives an overview of the different building blocks of the CAMS GHG reanalysis and the processing chain that 95 

integrates the different components to produce the reanalysis dataset.  

2.1 The reanalysis cycling chain 

The reanalysis production chain is illustrated in Fig. 2.  It is a cycling procedure based on a 12-hour data assimilation window 

that involves four main parts: 

- Satellite retrievals of CO2 and CH4 (see section 2.2) as well as NWP observations (Hersbach et al., 2020). 100 

- Surface fluxes (see section 2.3) that constitute the sources and sinks of CO2 and CH4 in the atmosphere are compiled 

from various sources. They provide the surface boundary condition for the tracer transport model.  

- A model forecast (see section 2.4) that provides a 4-dimentional representation of the state of the greenhouse gases 

over space and time, along with other meteorological variables, during the 12-hour analysis window (from 09:00 to 

21:00 and 21:00 to 09:00 UTC). The forecasts are initialised with the previous analysis, except for the first forecast 105 

for the initial date, which is initialised with atmospheric molar fractions from the CAMS inversion dataset (Chevallier 

et al., 2020; Segers et al., 2020a). 

- The above elements are combined using a data assimilation system (see section 2.5) to produce an analysis (Massart 

et al., 2014, 2016). The analysis will serve to initialise the following forecast over the subsequent 12 hourly cycle. 

Details of these four different components of the reanalysis processing chain are provided in the subsections below, as well as 110 

the approach followed to monitor the assimilation of CO2 and CH4 satellite data. 

 

2.2 Satellite GHG observations 

The satellite measurements of radiances (L1 data) are processed by satellite retrievals developed by various data providers to 

derive information on the total and partial atmospheric column of CO2 and CH4 dry mole fraction (L2 data). In the CAMS 115 

GHG reanalysis only L2 products were used for CO2 and CH4. With nadir looking satellite instrument geometries the L2 data 

provide vertically integrated content with vertical sensitivity functions called either averaging kernel when an optimal 

estimation approach (Rodgers, 2000) is used or weighting functions, that provide information on where the retrieval sensitivity 

is located along the vertical. The satellite products assimilated in this reanalysis are all provided with averaging kernel and 

prior information or weighting functions (Massart et al, 2014, 2016). The rationale for selecting the CO2 and CH4 satellite 120 

products is based on the availability of operational data in near-real time as the strategy is to extend the CAMS GHG re-

analysis to the present by eventually running it close to real time. Table 1 provides the specification for each of the assimilated 

satellite CO2 and CH4 products, selected as the state-of-the art retrievals at the beginning of 2017, when the CAMS GHG 

reanalysis production started.  All of the L2 satellite products are freely available from the Copernicus Climate Change Service 
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(C3S) Copernicus Climate Data Store (Alos et al., 2019) at https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-carbon-125 

dioxide for CO2 and https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-methane for CH4. The GHG reanalysis 

integrate the L2 GHG data from the following satellite instruments: 

• SCIAMACHY – Envisat: The The SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY 

(SCIAMACHY) instrument onboard the Envisat satellite was launched by the European Space Agency (ESA) in 

March 2002 and it was developed by a consortium involving the Netherland Space Office, the German Aerospace 130 

Centre and the Belgian Federal Science Policy Office. It measures radiances variations from the ultraviolet to the near 

visible infrared. The GHG L2 products use the nadir spectra of reflected and scattered solar radiation in the near-

infrared region. Satellite radiance observations in the near infrared spectral region with the nadir looking geometry 

are sensitive to changes in CO2 and CH4 down to the Earth’s surface. The measurements provide total column 

information with sensitivity peaking near the surface. The ground pixel size is typically between 30 km and 60 km 135 

and the swath width is about 960 km. There are no across-track gaps between the ground pixels but there are gaps 

along-track as SCIAMACHY operates only part of the time (approx. 50%) in nadir observation mode. The CO2 and 

CH4 column products are retrieved by the University of Bremen (Reuter et al., 2011) and the Netherland Institute for 

Space Research (SRON) (Frankenberg et al., 2011), respectively. Both of L2 products are delivered by the ESA GHG-

Climate Change Initiative (Buchwitz  et al, 2015) and the C3S Climate Data Store (https://cds.climate.copernicus.eu). 140 

• TANSO-FTS – GOSAT: The Thermal And Near infrared Sensor for carbon Observations - Fourier Transform 

Spectrometer (TANSO-FTS) instrument onboard the Greenhouse Gases Observing Satellite (GOSAT) satellite has 

been developed by the Japan Aerospace Exploration Agency (JAXA) and it was launched in January 2009. TANSO-

FTS measures radiances in the short-wave infrared band that provide information of total-column CO2 and CH4 mole 

fractions. Similar to SCIAMACHY, the sensitivity of the total column information provided by L2 data is peaking 145 

near the surface due to the spectral band used. The ground pixel size is about 10 km, the swath is 750 km and it has a 

revisit time of 3 days. In contrast to SCIAMACHY, the GOSAT scan pattern consists of non-consecutive individual 

ground pixels, i.e., the scan pattern is not gap-free. For a general overview about GOSAT see also 

http://www.gosat.nies.go.jp/en/. The L2 retrieval product is engineered by the SRON (Schepers  et al., 2012, 2016) 

and delivered by the ESA GHG-CCI and the C3S Climate Data Store (https://cds.climate.copernicus.eu).  150 

• IASI – Metop A and B: The Infrared Atmospheric Sounding Interferometer (IASI) instruments are onboard the 

Meteorological Operational satellites (Metop-A and Metop-B) launched in October 2006 and September 2012 

respectively. The French National Centre for Space Studies (CNES) lead the design and developments of the 

instruments in collaboration with the European Organisation for the Exploitation of Meteorological Satellites 

(EUMETSAT). The IASI instruments measure the thermal infrared band with high spectral resolution enabling it to 155 

detect a wide range of trace gas variations in the atmosphere, including CO2 and CH4 sensitive in the mid and upper 

tropospheric regions between 5 and 12 km of altitude. IASI is an across track scanning system with a swath width of 

2200 km, providing global coverage twice a day. The field of view is sampled by 2×2 pixels whose ground resolution 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-carbon-dioxide
https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-carbon-dioxide
https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-methane
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is 12 km at nadir. Both CO2 and CH4 are engineered and delivered by the Centre National de Recherche Scientifique 

(CNRS)-Laboratoire de Météorologie Dynamique (LMD) (Crevoisier et al., 2009a, 2009b, 2014). The two L2 160 

products are delivered by the ESA GHG-Climate Change Initiative (Buchwitz  et al, 2015) and the C3S Climate Data 

Store (https://cds.climate.copernicus.eu). 

 

 

Table 1. Specifications of the satellite data used in the CAMS GHG reanalysis 165 

Gas Instrument - 

Satellite 

Period assimilated Version (data provider) Reference Peaking sensitivity 

CO2 SCIAMACHY – 

Envisat 

20030101 – 20120324  

 

CO2_SCI_BESD (v02.01.02, IUP-UB) 

 

 

Reuter et al., 

2011) 

 

Near Surface 

IASI – Metop-A 20070701 - 20150531 CO2_IAS_NLIS (v8.0, CNRS-LMD) 

 

Crevoisier et al. 

(2009a) 

 

Middle and Upper 

troposphere 

IASI – Metop-B 20130201 – 20181130   CO2_IAS_NLIS (v4.2_nrt,  CNRS-LMD) Middle and upper 

troposphere 20181201-20201231 CO2_IAS_NLIS (v4.0_nrt, CNRS-LMD) 

TANSO-FTS - 

GOSAT 

20090601-20131231 CO2_GOS_SRFP (V2.3.6, SRON) Butz et al., 

(2011); Guerlet 

et al. (2013) ; 

Heymann et al. 

(2015) 

Near Surface 

20140101-20181231 CO2_GOS_SRFP(V2.3.8, SRON) 

20190101-20201231 CO2_GOS_BESD (CAMS_NRT, IUP-UB) 

CH4 SCIAMACHY – 

Envisat 

20030108-20100601 

 

CH4_SCI_IMAP (v7.2, SRON) Frankenberg et 

al., (2011) 

Near Surface 

IASI – Metop-A 20070701-20150630 CH4_IAS_NLIS (V8.3, CNRS-LMD) 

 

Crevoisier et al., 

(2009b, 2014) 

Middle and Upper 

troposphere 

IASI – Metop-B 20130201- 20181130 CH4_IAS_NLIS (V8.1_nrt, CNRS-LDM) Middle and upper 

troposphere 20181201-20201231 CH4_IAS_NLIS (v4.0_nrt, CNRS-LDM) 

TANSO-FTS - 

GOSAT 

20090601-20131231 CH4_GOS_SRFP (V2.3.6, SRON) Butz et al., 

(2010); 

Schepers et al., 

2012 

 

Near Surface 

20140101-20181231 CH4_GOS_SRFP (V2.3.8, SRON) 

20190101-20201231 CH4_GOS_SRPR (CAMS_NRT, SRON) 

 

2.3 Surface fluxes and prescribed sources/sinks 

The emissions and surface fluxes provide the surface boundary conditions for the atmospheric concentrations of CO2 and CH4. 

They play a crucial role in determining the variability and growth rate of both greenhouse gases in the atmosphere. Errors in 

the budget of the total flux will result into systematic errors or biases in forecast of atmospheric CO2 and CH4. In the CAMS 170 

reanalysis the surface fluxes (including sources and sinks) are not optimized by the assimilation system. This lack of surface 
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flux optimization can lead to biases in the analysis when the observing system coverage is sparse in space and time or when 

the observation error is large, and the analysis is strongly influenced by the model forecast. 

 

Table 2 lists the datasets used to produce the CAMS reanalysis and Fig 3 shows the seasonal cycle and trend of the global 175 

mean values of each type of surface flux used in the simulations. They include:  

• Fire emissions derived using the CAMS Global Fire Assimilation System (GFAS) version 1.2 that assimilate fire 

radiative power observations from satellite-based sensors (Kaiser et al., 2012). GFAS produces daily estimates of 

wildfire and biomass burning emissions. The emissions are injected at the surface and distributed over the boundary 

layer by the model's convection and vertical diffusion scheme. 180 

•  Anthropogenic emissions from the Emission Database for Global Atmospheric Research (EDGAR) version 

4.2FT2010 inventory (Janssens-Maenhout et al., 2011; Olivier and Janssens-Maenhout, 2012) excluding the short 

carbon cycle. The anthropogenic emissions are based on annual average values and include fossil fuel combustion 

and leakage, agricultural, landfill/waste emissions and aviation (based on the Atmospheric Chemistry and Climate 

Model Intercomparison Project (ACCMIP, Lamarque et al., 2013) nitric oxide (NO) emissions from aviation scaled 185 

to the annual CO2 total emission from aviation from EDGAR). EDGAR produces global anthropogenic emissions 

for both CO2 and CH4 at a relatively high resolution of 0.1 degrees (compared to 80 km resolution of the CAMS 

re-analysis). The problem with EDGAR is that the latest version available at the time when the CAMS re-analysis 

started does not extend beyond 2010. Anthropogenic emissions of CO2 are extrapolated from 2010 to 2014 with 

the time series of country totals from EDGARv4.3 (Janssens-Maenhout et al., 2016) and from 2015 to 2020, a 190 

persistent growth based on the last available year (2014) is applied. CH4 anthropogenic emissions are fixed with 

the last year of available gridded data (2010) from 2011 to 2020. Note that CO2 and CH4 emissions are not adjusted 

for the COVID emission reduction in 2020 (Le Quéré et al., 2020). 

• Biogenic CO2 fluxes are based on the online CHTESSEL module (Boussetta et al., 2013) that relates CO2 biogenic 

fluxes with radiation, precipitation, temperature, humidity, and soil moisture. CHTESSEL is used in conjunction 195 

with the biogenic flux adjustment system (BFAS) that improves the continental budget of CO2 fluxes by combining 

information from fluxes estimates by a global flux inversion system (Chevallier et al., 2010), land-use information 

and the CHTESSEL online fluxes (Agustí-Panareda et al., 2016). The two-way interaction between the atmospheric 

forecast and the surface fluxes depicts how the forecast influences the surface fluxes and vice-versa, via the 

coupling of the biogenic fluxes to the atmospheric forecast (via radiation, temperature, humidity and soil moisture) 200 

and the influence of the resulting biogenic fluxes on the atmospheric CO2 forecast. 

• Wetland CH4 monthly mean emissions come from a climatology (1990–2008) based on the LPJ-WHyMe model 

that is constrained by SCIAMACHY observations (Spanhi et al., 2011). 
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• A monthly modulation for CH4 rice emissions is implemented based on the seasonal cycle of Matthews et al. 

(1991). 205 

• The CH4 chemical sink is represented by a monthly mean climatological loss rate from Bergamaschi et al. (2009) 

based on OH fields optimized with methyl chloroform (Bergamaschi et al., 2005; Houweling et al., 1998) and 

stratospheric radicals from the 2D photochemical Max-Planck-Institute (MPI) model (Brühl and Crutzen, 1993).  

• Other sources and sinks include a CH4 monthly soil sink (Ridgwell et al., 1991), CO2 and CH4 annual mean oceanic 

fluxes (Houweling et al., 1999; Lambert and Schmidt, 1993; Takahashi et al., 2009) and CH4 monthly mean fluxes 210 

from termites (Sanderson, 1996) and wild animals (Houweling et al., 1999). 

 

 

 

Table 2. Specifications of the emission and surface fluxes used in the CAMS GHG reanalysis 215 

Gas Emission/Flux type Data provider - Version 

CO2 CO2 and CH4 fire emissions GFAS Version 1.2 (Kaiser et al., 2012) 

CO2 ocean fluxes Takahashi Climatology (Takahashi et al., 2009) 

CO2 emissions from aviation 

 

Based on ACCMIP NO emissions from aviation scaled to annual total CO2 from EDGAR 

aviation emissions (Olivier and Janssens-Maenhout, 2012)  

CO2 ecosystem fluxes bias corrected with 

BFAS 

Based on CHTESSEL (modelled online in IFS) 

(Boussetta et al., 2013; Agustí-Panareda et al., 2016)  

CO2 anthropogenic emissions EDGARv4.2FT2010 (2003-2010) (Olivier and Janssens-Maenhout, 2012) 

CH4 CH4 total natural emissions based on EDGARv4.2FT2010 (2003-2010) (Olivier and Janssens-Maenhout, 2012); LPJ-

HYMN wetland climatology  (Spahni et al., 2011);and other natural sources/sinks   

(Matthews et al., 1991; Ridgwell et al., 1999; Houweling et al., 1999; Lambert and 

Schmidt, 1993; Sanderson, 1996). 

CH4 chemical sink Monthly mean climatology of CH4 loss rate from Bergamaschi et al. (2009) 

CH4 anthropogenic emissions EDGARv4.2FT2010 (2003-2010) (Olivier and Janssens-Maenhout, 2012) 
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Figure 3. Monthly CO2  and CH4 surface fluxes. The CO2 fluxes [PgCO2/month] include modelled Net Ecosystem Exchange (NEE) 

fluxes (in green), anthropogenic emissions (in purple), ocean fluxes (in blue) and biomass burning emissions (in red). The total CH4 

fluxes [TgCH4/month] excluding biomass burning emissions are shown by black line and CH4 biomass burning emissions 220 

[TgCH4/month] are depicted in red. The dash lines show the 1-year running mean for each of the fluxes. 

 

 

2.4 Forecast model 

The CAMS GHG reanalysis has been produced using the IFS model. The same model is used to produce operational numerical 225 

weather predictions (NWP) at ECMWF and the CAMS global forecast and analyses for reactive gas, aerosols and greenhouse 

gases at ECMWF (Fleming et al. 2015, Agustí-Panareda et al., 2017, Agustí-Panareda et al., 2022). The IFS model version 

used is IFS CY42R1, the same as in the CAMS reanalysis for reactive gases and aerosols (Inness et al., 2019). The forecasting 

model uses a reduced Gaussian grid with a resolution of TL255 corresponding to a horizontal resolution of approximately 80 

km and 60 hybrid-sigma pressure vertical levels from the surface to 0.1hPa. The tracer advection is computed using a semi-230 

implicit semi-Lagrangian scheme (Temperton et al., 2001; Diamantakis and Magnusson, 2016) that is not mass-conserving. 

This scheme leads to an error growth that can dominate the signal in the model simulations if it is not corrected. Thus, a mass 

fixer is required to ensure mass conservation at every time step (Diamantakis and Agustí-Panareda, 2017). The mass fixer is 

particularly important for long-lived greenhouse gases for which the interesting signals to monitor, e.g., trends or annual growth 

rates and large-scale spatial gradients, are weak compared to the large background values. The transport model also includes 235 

a turbulent mixing scheme (Sandu et al., 2013) and a convection scheme (Bechtold et al., 2014). For the CH4 chemical sink in 

the troposphere and the stratosphere, climatological loss rates derived from the Max Planck Institute photochemical model are 

used (Bergamaschi et al., 2009). Full documentation of the IFS can be found 

at https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model/ifs-documentation. 

 240 

https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model/ifs-documentation
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2.5 Analysis procedure (data assimilation) 

The IFS system is using an incremental formulation of the 4-dimentional variational technique (4D-Var). The 4D-Var 

technique consists of minimizing a cost function that combines the model information and the observation information in order 

to obtain the best possible state of the atmosphere (analysis) accounting for the model and observation errors. The incremental 

4D-Var cost function is quadratic and is formulated as follows:  245 

 

𝐽(𝛿𝒙) =
1

2
(𝛿𝒙 − 𝜹𝒙𝒃)𝑇𝑩−1(𝛿𝒙 − 𝜹𝒙𝒃) +

1

2
 (𝑮𝛿𝒙 − 𝒅)𝑹−1(𝑮𝛿𝒙 − 𝒅)                                                   (1) 

 

where 𝛿𝒙 is the increment i.e., the difference between the model state 𝒙  and the first guess 𝒙𝒈, 𝛿𝒙𝑏 is the difference between 

the background (the forecast started from the previous analysis) and the first guess, 𝑩 the background error covariance matrix, 250 

𝑹 the observation error covariance matrix, 𝑮 the observation operator or forward operator that translate the information from 

model space to observation space. The innovation vector is 𝒅 = 𝒚 − 𝑮𝒙𝑔 with 𝒚 the observation vector and 𝒙𝑔 the first guess. 

When the minimization of the cost function is complete, 𝛿𝒙 is added to 𝒙𝑔 to provide the analysis. 

 

𝒙𝑎 = 𝒙𝑔 +  𝛿𝒙                                                                                           (𝟐)         255 

 

The analysis is performed over 12-hour assimilation windows from 9:00 to 21:00 and from 21:00 to 9:00 UTC. The incremental 

4D-Var assimilation involves the stepwise minimization of the linearized cost function (equation 1) by updating the first guess 

𝒙𝑔  and increasing the resolution. In the CAMS reanalysis setup, two minimizations are completed successively at TL95 

(approximately 210 km) and TL159 (approximately 110 km) spectral truncations. Once the assimilation procedure is 260 

completed an analysis is generated that will serve to initialize the next forecast at the full TL255 resolution. 
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Figure 4.  Model background error for CO2 and CH4 used in the CAMS GHG reanalysis: (a,b) global mean standard deviation and (c,d) 265 

global mean error correlation length scale across the vertical levels. 

 

The background errors for CO2 and CH4 were produced from an ensemble of data assimilations (Massart et al., 2016), which 

allows the calculation of differences between pairs of background fields which have the characteristics of the background 

errors. The background errors for the greenhouse gas species are univariate, which means that there is no correlation between 270 

the greenhouse gas species and the dynamical fields. Hence each species is assimilated independently from the others. The 

background errors used for both the greenhouse gas species and the dynamical fields are also constant in time. In the ECMWF 

data assimilation system, the background error covariance matrix is given in a wavelet formulation (Fisher, 2004, 2006). This 

allows both spatial and spectral variations of the horizontal and vertical background error covariances globally. Figure 4 shows 

the global mean of the standard deviation and average horizontal correlation length scales for both CH4 and CO2. Following 275 

experimentation, the correlation length scales between the background errors were manually reduced in the atmospheric 

boundary layer (1km from the surface). 

 

2.6 Monitoring the data assimilation system 

 280 

The time series of the departures (or differences) between the analysis (AN) and the assimilated satellite data (hereafter referred 

to as observations, OBS), as well as those between the underlying model simulation (or background, BG) and the observations, 

are used to monitor the performance of the analysis system and are shown in Figures 5 (for CO2) and 6 (for CH4). For each 

satellite retrieval product, both the BG departures (OBS-BG, green lines) and the AN departures (OBS-AN, red lines) are 

plotted (panel a: SCIAMACHY, panel b: IASI-A; panel c: IASI-B; panel d: GOSAT), together with the number of observations 285 

assimilated monthly (blue lines). Overall, both the random (i.e., standard deviation, dashed lines) and the systematic 

components of the departures (i.e., average values, solid lines) are shown to be reduced by the assimilation process, as 

highlighted by the AN departures (red lines) being closer to zero than the BG departures (green lines). Note that the difference 
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between the BG and the AN departure is equal to the analysis increments associated with the related observations (i.e. AN-

BG).  290 

 

The number of observations assimilated is different for each satellite instrument and varies with time: IASI generates the 

largest number of data, with both instruments (IASI-A and IASI-B) providing between 150 000 and 200 000 XCO2 or XCH4 

data per month; the observations taken by SCIAMACHY oscillate between 25 000 and 50 000 for CH4 and between 5 000 and 

10 000 for CO2; the number of GOSAT XCO2 data fluctuate around 2 500, whereas those from GOSAT XCH4 are comprised 295 

between 5 000 and 10 000 per month. It is also clear from Figs 5(a,d) and 6(a,d) that fewer XCO2 and XCH4 data from 

SCIAMACHY, IASI and GOSAT-TANSO are assimilated during the winter months. A magenta vertical dashed line in Figs 

5(c,d) and 6(c,d) indicates when the near-real time satellite products started to be assimilated in early 2019. This transition 

produced an abrupt change in the quality and availability of both IASI and GOSAT retrievals.  

 300 

The modelled XCO2 is systematically larger than the observations (leading to overall negative BG departures) because of the 

biases in the total fluxes (see section 2.3). Therefore, all instruments produced negative departures until 2013 (Fig. 5). From 

2013 to 2019, the modelled values of XCO2 became smaller than those measured by GOSAT (Fig. 5(d)), while the model 

continued to (slightly) overestimate the IASI XCO2 observations in the mid to upper troposphere. This overestimation is 

consistent with a drift in the IASI CO2 data towards a growing negative bias.  After 2018, part of the drift is due to the fact that 305 

IASI (version v4.0) is saturating with increasing atmospheric CO2. Note that this has been corrected with v9.1 (available on 

the C3S datastore). A sudden change in the IASI-B XCO2 departures is visible in Fig. 5(c) around December 2018, in 

correspondence of the switch from the ESA-CCI reprocessed dataset to a near-real time LMD dataset used operationally in the 

CAMS GHG analysis. The transition to a new dataset was made necessary as the reanalysis production was running close to 

real-time and reprocessed observations were not available. After the transition to near-real time observations, the IASI XCO2 310 

increments are reduced to almost zero, as hinted by the overlap between the red (AN departure) and green line (BG departure) 

in Fig. 5(c). At the same time, a drop in the number of assimilated IASI XCO2 observations is observed (blue line, same panel 

and figure). Together with a drastic reduction in the magnitude of the increments, a large negative bias of approximately 5ppm 

in both the AN and BG departures emerges. This degradation in the quality of the IASI-B XCO2 observations in the near-real 

time dataset is due to the change of the correction of the non-linearity of the detector of IASI-B that was made by CNES and 315 

EUMETSAT on August 17th 2018 and that introduced a bias of ~0.2 K on the channels used to perform the CO2 retrieval. This 

change has been corrected in the versions of IASI-B MT-CO2 that are available on the C3S datastore but were not used for 

this reanalysis. In January 2019, there was also a transition from the ESA-CCI GOSAT XCO2 retrievals to the near-real time 

IUP-UB retrieval product (Heymann et al., 2015; Massart et al. 2016) as shown in Fig. 5(d). Consequently, the standard 

deviation of both the AN and the BG departures increases (cf. dashed lines, same panel and figure), suggesting that the near-320 

real time data is noisier than the reprocessed dataset from ESA-CCI. 
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The mean XCH4 departures (both AN and BG) of SCIAMACHY and IASI are relatively small (a few ppb) compared to 

GOSAT (up to 10 ppb), throughout the entire time period (see solid red and green lines in Fig. 6). The XCH4 SCIAMACHY 

data was not used from 9 April 2012 onwards (Fig. 6(a)). The standard deviation of both the AN and BG departures are smaller 325 

for GOSAT (around 10 ppb, dashed lines in Fig. 6(d)) than for SCIAMACHY (around 20 ppb, dashed lines in Fig.6(a)), 

indicating that GOSAT provides less noisy observations. Similar to what was observed for CO2, a discontinuity in the mean 

AN and BG departures of GOSAT XCH4 emerges in January 2019, in correspondence of the transition from the ESA-CCI 

dataset and the NRT SRON retrievals (see dashed pink line in Fig. 6(d)). Both the AN and the BG departures change sign, 

indicating that while up to 2019 both the analysis and model were underestimating the GOSAT observations, they start to 330 

overestimate them since 2019. Since there was no modification to the model used for the reanalysis over this period, the cause 

of this negative bias emerging in both the AN and the BG departures since 2019 can only be attributed to the NRT GOSAT 

XCH4 observations, and in particular to the fact that they are generated by using an extrapolated XCO2 value in the proxy 

retrieval. In addition, the number of assimilated NRT GOSAT XCH4 observations approximately doubles (blue line in Fig. 

6(d)). Note that the switch to the near-real time retrievals for IASI-B XCH4 has a much more marginal impact on the system 335 

(Fig. 6(c)).  
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Figure 5. Time series of global monthly number of XCO2 satellite data (blue) and monthly mean CO2 analysis (AN) and model 

background (BG) departures of the various observations (OBS) assimilated in the reanalysis (AN-OBS and BG-OBS in red and 

green respectively, see legend). The solid lines show the monthly average of the departures, and the dash lines the monthly standard 340 
deviations. The magenta dash line indicates the switch to the near-real time satellite products. Note that the range of values in y-axis 

varies depending on the satellite product. 
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Figure 6. Time series of global monthly number of XCH4 satellite data (blue) and monthly mean CH4 analysis (AN) and model 

background (BG) departures of the various observations (OBS) assimilated in the reanalysis (AN-OBS and BG-OBS in red and 345 
green respectively, see legend) for different satellite products. The solid lines show the monthly average of the departures, and the 

dash lines the monthly standard deviations. The magenta dash line indicates the switch to the near-real time satellite products. Note 

that the range of values in y-axis varies depending on the satellite product. 
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3 Evaluation with independent observations 350 

Validation against a set of independent observations has been performed on the 18 years of the CAMS GHG reanalysis span. 

The independent data includes different types of observations (see Fig 7): in situ near-surface continuous observations of CO2 

and CH4 mole fractions from the collaborative ObsPack datasets (Schuldt et al., 2020; Sarra et al., 2021; NOAA Carbon Cycle 

Group ObsPack Team, 2019; see Table A1); dry-air column-averaged mole fractions from the Total Carbon Observing 

Network (TCCON, Wunch et al. 2011, 2015); tropospheric and stratospheric partial columns for CH4 from the Network for 355 

the Detection of Atmospheric Composition Change (NDACC, De Mazière et al., 2018) (see Table A2); AirCore vertical 

profiles of CO2 and CH4 mole fractions (Karion et al., 2010; Baier et al., 2021); and the NOAA global mean CO2 and CH4 

mole fraction product based on the Greenhouse Gas Marine Boundary layer Reference (Conway et al., 1994, Dlugokencky et 

al., 1994, Massarie et al., 1995).  

 360 

Figure 7 Map with observing sites used in the evaluation of the CAMS GHG reanalysis: MBL (blue squares) includes NOAA Marine 

Boundary Layer (MBL) reference sites used to compute the NOAA global mean CO2 and CH4 mole fraction product (see 

https://gml.noaa.gov/ccgg/mbl/mbl.html for further details); SFC (black circles) correspond to the in situ near-surface continuous 

observations of CO2 and CH4; TCCON and NDACC sites are depicted by red and orange trianges; and AirCore sites are shown by 

cyan circles.  365 

3.1 Surface and column data 

3.1.1 Carbon dioxide  

Overall, the error is within 10 ppm and 4 ppm for most of the near-surface and total column stations respectively for the 

whole 18-year period (Figs 8 and 9). Near the surface (Fig 8), there is a large variability in the CO2 error between continental 

stations influenced by local fluxes (e.g., CDL, FSD, AMT, HUN, see Table A.1) and oceanic stations sampling well-mixed air 370 

(ALT, BRW, MHD). Continental stations show large error variations with season (e.g., CDL, HUN), with an underestimation 

https://gml.noaa.gov/ccgg/mbl/mbl.html
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of CO2 in the summer and an overestimation in the winter, indicating an underestimation of the amplitude of the CO2 seasonal 

cycle largely driven by vegetation growth. Differences between stations will be determined by the footprint of observations 

having different contributions of fluxes from different biomes and from anthropogenic emissions. Accuracy of such fluxes can 

vary geographically.   375 

 

Overall, there is positive bias of a few ppm between 2003 and 2015 in the baseline surface stations (e.g. BRW, SMO, SPO) 

which is consistent with the XCO2 error at the TCCON sites (Fig. 9). This positive bias decreases from 2007 to 2015 when 

IASI-A CO2 data are assimilated, with values lower than 2 ppm, and becomes negative from 2015 to 2019 (from 0 to -2 ppm). 

From 2019 onwards, there is a positive trend in the bias, and it becomes positive (> +2 ppm) in 2020. There is consistency 380 

between the column and surface biases with a general positive bias at background stations before 2015 and a negative bias 

after 2015 (up to 2019) at the surface stations, although there is no data in 2020 from the surface stations. 

 

The synoptic and large-scale variability of CO2 is well represented by the reanalysis (lower panel in Fig 9). The root mean 

square error at TCCON stations is below 0.8 ppm for XCO2. The normalised standard deviation is around 1.0 (+/- 0.3) and the 385 

Pearson correlation coefficient is larger than 0.8.  
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Figure 8. Top: Mosaic plot of CO2 weekly biases (in ppm) of the CAMS GHG reanalysis compared to surface continuous observations 390 
of CO2 mole fraction obtained from GLOBALVIEWplus CO2 ObsPack v6.0 (Schuldt et al., 2020) and listed in Table A1. Each 

coloured vertical line represents a weekly mean. Vertical yellow lines depict the changes in the assimilated data documented in Figs 

1, 5 and 6. Grey shading indicates no observations are available. Bottom: Taylor diagrams for the site dependent CO2 comparison 

of the CAMS GHG reanalysis against same observations used in top panel. The standard deviation is normalized by dividing the 

observed and modelled time series with the standard deviation of the observations. The model has higher/lower variability compared 395 
to the observed data if the site is plotted with a distance larger/smaller than 1 from the origin. 
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 400 

Figure 9. Top: Mosaic plot of the CAMS GHG reanalysis biases at all TCCON sites (see Table A2) for the column-averaged dry 

mole fraction of CO2 [ppm] (XCO2) averaged daily around local noon (+/- 2.5 hours). Vertical yellow lines depict the changes in the 

assimilated data documented in Figs 1, 5 and 6. Grey shading indicates no observations are available. Bottom: Taylor diagrams for 

the station dependent XCO2 comparison of the CAMS GHG reanalysis against TCCON FTIR data. The standard deviation is 

normalized by dividing the observed and modelled time series with the standard deviation of the model time series. The model has 405 
higher/lower variability compared to the observed data if the site is plotted with a distance smaller/larger than 1 from the origin. 
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3.1.2 Methane  

The CH4 reanalysis fields are generally in good agreement with surface and tropospheric column observations with typical 410 

weekly and monthly errors within 40 ppb and 25 ppb respectively (Figs 10, 11 and 12). Stratospheric partial columns 

compared to NDACC data reveal a positive bias that is of the same order as the reported measurement uncertainty of 7% (Fig. 

10, upper panel). The averaged relative differences in the troposphere across all NDACC sites are -0.4% for the reanalysis 

(Fig.11, lower panel), which is well within the measurement’s uncertainty. The reanalysis overestimates the column-averaged 

CH4 compared to TCCON observations (Fig. 12), for most mid- and high-latitude sites, with a relative difference of up to 415 

2.5%, but shows a good agreement for the low latitude sites at Izaña, Darwin and Wollongong.  At the surface the bias is 

overall positive up to 2007 (Fig. 10). With the introduction of IASI, the biases are reduced. However, with the switch to near-

real time satellite data, the bias become negative at all sites reaching values lower than -20 ppb. 

Differences between the surface and total column biases stem from the fact that the model suffers from large positive biases 

above the tropopause (between 100hPa and 10 hPa) of about 80-100 ppb during the months between September and November 420 

(Figs 5d and 6d of Verma et al., 2017) which affect the total column average. This stratospheric bias cannot be corrected 

systematically by CH4 satellite data from SCIAMACHY, GOSAT and IASI. 

For all observations (surface, partial and total columns) CH4 shows a seasonality in the relative difference between observations 

and the reanalysis. The magnitude of the difference is site dependent. During local autumn/winter months the relative bias is 

increased (underestimation) at most surface sites and in the tropospheric columns. This underestimation is also seen in the 425 

TCCON time series. In the spring and summer there is an overestimation of CH4 near the surface and in the total column. 

These biases are related to errors in the seasonal cycle of surface emissions, most likely from agriculture and wetlands, and 

the accuracy of the representation of the hydroxyl radical (OH) sink which overall have larger values in the climatology 

compared to CAMS IFS(CB05BASCOE) atmospheric chemistry model OH (Segers et al., 2020b, Williams et al., 2021).  The 

XCH4 root mean square error is around 1.4 ppb and the Pearson correlation coefficient is larger than 0.7 for XCH4 except for 430 

some outliers (Fig. 12, lower panel), indicating a good representation of the synoptic variability, as for XCO2.  
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Figure 10. Top: Mosaic plot of CH4 biases (in ppb) compared to surface continuous observations from GLOBALVIEWplus CH4 435 
ObsPack v1.0 data product (Cooperative Global Atmospheric Data Integration Project, 2019) listed in Table A1.  Each coloured 

vertical line represents a weekly mean. Vertical yellow lines depict the changes in the assimilated data documented in Figs 1, 5 and 

6. Grey shading indicates no observations are available. Bottom: Taylor diagrams for the site dependent CH4 comparison of the 

CAMS GHG reanalysis against same observations used in top panel. The standard deviation is normalized by dividing the observed 

and modelled time series with the standard deviation of the observations. The model has higher/lower variability compared to the 440 
observed data if the site is plotted with a distance larger/smaller than 1 from the origin. 
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 445 

Figure 11. Mosaic plot of seasonal relative CH4 biases at all FTIR sites (see Table A2) for the stratospheric columns (top) and 

tropospheric columns (bottom) NDACC. Vertical yellow lines depict the changes in the assimilated data documented in Figs 1, 5 and 

6. Grey shading indicates no observations are available. 
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 450 

Figure 12 Top: Mosaic plot of monthly biases at all TCCON sites for the column-averaged mole fractions XCH4 [ppb] averaged 

daily around local noon (+/- 2.5 hours).  Vertical yellow lines depict the changes in the assimilated data documented in Figs 1, 5 and 

6. Grey shading indicates no observations are available. Bottom: Taylor diagrams for the station dependent XCH4 comparison of 

the CAMS GHG reanalysis against TCCON FTIR data. The standard deviation is normalized by dividing the observed and modelled 

time series with the standard deviation of the model time series. The model has higher/lower variability compared to the observed 455 
data if the site is plooted with a distance smaller/larger than 1 from the origin. 

 

 

 

 460 
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3.2 Vertical profiles 

 

The uncertainty of CAMS GHG reanalysis varies with height and the accuracy of the analysis vertical profiles depends mostly 465 

on the underlying model uncertainty, as the satellite data assimilated in reanalysis only provide integrated total or partial 

atmospheric column. The reanalysis has been evaluated using observations of CO2 and CH4 vertical profiles (Karion et al., 

2010; Baier et al., 2021) from the NOAA AirCore dataset v20210813. It includes 133 vertical profiles from the surface to the 

lower stratosphere (up to around 40 hPa) from 2012 to 2020 at 7 sites listed in Table A.3. 

 470 

 Figure 13 shows that the largest mean error occurs (i) near the surface with a strong influence from surface fluxes; (ii) in 

Upper Troposphere/Lower Stratosphere (UTLS) region (between 500 hPa and 100 hPa) with a strong influence from long-

range transport; and (iii) in the stratosphere (above 100 hPa) where uncertainties associated with chemical loss of CH4 and the 

meteorology driving the tracer transport are largest, and the fact that satellite data used here are not able to constrain the 

stratospheric CO2 and CH4 in the reanalysis. Near the surface, there is a positive CO2 bias associated with an overestimation 475 

of the total flux in the model and a negative CH4 bias which stems from both errors in the emissions and the chemical loss rate 

in the troposphere. The negative CO2 bias in the UTLS agree with the tendency of the model to underestimate fine-scale higher-

valued CO2 streamers associated with long-range transport. The large positive CH4 bias in the stratosphere of around 200 ppb 

is consistent with the positive biases with respect to NDACC stratospheric column (Fig. 11, upper panel) and the documented 

model biases with respect to MIPAS and ACE-FTS by Verma et al. (2017). The errors associated with the stratospheric 480 

chemical sink are thought to be the largest contributor to the stratospheric CH4 bias as shown by tests using the IFS BASCOE-

CB05 chemical loss rate (not shown here). In general, the reanalysis underestimates the CO2 vertical gradient across the 

tropopause. This underestimation leads to a positive bias for CO2 in the lower stratosphere of around 2 ppm. The analysis is 

not able to remove the large errors near the surface by only adjusting the atmospheric mole fractions, i.e., without adjusting 

the emissions in the data assimilation process, nor it is able to reduce the stratospheric errors in the model (Massart et al. 2017, 485 

Verma et al. 2017). The vertical profiles have a large variability from day to day as shown in Figure 14 with a sequence of 

profiles at Traînou (France). The CAMS GHG reanalysis is able to capture these synoptic variations in the vertical profile, 

consistent with its skill to represent XCO2 and XCH4 synoptic variability (lower panels of Figs 9 and 12). For a full catalogue 

of all the individual AirCore vertical profiles used in Fig. 13 see Supplement. 

 490 
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Figure 13: Vertical profiles of mean error (Model M- Observation O) of CAMS CO2 (left) and CH4 (right) reanalysis with respect 

to AirCore observations comprising 133 profiles at 7 sites (listed in Table A3) over the period from 2012 and 2020. The blue shading 495 
shows the +/- standard deviation of M-O with respect to the mean error. The vertical dash black line depicts the zero mean error. 

 

 

 

 500 

 

Figure 14: Vertical mole fraction profiles of CO2 and CH4 from the CAMS GHG reanalysis (dash line) and AirCore observations 

(solid line) at Traînou (France, see Table A3) over the period in June 2019.  

 

 505 
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3.3 Trends 

 

Although this reanalysis is using a consistent underlying model and re-processed observations of CO2 and CH4, the current 510 

system is not able to provide accurate enough atmospheric mole fraction that can be used to estimate trends and the atmospheric 

growth rate as computed by the changes in global mean CO2 and CH4 from one year to the next. The CO2 and CH4 global 

annual means based on Marine Boundary Layer (MBL) reference sites are compared to the NOAA Global Greenhouse Gas 

Reference Network (GGGRN) observations (https://gml.noaa.gov/ccgg/about.html, Andrews et al., 2014; Conway et al., 1994; 

Dlugokencky et al., 1994) in Fig. 15. Changes in the assimilated satellite data have a clear impact on the evolution of the global 515 

annual mean values of CO2 and CH4 in the CAMS GHG reanalysis. The reanalysis has a positive global bias in near-surface 

CO2 and CH4 of a few ppm and around 20 ppb respectively from 2003 to 2007. Note that this positive bias in the annual global 

mean does not imply that the bias will be positive everywhere, as shown by the negative surface CH4 biases at the AirCore 

sites (Fig. 13) and the large temporal and geographical variability of the weekly bias illustrated in Figs 8 and 10. After the 

introduction of IASI in 2007 the global bias decreases and it is lowest during the period when the number of observations is 520 

largest in 2013 and 2014 (Figs 5 and 6). Finally, the change to the near-real time satellite retrievals in 2019 together with the 

incorrect trend in the emissions during the COVID slowdown period in 2020 (Le Quéré et al., 2020) lead to changes in the 

global bias from negative to positive for CO2 and from positive to negative for CH4. These changes in the global bias are 

consistent with the changes in the errors with respect to total-column and near-surface observations in Figs. 8 to 12. It is 

important to note that the changes in global bias associated with changes in the assimilated data are of the same order of 525 

magnitude as the observed atmospheric growth rate of CO2 (gml.noaa.gov/ccgg/trends) and CH4 

(gml.noaa.gov/ccgg/trends_ch4). For this reason, this reanalysis product is not suitable for trend analysis. 

 

 

 530 
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Figure 14: Global mean CO2 [ppm] and CH4 [ppb] from the CAMS GHG reanalysis (in red) and the NOAA global mean CO2 and 

CH4 (in black, https://gml.noaa.gov/ccgg/trends/global.html) based on the Greenhouse Gas Marine Boundary layer Reference 

(Conway et al., 1994, Dlugokencky et al., 1994, Massarie et al., 1995, Dlugokencky et al., 2021). The global mean of the CAMS GHG 535 
reanalysis has been computed based on the same NOAA Marine Boundary Layer (MBL) reference sites shown in Fig 7 (see 

https://gml.noaa.gov/ccgg/mbl/mbl.html for further details). The dash blue lines mark the years when there was a change in the 

observing system. The uncertainty associated with the computation of global mean using the MBL sites is estimated to be 0.1 ppm 

for CO2 (Ed Dlugokencky and Pieter Tans, NOAA/GML, gml.noaa.gov/ccgg/trends/) and below 2 ppb for CH4 (Ed Dlugokencky, 

NOAA/GML (gml.noaa.gov/ccgg/trends_ch4/).  540 

 

 

4. Limitations and caveats  

 

This section provides an overview of the shortcomings of the CAMS GHG reanalysis which users should consider when 545 

interpreting the data. The main issues documented in the previous sections are summarised below: 

1. Emissions are prescribed and not adjusted by the data assimilation system in the CAMS reanalysis (Sect. 2.3). This 

leads to a growing model error for CO2 and CH4 that can be difficult to correct with a sparse observing system and 

12-hour assimilation window. In addition, the prescribed emissions are not available in near-real time, which means 

they are either kept fixed since the last year available (e.g. 2010 for CH4) or they are extrapolated with a climatological 550 

trend as done for CO2 (see details in Sect. 2.3).  Because of this, the CAMS GHG reanalysis is not suitable to 

investigate the impact of local emission changes, such as COVID impact studies, which require a large local emission 

adjustments to the prescribed inventories (e.g. Doumia et al., 2021) and atmospheric inversion systems to estimate 

the changes (e.g. McNorton et al, 2022).  

2. Changes of satellite data used with different temporal, horizontal and vertical coverage cause changes in the quality 555 

of the reanalysis. For example, winter seasons have a lower number of observations because of light conditions and 

https://gml.noaa.gov/ccgg/mbl/mbl.html
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the higher frequency of cloud presence. This affects the quality of the seasonal cycle and the inter-hemispheric 

gradient. Similarly, in regions where there is no observation coverage, such as the stratosphere, the reanalysis is based 

on the underlying model including its systematic errors (see discussion on stratospheric biases in Sect 3.2).  

3. Changes in satellite retrievals affect the quality of the observations used in the CAMS GHG reanalysis. For example, 560 

the switch from the CCI re-processed satellite products to the near-real time products is associated with a marked 

change in the bias and random error (i.e. standard deviation) of the departures from XCO2 and XCH4 GOSAT 

observations, as well as in the bias of the departures from the XCO2 IASI-B observations. This large increase in the 

bias of the assimilated CO2 and CH4 observations from 2019 onwards results into a large increase in the bias of the 

CAMS GHG reanalysis in 2019 and 2020 which has implications for the trend analysis (Sect. 3.3). 565 

4. The fixed climatological chemical loss rate of CH4 (Sect 2.3) has been shown to overestimate the atmospheric CH4 

chemical sink by Segers et al. (2020b). Preliminary tests coupling the IFS to the atmospheric loss rate derived from 

BASCOE-CB05 chemistry have indeed shown a large reduction in the CH4 negative bias in mid-latitudes. Systematic 

errors in the CH4 chemical sink used in this reanalysis may have contributed further to enhance the large negative 

CH4 bias in the CAMS GHG reanalysis over the last period in 2020, when the increase in the CH4 growth rate has 570 

been linked to a decrease in chemical loss rate (Stevenson et al., 2021).  

5. The large CH4 and CO2 biases in the stratosphere are currently under investigation. The CH4 stratospheric bias is 

mainly associated with the use of a climatological loss rate (Sect 2.3), as preliminary tests using a different chemical 

loss rate based on IFS CB05BASCOE simulations show that the bias in CH4 is greatly reduced.   

6. Changes in systematic errors with time due to model error and changes in observation coverage and quality will affect 575 

trend analysis (see Sect. 3.3). 

 

An up-to-date list of the known issues of the CAMS reanalysis can be found in the online CAMS documentation website 

(https://confluence.ecmwf.int/display/CKB/CAMS%3A+Reanalysis+data+documentation). Some of these issues will also be 

addressed in the future CAMS reanalysis (planned to start production in 2024), including the improvement of the prescribed 580 

emission trends, the consistent use of satellite retrieval products and the use of variable CH4 chemical loss rate. 

 

5. Summary and conclusions 

This technical report documents the first CAMS IFS reanalysis of CO2 and CH4 produced by ECMWF which complements 

the CAMS reanalysis of reactive gases and aerosols (Inness et al., 2019). The processing chain, assimilated satellite data and 585 

underlying model used are described and the resulting reanalysis is evaluated using independent in situ near-surface 

observations, total column retrievals and in situ atmospheric profile observations. The monthly systematic and random errors 

of CO2 and CH4 typically range within 1% from 2003 to 2020 with an overall good skill in the representation of synoptic 

spatial variability and seasonal cycle. The lowest systematic errors occur in the period with maximum number of observations 

https://confluence.ecmwf.int/display/CKB/CAMS%3A+Reanalysis+data+documentation
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in 2013 and 2014. In 2019 there was a switch from C3S pre-processed satellite products to the near-real time CAMS satellite 590 

products because at the time of production the C3S products had not reached 2019. This caused a jump in the quality of the 

satellite data and the resulting CAMS GHG reanalysis. For this reason, a new re-run of the CAMS GHG reanalysis from 2019 

onwards will be performed with consistent C3S satellite products in the near future. 

 

The comparison of global mean values with observations shows variations in the bias that depend on changes in the assimilated 595 

satellite data of around 2 ppm and 10 ppb for CO2 and CH4 respectively, which have the same magnitude as the observed 

variations in their growth rate. For this reason, we do not recommend the use of this dataset to study changes in the atmospheric 

growth rate of CO2 and CH4. Similarly, large biases in stratospheric CO2 and CH4 should also considered when analysing 

stratospheric signals and trends in the CAMS GHG reanalyses. A list of caveats and limitations that users need to be aware of 

is provided in Sect. 4.  600 

 

The slow reduction of the lingering bias in the model background is associated with competing factors at play: (i) the error 

growth in the model background associated with the accumulation of systematic errors in emission and natural fluxes; (ii) the 

limited coverage of observations in time and space (both horizontal and vertical); (iii) the localised impact of observations 

associated with a short data assimilation window spanning 12 hours.  605 

 

In order to improve the CAMS reanalysis in future releases we recommend the following actions: (i) increase the number and 

coverage of satellite data assimilated from additional satellite missions such as the Copernicus Sentinel-5 Precursor (S5P), 

Orbiting Carbon Observatory 2 and 3 (OCO-2, https://www.nasa.gov/mission_pages/oco2; OCO-3, 

https://www.jpl.nasa.gov/missions/orbiting-carbon-observatory-3-oco-3) and Greenhouse gases Observing SATellite-2 610 

(GOSAT-2, https://global.jaxa.jp/projects/sat/gosat2) as well as the latest re-processed satellite products from C3S; (ii) 

improve the underlying anthropogenic emissions and natural fluxes by using the most recent flux data sources, with particular 

emphasis on the extrapolation of the prescribed flux data in near-real time; (iii) couple the chemical loss rate with the CAMS 

reanalysis of chemical species (Inness et al. 2019); and (iv) use the IFS inversion capability (McNorton et al., 2022) being 

developed within the CoCO2 project (coco2-project.eu) for future re-analyses and explore the possibility of applying a 615 

correction to the fluxes in order to match the observed global growth rate. 

 

 

 

 620 
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Appendix A 625 

Table A.1 List of stations with in situ continuous observations of CO2 and CH4 from GLOBALVIEWplus CO2 ObsPack v6.0 and 

CH4 ObsPack v1.0 respectively used for the evaluation in Sect. 3.1. 

Station, Country 

(site name) 

Latitude/Longitu

de 

[degrees] 

Elevati

on 

[m asl] 

Data Reference 

Alert, Canada (ALT) 82.45 62.51W 185 Worthy et al. (2003) 

Barrow, AK, USA (BRW) 71.32N 156.61W 11 Peterson et al. (1986) 

Candle Lake, Canada (CDL) 53.99N 105.12W 600 Worthy et al. (2003) 

Mace Head, Ireland (MHD) 53.33N 9.90W 5 Ramonet et al. (2010) 

Fraserdale, Canada (FSD) 49.88N 81.57W 210 Worthy et al. (2003) 

Kasprowy Wierch, Poland (KAS) 49.23N 19.98E 1989 Rozanski et al. (2003) 

Schauinsland, Germany (SSL) 47.92N 7.92E 1205  Schmidt et al. (2003) 

 Hegyhatsal, Hungary (HUN) 46.95N 16.65 248 Haszpra et al (2001) 

Park Falls, WI, USA (LEF) 45.95N 90.27W 472 Andrews et al. (2014) 

Puy de Dôme, France (PUY) 45.77N 2.97E 1465 Lopez et al. (2015); Colomb et al. (2020) 

Argyle, ME, USA (AMT) 45.03N 68.68W 53 Andrews et al. (2014) 

Sable Island, Canada (WSA) 43.93N 60.00W 5 Worthy et al. (2003) 

Ryori, Japan (RYO) 39.03N 141.82E 260 Tsutsumi et al. (2005) 

Moody, TX, USA (WKT) 31.31N 97.33W 251 Andrews et al. (2014) 

Minamitorishima, Japan (MNM) 24.28N 153.98E 8 Tsutsumi et al. (2005) 

Yonagunijima, Japan (YON) 24.47N 123.02E 30 Tsutsumi et al. (2005) 

Tutuila, American Samoa (SMO) 14.25S 170.56W 42 Waterman et al. (1989) 

Cape Point, South Africa (CPT) 34.35S 18.49E 230  Brunke et al. (2004) 

Amsterdam Island, France (AMS) 37.80S 77.54E 55  Ramonet et al. (1996) 

Baring Head Station, New Zealand (BHD) 41.41S 174.87E 85 Stephens et al. (2013) 

Syowa Station, Antarctica, Japan (SYO) 69.01S 39.59E 14 Schuldt et al. (2020) 

South Pole, Antarctica, USA (SPO) 89.98S 24.8W 2810  Conway et al. (1990) 
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 630 

Table A.2 List of total column stations used for the evaluation in Sect 3.1. 

Station, country Latitude/ 

Longitude 

[degrees] 

Network Data references 

 

Eureka, Canada 80.05N 

86.42W 

TCCON+NDACC Strong et al. (2019); Batchelor et al. (2009) 

 

Ny Ålesund, 

Norway 

78.9N  

11.9E 

TCCON+NDACC Notholt et al., (2019) 

 

Thule, Greenland 76.53N 

68.74W 

NDACC Hannigan et al. (2009) 

Kiruna, Sweden 67.84N 

20.41E 

NDACC Bader et al. (2017) 

 

Sodankylä, Finland 67.37N 

26.63E 

TCCON+NDACC Kivi et al. (2014); Sha et al. (2021) 

 

Harestua, Norway 60.2N  

10.8E 

NDACC De Mazière et al. (2018) 

St Petersburg, 

Russia 

59.90N 

29.80E 

NDACC Makarova et al. (2015) 

East Trout Lake, 

Canada 

54.35N 

104.99W 

TCCON Wunch et al. (2018) 

Bialystok, Poland 53.23N 

23.02E 

TCCON Deutscher et al. (2015) 

Bremen, Germany 53.1N  

8.85E 

TCCON Notholt et al. (2014) 

Karlsruhe, Germany 49.1N  

8.44E 

TCCON Hase et al. (2015) 

Paris, France 48.85N  

2.36E 

TCCON Te et al. (2014) 

Orléans, France 47.97N  

2.11E 

TCCON Warneke et al. (2014) 

Garmisch, Germany 47.48N 

11.06E 

TCCON+NDACC Sussmann and Rettinger (2018a); Sussmann et al. (2012); 

Hausmann al. (2016) 
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Zugspitze, Germany 47.42N 

10.98E 

TCCON+NDACC Sussmann and Rettinger (2018b)  

 

Jungfraujoch, 

Switzerland 

46.55N  

7.98E 

NDACC Zander et al. (2008) 

Park Falls, WI, 

USA 

45.94N 

90.27W 

TCCON Wennberg et al. (2017) 

Rikubetsu, Japan 43.46N 

143.77E 

TCCON+NDACC Morino et al. (2016); De Mazière et al. (2018) 

  

Boulder, CO, USA 39.99N 

105.26W 

NDACC Ortega et al. (2021) 

Indianapolis, IN, 

USA 

39.86N 

 86W 

TCCON Iraci et al. (2016) 

Four Corners, USA 36.8N 

108.48W 

TCCON Dubey et al. (2014) 

Lamont, OK, USA 36.5N 

97.49W 

TCCON Wennberg et al. (2016) 

Anmeyondo, South 

Korea 

36.54N 

126.33E 

TCCON Goo et al. (2014) 

Tsukuba, Japan 36.05N 

140.12E 

TCCON Morino et al (2016) 

Nicosia, Cyprus 35.14N 

33.38E 

TCCON Petri et al. (2020) 

Edwards, CA, USA 34.96N 

117.88W 

TCCON Iraci et al. (2016) 

JPL, CA, USA 34.2N 

118.18W 

TCCON Wennberg et al. (2016) 

Pasadena Caltech, 

CA, USA 

34.14N 

118.13W 

TCCON Wennberg et al. (2015) 

Saga, Japan 33.24N 

130.29E 

TCCON Kawakami et al. (2014) 

 

Heifei, China 31.9 N 

117.17E 

TCCON Liu et al. (2018) 
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Izaña, Spain 28.3N 

16.48W 

TCCON+NDACC Blumenstock et al. (2014); García et al. (2021) 

 

Mauna Loa, HI, 

United States 

19.54N 

155.58W 

NDACC Hannigan et al. (2009 

 

Altzomoni, Mexico 19.12N 

98.66W 

NDACC De Mazière et al. (2018); 

Burgos, Philippines 18.53N 

120.65E 

TCCON Morino et al. (2018) 

Manaus, Brazil 3.21S  

60.6W 

TCCON Dubey et al. (2014) 

Ascension Island, 

UK 

7.92S 

14.33W 

TCCON Feist et al. (2014) 

Darwin, Australia 12.43S 

130.89E 

TCCON Griffith et al. (2014) 

Reunion St Denis, 

France 

20.9S 

55.49E 

TCCON+NDACC De Mazière et al. (2014) 

 

Reunion Island, 

Maido, France 

21.1S 

55.4E 

NDACC Zhou et al. (2018) 

Wollongong, 

Australia 

34.41S 

150.88E 

TCCON+NDACC Griffith et al. (2014);  De Mazière et al. (2018);  

 

Lauder, New 

Zealand 

45.05S 

168.68E 

TCCON+NDACC Sherlock et al. (2014a, 2014b); Pollard et al. (2019)   

Bader et al. (2017) ; Pollard et al. (2017) 

Arrival Heights, 

Antarctica 

77.83S 

166.67E 

NDACC Bader et al. (2017) 
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Table A.3 List of AirCore sites (from NOAA_AirCore_data_v20210813, Baier et al., 2021) used for the evaluation in Sect. 3.2. 640 

Site, country Latitude /Longitude [degrees] 

Boulder, CO, USA 40.03N 103.74W 

Lamont, OK, USA 36.85N 98.21W 

Lauder, New Zealand 45.50S 169.47E 

Sodankylä, Finland 67.41N 26.31E 

Park Falls, WI, USA 45.97N 90.32W 

Edwards, CA, USA 34.65N 117.29W 

Traînou, France 48.48N 1.16E 

 

 

Code and data availability  

The IFS forecasting and reanalysis system is not for public use as the ECMWF Member States are the proprietary owners. The 

resulting dataset is however freely available on the Copernicus Atmosphere Data Store. The CAMS GHG reanalysis can be 645 

accessed through the CAMS Atmosphere Data Store (ADS) at https://doi.org/10.24380/8fck-9w87.  The format is available in 

both GRIB and NetCDF. The data record starts on 1 January 2003 00UTC and currently stops on 31 December 2020. Recent 

months will be added over time as soon as the reanalysis procedure and its validation are completed. The original data was 

available either as spectral coefficients with a triangular truncation of T255 or on a reduced Gaussian grid with a resolution of 

N128. But for the ease of the user, fields were interpolated from their native representation to a regular 0.75°x0.75° latitude 650 

longitude grid. For sub-daily data for the CAMS reanalysis is archived with a 3-hourly time step (0, 3, 6, 9, 12, 15, 18, 21 

UTC). Pre-computed monthly averages are also directly available for all fields. The 3D fields are available on two different 

vertical resolution: 25 pressure levels (1000, 950, 925, 900, 850, 800, 700, 600, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 

20, 10, 7,5, 3, 2, 1 hPa) and 60 -hybrid model levels which are described 

at https://www.ecmwf.int/en/forecasts/documentation-and-support/60-model-levels. The data records have 18 2D radiation 655 

fields, 2 vertically integrated atmospheric content of CO2 and CH4 (column-mean mole fractions, 14 2D surface fluxes 

variables, 32 2D meteorological fields and 16 3D fields including meteorological and greenhouse gases fields. A complete 

listing of the variables included in the CAMS GHG reanalysis is provided in the ADS 

(https://ads.atmosphere.copernicus.eu/cdsapp#!/home).  

 660 

https://doi.org/10.24380/8fck-9w87
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