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Abstract.  

A new method is presented for estimating urban hydroxyl radical (OH) concentrations using the downwind decay of the ratio 

of nitrogen dioxide over carbon monoxide column mixing ratios (XNO2 / XCO) retrieved from the Tropospheric Monitoring 

Instrument (TROPOMI). The method makes use of plumes simulated by the Weather Research and Forecast model (WRF-15 

CHEM) using passive tracer transport, instead of the encoded chemistry, in combination with auxiliary input variables such as 

Copernicus Atmospheric Monitoring Service (CAMS) OH, Emission Database for Global Atmospheric Research v4.3.2 

(EDGAR) NOx and CO emissions, and National Center for Environmental Protection (NCEP) based meteorological data.  

NO2 and CO mixing ratios from the CAMS reanalysis are used as initial and lateral boundary conditions. WRF overestimates 

NO2 plumes close to the center of the city by 15 % to 30 % in summer and 40 % to 50 % in winter compared to TROPOMI 20 

observations over Riyadh. WRF simulated CO plumes differ by 10 % with TROPOMI in both seasons. The differences 

between WRF and TROPOMI are used to optimize the OH concentration, NOx, CO emissions and their backgrounds using a 

iterative least square method. To estimate OH, WRF is optimized using a) TROPOMI XNO2/XCO,  b) TROPOMI derived 

XNO2 only.  

For summer, both the NO2/CO ratio optimization and the XNO2 optimization increase the OH prior from CAMS by 32 ± 5.3 25 

% and 28.3 ± 3.9 % respectively. EDGAR NOx and CO emissions over Riyadh are increased by 42.1 ± 8.4 % and 101 ± 21%, 

respectively, in summer. In winter, the optimization method doubles the CO emissions also, while increasing OH by ~52 ± 14 

% and reducing NOx emission by 15.5 ± 4.1 %.  TROPOMI derived OH concentrations and pre-existing Exponentially 

Modified Gaussian function fit (EMG) method differ by 10 % in summer and winter, confirming that urban OH concentrations 
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can be reliably estimated using the TROPOMI-observed NO2/CO ratio. WRF optimization method can be applied to single 30 

TROPOMI overpass, allowing to analysis day to day variability in OH, NOx and CO emission.  

1.  Introduction  

The rapidly growing urbanization has led to an increase in the number of big cities globally. More than 55 % of the global 

population resides in cities and this fraction is projected to increase to 68 % in 2050  (United Nations, 2018). The associated 

rise in consumption of energy and materials leads to severe air pollution that is estimated to have caused premature death of 4 35 

to 9 million people globally in 2015 (Sicard et al., 2021; Pascal et al., 2013; Burnett et al., 2018). Air pollution control measures 

and the application of cleaner technology have reduced the NO2 concentrations in developed cities such as Los Angeles and 

Paris by 1.5 % to 3.0 % yr-1 between 1996  to 2017 (Georgoulias et al., 2019). The CO emission is reduced by 28.8 % to 60.7 

% in these cities in the period 2000 to 2008 (Dekker et al., 2017). In developing cities such as Tehran and Baghdad, however, 

NO2 concentrations have increased by 8.6 % yr−1 and 16.9 % yr−1 between 1996 to 2017  (Georgoulias et al., 2019). The CO 40 

emission increased by 15 % in New Delhi in the period 2000 to 2008 (Dekker et al., 2017). As a consequence, air pollution 

monitoring and mitigation in developing cities is becoming an increasingly important priority.  

Nowadays, urban air pollution can be studied using a combination of ground-based measurement networks and satellite 

observations (Sannigrahi et al., 2021; Ialongo et al., 2020). Satellite observations have helped to investigate urban air pollution, 

particularly in cities without a ground-based monitoring network (Beirle et al., 2019; Borsdorff et al., 2019). In past decades, 45 

improvements in the quality and spatial resolution of satellite measurements have allowed the detection of trends in air 

pollutants and the quantification of urban emissions (Lorente et al., 2019; Verstraeten et al., 2018; Wennberg et al., 2018).  

Several studies have focused on NOx, using NO2 observations from the SCanning Imaging Absorption spectroMeter for 

Atmospheric CartograpHY (SCIAMACHY) , the Ozone Monitoring Instrument (OMI) and TROPOMI (Ding et al., 2017; 

Lorente et al., 2019). At the resolution and sensitivity of TROPOMI, urban NO2 enhancements can be detected readily, even 50 

in single satellite overpass. OMI derived NO2 data have been used to quantify NOx emissions, as well as the urban lifetime of 

NO2, as demonstrated by Beirle et al.  (2011) using the Exponentially Modified Gaussian function fit (EMG) method. 

In the EMG method, the satellite observed exponential decay of NO2 downwind of the city centre is used to quantify the first 

order loss of NO2, which is used to quantify the hydroxyl radical (OH) neglecting other NOx removal pathways. Liu et al. 

(2016) modified the EMG method for application to complex emission patterns. The quantification of CO emissions from 55 

cities is more complicated compared with NO2 because of its longer lifetime, and the related importance of CO sources from 

the surroundings of cities. Nevertheless, a few studies have demonstrated the feasibility of  quantifying relative changes in 

urban CO emission, using Measurement of Pollution in the Troposphere (MOPPIT), Infrared Atmospheric Sounding 

Interferometer (IASI), Atmospheric Infrared Sounder (AIRS), and TROPOMI observations (Borsdorff et al., 2019; Dekker et 

al., 2017; Pommier et al., 2013).  60 
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In recent years, methods have been developed that combine satellite measurements of different trace gases, for example the 

combined use of NO2 and CO, to obtain specific information about pollutant sources (Lama et al., 2020, Hakkarainen et al., 

2015; Miyazaki et al., 2017; Reuter et al., 2019; S. Silva & Arellano, 2017 ). The emission factors of CO and NOx from fuel 

combustion are uncertain and vary strongly with the combustion efficiency (Flagan and Seinfeld, 1988). The satellite observed 

∆NO2/∆CO ratio is particularly sensitive to this fuel burning efficiency, as demonstrated by Lama et al., (2020) and  can be 65 

used to evaluate emission inventories. However, another important uncertainty arises from the removal of NO2 by OH. OH is 

an important oxidant in the atmosphere, which determines the lifetime of trace gases such as CO, NOx, sulphur dioxide (SO2) 

and volatile organic compound (VOCs) (Monks et al., 2009) . OH plays the important role in atmospheric chemistry on scales 

ranging from urban air pollution to the global residence times of greenhouse gases. The direct measurement of OH is possible 

using spectroscopic methods, but the spatial representativeness of the data is limited due to its short lifetime (de Gouw et al., 70 

2019). OH estimates from global Chemical Transport Models (CTM’s) has an uncertainty of > 50 % (Huijnen et al., 2019). 

Urban measurement campaigns point to large discrepancies between modelled and observed OH abundances, for example in 

Lu et al., (Lu et al., 2013) who found a factor 2.6 difference in a campaign in the suburbs of Beijing. 

The aim of this study is therefore to estimate the average OH concentration in the urban plume of large cities (hereafter referred 

to as urban OH) from the downwind decay of the TROPOMI observed NO2/CO ratio. The proposed method makes use of the 75 

WRF model (Grell et al., 2005) to simulate the meteorological fields and atmospheric transport. The TROPOMI instrument 

(Veefkind et al., 2012), launched on 13 October 2017 on board the Sentinel-5 Precursor satellite, is particularly well suited for 

this task, as it measures both compounds with high sensitivity and spatial resolution.  Our method uses CO, because it has a 

longer lifetime than NO2 (weeks-months compared to a few hours). Therefore, CO can be considered as an inert tracer at the 

time-scale of urban plumes. The difference in the rate of decay between NO2 and CO provides therefore information about the 80 

photochemical oxidation of NO2, because atmospheric dispersion is expected to have a very similar impact on both tracers and 

therefore cancels out in their ratio. The use of the NO2/CO ratio for estimating urban scale OH is further compared to the 

Exponentially Modified Gaussian function fit (EMG) method, using only satellite retrieved NO2 (Beirle et al., 2011).  

The city of Riyadh (24.63° N, 46.71° E ) is chosen as a test case. Riyadh is an isolated city and a strong source of CO and NO2 

pollution (Beirle et al., 2019; Lama et al., 2020). The frequent clear sky conditions over Riyadh yield a large number of valid 85 

TROPOMI CO and NO2 data. The signal to noise in TROPOMI is high enough to detect the enhancement of CO and NO2 

over Riyadh in a single overpass (Lama et al., 2020). Model results from the Copernicus Atmospheric Monitoring Service 

(CAMS) for Riyadh show a distinct seasonality in OH (see Fig S1), which we attempt to evaluate using TROPOMI data for 

summer and winter.  

This paper is organized as follows: Section 2 describes the TROPOMI NO2 and CO data, the WRF model setup that was used, 90 

and the optimization method that is used for estimating OH. Optimization results and comparisons between TROPOMI and 

WRF are presented in section 3, followed by a summary and conclusion of the main finding in section 4. Additional figures 

and information about the optimization method are provided in the Supplement.  
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2. Data and Method  

2.1 TROPOMI NO2 tropospheric column  95 

We used the offline TROPOMI level 2 tropospheric column NO2 [mole m-2] data from retrieval versions 1.2.x for 2018 and 

1.3.x for 2019 available at https://s5phub.copernicus.eu; http://www.tropomi.eu (last access: 21 September, 2020). NO2 data 

of versions 1.2.x and 1.3.x have minor processing differences such as removal of negative cloud fraction, better flagging and 

uncertainty estimation. However, they use the same retrieval algorithm applied to level-1b version 1.0.0 spectra  (Babic et al., 

2019) recorded by the TROPOMI UV-Vis module in the 405-465nm spectral range. The TROPOMI NO2 DOAS software, 100 

developed at KNMI, is used for the processing of NO2 slant column densities  (van Geffen et al., 2019). The improved NO2 

DOMINO algorithm of Boersma et al. (2018) has been used to translate slant columns into tropospheric column densities. In 

this algorithm, stratospheric contributions are subtracted from the slant column densities and the residual tropospheric slant 

column density is converted to tropospheric vertical column density using the air mass factor (AMF).  The AMF depends on 

the surface albedo, terrain height, cloud height , cloud fraction and a priori NO2 profiles from TM5-MP at 1◦ × 1 ◦  (Eskes et 105 

al., 2018; Lorente et al., 2017). The comparison of MAX-DOAS ground based measurements in European cities shows that 

TROPOMI underestimates of NO2 columns by 7 % to 29.7 % (Lambert et al., 2019). To reduce the differences between satellite 

and model, we re-calculated the AMF by replacing the tropospheric AMF  based on TM5 simulated vertical NO2 columns, 

with the WRF-chem equivalent (Lamsal et al., 2010; Boersma et al., 2016; Visser et al., 2019; Huijnen et al., 2010), using the 

equation provided in the Appendix A. After the AMF recalculation, the NO2 vertical profiles are consistent between satellite 110 

and model. Furthermore, the use of WRF-Chem has the advantage that it resolves NO2 gradients between urban and downwind 

regions better than the coarser resolution TM5-MP model (Russell et al., 2011; McLinden et al., 2014; Kuhlmann et al., 2015). 

During summer, the AMF recalculation  increases TROPOMI NO2 by 5 % to 10 % and in winter by 25 % to 30 % in the urban 

plume over Riyadh, whereas background areas are less affected (see Fig S2 ). The S5P-PAL reprocessed NO2 data available 

at https://data-portal.s5p-pal.com/products/no2.html differs by 7.5 % to 10 % in summer ( June to October, 2018) and 13.5 % 115 

to 16 % in winter (November, 2018 to March, 2019) compared to the AMF recalculated  TROPOMI NO2 data used in this 

study. These differences have been used to quantify the systematic uncertainty of the NO2 data and its contribution to the 

uncertainty in the NOx emission and lifetime derived using our method (see Table S1, S2 and S3).    

2.2 TROPOMI CO  

For CO, the offline level 2 CO data product version 1.2.2  has been used, available at  https://s5phub.copernicus.eu  (last 120 

access: 20 September, 2020). The SICOR algorithm is applied to TROPOMI 2.3 μm spectra to retrieve CO total column density 

[molec cm−2] (Landgraf et al., 2016). The retrieval method is based on a profile scaling approach, in which TROPOMI-

observed spectra are fitted by scaling a reference vertical profile of CO using the Tikhonov regularization technique (Borsdorff 

et al., 2014). The reference CO profile is obtained from the TM5 transport model (Krol et al., 2005). The averaging kernel (A) 

https://data-portal.s5p-pal.com/products/no2.html%20differs%20by%207.5
https://s5phub.copernicus.eu/
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quantifies the sensitivity of the retrieved total CO column to variations in the true vertical profile (ρtrue), as follows (Borsdorff 125 

et al., 2018a): 

𝐶𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 = 𝐴. 𝜌𝑡𝑟𝑢𝑒 + ∈𝐶𝑂                                                            (1) 

where, Cretrieval is the retrieved column average CO mixing ratio, ∈CO is the retrieval error, statistically represented by the 

retrieval uncertainty that is provided for each CO retrieval.  

The comparison of TROPOMI derived XCO to the 28 different TCCON ground based station suggest that difference between 130 

TCCON and TROPOMI is in the range of  9.1 ± 3.3 % (Shah et al., 2020). Such difference is used to estimate the uncertainty 

in the NOx emission and life time (see Table S1, S2, S3 and Text S6).   

2.3 Satellite Data Selection and Filtering Criteria  

As NO2 and CO are retrieved from different channels of TROPOMI using different retrieval algorithms, the filtering criteria 

and spatial resolutions of CO and NO2 are different. The data filtering makes use of the quality assurance value (qa) and is 135 

provided with the CO and NO2 retrievals, ranging from 0 (no data) to 1 (high quality data). We selected NO2 retrievals with 

qa ≥ 0.75 (clear sky condition) and CO retrievals with qa ≥ 0.7 (clear sky or low level cloud) as in Lama et al., (2020). The 

SICOR algorithm was originally developed for SCIAMACHY to account for the presence of low elevation clouds, increasing 

the number of valid measurements (Borsdorff et al., 2018a). In addition, the CO stripe filtering technique is applied as described 

by Borsdorff et al. (2018). Using dry air column density derived from the surface pressure data in CO and NO2 TROPOMI 140 

files, the total CO column and tropospheric NO2 column densities are converted to dry column mixing ratios XCO (ppb) and 

XNO2 (ppb). The spatial resolution of the NO2 data is finer compared to the CO data (3.5x7 km2 versus 5.5x7 km2). After the 

CO and NO2 retrievals pass the filtering criteria, their co-location is approximated by assigning the centre coordinates of an 

NO2 retrieval to the CO footprint in which it is located (Lama et al., 2020).  

2.4 Weather Research Forecast model (WRF) 145 

We have used WRF- chemistry model (http://www.wrf-model.org/ ), version 3.9.1.1 to simulate NO2 and CO mixing ratios 

over Riyadh. WRF is a non-hydrostatic model designed by the National Center for Environmental Protection (NCEP) for both 

atmospheric research and operational forecasting applications. For this study, we have setup three nested domains in the model 

at resolutions of 27 km, 9 km and 3 km, centred at 24.63°N, 46.71°E. The first and second domain cover Saudi Arabia and 

provide the boundary conditions for the nested third domain (see Fig. S3). The analysis in this paper uses the 500 x 500 km2 150 

sub region around Riyadh in the third domain, containing 161 by 161 grid cells. All domains are extended vertically from the 

Earth’s surface to 50 hPa, using 31 vertical layers, with 17 layers in the lowermost 1500 m. WRF simulations are performed 

using a time step of 90 seconds for the period June 2018 to March 2019, using a spin-up time of 10 days.   

We have used the Unified Noah land surface model for surface physics (Ek et al., 2003; Tewari et al., 2004), an updated 

version of the Yonsei University (YSU) boundary layer scheme (Hu et al., 2013) for the boundary layer processes, and the 155 

http://www.wrf-model.org/
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Rapid Radiative Transfer Method (RRTM) for short-wave and long-wave radiation (Mlawer et al., 1997). Cloud physics is 

solved with the new Tiedtke cumulus parameterization scheme (Zhang and Wang, 2017). The WRF Single Moment 6-class 

scheme is used  for microphysics (Hong and Lim, 2006). The WRF coupling with chemistry (WRF-chem) allows the 

simulation of tracer transport and the chemical transformation of trace gases and aerosols. Here, we used the passive tracer 

transport function instead of the encoded chemistry in WRF to speed up the model simulation and reduce the computational 160 

cost. In addition, the passive tracer option helps in separating the influences of wind, OH and the rate constant of the NO2+OH 

reaction (KNO2.OH) on the NO2/CO ratio in the downwind city plume. Compared to previously used methods (Beirle et al., 

2011b; Valin et al., 2013) which did not use a transport model at all, we consider this an important improvement.  The function 

of different tracers, their acronym and explanation of different WRF simulations is provided in Table 1. 

The meteorological initial and boundary conditions are based on NCEP data at 1°x1° spatial and 6-hr temporal resolution 165 

available at https://rda.ucar.edu/datasets/ds083.2/. Nitrogen Oxides (NOx = NO2 +NO) and CO anthropogenic emissions 

have been taken from the Emission Database for Global Atmospheric Research v4.3.2 (EDGAR) 2012 at 0.1°x0.1° spatial 

resolution (Crippa et al., 2016). The EDGAR 2012 data have been re-gridded to the resolution of the WRF domains and 

hourly, weekly and monthly emission variations are taken into account using the temporal emission factors provided by van 

der Gon et al. (2011). The chemical boundary conditions for CO and NOx are based on the CAMS chemical reanalysis 170 

product at 0.75°x0.75° spatial, and 3-hourly temporal resolution (Inness et al., 2019), retrieved from 

https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=form, last access: 1st November, 

2020). XCO and XNO2 boundary condition based on CAMS is assumed to be representative as background value within the 

domain. Since we do not explicitly compute the sources and sinks of background NO2 inside the domain, we decide to 

transport the boundary conditions as background passive tracers. 175 

Table 1. Summary of WRF simulations and the definition of tracers and acronym used. 

WRF Simulation / Tracer WRF input / Tracer definition  

Prior WRF run using NCEP meteorological data, EDGAR CO and NOx emissions, CAMS 

OH, and CAMS CO and NOx as initial and lateral boundary conditions.                                                    

WRFOH*1.1   Prior run with CAMS OH increased by 10 %  

Optimized run1st iter  Optimized state (background, emission, OH) after iteration 1 

Optimized run2nd iter   Optimized state (background, emission, OH) after iteration 2 

CO 

𝐗𝐂𝐎𝐞𝐦𝐢𝐬 The contribution of urban CO emissions to XCO   

𝐗𝐂𝐎𝐁𝐠 The contribution of the background to XCO  

𝐗𝐂𝐎 𝐖𝐑𝐅  XCO from the Prior run   

𝐗𝐂𝐎 𝐖𝐑𝐅,𝟏𝐬𝐭 𝐢𝐭𝐞𝐫 XCO from Optimized run1st iter 

https://rda.ucar.edu/datasets/ds083.2/
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=form
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𝐗𝐂𝐎 𝐖𝐑𝐅,𝐨𝐩𝐭 XCO from Optimized run2nd iter   

NO2 

𝐗𝐍𝐎𝟐 𝐞𝐦𝐢𝐬 The contribution of urban NOx emissions to XNO2, ignoring the OH sink   

𝐗𝐍𝐎𝟐 (𝐞𝐦𝐢𝐬,𝐎𝐇) As XNO2 (emis) accounting for the OH sink 

𝐗𝐍𝐎𝟐 (𝐞𝐦𝐢𝐬,𝐎𝐇∗ 𝟏.𝟏) As XNO2(emis,OH) with CAMS OH increased by 10 %  

 𝐗𝐍𝐎𝟐 𝐁𝐠 The contribution of the background to XNO2   

𝐗𝐍𝐎𝟐 𝐖𝐑𝐅  XNO2 from the Prior run.  

𝐗𝐍𝐎𝟐 (𝐖𝐑𝐅 ,𝐎𝐇∗ 𝟏.𝟏) XNO2 from WRFOH*1.1. 

𝐗𝐍𝐎𝟐 𝐖𝐑𝐅  𝟏𝐬𝐭 𝐢𝐭𝐞𝐫 XNO2 from Optimized run1st iter 

𝐗𝐍𝐎𝟐 𝐖𝐑𝐅  𝐨𝐩𝐭 XNO2 from Optimized run2nd iter 

Ratio (NO2/CO) 

𝐑𝐚𝐭𝐢𝐨𝐰𝐢𝐭𝐡𝐨𝐮𝐭 𝐎𝐇  Ratio of  XNO2 emis and  XCOemis  

𝐑𝐚𝐭𝐢𝐨𝐰𝐢𝐭𝐡 𝐎𝐇  Ratio of  XNO2 (emis,OH) and  XCOemis  

𝐑𝐚𝐭𝐢𝐨𝐁𝐠  Ratio of   XNO2 Bg and XCOBg  

𝐖𝐑𝐅 𝐑𝐚𝐭𝐢𝐨  Ratio of   XNO2 WRF and XCOWRF  

𝐖𝐑𝐅 𝐑𝐚𝐭𝐢𝐨𝐎𝐇∗𝟏.𝟏 Ratio of  XNO2 (WRF,OH∗ 1.1) and XCOWRF 

𝐖𝐑𝐅 𝐑𝐚𝐭𝐢𝐨𝟏𝐬𝐭 𝐢𝐭𝐞𝐫 Ratio of  XNO2 WRF ,1st iter and XCO WRF,1st iter 

𝐖𝐑𝐅 𝐑𝐚𝐭𝐢𝐨𝐨𝐩𝐭 Ratio of  XNO2 WRF,opt and XCO WRF,opt 

 

The atmospheric transport in WRF causes the influence of NOx  and CO emissions from Riyadh on their column average mixing 

ratios  to be linear. Instead of a simplified photochemistry solver, we make use of a WRF-chem module for passive tracer 

transport for transporting NOx. This WRF module has been modified to account for the first order loss of NOx in reaction of 180 

NO2 with OH, using NOx/NO2 ratios from CAMS to translate NOx into NO2 and CAMS OH fields to compute the chemical 

transformation of NO2 to HNO3 (see Text S1 for detail ).     

In addition, we account for the chemical transformation of NOx to HNO3 in the reaction of NO2 with OH. This is a simplified 

treatment of the lifetime of NOx as other photochemical pathways play a role, such as:  

- The oxidation of NO2 in reaction with organic radicals (RO2) to form the alkyl and multifunctional nitrates 185 

(RONO2) (Romer Present et al., 2019)  

- NOx loss due to the formation dinitrogen pentoxide (N2O5) followed by heterogeneous transformation to HNO3 

(Shah et al., 2020).  

- Peroxyacetyl nitrate (PAN) formation in equilibrium between NO2 and the peroxyacetyl radical (Moxim, 1996).  

- The dry deposition of NO2 on the surface and plant stomata (Delaria et al., 2020).   190 
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The loss of NO2 by OH to HNO3 accounts for 60 % of the global NOx emission (Stavrakou et al., 2013). Macintyre and 

Evans.,(2010) showed that the N2O5 pathway reduces NOx concentrations by 10 % in the tropics (30o N to 30o S) and 40 % 

at northern latitudes. The NOx loss through N2O5 hydrolysis is largest at northern latitudes during winter (50 % to 150 %), 

unlike the tropics where its seasonality is small. Moreover, the removal of N2O5 is primarily important during night time 

because of its photolysis during daytime, whereas our analysis focuses on the midday overpass time (13:30) of TROPOMI 195 

when OH abundances are highest. For these reasons, we consider it safe to neglect the loss of NOx through N2O5 in our 

analysis for Riyadh. The dry deposition flux is also expected to be low as it is controlled largely by stomatal uptake, which is 

assumed to be insignificant for the low vegetation cover of Riyadh. The same is expected to be true for PAN formation 

because of its thermal decomposition at increasing temperatures. We acknowledge that our OH estimates should be regarded 

as upper limits due to the neglect of other NOx transformation pathways. A quantification of the combined effect would 200 

require full chemistry simulations, which we consider outside of the scope of this paper.  

Note that in this study, OH is only applied to the urban NOx emission tracer (XNOx emis).  The CAMS NOx background 

tracer (XNOx Bg  ) is transported in WRF without OH decay, since it already represents the balance between regional sources 

and sinks. CAMS hydroxyl radical (OH) data at a resolution of 0.75° x 0.75° spatial and 3 hourly temporal resolution (Inness 

et al., 2019) retrieved at https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=form, last 205 

access: 1st July, 2020) is spatially, temporally and vertically interpolated to the WRF grid. The NOx lifetime is derived as 

follows: 

 
dNO2

dt
  =     KNO2 OH. [OH]. [NO2   ]                                                            (2) 

 

fact =  
NOx

NO2
                                                                                                    (3) 210 

τNOx =  
1

 
KNO2 OH

fact
. [OH] 

                                                                               (4) 

 

where, KNO2 OH is the International Union of Pure and Applied Chemistry (IUPAC) 2nd order rate constant for the reaction of  

NO2 with OH. “fact” represents the fractional contribution of NO2 to NOX (NOx/NO2). This NOx to NO2 conversion factor is 

derived from the CAMS reanalysis and re-gridded to WRF, to account for its spatial and temporal variation. τNOx is the lifetime 215 

of NOx.  

 

https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=form
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The components of NOx (NO and NO2) have short lifetimes during daytime because of the photo stationary equilibrium 

exchanging NO and NO2 into each other. For this reason, we estimate the lifetime of their sum (NOX) which is determined 220 

largely by the reaction with OH. In earlier work with satellite NO2 data, the Jet Propulsion Laboratory (JPL) high pressure 

limit was used as rate constant to represent the first order loss of NO2 (Beirle et al., 2011; Lama et al., 2020; Lorente et al., 

2019).  However, we found this approximation to be too crude, and therefore apply the full IUPAC recommended pressure 

dependent formula for the 2nd order rate constant.  Supplement Figure S4 shows the difference between the three rate constants, 

i.e. JPL high pressure limit, JPL 2nd order and IUPAC 2nd order, confirming the importance of accounting for the pressure 225 

dependence.  

WRF output for the third domain is interpolated spatially and temporally to the footprints of TROPOMI. The interpolated 

WRF- NOx tracers are converted to NO2 using the conversion factor derived from the CAMS reanalysis accounting for its 

spatial and temporal variation (for the names and functions of tracers see Table 1). The averaging kernel available for each 

TROPOMI CO and NO2 observation is applied to the WRF output, after interpolation to the vertical layers of the TROPOMI 230 

retrieval. To compare WRF output to TROPOMI,  WRF derived XNO2  (XNO2 WRF ) is calculated by combining the NO2 

tracer that accounts for the OH effect (XNO2 (emis,OH)) and the CAMS NO2 background  ( XNO2 Bg) (see Fig. S5 and S6) . 

Similarly, the CO emission tracer (XCOemis) is added to the CAMS CO background (XCOBg) to calculate WRF simulated 

XCO (XCO WRF ) (see Fig. S7 and S8).  

Figure 1. TROPOMI derived XCO (left) and average wind speed and wind direction from the surface to the top of 

boundary layer (right)  derived from the CAMS global reanalysis eac4 data at the TROPOMI overpass time over 

Riyadh for August 4th, 2018. The white star represents the centre of Riyadh. The black box (B1) with a dimension of 

300 x 100 km2 is rotated in the average wind direction at 50 km radius from the centre of Riyadh at the TROPOMI 

overpass time resulting in the red box. For the calculation of cross-directional averaged NO2 and CO, the red box is 

divided into 29 smaller cells with the width (∆x) ~11 km. For this TROPOMI derived XCO is gridded at 0.1°x0.1°. 
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2.5 NO2/CO ratio calculation using box rotation  235 

The variation of the NO2/CO ratio in the downwind city plume is calculate as a function of distance x from the city centre in 

downwind direction.  We select days with an average wind speed (U) in the range of 3.0 ms-1  (Beirle et al., 2011) < U < 8.5 

ms-1 (Valin et al., 2013) within a 50 km radius from the centre of Riyadh (24.63° N, 46.71° E). The horizontal distribution of 

EDGAR emissions over Riyadh is used within this 50 km radius (Fig S9). Ninety five days in summer and 70 days in winter 

meet the wind speed criteria over Riyadh for the ratio calculation. The boundary layer average wind speed and direction is 240 

calculated using the CAMS global reanalysis eac4 (retrieved at https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-

global-reanalysis-eac4?tab=form , last access : 1st August, 2020) at a resolution of 0.75°x0.75° spatial and 3 hourly temporal 

resolution.  For this, the CAMS wind vector is spatially and temporally interpolated to the central coordinate of TROPOMI 

pixels.  

To compute the NO2/CO ratio as function of the downwind distance x, TROPOMI and WRF data have been re-gridded at 245 

0.1°x0.1°. A box (B1) is selected with a width of 100 km, from 100 km in upwind to 200 km in downwind direction of the city 

centre (see Fig 1a). The dimension of the box is motivated by multiple TROPOMI overpasses over Riyadh showing NO2 and 

CO enhancements advected downwind over a ~200 km distance, without other large sources of NO2 and CO within a 100 km 

radius of the city centre (see Fig. 1a). Figure 1(b) shows the boundary layer averaged wind speed and wind direction over 

Riyadh indicating flow towards the northeast on 4th of August, 2018. The box is rotated for every TROPOMI overpass 250 

depending upon the daily average wind direction within a 50 km radius from centre of Riyadh as shown in Figure 1(a) and 

Figure S10. The rotated box B1 is divided into N rectangular boxes, orthogonal to the wind direction with length (∆x) ~11 km 

(see Fig. 1 and Fig. S10). The XNO2 and XCO grid cells that fall within the N rectangular boxes are selected  to derive zonally 

averaged XNO2 and XCO for summer and winter.   

Unlike the enhancements over the city, ∆XNO2 and ∆XCO become smaller than retrieval uncertainties at large distance from 255 

the city, where the ratio ∆XNO2/∆XCO becomes ill-defined. Therefore, we decided to use the ratio of mean XNO2 and XCO 

instead of enhancements over the background.  To analyse the influence of atmospheric transport and the OH sink on the WRF 

derived XNO2/XCO ratio two different ratios are derived: 1. 
XNO2 emis

XCOemis
, named “Ratiowithout OH”, 2. 

XNO2 (emis,OH)

XCOemis
, named 

“Ratiowith OH”( see Table 1). The CAMS background accounts for the balance between regional source and sink in CTMs so 

it is excluded to analyse the influence of atmospheric transport on the ratio. For the comparison between TROPOMI and WRF, 260 

the CAMS backgrounds are included in  “WRF RATIO” (
XNO2 WRF

XCOWRF
) (see Table 1). The comparison of WRF RATIO to 

TROPOMI ratio, and the contribution of its components,  is presented in  section 3.2.  

2.6 OH estimation: satellite data only  

In the EMG method, following Beirle et al. (2011), 2D NO2 column densities maps are assigned to eight equal wind sectors, 

spanning 360 ° for summer and winter. 1D column densities per wind sector are computed by averaging in cross wind direction. 265 

https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=form
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=form
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This way, average NO2 column density functions of the downwind distance to the city centre have been constructed for summer 

and winter (see Fig. S11). Using the EMG method as in Beirle et al., (2011), the e-folding distance x0 and NO2 emissions have 

been estimated. The NO2 lifetime is derived by dividing x0 by the average wind speed (5.46 ms-1 and 5.24 ms-1 for winter and 

summer, respectively) and is provided in Table 2. The OH concentration is derived from the inferred NO2 lifetime using the 

IUPAC second order rate constant (for details see section Text S2 and S3). Rate constants at the time of TROPOMI overpasses 270 

are obtained from WRF by averaging the IUPAC second order rate constant from the surface to top of the planetary boundary 

layer. The PBL height at the time TROPOMI overpass has been taken from WRF. EMG derived NO2 emissions are also 

converted to NOx emissions using the CAMS-derived conversion factor. Summer and winter averaged CAMS derived 

conversion factors for the box of 300 km x 100 km are 1.28 and 1.31, respectively.   

2.7 OH estimation: WRF optimization   275 

To jointly estimate the NOx and CO emissions as well as the OH concentration from the TROPOMI data, a least squares 

optimization method is used. This method fits the model to the data by minimizing a cost function (J) (see Text S4 for details). 

The reaction of NO2 with OH introduces a non-linearity in the OH optimization. To account for this non-linearity, we linearize 

the problem around the a priori starting point, using small perturbations (10 %) ∆background, ∆emission, ∆OH. The non-linear 

model is fitted to the observations, by optimizing scaling factors fBg, femis , fOH to the perturbation functions ∆background, 280 

∆emission and  ∆OH, respectively. This process is repeated iteratively, updating the linearization point and re-computing the 

perturbation functions. The scaling factor femis, foh and fbg represent the modification of the prior in percentage change.   

We estimate OH by optimizing WRF with TROPOMI in two ways 1) optimizing the simulated NO2/CO ratio using 

TROPOMI-derived ratios, named as “Ratio optimization” and 2) optimizing NO2 and CO separately using TROPOMI derived 

XCO and XNO2 named as “Component wise optimization”. First the ratio optimization is described followed by the component 285 

wise optimization. Optimized ratios are derived as follows: 

FTROPOMI           =  F +
∆F

∆emis
∗

femis 

10
+ 

∆F

∆OH
∗

fOH

10
+

∆F

∆Bg
∗

fBg

10
                         (5)   

F                       =   
XNO2 WRF

XCOWRF
   

XNO2 WRF        =  XNO2 (emis,OH) + XNO2 Bg                                                     (6) 

XCO WRF         =  XCOemis + XCOBg                                                                     (7) 290 

∆F

∆emis
             =   

XNO2 (emis,OH) ∗ 1.05 + XNO2 Bg

XCOemis ∗ 0.95 + XCOBg
 − F                                (8) 
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∆F

∆OH
                  =  

XNO2 (emis,OH∗1.1)+XNO2 Bg

XCOemis+XCOBg
 −  F                                                    (9)  

∆F

∆Bg
               =  

XNO2 (emis,OH ) + XNO2 Bg ∗ 1.05

XCOemis + XCOBg ∗ 0.95
 −  F                                   (10) 

Here, FTROPOMI is the TROPOMI derived NO2/CO ratio, F is the WRF Ratio , 
∆F

∆emis
 is the change in F due to an increase in the 

NO2 emission by 5 % and a decrease in the CO emission by 5 %  (1.05/0.95 = ~10 %), 
∆F

∆OH
  is the change in F due to an increase 295 

in OH by 10 % and 
∆F

∆Bg
 is the change in F due to an increase in the XNO2 background by 5 % and a decrease in the CO 

background by 5 %. XNO2 (emis,OH) is the contribution of city NOx emissions to XNO2 accounting for the OH sink, XNO2 Bg 

is the NO2 background. XCOemis is the contribution of the EDGAR city CO emissions to XCO and XCOBg is the CO background 

derived from CAMS.  XNO2 WRF  and XCOWRF  is the WRF derived XNO2 and XCO respectively.  XNO2 (emis,OH∗ 1.1) is the 

contribution of city NOx emissions to XNO2 after increasing CAMS OH by 10 %.  The scaling factors femis ,fOH and fBg obtained 300 

from the ratio optimization have been divided by 10 because  
∆F

∆emis
  ,

∆F

∆OH
 and 

∆F

∆Bg
  are defined as the change in F due to 

modification of emission, OH and background by 10 %.  

Although the ratio optimization is sensitive to the emission ratio and the OH sink of NO2, it is not sensitive to the absolute 

emissions of CO and NO2. Therefore, we performed component-wise optimizations for XCO and XNO2  to optimize absolute 

emissions. We also compare the OH factor obtained from the ratio optimization and component-wise optimization to test the 305 

robustness of the method.  The optimized XNO2 is derived using Eq. (11). XCO is optimized using the same equation but 

without considering the OH sink (see Appendix B).  

XNO2 TROPOMI =  XNO2 WRF + ∆XNO2 emis ∗
femis 

10
+ ∆XNO2 OH ∗

fOH 

10
+ ∆XNO2 Bg ∗

fBg 

10
        (11) 

∆XNO2 emis = XNO2 (emis,OH) ∗ 1.10 −  XNO2 (emis,OH)                                          (12) 

∆XNO2 OH = XNO2 (emis,OH∗ 1.1) − XNO2 (emis,OH)                                                  (13) 310 

∆XNO2 Bg = XNO2 Bg ∗ 1.10 − XNO 2 Bg                                                                    (14) 

Here, XNO2 TROPOMI is the TROPOMI derived XNO2, XNO2 WRF is the WRF XNO2. ∆XNO2 emis is the change in XNO2 due 

to an increase in emission by 10 %, ∆XNO2 OH is change in XNO2 due to an increase in CAMS OH by 10 % and ∆XNO2 Bg  is 

a change in the background XNO2 by 10 %. The scaling factors femis ,fOH and fBg are divided by a factor 10, because ∆XNO2 emis, 

∆XNO2 OH and ∆XNO2 Bg are defined as 10 % changes in NOx emission, OH and background level.  315 
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3. Results and Discussion 

3.1.  XNO2 and XCO over Riyadh   

In this subsection, we compare WRF-derived XCOWRF  and   XNO2 WRF  with TROPOMI for summer (see Fig.  2) and winter 320 

(see Fig. S6) over Riyadh. TROPOMI and WRF derived XCO and XNO2 are averaged from June to October 2018 for summer 

and November 2018 to March 2019 for winter in a domain of 500 x 500 km2 centered around Riyadh.  

The comparison for summer in Figure 2 shows TROPOMI NO2 after replacing the TM5-based tropospheric AMF with WRF 

profiles as described in Visser et al. (2019). The enhancement of XNO2 and XCO over Riyadh due to urban emissions is clearly 

separated from the background for TROPOMI and WRF, showing that the city of Riyadh is well suited to investigate the use 325 

of the NO2/CO ratio to quantify OH in urban plumes. Due to the longer life-time of CO, the TROPOMI-observed XCO plume 

Figure 2. Comparison between XNO2 (left) and XCO (right) from TROPOMI and WRF over Riyadh averaged over  June to 

October, 2018. Top panels show TROPOMI data and bottom panels the corresponding co-located WRF results. XNO2 WRF is 

derived by adding  XNO2 (emis,OH) and XNO2 Bg  . XCO WRF  is derived by adding  XCOemis  and XCOBg. The white star represents 

the centre of city. TROPOMI and WRF results are gridded at 0.1˚x0.1˚. 
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extends further in the southeast direction compared to XNO2.  Figure 2 shows that our WRF simulations are able to reproduce 

the TROPOMI retrieved XNO2 (r2 = 0.96) and XCO (r2 =0.78) plumes, confirming that WRF-derived 
XNO2 WRF 

XCOWRF
 is suitable for 

the optimization of CTM-derived OH concentrations using TROPOMI data.  XNO2 WRF is higher by 25 % compared to 

TROPOMI in the city centre. In the background, XCOWRF shows a similar spatial distribution as TROPOMI XCO, but the 330 

values are higher by 5 to 10 % (see Fig 2.).  Close to the city centre, XCOWRF is ~5.7 % higher than TROPOMI XCO. In 

EDGAR 2011, emission sources are located in the centre of Riyadh (see Fig. S9). However, as noted by Beirle et al. (2019) 

they extend to a larger part of the city in reality. This difference in spatial distribution leads to higher XNO2 WRF  and XCOWRF 

close to centre of Riyadh compared to TROPOMI.  

In winter, the wind direction is predominantly from the south easterly sector in WRF and TROPOMI (see Fig S12). The spatial 335 

distribution of XCOWRF  (r
2 = 0.73) and XNO2 WRF (r2 = 0.88 ) matches quite well with TROPOMI. Therefore, the difference 

between summer and winter should offer the opportunity to quantify the seasonality in emissions and OH concentrations over 

Riyadh. In winter, XCOWRF is ~5 to 10 % higher than TROPOMI, while XNO2 WRF is higher by  40 % to 50 %. The difference 

could either point to uncertainties in the NO2/CO emission ratio, uncertainties in the NO2 lifetime, or inaccuracies in the 

background. By quantifying OH, we can evaluate these explanations (see section 3.3). XNO2 WRF is higher by 20 % in winter 340 

than in summer. Contrary, TROPOMI NO2 is lower by ~30 % in winter (Fig S12.) compared to summer (Fig. 2). Again, to 

disentangle the role of changing sources and sinks, we need an independent estimate of OH.  
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3.2. The XNO2/XCO ratio and OH 

Before comparing TROPOMI and WRF-derived XNO2/XCO ratios, we first analyse the influence of atmospheric transport 345 

and the OH sink on the WRF derived XNO2/XCO ratio. To do this three ratios are used 1. Ratiowithout OH  2. Ratiowith OH  3. 

WRF RATIO  (see Table 1). As seen in Figure 3, S13 and S14,  WRF is able to reproduce the TROPOMI-observed downwind 

evolution of XNO2 and XCO in summer and winter. The peak of the XNO2 and XCO plumes is shifted away from the city 

centre due to the balance between the accumulation of urban emissions in the atmospheric column and atmospheric transport 

(Lorente et al., 2019).  350 

As expected, Ratiowithout OH  shows an approximately straight line when the background is removed, because transport 

influences NO2 and CO in the same way and therefore cancels out in the ratio (see Fig. 3b).  The Ratiowith OH  however, shows 

an approximately Gaussian relation with distance due to the influence of the sink on NO2. This comparison demonstrates the 

Figure 3. Comparison of WRF and TROPOMI averaged across the wind for each small box  a) XNO2, b) XCO and c) 

WRF Ratio (XNO2/ XCO) without CAMS background d) WRF Ratio (XNO2/ XCO) with  background  and TROPOMI  

as a function of distance to the centre of Riyadh  for summer ( June, 2018  to October, 2018).  
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sensitivity of the relation between XNO2/XCO ratio and downwind distance to the NO2 lifetime, which we want to exploit to 

quantify OH.  When including the background, the shapes of the functions  in Figure 3c change (not shown), because the 355 

relative weights of the background and city contributions to the ratio vary with distance of the city centre. In summer, the WRF 

RATIO is higher by ~15 % close to centre of city TROPOMI due to the overestimation of XNO2 WRF  in WRF (see Fig. 3d). 

However in the downwind plume, at a distance of 100 km WRF RATIO is higher by 20 % to 50 % compared to TROPOMI.  

In winter, Ratiowithout OH and Ratiowith OH  show relations with downwind distance that are similar to summer, confirming 

that an OH sink leads to a Gaussian structure of the ratio (see Fig. S14). The winter WRF RATIO  is 40 % to 60 % higher than 360 

TROPOMI due to the overestimation of XNO2 by 40 % to 50 %. The WRF RATIO close to the centre of city is also 20 % 

higher in winter than in summer, due to higher winter XNO2 WRF  than in summer (see Fig S12 and S15).  In contrast, TROPOMI 

shows a higher ratio in summer compared to winter (see Fig S15). These differences between TROPOMI and WRF-derived 

ratios offer an opportunity to address uncertainties in CTM computed urban OH and emission inventories, which will be 

explored next. 365 
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3.3 WRF optimization using synthetic data  

To translate the discrepancies between TROPOMI and WRF derived ratios of section 3.2 into implied differences in emissions, 

OH and background, the least squares optimization method has been used as described in section 2.6. Before optimizing WRF 

using TROPOMI, pseudo data experiments in WRF have been carried out to test if the optimization method is capable of 370 

recovering true emissions and OH levels. To this end, changes in OH concentrations, emissions and background by known 

scaling factors have been applied to the WRF prior simulation to create a synthetic dataset. This process is repeated multiple 

times to create thousands of synthetic datasets. Subsequently, the scaling factors are obtained in the inversion procedure. These 

tests reveal that the estimation errors for femis , fOH and fBg are less than 2.5 % (see Fig. S16). This confirms that the least square 

optimization method works, with two iterations leading to a sufficient accuracy, and can be used to estimate emissions and 375 

OH from TROPOMI data. Using TROPOMI data, estimation errors for femis , fOH and fBg are expected to be higher due to 

atmospheric transport errors, simplified  chemistry, and XCO and XNO2 retrieval uncertainties . These errors did not play a 

role in the pseudo-data experiments, in which perfect transport and sampling was assumed.  

To obtain a more realistic estimate of the uncertainty in least squares optimized OH, TROPOMI data have been replaced by 

NO2 , CO and NO2/CO ratio derived from WRF-chem using the Carbon Bond Mechanism Z (CBM-Z) gas-phase chemical 380 

mechanism (Zaveri and Peters, 1999).  EDGAR based VOCs, NOx and CO emission have been used in combination with 

boundary condition for NO, NO2, CO, ozone (O3) from CAMS to run WRF-chem for August 17th, 2018 and November 18th, 

2018 representing a summer and winter day, respectively.  For August 17th, 2018, the ratio and XNO2 optimization increase 

the CAMS based prior OH of 1.19x107 moleculescm-3 by 15.7 % and 13.4 %, respectively (see Fig S17). In the fully coupled 

online chemistry with WRF simulation, the boundary layer averaged OH for the box of 300 km x 100 km amounts to 1.33x107 385 

moleculescm-3, which is  <5 % lower than the optimized OH value that is derived using our method. The optimized NOx and 

CO emissions differ by <11 % from the emission input used in the full chemistry version WRF. In winter, the  optimization 

increases CAMS based OH of 1.03 x 107 moleculescm-3 by 19.4 %. The OH derived from WRF with full online chemistry is 

1.07x107 moleculescm-3 and lower by 15.2 % than the optimized OH value. The component wise optimization increases the 

EDGAR NOx and CO emissions by 23.1 % and 10.5 %, respectively (see Fig S18). Overall, the uncertainty in optimized NOx, 390 

CO emission and OH derived from this test is <11 % in summer and 10 % to 23 % in winter. Since the lifetime of NOx is 

determined by other reactions in addition to the oxidation to HNO3 considered in our method, it is expected to overestimate 

the real OH value. The test using WRF full chemistry confirms that this is indeed the case. The uncertainty for OH, NOx 

emission and CO emission are in good agreement with the CLASS computations explained in detail in Text S6. 
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3.4  WRF optimization using seasonally averaged  TROPOMI  data     395 

The results for summer are summarized in Figure 4, showing the optimized fit to the TROPOMI data as well as the 

corresponding scaling factors femis , fOH and fBg that are estimated. The optimized emission, OH and Bg obtained from the 2nd 

iteration is divided by prior to derive the femis , fOH and fBg (see Text S5  for details). The convergence of the iterative procedure 

is shown in Fig S19 and S20 . The estimated uncertainties for the scaling factors femis, fOH and fBg are derived by summing the 

contribution of wind speed, length and width of the box, NO2 bias, CO bias and the different pathways of NOx loss  in 400 

quadrature (see Text S6, Tables S1 and S2).  For summer and winter,  the uncertainties of the optimized OH concentrations is 

<17 % and < 29 % respectively. For NOx and CO emissions, the uncertainty is < 29 % in summer and winter. Figure 4a shows 

WRF ratios for summer in comparison to TROPOMI, before and after optimizing the OH concentration. The optimized WRF 

ratios fit the TROPOMI ratios well with Χ2 = 0.1 (for the derivation of Χ2 see section Text S7) .The prior and optimized 

Figure 4. Comparison between TROPOMI and WRF, before and after optimization for Summer (averaged over June to 

October, 2018).  a) XNO2/XCO ratio, b) XNO2 and c) XCO in comparison to TROPOMI. fOH, femis and fBg  are optimized 

scaling factors obtained iteratively for OH, emissions and background by least square optimization method. femis , fOH and 

fBg are derived by accounting the total change in emission, OH and background  using the corresponding scaling factors 

obtained from 1st and 2nd iterative step. The unit of scaling factor is in percent (%). 
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emission ratio, OH concentration and background ratio obtained from component and ratio optimization  for summer and 405 

winter is provided in Table S4. According to the ratio optimization, the emission ratio and CAMS OH  are underestimated by 

155 ± 26 % and 32 ± 5.3 % respectively (see Table S4). The optimized CAMS background ratio is lower by 70 ± 6.5 % 

compared to prior. It should be realized here that the ratio optimization does not estimate the absolute emission of NO2 and 

CO, but only their ratio.  

 410 

To derive the absolute emission, we performed component-wise optimizations of WRF-derived XCOWRF  and XNO2 WRF. 

Optimized XCOWRF  and XNO2 WRF fit well to the TROPOMI data (see Fig. 4b and 4c). In the XNO2 optimization, the EDGAR 

NOx emission is increased by 42.1 ± 8.4 % and the CAMs background is reduced by 75.9 ± 10.0 %. CAMS OH is increased 

Figure 5. As Figure 4, for Winter (averaged over November, 2018 to March, 2019) 
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by 28.3 ± 3.9 % which is close to the results obtained from the ratio optimization (see Table S4). In the XCO optimization, 

EDGAR CO emissions are roughly doubled and the background is reduced by 4.5 ± 0.7 % compared to CAMS (see Table S4). 415 

The summer optimized NOx/CO emission ratio derived from the component wise optimization is 0.55 ± 0.09. The optimized 

emission ratio from ratio optimization is larger by factor 3.6  compared to component wise optimization (see Table S4). The 

difference between two estimates can be explained by different constraints on the solution in the two methods. In particular, 

the ratio inversion allows emission adjustment in a fixed relation between NO2 and CO emissions whereas the component wise 

has the full flexibility to adjust CO and NO2 emission. The NO2/CO ratio over a city is the sum of the contributions of the 420 

background and the city emission. The relative weight of the two is determined by the absolute background levels and absolute 

emissions of CO and NO2.Therfore, the emission ratio estimated by ratio optimization is sensitive to the XNO2Bg. However, 

the difference between the two estimates is larger than expected but does not affect the OH estimation. Lama et al., (2020) 

inferred an NO2/CO emission ratio over Riyadh of 0.47 ± 0.1 for 2018 from TROPOMI favoring the Monitoring Atmospheric 

Chemistry and Climate and CityZen (MACCity) emission ratio over that of EDGAR. The optimized emission ratio obtained 425 

from component wise optimization is consistent to Lama et al., (2020) and MACCity summer emissions. This shows that for 

the accurate estimation of the emission and emission ratio, the component wise optimization method is  preferable.  

Figure 5 presents optimization results for winter, where optimized WRF is in similar good agreement with  TROPOMI as for 

summer with Χ2 = 0.11 . For winter, the ratio optimization increases emission ratio by 58.8 ± 33 % and OH by 52.0 ± 14 %. 

The ratio and component-wise optimizations again show similar OH adjustments, demonstrating the robustness of our method. 430 

The background ratio is reduced by 66.8 ± 11 %. The XNO2 optimization reduces the EDGAR NOx emission by 15.45 ± 4.1 

%  and the CAMS background by 70.2 ± 6.1 %. For XCO, the WRF XCOBg  is reduced by 1.74 ± 0.1 % in combination with a 

doubling of the EDGAR CO emission.  The optimized emission ratio (NOx/CO) derived from component wise optimization 

is 0.36 which is lower by 4.0  times than optimized emission ratio obtained from ratio optimization (see Table S4) .     
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Table 2. Overview of WRF optimized OH and NOx emissions for Riyadh and comparison to the EMG method.  The estimated 435 

uncertainty for EMG and WRF derived NOx emission and OH concentration is the sum of the contribution of wind speed, 

length and width of box and NO2 bias correction provided in Table S1, S2 and S3.  

 

3.5 WRF optimization using a single TROPOMI overpass 

To demonstrate the application of our WRF optimization method to single TROPOMI overpasses, results are presented in this 440 

subsection for August 18th, 2018.  This date was selected for clear sky conditions with most of the TROPOMI NO2 and CO 

pixels passing the data quality filter. During this day, the urban plume is transported in southwestern direction over Riyadh. 

The spatial distribution of XNO2 WRF (r2 = 0.76) and XCOWRF  (r
2= 0.65) matches quite well with TROPOMI (see Fig S21). 

The optimized ratio, XNO2 and XCO for a single day fit well with TROPOMI ( Χ2 = 0.1, 0.3 and 0.7) comparable to the 

summer averaged plumes indicating that the optimization method can be applied to single TROPOMI overpass. The ratio 445 

optimization increases the emission ratio and CAMS OH respectively by 111 ± 18.4 % and 37.9 ± 6.2 % respectively, whereas 

the  background is reduced by 51.5 ± 5.2% (see Fig S22 a). The XNO2 optimization increases the EDGAR NOx emission by 

25.5 ± 5.1 % and CAMS OH by 32.3 ± 4.4 %, whereas the NOx background is reduced by 54.4 ± 7.0 % (see Fig S20 b).  The 

CO optimization doubles the EDGAR CO emission and reduces the background by 6.1 ± 0.97 % (see Fig S20 c). The optimized 

NOx and CO emission for August 18th is 8.9 ± 1.7 kg/s and 18.9 ± 4.0 kg/s respectively and differs by <25 % with the summer 450 

optimized emission (see Table 2 and S5). The optimized OH derived from a single TROPOMI overpass is 1.73x107 ± 0.3 

molecules cm-3 differs by < 5 % from the summer averaged OH i.e. 1.7 x 107 ± 0.3 moleculescm-3 confirming that the method 

yields realistic results for a single overpass.  

 

Parameter  

Summer  

WRF Optimization 

Summer 

EMG 

Winter 

WRF Optimization 

Winter  

EMG  

Prior Optimized Prior  Optimized 

NOx emission 

(kg/second) 

8.2 11.6±2.3 8.6±1.3 9.4 7.9±2.1 5.3±1.2 

OH  

(107, molecules/cm3) 

1.3 1.7 ± 0.32 1.53± 0.16 0.86 1.3 ±0.38 1.2± 0.16 

NOx lifetime 

(hr) 

3.1  2.4 ± 0.46 2.26 ± 0.3 4.9 3.3 ± 0.9 2.98 ± 0.4 

NOx background 

(ppb) 

0.22  0.053± 0.007 0.079±0.01 0.15 0.049±0.006 0.057±0.008 
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 3.6 WRF optimization Vs  the EMG method  

To investigate the consistency between our method and the EMG method, the derived NOx lifetimes, emissions and OH 455 

concentrations using both methods are listed in Table 2 for winter and summer. Our optimization  and the EMG method agree 

well on the seasonal change in NOx emission and OH concentration. Both methods result in higher NOx emissions and shorter 

lifetimes in summer; lower NOx emissions and longer lifetimes in winter. Riyadh has dry and warm summer days and the 

increase in power consumption due to the use of air conditioning contributes to the higher emission in summer than in winter  

(Lange et al., 2021). During the summer, EMG and the WRF optimization method both increase the NOx emission and OH 460 

concentration compared with the prior. The size of the NOx emission and OH concentration increase, obtained using the WRF 

optimization method is higher than the EMG method by 10%  to 29 %. However, the difference between the EMG method 

and the component optimization method are smaller compared to the uncertainty of the emission and OH concentration derived 

for the optimization method. For winter, the difference between the EMG and WRF-optimized results are smaller than the 

difference between the EMG results and the prior . The NOx emission after optimization differs from the EMG method by 33 465 

%. Optimized OH concentration and NOx lifetime differs by <10 % compared to EMG method. In general, the difference 

between the EMG and optimization results is within the uncertainty range of 20 to 30 %, confirming their consistency and 

strengthening the confidence in the estimates that are obtained from TROPOMI data. In contrast to EMG method, the 

optimization method can be used for a single TROPOMI overpass (see Section 3.6) and does not require yearly averaged NO2 

data, allowing analysis of day-by-day OH, NOx and CO emission (see Section 3.3). Segregation and averaging of NO2 urban 470 

plume by wind sector is not required in the optimization method. The effect of transport cancels out in taking the NO2 /CO 

ratio and loss of NO2 is mostly governed by OH during the mid-day. In this study, NOx emission and OH concentration is 

estimated iteratively whereas the EMG method arrives at the solution in a single step.  However, since our optimization method 

requires a WRF model simulation it is computationally more expensive.  Uncertainties in transport may create mismatches 

with the satellite observations, leading to errors in the optimized fit. This influences the quality of derived emission estimates 475 

(Dekker et al., 2017). Therefore, finding a simplified approach using satellite data to derive the emission ratio and to estimate 

OH concentration in urban plumes will be our focus in the future. In the future, the accuracy of our method can be further 

improved by accounting other NOx removal pathways.  

3.7 WRF optimized emissions and emission trends 

It should be realized that the a priori EDGAR emissions and TROPOMI optimized estimates represent different years (2012 480 

and 2018, respectively). To check whether the emission differences that are found may be explained by trends in emissions, 

we compare EDGARv5.0  2012 NOx and CO emissions with 2018 accounting for seasonal and diurnal emission variations 

using temporal emission factors by van der Gon et al., (2011). EDGAR 2018 NOx and CO emissions are derived by linear 

extrapolation using emission from 2000 to 2015 (see Figure S23). For summer mid-day NOx emissions, the EDGAR emissions 

increased by 16.7 % from 2012 to 2018, which is lower than our optimization results. For winter, mid-day NOx emissions 485 
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increase in EDGAR by 15.2 % from 2012 to 2018, whereas the WRF optimization yields reductions by 15.6%. In EDGAR, 

summer and winter CO emissions increased from 2012 to 2018 by 38.5 %. However, the WRF optimization suggests that the 

EDGAR CO emissions for summer and winter need to be doubled (see Table S4). Borsdorff et al., (2018b) mentioned that 

EDGAR CO emissions have to be increased significantly to match with TROPOMI CO observations over middle eastern cities 

such as Tehran, Yerevan, Tabriz and Urmia. Overall , this points to a significant uncertainty in the EDGAR emission inventory 490 

at the city scale.  

To test the accuracy of the linear extrapolation of EDGAR data, we compare the relative change in NOx and CO emission in 

2012 to 2018 using CAMS Global (CAMS–GLOB) anthropogenic v4.2 emission datasets 

(https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-emission-inventories?tab=overview).  CAMS –GLOB 

shows that for summer and winter NOx emission increases by 26 % from 2012 to 2018, which is higher by a factor 1.7  than 495 

EDGAR. CAMS-GLOB based  summer and winter CO emission increases by 20 % from 2012 to 2018 which differs by ~40 

% compared to EDGAR. In general, the relative increase in CO and NOx emission from EDGAR and CAMS-GLOB is much 

smaller compared to the difference with our optimization method.  

4. Discussion  

The TROPOMI retrieved XNO2/XCO ratio is useful for estimating mid-day OH over isolated localized sources, such as the 500 

city of Riyadh, showing a clear contrast between the urban plume and the background. Such TROPOMI derived OH estimates 

offer a new opportunity to evaluate urban photochemistry in chemistry transport models. OH depends non-linearly on NOx 

and VOC emission, meteorological conditions, etc.(Sillman, 1990) , which vary substantially between cities that are monitored 

by TROPOMI. Therefore, the application of our method to the global and multi-year dataset that is available could contribute 

substantially to the understanding of urban photochemistry and the development of effective pollution mitigation strategies. In 505 

addition, the method requires local sources with NO2 and CO emissions that are large enough to be detected by TROPOMI. 
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POMI cannot detect the CO enhancement along with NO2 this method cannot be applied. 

We realise that our method only considers the first order loss of NO2 by OH forming HNO3. In reality, the NO2 lifetime is 

influenced by more spatially and temporally varying factors such as temperature, ozone, and radiation (Lang et al., 2015; 

Romer et al., 2018). In cities, the loss of NO2 via the formation of alkyl and multifunctional nitrates (RONO2) are also important 725 

reactions influencing the lifetime of NO2 (Browne et al., 2013; Sobanski et al., 2017). For CO, secondary production from 

short-lived volatile organic compounds can also play an important role in urban pollution plumes. The application of full 

chemistry that includes all the sources and losses of NO2 and CO could therefore further improve the accuracy of OH estimates.  

For cities at higher latitudes, especially in winter, it becomes more critical to account for the contribution of other pathways of 

NOx loss than OH oxidation. Isolated tropical and subtropical cities are therefore best suited for application of our current 730 

method.  

A sensitivity test has been performed in which XNOx,Bg is lost by OH.  In this case the optimized NOx emission and OH for 

summer and winter differ by < 7 % from the default method where the background is treated as an inert tracer (see Table S6). 

Furthermore, a sensitivity test has been performed in which the prior emission has been changed. The optimized emission 

varied by < 5 %, demonstrating robustness of the method to the choice of prior (see Fig S24). This also indicates that the 735 

optimization method can be used to study emission changes. Figure S25 shows that power plants and manufacturing industries 

are the largest pollutant emitter over Riyadh (Beirle et al., 2019).In this study, NOx and CO anthropogenic emissions are 

introduced at the surface, whereas the emission height of different sources is expected to vary in reality. The different emission 

heights for NOx and CO emission sources can also influence the result. In the future, realistic emission heights should also be 

incorporated in WRF for accurate estimation of OH. Moreover, the temporal emission factors that have been used by van der 740 

Gon et al., (2011) are based on European countries. The comparison of  van der Gon et al., (2011) with the Copernicus 

Atmosphere Monitoring Service TEMPOral profiles (CAMS-TEMPO) (Guevara et al., 2020) suggests that temporal emission 

factors for weekend road transport and monthly residential combustion are different in Riyadh compared to European countries 

CAMS-TEMPO is expected to provide a more accurate representation of emission variation due to the information on 

temporal, spatial variations that is included.  Road transport, CO emission has the largest contribution ~75 % to the total 745 

emission over Riyadh, whereas NOx emission from road contributes by 24 % to the total NOx emission. Residential 

combustion has the smallest contribution of ~0.3 to 0.4 % to total NOx and CO emissions (see Fig S25 ).  In the future, the 

application of accurate diurnal emission factors for road transport (see Fig S26) can further improve the accuracy of urban OH 

concentrations estimated using TROPOMI derived XNO2/CO ratios. In addition, the seasonality for NOx and CO emissions 

is different in Riyadh than in Europe, which should be accounted for in future studies also.  750 
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5. Conclusions 

In this study, a new method is presented for estimating OH concentrations in urban plumes using TROPOMI observed 

XNO2/XCO ratios in combination with WRF simulations of the downwind pollution plume of large cities. Our new method 

has been tested for the city of Riyadh using synthetic as well as real TROPOMI data.  Seasonal emissions and OH 

concentrations have been estimated for summer (June to October, 2018) and winter (Nov, 2018 to March, 2019).  755 

WRF is well able to reproduce the spatial distribution of TROPOMI retrieved XNO2 and XCO plumes over Riyadh during the 

summer and winter seasons.  However, before the optimization,  WRF overestimates XNO2 by 15 % to 30  % in summer and 

40 % to 50 % in winter compared to TROPOMI .. In both seasons, TROPOMI XCO agrees within 10 % with WRF. The WRF 

derived XNO2/XCO ratio is higher by 15 % to 30 % in summer and 40%  to 60 % in winter compared to TROPOMI, explained 

mostly by  differences in XNO2.  760 

The differences between WRF and TROPOMI observations have been used to optimize emissions and the NO2 lifetime. To 

this end, scaling factors for the city emissions, OH and the background level have been optimized iteratively using a least 

squares method. Ratio and component wise optimizations have been compared to test the overall consistency of the method. 

In summer, the ratio and XNO2 optimization for XNO2 suggest that the OH prior from CAMS is underestimated by 32 ± 5.3 

%. The OH estimates obtained from the ratio and NO2-only optimization differs by <10 %, demonstrating the robustness of 765 

the method. Summertime emissions of NOx and CO from EDGAR are increased by 42.1±8.4% and 101 ±  21 %. For winter, 

the ratio and component wise optimizations increase OH by ~52 ± 14 % to fit TROPOMI inferred ratios. In the optimization 

of winter data, NOx emissions are reduced by 15.5 ± 4.1 % and CO emissions are doubled. In the future, the remaining 

differences between TROPOMI observations and WRF simulations could be reduced further by the use of precise temporal 

and monthly emission factors, emission heights and full chemistry to account for secondary sources and sinks of CO and NO2.   770 

TROPOMI inferred OH concentrations obtained from the least squares optimization method have been compared to the EMG 

method. For the summer and winter, the optimized OH concentrations differ by 10% between two methods. These results 

confirm that urban emissions and OH concentrations can robustly be estimated from TROPOMI data. With our method, single 

TROPOMI overpasses can be used to estimate OH whereas EMG method requires averaging of urban NO2 plume by wind 

sector. The iterative approach allows to test the factors i.e. femis, foh and fbg  obtained from optimization method, whereas EMG 775 

method does not allows such flexibility.   

An important remaining uncertainty is the bias correction of the TROPOMI XNO2 retrieval. Following the recommended 

procedure, the air mass factor AMF is recalculated by replacing the tropospheric AMF based on TM5, that is provided with 

the data, with WRF-chem. The TROPOMI XNO2 bias correction increases the mixing ratio in the urban plume of Riyadh by 

5 % to 10 % in summer and 25 % to 30 % in winter. The background is less affected by the bias correction.  Without TROPOMI 780 

XNO2 bias correction, the uncertainty in scaling factor for OH can vary up to 20 % and NOx emission to 60 % over Riyadh.    
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Appendix A: AMF recalculation  

The air mass factor (AMF) used in the retrieval of TROPOMI XNO2 has been re-calculated by replacing the tropospheric 

AMF, calculated from the NO2 column simulated by TM5, with its WRF-chem equivalent, as described by Lamsal et al. (2010) 

and Boersma et al. (2016) using the following Eq. (16), 785 

𝑀𝑡𝑟𝑜𝑝,   𝑊𝑅𝐹 =  𝑀𝑡𝑟𝑜𝑝,   𝑇𝑀5  ×  
∑ 𝐴𝑡𝑟𝑜𝑝,𝑙𝑥𝑙,𝑊𝑅𝐹

𝐿
𝑙=1

∑ 𝑥𝑙,𝑊𝑅𝐹
𝐿
𝑙=1

                                     (16)                                

where, Mtrop,WRF   and Mtrop,TM5 are the tropospheric air mass factors derived from WRF and TM5, respectively.  Atrop,l is 

the tropospheric averaging kernel, ranging from the surface to the uppermost layer of the troposphere in the TM5 model (l). 

xl,WRF is the equivalent NO2 column density in model layer l, based on WRF. Atrop in Eq. (16)  is derived using Atrop =

A ×
M

Mtrop
, where M and Mtrop are the total and tropospheric AMF’s respectively. Finally, the bias corrected NO2 vertical 790 

column density is computed using, 

NO2,   bias corrected  =  
Mtrop,   TM5

Mtrop,   WRF
 × NO2 

where,  NO2  is the TROPOMI tropospheric NO2 vertical column density and NO2,   bias corrected   is the bias corrected 

 TROPOMI tropospheric NO2 vertical column density. 

Appendix B: XCO component wise optimization 795 

The component wise optimization of XCOWRF  to estimate the emission and background of CO uses the following equation, 

XCOTROPOMI =  XCOWRF + ∆XCOemis ∗
femis 

10
+ ∆XCOBg ∗

fBg 

10
 

XCOWRF       =  XCOemis + XCOBg 

∆XCOemis     =  0.10 ∗ XCOemis 

∆XCOBg        =  0.10 ∗ XCOBg 800 

Here, XCOTROPOMI is TROPOMI XCO, XCOWRF is the WRF simulated XCO accounting for emissions and background CO, 

XCOemis is the XCO contribution from the urban CO emission and XCOBg is the CAMS-derived XCO background. ∆XCOemis 

is the change in XCO due to emission and  ∆XCOBg is the change in the XCO background level.  
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