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Abstract. Using the example of sulfur hexafluoride (SF6) we investigate the use of Lagrangian Particle Dispersion Models

(LPDMs) for inverse modeling of greenhouse gas (GHG) emissions and explore the limitations of this approach. We put the

main focus on the impacts of baseline methods and the LPDM backward simulation period on the a posteriori emissions

determined by the inversion. We consider baseline methods that are based on a statistical selection of observations at individual

measurement sites and a global distribution based (GDB) approach, where global mixing ratio fields are coupled to the LPDM5

back-trajectories at their termination points. We show that purely statistical baseline methods cause large systematical
:::
can

::::
cause

:::::
large

:::::::::
systematic errors, which lead to inversion results that are highly sensitive to the LPDM backward simulation period

and can generate unrealistic global total a posteriori emissions. The GDB method produces a posteriori emissions that are far

less sensitive to the backward simulation period and that are consistent
::::
show

::
a

:::::
better

:::::::::
agreement with recognized global total

emissions. Our results show that longer backward simulation periods, beyond the often used 5 to 10 days, reduce the mean10

squared error and increase the correlation between a priori modeled and observed mixing ratios. Also, the inversion becomes

less sensitive to biases in the a priori emissions and the global mixing ratio fields for longer backward simulation periods.

Further, longer periods
::::
might

:
help to better constrain emissions in regions poorly covered by the global SF6 monitoring

network(e. g., Africa, South America).
:
. We find that the inclusion of existing flask measurements in the inversion helps to

further close these gaps and suggest that a few additional and well placed flask sampling sites would have great value for15

improving global a posteriori emission fields.

1 Introduction

Over the last few decades, the sharp increase of anthropogenic greenhouse gas (GHG) emissions has become a global concern,

as it affects the Earth’s climate with possible dangerous consequences for human health, infrastructure and ecosystems (IPCC,

2018). In order to prevent dangerous human interference with the climate system, the United Nations Framework Convention on20

Climate Change (UNFCCC) was established. As an important commitment to the convention, Annex-I countries (industrialized

nations that are legally bound to reduce GHG emissions) are required to report their national emissions for regulated GHGs.

These inventories are compiled by applying "bottom-up" methods, where statistical economic production or consumption data

and source-specific emission factors are used to estimate country
::::::
national

:
emissions. However, "bottom-up" estimates are
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suspected to suffer from significant uncertainties and there is a growing need for independent verification of these estimates25

(e.g. Rypdal et al., 2005; Weiss et al., 2021). Independent verification can be provided by "top-down" methods, such as inverse

modeling (Henne et al., 2016)
:::::::::::::::::::::::::::::::::::::
(e.g. Leip et al., 2017; Weiss and Prinn, 2011).

Inverse modeling requires the use of atmospheric transport models, either Eulerian models or Lagrangian Particle Dispersion

Models (LPDMs). LPDMs are usually run backward in time. They release a large number of virtual particles from a given

observation location and time, and trace them backward for a limited simulation period. The model output gives the sensitivity30

of the atmospheric mixing ratio to emissions during the backtracking time. In the inversion algorithm, the sensitivities for a large

number of observations are used to optimize a priori emission estimates such that (with the obtained a posteriori emissions) the

simulated mixing ratios better fit the atmospheric observations. Most studies only use
:::::::::
continuous

:
in situ observations for this

purpose, however low frequent flask measurements can also be included (e.g. Villani et al., 2010).
:::
flask

::::::::::::
measurements

:::::
with

:::
low

::::::::
sampling

:::::::::
frequency

:::
can

:::
be

:::::::
included

::
as

:::::
well

::::::::::::::::::::
(e.g. Villani et al., 2010).

::::
For

::::::
certain

:::::::
species,

:::::::
satellite

::::::::::::
measurements

:::::
could35

:::
also

:::
be

::::
used.

:

Previous studies argue that inversion methods have insufficient accuracy (e.g. Rypdal et al., 2005) and problems with repro-

ducibility (Berchet et al., 2021). In order to enhance the credibility of inverse modeling, a better knowledge of the associated

uncertainties is required (Brunner et al., 2017). An important source of uncertainty regarding LPDM-based inversion methods is

the fact that they are
::::
often

:
run backward in time only for a few days, e.g., 5 days (Brunner et al., 2017; Keller et al., 2012; Zhao et al., 2009)40

,
:::::::::::::::::::::::::::::::::::::::::::::::
(Keller et al., 2012; Vollmer et al., 2009; Zhao et al., 2009),

::
7
::::
days

::::::::::::::::::
(Koyama et al., 2011),

:
10 days (Rigby et al., 2019; Schoenenberger et al., 2018; Simmonds et al., 2018)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Schoenenberger et al., 2018; Simmonds et al., 2018; Thompson et al., 2017),

:
or 20 days (Fang et al., 2014; Maione et al.,

2014; Stohl et al., 2009). The choices
::::::::::::::::::
Koyama et al. (2011)

:::
and

:::::::::::::::
Stohl et al. (2009)

::
are

::::::
global

::::::::
inversion

::::::
studies,

:::::
while

:::
the

:::::
other

::::
listed

::::::
studies

:::::
apply

::::::::
regional

:::::::::
inversions.

:::
The

:::::::
choices

::
of

:::
the

:::::
used

::::::::
backward

:::::::::
simulation

::::::
period made by different authors seem

arbitrary, and a systematic analysis of the impact of the backward simulation period is lacking.45

The inversions can only account for the emissions that have occurred during the backward simulation period. By contrast,

the emission contributions prior to the limited LPDM backward simulation period are not explicitly modeled but must still be

accounted for in order to compare the model results with the observations. These contributions must be collected in a so-called

baseline that is added to the modeled contributions. As errors in the baseline translate to errors in the a posteriori emissions,

the baseline needs to be as accurate as possible. Many different methods have been suggested to determine this baseline.50

Investigating halocarbons or fluorinated gases (F-gases) most studies use statistical methods to calculate the baseline by

selecting low mixing ratio observations at individual stations (e.g. Ganesan et al., 2014; Prinn et al., 2000; Saito et al., 2010;

Zeng et al., 2012).
::::
Such

::::::::
statistical

::::::::
methods

::::
have

::::
been

:::::::::::
operationally

:::::::
applied

:::::
within

::::::::::
observation

::::::::
networks,

:::::
such

::
as

:::
the

:::::::
Georgia

:::::::
Institute

::
of

:::::::::
Technology

:::::::
method

::::::::::::::::::::
(O’Doherty et al., 2001)

::::
used

:::::
within

:::
the

:::::::
AGAGE

::::::::::
community. The general idea is to statistically

identify observations which are assumed to be unaffected by emissions within the LPDM simulation period. A widely used55

statistical method is the robust estimation of baseline signal (REBS) method, introduced by Ruckstuhl et al. (2012) which

applies a robust local linear regression model. Statistical methods, however, always involve subjective data selection and

treatment decisions, which can lead to problems. For instance, they will by definition wrongly classify measurements during

longer lasting pollution episodes as baseline observations and therefore overestimate the baseline - a problem that is likely to
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occur frequently in polluted areas. It is also unclear to which degree these methods distinguish between lightly polluted air and60

measurement noise (Ryall et al., 2001). Furthermore, they fail to identify correct baseline mixing ratios when they are below

the lowest observations (Rigby et al., 2011), especially at polluted continental sites which virtually never receive air masses

unaffected by emissions within the backward simulation period.

A baseline
:
In

:::::::
addition

::
to

:::
the

::::::::
statistical

::::::::
selection

::::
some

:::::::
methods

::::
also

:::
use

:::::
model

::::::::::
information

::
to

:::::::
improve

:::
the

::::::::
baseline.

:
A
:::::::
method

::::::
applied

:::
by

:::
the

::::
UK

::::
Met

::::::
Office

:::
and

::::::::::
commonly

::::
used

::::::
within

::::
the

:::::::
AGAGE

::::::::
network

:::::::::::::::::::::::::
(see e.g. Manning et al., 2021)

::::::::
identifies65

:::::::
baseline

:::::::::::
measurements

:::
by

::::::::
analyzing

:::
the

::::::::
direction

:::
and

::::::
height

::
of

::
air

:::::::
entering

:::
the

:::::::
regional

::::::::
inversion

:::::::
domain.

::
A

:::::::
baseline

:
method

introduced by Stohl et al. (2009), further termed as "Stohl’s method", tries to avoid this baseline overestimation, by using
::::
uses

model information to subtract prior simulated mixing ratios from pre-selected observations
:
,
::
in

::::
order

::
to

:::::
avoid

::
an

:::::::::::::
overestimation

::
of

:::
the

:::::::
baseline. Nevertheless, this pre-selection is subjective and prior simulated mixing ratios depend on a priori emission

estimates.70

Apart from using observations at each individual station to maintain a baseline, Rödenbeck et al. (2009) suggested a gen-

eral "nesting" scheme, where a regional transport model – either a Eulerian or Lagrangian model – is embedded into a global

model providing information from outside the spatio-temporal inversion domain. Such a global distribution based (GDB) ap-

proach was used by e.g.
::::
many

:::::::
authors: Trusilova et al. (2010) and Monteil and Scholze (2021) for carbon dioxide, and similar

by Thompson and Stohl (2014) for methane. Whereas Rödenbeck et al. (2009)
::::
used

:::::::::::
Rödenbecks

::::::::
approach

::
to

:::::::
estimate

:::::
CO275

::::::::
emissions.

:::::::
Similar

::::::::::::::::
Rigby et al. (2011)

:::
and

::::::::::::::::::
Ganshin et al. (2012)

::::::::
developed

::::::::::
approaches

::
to
::::

nest
::

a
::::::::::
Lagrangian

::::
into

:
a
::::::::
Eulerian

:::::
model

:::
and

:::::
tested

::
it

:::
for

:::
SF6:::

and
:::::
CO2,

::::::::::
respectively.

:::::::::
Estimating

::::
CO2:::::::

baseline
:::::
mole

:::::::
fractions

:::
for

::::::
inverse

::::::::
modeling,

::::::::::::::
Hu et al. (2019)

::::::
applied

:::
two

:::::
GDB

::::::::::
approaches

:::
and

::
a
::::::::
statistical

:::::::
method,

::::::
where

:
a
::::::
subset

::
of

:::::::::::
observations

::::
with

:::::::
minimal

:::::::::
sensitivity

::::
was

:::::::
selected

::
to

::::::
correct

:
a
:::::
GDB

:::::::
baseline.

:::::::::::::::
Lunt et al. (2016)

:::
and

::::::::::::::::::::::::
Thompson and Stohl (2014)

::::::
applied

::::
GDB

::::::::::
approaches

::
to

::::::
model

::::
CH4.

::::::
While

:::::::::::::::::::::::
Thompson and Stohl (2014) coupled the LPDM back-trajectories with the global model in the space domain, Thompson and Stohl (2014)80

did the coupling at the time boundary
::
at

:::
the

:::
end

::
of

:::
the

:::::::::
trajectories

::::::
(which

:::
are

:::::::::
terminated

::::
after

:
a
:::::::
defined

:::::
time),

:::::::::::::::
Lunt et al. (2016)

::::
used

:::
the

:::
exit

:::::::
location

::
of

:::
the

:::::::
particles

:::::::
leaving

:::
the

:::::::
inversion

:::::::
domain

:::
for

:::
the

:::::::
coupling. The GDB method defines the baseline ex-

actly in the way it is needed for the inversion and can account for meteorological variability (i.e., transport of air from regions

with lower or higher mixing ratios, respectively), which may cause sudden changes in the baseline. The accuracy of the GDB

method, however, depends on how well the global field of mixing ratios can be modeled.85

The treatment of the baseline is critical when using LPDMs as a basis for atmospheric inversions. Still, it is unclear what

influence the choice of a certain baseline approach has on inversion results. Previous studies indicated that different approaches

lead to significant mismatches in simulated emissions (Thompson and Stohl, 2014; Henne et al., 2016). However, different

methods were never compared systematically and tested for different model set-ups such as the length of the LPDM backward

simulations.90

Another problem of LPDM-based inversion studies is the general lack of consistency between regional emission estimates

and the global emissions of a GHG. Given that the LPDMs are usually run backward in time only for a few days, the inversions

constrain the emissions only in regions where observation stations exist
:::::::::::::::
(Rigby et al., 2011). This can lead to substantial devi-
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ations of the derived emissions from, often well known, global totals, a problem shared with regional inversion studies based

on Eulerian models.95

In this study we [i] investigate the effect of the backward simulation time period within the range of 0-50 days, [ii] analyze

the impact of the baseline definition on inversion results, [iii] examine their consistency with known global total emissions,

[iv] explore the influence of biases in the baseline and a priori emissions on inversion results for different backward simulation

periods, and [v] compare the value of different observation types (flask vs. in-situ
:::::::::
continuous) for the inversion. We compare

three different baseline methods - the REBS method, Stohl’s method and the GDB method - and apply inverse modeling to the100

species sulfur hexafluoride (SF6). SF6 is the most potent GHG regulated under the Kyoto Protocol with a high global warming

potential of approximately 23,500 over a 100-year time horizon (Myhre et al., 2013) and an estimated atmospheric lifetime

of 3200 years (Ravishankara et al., 1993). SF6 is a convenient choice for our studies because it has no negative sources (as,

e.g., CO2), a very long lifetime in the atmosphere, well known global emissions, and there are relatively many measurements

available. However, we expect our findings to also hold for other species and be informative for inverse modeling of GHGs105

with LPDMs in general.

2 Methods

2.1 Measurement data

The inversion (subsection 2.2) is performed by using atmospheric in situ
:::::::::
continuous

::::::::::
atmospheric

:
observations of SF6 dry-air

mole fractions from 18 observation sites, distributed around the globe. Those measurements were provided by the Advanced110

Global Atmospheric Gases Experiment (AGAGE, Prinn et al., 2018) network, the NOAA/ESRL halocarbons in situ program

(Dutton et al., 2017) and a number of independent organisations whose data were partly included in the World Data Centre for

Greenhouse Gases (WDCGG, 2018). Measurement sites are listed in Table 1, together with acronyms and other station specific

information.

At AGAGE stations, SF6 mixing ratios are measured using Medusa Gas Chromatography followed by Mass Spectrometry115

(GC/MS, Miller et al., 2008). At the stations HAT and COI the SF6 measurement system is based on cryogenic preconcen-

tration and capillary GC/MS (Yokouchi et al., 2006). At all other stations, Gas Chromatography followed by Electron Capture

Detection (GC-ECD) is used to measure SF6 mole fractions. Observations were calibrated with four different SF6 scales:

SIO-2005, WMO SF6 X2006, WMO SF6 X2014 and NIES-2008. We converted all observations to the SIO-2005 calibration

scale, by dividing NIES-2008 calibrated data by the factor 1.013 (Saito, 2021) and WMO SF6 X2014 calibrated data by 1.002120

(Guillevic et al., 2018). To convert mole fractions from WMO SF6 X2006 to WMO SF6 X2014, we used y = ax2 + bx+ c,

where y corresponds to SF6 mole fractions on the X2014 scale, x to mole fractions on the X2006 scale and the coefficients a,

b, c have the values of 2.6821 · 10−3, 9.7748·10−1, and 3.5831·10−2 (NOAA ESRL, 2014), respectively.

We averaged all observation data over 3-hourly intervals. For stations at low altitudes, we selected afternoon values (12:00

to 16:00 local time), to only consider time periods with a well-mixed planetary boundary layer, when the smallest model errors125

can be expected. At mountain stations we instead selected observations during night times (00:00 to 04:00 local time) to avoid
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Table 1. Sites of
::::::::
continuous

:
surface in situ measurements used in the inversion and in the re-analysis.

Site ID Station Organisation Calibration Scale Latitude Longitude Altitudea Frequency

CGO Cape Grim, Tasmania AGAGE SIO-2005 40.7◦S 144.7◦E 94 2 hours

JFJ* Jungfraujoch, Switzerland AGAGE SIO-2005 46.5◦N 8.0◦E 3580 2 hours

MHD Mace Head, Ireland AGAGE SIO-2005 53.3◦N 9.9◦W 5 2 hours

RPB Ragged Point, Barbados AGAGE SIO-2005 13.2◦N 59.4◦W 45 2 hours

SMO Cape Matatula, American Samoa AGAGE SIO-2005 14.2◦S 170.6◦W 77 2 hours

THD Trinidad Head, USA AGAGE SIO-2005 41.0◦N 124.1◦W 107 2 hours

ZEP Zeppelin, Ny-Alesund, Norway AGAGE SIO-2005 78.9◦N 11.9◦E 474 2 hours

GSN Gosan, South Korea KNU/AGAGE SIO-2005 33.3◦N 126.2◦E 89 2 hours

RGL Ridge Hill, UK UNIVBRIS SIO-2005 52.0◦N 2.5◦W 204 30 min

ZSF* Zugspitze-Schneefernerhaus, Germany UBAG WMO SF6 X2006 47.4◦N 11.0◦E 2671 1 hour

BRW Barrow, Alaska, USA NOAA WMO SF6 X2014 71.3◦N 156,6◦E 11 1 hour

MLO* Mauna Loa, USA NOAA WMO SF6 X2014 19.5◦N 155.6◦W 3397 1 hour

NWR* Niwot Ridge, USA NOAA WMO SF6 X2014 40.0◦N 105.6◦W 3523 1 hour

SPO South Pole, Antarctic NOAA WMO SF6 X2014 90.0◦S 24.8◦W 2841 1 hour

SUM Summit, Greenland NOAA WMO SF6 X2014 72.6◦N 38.5◦W 3238 1 hour

IZO* Izaña, Tenerife, Spain AEMET WMO SF6 X2014 28.3◦N 16.5◦W 2373 1 hour

COI Cape Ochiishi, Japan NIES NIES-2008 43.2◦N 145.5◦E 49 1 hour

HAT Hateruma, Japan NIES NIES-2008 24.1◦N 123.8◦E 47 1 hour

a The altitude specifies the sampling height in meters above sea level. Stations considered as mountain sites are marked with an asterisk.

larger errors due to daytime small-scale up-slope winds in the complex topography around these sites, which are unresolved in

the model. Additionally, we followed a method by Stohl et al. (2009) to remove observations that can not
::::::
identify

:::::::::::
observations

:::
that

::::::
cannot be brought into agreement with modeled mixing ratios by the inversion,

::::::
which

::
we

::::::::
removed

:::::::::
completely

:::
(in

:::::::
contrast

::
to

::::::::::::::
Stohl et al. (2009)

:
,
::::
who

:::::::
assigned

:::::
larger

:::::::::::
uncertainties

::
to

:::::
these

:::::::::::
observations). For this, we used the kurtosis of the a posteriori130

error frequency distribution and iteratively excluded observations causing the largest absolute errors until the kurtosis of the

remaining error values fell below 5 (close to a Gaussian distribution). This method removed 0.62% (63 data points) of the

whole dataset, affecting 0 to 2.92% of the observations at individual measurement sites. In total, 10,142 observations were

used in the inversion for the year 2012.

For the re-analysis of
:
In

:::::
order

:::
to

:::::::
generate

::::::
global

::::
SF6::::::

mixing
:::::

ratio
:::::
fields

:::::::
required

:::
by

:::
the

:::::
GDB

::::::::
method,

:::
we

:::::::::
performed135

:
a
::::::::
two-year SF6 (

:::::::::
re-analysis

:::
(for

:::::
more

::::::
details

:
see section 2.5),

::::
for

:::::
which

:
we used all the available 2011 and 2012 in situ

:::::::::
continuous measurements from the sites listed in Table 1. In addition, we included flask air samples from 44 surface observa-

tion stations (NOAA, Dlugokencky et al., 2020) and from 16 aircraft profiling stations (Sweeney et al., 2015; NOAA Carbon

Cycle Group ObsPack Team, 2018). Surface flask measurements were available at intervals ranging from a few days up to

months. Sampling flights were conducted irregularly with intervals between 2 and 5 weeks at individual sites. Aircraft mea-140

surements from individual flights provide vertical SF6 mixing ratio profiles up to 8.5 km above sea level, where air samples are

usually taken within less than an hour. With one exception, all aircraft samples were collected over North America. Additional
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Figure 1. Map of surface in situ measurement sites
:::
with

:::::::::
continuous

::::::
surface

::::::::::
measurements

:
used for the inversion (red triangles) and flask

measurement sites
::::::::::
measurements (surface: black dots, aircraft: blue squares) that were additionally used for the re-analysis of SF6

information about the flask measurements from surface sites and aircraft programs can be found in Table A1 and Table A2

(Appendix). All flask measurements were calibrated with the WMO SF6 X2014 calibration scale and we converted them to the

SIO-2005 calibration scale. For the re-analysis, we used 175,557 in-situ, 3,423 surface flask, and 5,581 aircraft measurements145

amounting to 184,561 measurements in total in 2011 and 2012. Fig. 1 provides an overview of all observation sites considered

in the inversion and the re-analysis. In one specific test case (see section 3.2) we also used the 2012 surface flask measurements

in addition to the in situ measurments
::::::::
continuous

::::::::::::
measurements

:
for the inversion.

2.2 Inversion method

In this study we use the Bayesian inversion framework FLEXINVERT+ described in detail by Thompson and Stohl (2014),150

which was further developed since then, to make the code more modular and to include iterative solution methods. However,
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our results should be valid for all inversion methods based on LPDM calculations and we thus only include a brief description

of FLEXINVERT+. It is based on a linear forward operator H that represents the atmospheric transport, so that the forward

problem reads:

y = Hx+ ε (1)155

where y is the vector of observed mixing ratios, x the emission state vector and ε the sum of observation and model error.

Since H is ill conditioned and has no unique inverse, a priori emission estimates can be added, in order to solve (1) for

x. The inversion method applies Bayes’ theorem to calculate a posteriori emissions, which on the one hand minimize the

difference between observed and modeled mixing ratios, and on the other hand stay close to the a priori emissions and inside

of predefined uncertainty bounds. Assumed uncertainties are Gaussian distributed resulting in a minimization of the cost160

function (e.g. Tarantola, 2005) .

J(x) =
1

2
(x− xp)T B−1(x− xp)+

1

2
(Hx− y)T R−1(Hx− y), (2)

where B is the a priori emission error covariance matrix, R the observation error covariance matrix, and xp the vector of the a

priori emissions. This study uses the following analytical solution to minimize J(x):

x = xp +(HT R−1H+B−1)−1HT R−1(y−Hx) (3)165

We use a spatial emission grid (Fig. A1) with a varying grid
::::
6219

:::
grid

:::::
cells

::
of

::::::
varying

:
size ranging from 1◦×1◦ to 16◦×16◦.

We define the grid by using model information to aggregate grid cells with low emission contributions, as further described by

Thompson and Stohl (2014). For this, the emission sensitivity is taken from the LPDM 50 day
:::::
50-day

:
backward simulation

and the resulting inversion grid is used for all inversions. The output emission fields are saved at a spatial resolution of 1◦×1◦.

:
x

:
is

:::::::
assumed

::
to

:::
not

::::
vary

::::
with

:::::
time.170

SF6 has no surface sinks and its surface fluxes can therefore only be larger or equal to zero. However, the inversion algorithm

can produce negative a posteriori fluxes. To overcome this problem we follow Thompson et al. (2015) and apply an inequality

constraint on the a posteriori emissions, using the truncated Gaussian approach by Thacker (2007). This approach, which

applies inequality constraints as error-free observations, is described by the following equation:

x̂ = x+APT (PAPT )−1(c−PX
::
Px), (4)175

where P is a matrix operator selecting the fluxes violating the inequality constraint, and c a vector of the inequality constraint

(zero in our case). x and A represent the a posteriori emissions and error covariance matrix precalculated in the inversion,

respectively.

In contrast to many other studies (e.g., Henne et al., 2016; Stohl et al., 2009; Thompson and Stohl, 2014)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Henne et al., 2016; Rigby et al., 2011; Stohl et al., 2009; Thompson and Stohl, 2014)

we do not use the option to optimize the baseline mixing ratios in the inversion. This gives us
:
,
:::::
except

:::
for

:::::::::
sensitivity

:::::
tests.

::
In180

:::
any

::::
case,

::
it

::
is

:::::::
desirable

::
to

::::::
obtain

:
a
:::::::
baseline

::::
that

:
is
:::
as

:::::::
accurate

::
as

:::::::
possible

::::
prior

::
to

::::
any

:::::::::::
optimization,

:::::
which

::
is

:
a
::::::
purely

::::::::
statistical

::::::::
correction

::::
that

::::
may

::::::
falsely

::::::::::
compensate

:::
for

:::::
errors

::::::::
elsewhere

:::::
(e.g.,

::
in

:::
the

::::::::::
emissions).

:::::::
Waiving

::::
this

:::::
option

:::::
gives

:::
us

::::::
further the
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opportunity to better analyze the differences between investigated baseline methods and to study their impacts on the a poste-

riori emissions in detail.
::::
more

:::::::::::::
systematically.

:::
For

:::
the

:::::::
baseline

::::::::::
optimization

:::
of

:::
the

::::::::
sensitivity

:::::
tests,

:::
we

:::
use

:
a
::::::::
temporal

:::::::
window

::
of

::
28

::::
days

::::
and

:
a
:::::::
baseline

::::::::::
uncertainty

::
of

:::
0.1

::::
ppt.

::::::::
Increasing

:::
the

::::::::::
uncertainty

::
up

:::
to

:::
0.2

:::
ppt

:::
did

:::
not

:::::
show

:::
any

:::::::::
significant

:::::::
changes185

::
in

:::
the

:::::::
results.

:::
For

::::::
general

::::::
details

:::
on

:::
the

:::::::
baseline

::::::::::
optimization

:::
see

:::::::::::::::::::::::
Thompson and Stohl (2014)

:
.

2.3 Atmospheric transport

H is the so-called Source-Receptor-Relationship (SRR) in the context of atmospheric transport. The SRR is an emission

sensitivity that relates emission changes in a given grid cell to changes in modeled mixing ratios at a given receptor; for further

details, see Seibert and Frank (2004). The SRR value in a specific grid cell (units of 1 sm3

kg ) measures the simulated mixing190

ratio change at a receptor that a unit strength source (1 kg
sm3 ) in that grid cell would create (Stohl et al., 2009).

In this study, we use the LPDM FLEXPART 10.4 (Pisso et al., 2019; Stohl et al., 1998, 2005) to calculate the SRR. The

model is run in backward mode as this is more efficient than forward calculations when the number of emission grid cells

exceeds the number of observation sites. Available observations are averaged to three hourly means (see section 2.1). For each

of these means 50,000 virtual particles are released continuously over the averaging period and followed backward in time.195

The SRR is calculated by determining the average time the particles spend in each grid cell of the 1◦×1◦ output grid within

the lowest 100 meters above the ground, assuming that all emissions occur at or near the ground. FLEXPART is driven by

the hourly reanalysis
:::::::::
re-analysis dataset ERA5 (Hersbach et al., 2018) from the European Centre for Medium-Range Weather

Forecasts (ECMWF) at a resolution of 0.5◦×0.5◦ and with 137 vertical levels. Since SF6 is an almost nonreactive gas, removal

processes are neglected in the calculation of the SRR.200

In this study, five different backward calculation periods are investigated: 1, 5, 10, 20 and 50 days. At the end of these

periods, particles are terminated and the back trajectories end. Figure 2 shows the 2012 annual average emission sensitivities

for the backward calculation period of 5 (Fig. 2a) and 50 (Fig. 2b) days, respectively. On the 5 days
::::
5-day

:
time scale large

land areas in the Southern Hemisphere (Northern Australia, South America, Southern Africa) and also parts of the Northern

Hemisphere (e.g. India, Iran) are sampled poorly or not at all. In these areas, emissions can therefore not be determined well205

by the inversion. High sensitivity can only be found at land regions with many receptors, such as Europe. On the 50 days

::::::
50-day time scale, the SRR has higher values compared to the 5 days

::::
5-day

:
backward calculation. Large parts of the Northern

Hemisphere are sampled quite well and the emission sensitivities provide some information, even at areas that are far away

from the observation stations. However, emission sensitivities are still low in the Tropics, especially over Africa, South America

and Northern Australia. When also using surface flask measurements (Fig.
:::::
Figure 2c ) in addition to in situ measurements for210

:::::
shows

:::
the

:::::::
increase

::
in

:::
the

:::::
annual

::::::::
averaged

::::
SRR

::::
due

::
to

::
the

::::
use

::
of

::::
flask

::::::::::::
measurements

::
in

:::::::
addition

::
to

:::::::::
continuous

::::::::::::
measurements

::
in

the case of a 50 day backward simulation period, the emission sensitivity is substantially higher almost everywhere and more

smoothly distributed over the globe. However, regions of low sensitivity remain in the Tropics and in
::::::
50-day

::::::::::
simulations.

::::
One

:::
can

:::
see

:::::::::
substantial

::::::::
increases

::
in

:::
the

:::::::
vicinity

::
of

:::
the

::::::::::::
measurement

::::
sites,

::::
that

:::::::
quickly

::::::
decline

::::
with

:::::::
distance

::
to
::::

the
::::
sites.

:::::::
Further

::::
SRR

::::::
values

:::::::
increase

::
in

:::::
large

::::
parts

:::
of the Southern Hemisphere,

::::::::
however,

:::
the

::::::::
increases

:::::
over

:::::::
southern

::::::::::
continental

:::::
areas

:::
are215

:::::::
relatively

::::
low,

::
as

:::::
most

::::
flask

::::::::::::
measurements

:::
are

:::
not

::::
well

::::::
located

:::
for

::::::::
inversion

::::::::
purposes.
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Figure 2. Source-Receptor-Relationship obtained from FLEXPART backward simulations, averaged over the year 2012. a) and b) show the

SRR for all considered in situ
::::::::
continuous measurement stations and for a simulation period of a) 5 and b) 50 days. c) shows the

::::::
increase

::
in

::
the

::::::
annual

:::::::
averaged SRR for

::
due

::
to
:
the case

:::
use of using surface flask measurement sites

:::::::::::
measurements in addition to in situ

::::::::
continuous

measurements and for
:::
the

:::
case

::
of a 50 day

:::::
50-day

:::::::
backward

:
simulation period.Station locations are marked with grey dots.

2.4 The baseline definition

The transport model can only account for mixing ratio changes caused by emissions within the chosen backward calculation

period. Consequently, a baseline representing the influence of all the emission contributions prior to this time period has to be

defined.220
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2.4.1 The REBS method

The REBS method introduced by Ruckstuhl et al. (2012) is a statistical method using a robust local regression model to identify

background observations from each individual observation station to estimate a baseline curve. In recent years it has been used

in various studies to determine a baseline for atmospheric inversions of several GHG species (e.g. An et al., 2012; Brunner

et al., 2017; Henne et al., 2016; Schoenenberger et al., 2018; Simmonds et al., 2016; Vollmer et al., 2016). The REBS method225

defines observed mixing ratios y(ti) at each time step ti as the sum of a baseline signal g(ti), an enhancement due to polluted

air masses m(ti) and the observational error Ei:

y(ti) = g(ti)+m(ti)+Ei (5)

The method assumes that most observations are baseline observations and therefore not influenced during pollution episodes

(m(ti) = 0). It also assumes that the baseline curve g is smooth - so that it can be linearly approximated around any given230

time. The method then applies a local linear regression model that fits the observation data, giving more weight to data points

close to the considered time and iteratively excluding data points outside a certain range. An advantage of the REBS method

is that it is simple to implement. The code is freely available and besides some parameters that need to be chosen, it only

depends on the observation data. This simplicity, however, also means that the method is unable to take the length of the

LPDM backward calculation into account. As we shall see, this leads to systematic biases in the inversion results that depend235

on the length of the backward calculation. The method also assumes a smoothly varying baseline which limits its ability to

account for meteorological variability. Another disadvantage is the dependence on certain parameter settings. The settings used

in this study are provided in Table A3. Finally, the method can only be used at sites with frequent observations, not for flask

measurement sites, or moving measurement platforms.

2.4.2 Stohl’s method240

The method introduced by Stohl et al. (2009) is primarily based on the selection of observed mixing ratios at individual

observation stations, but also uses the simulated SRR values and a priori emissions to determine the baseline. In the last few

years it was used in several inversion studies (e.g. Brunner et al., 2017; Fang et al., 2014, 2015, 2019; Stohl et al., 2010;

Thompson and Stohl, 2014). We apply the method and select the lowest 25 percent of observations from individual stations in

a moving time window of 30 days to only consider observations which are weakly influenced by emissions within the backward245

calculation period. Prior simulated mixing ratio enhancements are subtracted from the selected observations to eliminate the

emission contributions from within the time interval of the LPDM simulation. In order to avoid an overestimation of their

contribution, only the lower half of the prior simulated values and the corresponding observed data points are selected. In

every time window resulting mixing ratios are averaged and finally linearly interpolated to the timestamp of the observations.

By subtracting prior simulated mixing ratios the method takes the length of the LPDM backward calculation into account250

and aims to avoid an overestimation of the baseline. However, simulated mixing ratios are calculated using a priori emission

estimates, making the method dependent on a priori information. Further, the subjective choice of the time window, as well as
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the equally subjective selection of the lowest quartile of observations and the lower half of prior simulated mixing ratios are

problematic. As the REBS method, Stohl’s method assumes a smooth baseline curve, and thus it cannot account for sudden

changes in the baseline due to meteorological variability. Also, the method can only be used at sites with frequent observations.255

2.4.3 The GDB method

The idea of the GDB approach (Thompson and Stohl, 2014) is to determine the baseline directly from a 3D global field of

mixing ratios, e.g., from a re-analysis of the atmospheric chemical composition. The end points of the back-trajectories that are

used by the LPDM to calculate the SRR are utilized to determine the sensitivity at the receptor to mixing ratios at the points

in space and time where particles terminate (see Fig. 3 for a simplified illustration). This sensitivity (termed as "termination260

sensitivity", thereafter) in a particular grid cell is calculated in the LPDM by dividing the number of particles terminating in

that cell by the total number released at the receptor, while also including a transmission function to account for loss processes

(not relevant for SF6) during the backward simulation period. The termination sensitivity fields are saved in a 3D 1◦×1◦ output

grid with 16 vertical layers with interface heights at 0.1, 0.5, 1, 2, 3, 4, 5, 7, 9, 12, 15, 20, 25, 30, 40, and 50 km above

ground level. For global inversions, baseline mixing ratios are then calculated by multiplying the termination sensitivity with265

the mixing ratios of the 3D global field and integrating the product over all grid cells. The GDB method can also be used for

regional inversions (not done in this study). In this case, the emission contributions from outside the regional domain need to

be added to the baseline (Thompson and Stohl, 2014) but otherwise the inversion procedure is identical as described here.

The GDB method is independent of subjective data selection and choice of parameter settings. In contrast to the REBS and

Stohl’s method it does not assume a smooth baseline and has the potential to fully account for meteorological variability. As270

illustrated, it excludes emission contributions from within the backward simulation period and therefore provides a baseline

that is fully consistent with the length of the backward simulation. Furthermore, contrary to the other two methods, it can

also be used at measurement sites with infrequent observations or moving observation platforms. Its accuracy, however, is

dependent on the ability to eliminate
::::::::
minimize errors, and especially any bias

:::::
biases

:
of the global 3D mixing ratio fields. We

target this challenge by using the FLEXible PARTicle dispersion chemical transport model (FLEXPART CTM, Henne et al.,275

2018) to perform a re-analysis of SF6 as described in the next section.

2.5 Re-analysis of SF6 using FLEXPART CTM

In this study the LPDM FLEXPART 8-CTM-1.1 is used to perform a re-analysis of SF6 for the year 2012. It was developed by

Henne et al. (2018) and is based on FLEXPART 8.0. Groot Zwaaftink et al. (2018) provide a detailed description of FLEXPART

CTM and evaluate it
:::
this

:::::
model

:
for the example of methane

:::
CH

:4
. FLEXPART CTM is run in a domain filling mode where 12280

million particles are randomly distributed over the globe, proportional to the air density. In addition to an air tracer, particles

also carry the chemical species SF6. The initialisation is based on a latitudinal SF6 profile based on surface observations. We

run the simulation from 2011 to 2012, using 2011 as a spin up period. Particles are followed forward in time, and whenever

a particle resides below the diagnosed boundary layer height its mass is increased due to surface SF6 emissions. The model

is driven with the ECMWF ERA5 dataset and with emission fields calculated as described in section 2.6. Mixing ratio fields285
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Figure 3. Simplified illustration of the global-distribution based (GDB) method for baseline determination, where the backward simulation

is represented by three back trajectories released at the time and space of a particular observation. The spatio-temporal grid is simplified to

two dimensions with a vertical time and a horizontal space axis. Grid cells that contribute to the modeled mixing ratio through emissions are

shaded blue; termination grid cells where termination sensitivity is stored are marked with red rectangles; the termination point is illustrated

by a red dashed horizontal line.

are saved in
::::
daily

:::
on a 3◦×2◦ output grid and extrapolated to the same grid as the termination sensitivity fields

:::::::
coupled

::
to

:::
the

::::::::
backward

:::::::::
simulations.

FLEXPART CTM uses a nudging routine to keep simulated SF6 fields close to the observations of SF6. With this simple

data assimilation method, modeled fields of mixing ratios are relaxed towards observations within so-called nudging kernels

around observation sites. For all surface observation stations in the Southern Hemisphere we assign relatively large uniform290

kernel sizes, since the model tends to overestimate SF6 mixing ratios in the Southern Hemisphere and there are only few

measurement stations to correct this bias. For the surface observation sites in the Northern Hemisphere, we assigned smaller

kernel sizes to measurement stations with a large observation variability to conserve SF6 spatial variability, especially over the

continents (see Groot Zwaaftink et al., 2018). For the aircraft measurements we pre-define vertical levels at 0.05, 0.15, 0.3,

0.5, 0.75, 0.1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8 and 9 km above ground level, co-locate the individual measurements to the closest295

vertical level and chose kernel sizes that increase with altitude. Specific kernel settings are detailed in Table A4.
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2.6 A priori information
::::::::
emissions

An a priori estimate of the spatial distribution of SF6 emissions for the year 2012 is determined by collecting information on

the emissions from individual countries. We use country emissions reported to the United Nations Framework Convention on

Climate Change (UNFCCC, 2021) and for East Asian countries emissions estimated by Fang et al. (2014). The sum of these300

individual country emissions is subtracted from the total global SF6 emissions determined by Simmonds et al. (2020) and

the remaining emissions are distributed to all other countries proportional to their electric power consumption (World Bank,

2021). Finally, total country emissions are disaggregated according to the gridded population density (CIESIN, 2018) within

each country’s borders.
::::
Note

::
at
::::
this

:::::
point

:::
that

:::
the

::
a
:::::
priori

::::::::
emissions

::
as

::::::::::
constructed

:::::
agree

::::
with

:::::::::
recognized

::::::
global

:::::::::
emissions,

:::::
which

::::::
should

:::
be

::::
kept

::
in

:::::
mind

:::::
when

:::
the

::::::
global

::::
total

::
is
:::::
used

::
as

::
a

::::::::
reference

:::::
value

::
in

:::
the

::::::::::
discussion.

:
The a priori emission305

uncertainty is estimated to be 50% in each grid cell with a minimal value of 1 · 10−13 kg
m2h . Spatial and temporal correlation

between uncertainties are considered by using an exponential decay model with a scale length of 250 kmand 30 days. The error

covariance matrix B is calculated as the Kronecker product of the spatial and temporal covariance matrices.
:
.

3 Results

3.1 Baselines and length of backward simulation310

The three investigated baseline methods are discussed for the example of two measurement sites, Gosan and Ragged Point,

and for five backward simulation time periods. The Gosan observation station is located on the south-western tip of the Ko-

rean Island Jeju, monitors the outflows from the Asian continent, and is respresentative of stations which frequently measure

pollution events. The Ragged Point observation station is situated on the eastern edge of Barbados with direct exposure to the

Atlantic Ocean. Ragged Point is primarily influenced by easterly winds providing "clean" background air masses, uninfluenced315

by local emissions, and is therefore representative of background stations.
::::
Both,

::::::
Gosan

:::
and

:::::::
Ragged

::::
Point

::::::::::
periodically

::::::::
intercept

::
air

::::
from

:::
the

::::::::
southern

::::::::::
hemisphere

:::
and

::::::::
therefore

::::
have

:
a
:::::
rather

::::::::
complex

:::::::
baseline.

:

Baseline mixing ratios are plotted together with respective observations and a priori mixing ratios for different LPDM back-

ward simulation periods ranging from 1 to 50 days .
::::::::
(Fig. 4-7).

:
A priori mixing ratios are calculated as the sum of the baseline

and the contribution originating from a priori emissions during the period of the backward simulation (termed "direct emissions320

contributions" thereafter). Ideally, the choice of the backward simulation period should have no systematic effect on the calcu-

lated a priori mixing ratios. By increasing the backward simulation time, and therefore enlarging the temporal domain, more

direct
::::::::
additional

:
emission contributions are included . All these direct emission contributions should

:
in

:::
the

:::::::::::
optimization.

::::
Per

::::::::
definition,

:::::
these

:::::::::::
contributions

::
are

:::
not

::::
part

::
of

:::
the

:::::::
baseline

:::
and

::::::
should

::::::
ideally be removed from the baseline and as a result

::
it.

::
As

::
a

:::::
result, the baseline should become lower and smoother in order to leave a priori mixing ratios unchanged. Furthermore, one can325

assume that a correctly working baseline method leads to a proper agreement between a priori mixing ratios and observations.

This agreement is investigated here
::::
when

:::
the

::::::::::
simulation

:::::
period

::
is

:::::::::
increased.

:::
We

:::::::::
investigate

:::
the

:::::::::
agreement

:::::::
between

::::::::
modeled
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Table 2. Bias, mean squared error (MSE) and coefficient of determination (r2) of a priori SF6 mixing ratios determined by the three

investigated baseline methods with respect to observed mixing ratios. Statistical parameters are shown for three different backward calculation

periods (1, 10, and 50 days) at the stations Gosan and Ragged Point. Also reported are the bias, MSE and r2 calculated separately for all

stations listed in Table 1, and then averaged.

Gosan Ragged Point all stations

Parameter method 1d 10d 50d 1d 10d 50d 1d 10d 50d

REBS - 0.225 0.190 0.267 0.006 0.007 0.054 - 0.028 0.012 0.061

Bias [ppt] Stohl - 0.384 - 0.016 0.008 - 0.067 - 0.068 - 0.065 - 0.103 - 0.064 - 0.051

GDB - 0.090 -0.002 -0.006 0.023 0.044 0.033 0.022 0.016 0.007

REBS 0.420 0.250 0.281 0.004 0.004 0.006 0.034 0.023 0.028

MSE [ppt2] Stohl 0.525 0.216 0.210 0.009 0.009 0.009 0.050 0.026 0.024

GDB 0.303 0.206 0.205 0.005 0.005 0.004 0.034 0.022 0.021

REBS 0.085 0.482 0.495 0.671 0.670 0.712 0.584 0.647 0.651

r2 Stohl 0.068 0.474 0.490 0.649 0.629 0.623 0.548 0.616 0.623

GDB 0.272 0.499 0.501 0.631 0.718 0.746 0.423 0.589 0.634

:::
and

::::::::
observed

::::::
mixing

:::::
ratios for the three methods with time series plots (Fig. 4-7), as well as statistical parameters (bias, mean

squared error (MSE), and coefficient of determination (r2)) summarized in Table 2.

Figure 4 shows the smooth baselines calculated with the REBS and Stohl’s method at the measurement station Gosan. In330

the case of 1-day backward simulations (Fig. 4a/d) both methods show a poor agreement between modeled and observed

mixing ratios, as neither the smooth baselines nor the small direct emission contributions can reproduce the observed mixing

ratios during pollution episodes. This agreement becomes much better with longer backward simulation periods , when direct

emission contributions get more impact (Fig. 4b/e). The REBS baseline stays completely unchanged for different backward

simulation periods. Therefore, a priori mixing ratios grow with increasing simulation periods (Fig. 4b/c), as more direct emis-335

sions contribute to the calculated total mixing ratio. For Gosan, the bias is negative for the 1-day simulation period but becomes

increasingly positive for longer simulation periods (Table 2). This systematically increasing bias is inherent to all purely obser-

vation based baseline methods and cannot be corrected without adding model information. In contrast, Stohl’s baseline level

decreases with longer backward simulation periods as higher direct emission contributions are subtracted from the pre-selected

observations. Consequently, the bias of the a priori mixing ratios changes less between 10 and 50 days of backward simulation340

(Fig. 4e/f). This is confirmed by statistical parameters in Table 2, showing also only little change between 10 and 50 days.

At Ragged Point (Fig. 5) the a priori mixing ratios determined by the REBS method fit the observation data very well for

short backward simulation periods, where baseline and prior
:
a

:::::
priori mixing ratios overlap because of small direct emission

contributions (Fig. 5a/b). This is expected, since the method determines the baseline by fitting the observation data, while

iteratively excluding outliers. Since Ragged Point is uninfluenced by regional emissions
:::::::
regional

::::::::
pollution

:::::
events

::::::::
captured

::
at345
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Figure 4. Baseline and a priori SF6 mixing ratios calculated with the REBS (upper panels) and Stohl’s method (lower panels) at the Gosan

observation station, compared to SF6 observations. Model results are shown for backward simulations of 1 day (panels a and d), 10 days

(panels b and e) and 50 days (panels c and f).
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Figure 5. Baseline and a priori SF6 mixing ratios determined by the REBS and Stohl’s method at the Ragged Point observation station for

backward simulation times of 1 day (panel a), 10 days (b) and 50 days (c).

::::::
Ragged

:::::
Point

::::
tend

::
to

::
be

::::
very

:::::
small, no significant measurement peaks need to be excluded. Therefore, the REBS baseline fits

well through the measurement data, resulting in a good statistical model-observation agreement (Table 2). However, the smooth

baseline is unable to reproduce the observed variability. In the case of a simulation period of 50 days (Fig. 5c), more direct

emission contributions give higher a priori mixing ratios, overestimating the measurements and causing a large bias. In contrast,

due to its 25th percentile pre-selection of observations, Stohl’
:
’s method shifts the baseline curve towards the lower observations.350

For
:::::
lowest

::::::::::::
observations.

::
In

:::
the

::::
case

::
of

:::::::
Ragged

:::::
Point,

:::::
these

::::::
lowest

::::::::::
observations

:::::
come

:::::
from

:::::::
southern

::::::::::
hemispheric

:::
air

:::::::
masses.

::::::
Hence,

::::::
Stohl’s

:::::::
baseline

::
is

::::
more

::::::::::::
representative

:::
for

:::::::
southern

::::::::::
hemispheric

::::::::::
conditions,

:::::
which

:::
do

:::
not

:::::::::
necessarily

::::::::
dominate

::
at

::::
that

:::
site.

::::::::::::
Consequently,

::
a
:::::
priori

:::::
mixing

:::::
ratios

::::::::::::
underestimate

:::
the

:::::::::::
observations

:::
for

:
low direct emission contributions (Fig. 5a/b), a

priori mixing ratios thus underestimate the observations. The resulting bias is almost unaffected by the different backward

simulation periods (Table 2, Fig. 5c), showing the method’s ability to compensate for increasing direct emission contributions.355

However, the rather ad hoc 25th percentile pre-selection of data for the baseline is obviously not justified for a background

station with few pollution episodes
::
and

::::::::
southern

:::::::::::
hemispheric

::
air

::::::::::::
interceptions, leading to a systematic underestimation of

modeled a priori mixing ratios, irrespective of the length of the backward simulation.

The GDB method is illustrated for all tested backward simulation periods, including a case without any backward simulation

(0 days). In this extreme case the baseline is obtained directly from the value of the global mixing ratio field simulated with360

FLEXPART CTM in the spatio-temporal grid cell of the respective observation. At Gosan, FLEXPART CTM reproduces
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Figure 6. Baseline and a priori SF6 mixing ratios calculated with the GDB method at the Gosan observation station for backward simulation

times of 0 days (panel a), 1 day (b), 5 days (c), 10 days (d), 20 days (e) and 50 days (f).
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observed mixing ratios well, even capturing a few pollution events (Fig. 6a).
:::
This

:::::
good

:::::::::
agreement

::
is

:::::::
however

::::::::
expected,

:::::
since

::::
these

:::::::::::
observations

::::
were

::::
used

:::
for

:::
the

:::::::
nudging

::
in

:::
the

::::::::::
FLEXPART

:::::
CTM

::::::
model. In the 1-day backward simulation case (Fig. 6b),

the method computes a highly variable baseline partly representing the observed variability. This results in a much better

agreement between a priori and observed mixing ratios than using the REBS or Stohl’s method (Table 2). The GDB baseline365

becomes smoother and lower with increasing backward simulation time. The loss of variability arises from the fact that the

GDB method calculates the baseline from a weighted average of grid cell mixing ratios at the trajectory termination points. The

longer particles are followed backward in time, the more widely dispersed over large geographical regions termination points

become, thus resulting in a smoother baseline. The lowering of the GDB baseline is compensated by the increase of the direct

emission contributions (see Section 2.4.3 and Fig. 3), ensuring a seamless transition between forward (Flexpart CTM) and370

backward simulations. As a result a priori mixing ratios in Fig. 6 show no large
::::::::
systematic

:
changes with increasing simulation

period between 5 and 50 days.

Figure 6 also demonstrates the advantage of the Lagrangian backward simulation. As FLEXPART CTM is limited in resolu-

tion and particle number, it can only reproduce a few pollution events at Gosan, underestimates the highest and overestimates

the lowest measured SF6 mixing ratios,
::
as

::::::::::::
demonstrated

::
in

:::
the

:::::
0-day

::::
case (Fig. 6a). The backward simulation is initiated at the375

exact location of the measurement point and provides , in principle, infinite
::::
much

::::::
higher resolution (Fig. 6b-f). If the backward

calculation period is long enough that back trajectories reach important emission regions, mixing ratio spikes similar to the

observed ones can be simulated. At the same time, the lowered baseline for intrusions of southern air masses during the Asian

summer monsoon also allows capturing the lowest observed values. As an indicator, Table 2 shows exclusively improving

correlation between modeled and observed values with increasing backward simulation periods.380

Figure 7 illustrates the GDB method at the Ragged Point station. FLEXPART CTM (Fig. 7a) reproduces the measured

mixing ratios well, however .
::::::::
However,

::
it
:
generates more variability than observed at this station. This is partly due to the

limited number of particles in the domain-filling simulation, which introduces noise into the model results. This is averaged

out by the GDB method with increasing backward simulation time, as the baseline becomes a weighted average over many grid

cells. Nevertheless, the baseline maintains variability for all tested simulation periods, fitting the observed signal well (Fig. 7b-385

e). It is noteworthy that at Ragged Point a substantial part of the observed SF6 variability seems to be caused by transport from

different latitudes/regions without direct emission contributions, exemplified by the quite variable baseline even for the 50-day

backward simulation. In contrast, the direct emissions accumulated over the 50 days of the backward simulation are producing

an almost constant enhancement over the baseline. This is very different from a station like Gosan that is strongly influenced

by pollution episodes.390

Notice also that for backward simulation times of 10 days and longer, the combined FLEXPART CTM/backward model is

able to reproduce short episodes of very low observed mixing ratios at Ragged Point that are caused by episodic transport from

the Southern Hemisphere (see also inset in Fig. 7d). Neither the REBS nor Stohl’s method could correctly reproduce these

negative SF6 excursions.

Additional figures illustrating the three baseline methods at all investigated measurement sites, can be found in the sup-395

plementary material. Despite of all advantages of the GDB method, it reproduces measurements insufficiently
::::::
doesn’t

:::::
work
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Figure 7. Baseline and a priori SF6 mixing ratios calculated with the GDB method at the Ragged Point measurement station for backward

simulation periods of 0 days (panel a), 1 day (b), 5 days (c), 10 days (d), 20 days (e) and 50 days (f). The inset in panel d shows the termination

sensitivity averaged over all heights for the time of the marked observation low point, illustrating the methods ability to account for baseline

changes, due to episodic transport from the Southern Hemisphere.

19



:::
well

:
if the modeled global mixing ratio fields are biased. At Mace Head and Zeppelin (see supplementary Fig. S17 and S33),

FLEXPART CTM overestimates the measurements, and thus the GDB method gives a baseline that partly exceeds the obser-

vations. At Mace Head, this could be explained to some extent by the close proximity of the station to the 3◦×2◦ grid cell

border resulting in the possibility that FLEXPART CTM attributes strong point emission contributions to the (relatively large)400

grid cells, that would be outside of the respective area of influence in reality. Other possible
::::::
Possible

:
error sources include de-

ficiencies in the emission assumptions driving the model, that are impossible to be compensated through nudging with the few

available observations. It is also unclear whether the FLEXPART CTM nudging routine was able to properly correct mixing

ratios at higher altitudes, as aircraft measurements were available only over North America (with one exception).
::
On

:::
the

:::::
other

::::
hand,

:::::::::
statistical

:::::::
baseline

:::::::
methods

:::::
might

:::::
work

:::::
better

::
at
::::::::::

observation
::::::::
stations,

:::::
where

:::
the

:::::::
baseline

::::::::::
termination

::
is

::::
less

::::::::
complex.405

::
At

:::::
Mace

:::::
Head

::::
(Fig.

:::::
S18)

:::
for

:::::::
instance,

::::
both

::::::
REBS

::::
and

::::::
Stohl’s

::::::
method

::::
lead

::
to
::

a
::::
very

::::
high

:::::::::
correlation

::::::::
between

:::::::
modeled

::::
and

:::::::
observed

:::::::
mixing

:::::
ratios

:::
for

:::
the

::::
case

::
of

::
a
::::::
50-day

:::::::::
backward

:::::::::
simulation

::::::::::
(r2 = 0.87).

::::::::::::
Nevertheless,

:::
for

:::
the

:::::
REBS

::::::::
method,

:::
the

::::::::
discussed

:::::::
growing

:::::::
negative

::::
bias

::::
with

:::::
longer

:::::::::
simulation

:::::::
periods

:::
can

::
be

:::::::::
observed.

Statistical parameters (bias, MSE, and r2) were separately calculated for every observation station and respective averages

over all stations are shown in Table 2. One should keep in mind that the REBS and Stohl’
:
’s method are

::::::
directly

:
based on the410

observations themselves and thus the
::::::::::
dependency

:::::::
between observed and modeled a priori mixing ratios are not independent

::
is

:::::
likely

:::::
higher

:::::
than

::
in

:::
the

::::
case

:::
of

:::
the

:::::
GDB

:::::::
method,

::::::
where

::::::::::
observations

::::
are

:::::
rather

::::
used

:::
to

:::::::
improve

:::
the

:::::::
mixing

::::
ratio

:::::
fields.

Therefore, it is remarkable that overall the GDB method obtains smaller bias and MSE values than the other two methods.

Regarding correlation, it is not surprising, that Table 2 shows the largest
:::
The

:::::
REBS

:::::::
method

:::::
shows

:::
the

:::::::
highest r2 valuesfor the

REBS method , where the baseline is basically a fit of the observation data. .
::::
The

::::
main

::::::
reason

:::
for

:::
this

:::::
good

:::::::::
correlation

::
is,

::::
that415

::
the

:::::::
method

:::::::
captures

:::
the

:::::
trend

::
in

:::
the

::::
time

::::::
series

::::
very

::::
well,

::::::
which

::::::::
represents

::
a
:::::::::::
considerable

::::::
fraction

:::
of

:::
the

::::
total

:::::::::
variability

::
in

::
the

:::::
data.

:::
The

:::::
GDB

:::::::
baseline

::::
may

:::::::
contain

:
a
:::
fair

:::::::
fraction

::
of

:::::
noise,

:::
in

::::::
contrast

::
to
:::
the

:::::::
smooth

::::::::
baselines

::
of

:::
the

::::
other

::::
two

::::::::
methods.

::::
This

:::
will

::::
lead

::
to

:::::
lower

::::::::::
correlation.

:
However, it is noteworthy that for the GDB method, the r2 value improves systematically

with growing backward simulation time and for 50 days even exceeds the value derived by Stohl’s method. By extending the

backward calculation period from 10 to 50 days the GDB r2 value increases by 0.045, meaning that an extra 4.5% of the420

observed variability can be explained by the model. This is quite a substantial improvement. Notice also the improvement in

bias and MSE, which can be observed for the GDB and Stohl’s method, when extending the simulation period from 10 to 50

days. The REBS method does not show these improvements due to its systematical increase of bias with backward simulation

time.

3.2 Inversion Results425

Figure 8 illustrates (a) the global distribution of the SF6 a priori emissions 2012, as well as (b-d) the emission increments (i.e.,

a posteriori minus a priori emissions) for the three investigated baseline methods using SRRs from 20 days
:::::
20-day

:
backward

calculations. A priori emissions are allocated to regions proportional to electricity use and population density. This implies

large a priori emissions in South and East Asia, including China which is estimated to be the biggest contributor to global

SF6 emissions. In general, much higher a priori emissions are allocated to the Northern than to the Southern Hemisphere. We430
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Figure 8. A priori SF6 emissions (a) and SF6 emission increments given by the inversion when using the REBS method (b), Stohl’s method

(c), and the GDB method (d) based on 20 day
:::::
20-day

:
LPDM backward simulations.

should also note that the emission optimization of the inversion focuses on regions with large a priori emissions, where also

assumed uncertainties are bigger (see Section 2.6), assigning a larger degree of freedom to the algorithm.

The inversion increments in Fig. 8b-d show three very contrasting pictures, illustrating the huge impact of the choice of

the baseline method on the inversion results. Using different baseline approaches completely changes the results of the in-

versions. When using the REBS method (Fig. 8b), the inversion produces negative emission increments in almost all areas435

of the globe, indicating that calculated baselines are too high overall. This is consistent with the assumption that the method

overestimates the baseline at individual stations by wrongly classifying observations as baseline observations that are actually

influenced by emissions within the backward calculation period.
::
As

::::
the

:::
real

:::::::::
emissions

:::
are

::::::::
unknown,

::::
this

::
is

:::
not

::::::::::
necessarily

::
an

:::::::::
unrealistic

:::::
result.

:::::::::
However,

:::::
when

::::::::::
considering

::::
these

::::::
mostly

::::::::
negative

:::::::::
increments

:::::::
together

:::::
with

:::
the

::::::::
discussed

:::::::
positive

::::
bias

::
for

::::::
REBS

::::::::
baselines

::
in

:::::::
Table 2

:::::::::
(especially

:::
for

:::::
longer

:::::::::
backward

:::::::::
simulation

::::::::
periods),

::::
there

::
is

::::::
reason

::
to

::::::
assume

::::
that

:::
the

::::::
REBS440

21



Figure 9. National SF6 emissions for selected countries, based on 20 day
:::::
20-day

:
LPDM backward calculations with different choices of the

baseline method.
:::::::::
Uncertainties

:::::::
represent

::
a

::
1σ

:::::
range.

::::::
method

::::::::::::
overestimates

::::::::
baselines

:::
and

::::::::::::
consequently

::::::::::::
underestimates

::::
the

:
a
:::::::::
posteriori

::::::::
emissions

::::::
overall.

:
In contrast, the inver-

sion algorithm produces positive increments almost everywhere around the globe when applying Stohl’’s method (Fig. 8c),

suggesting that the method systematically underestimates the baseline (not only at background stations) which generally leads

to
:
.
::::::
Again,

::::::::::
considering

:::
this

:::::::
together

::::
with

:::
the

:::::::::
discussed

:::::::
negative

::::::
biases

::
in

:::::::
Table 2,

:::
this

::::::
might

::::::
indicate

:::
an

:::::::::::::
underestimation

:::
of

::
the

::::::::
baselines

::::
and

::
an

:::::::::::::
overestimation

::
of

:::
the

:
a priori

::::::::
posteriori emissions that are too high

:::::
overall. In case of the GDB method445

(Fig. 8d) negative and positive increments are more balanced, showing no sign of a systematical under- or overestimation of

the baseline.
:::::::
Overall

:::
the

:::::::
patterns

:::
are

:::::
more

::::::
similar

::
to

:::
the

:::::
ones

::
of

:::
the

::::::
REBS

:::::::
method,

::::::
except

::
in

::::
East

:::::
Asia,

:::::
where

::::
they

::::::
rather

:::::::
resemble

:::
the

:::::::
patterns

:::
of

::::::
Stohl’s

:::::::
method. Large positive increments can be seen in East Asian regions and parts of Europe,

whereas the inversion tends to produce slightly negative increments in the Southern Hemisphere.

National emissions450

As the verification of emission reports to UNFCCC takes place on a national scale, the impact of baseline methods on national

emissions is of great interest (Fig. 9). In countries with very low emission sensitivity (e.g., Brazil) inversion increments are

very small in all three cases and
:::::::
therefore

:
the baseline choice has therefore little impact. However, considering countries with

higher emission sensitivities (e.g., China), the a posteriori emissions are very sensitive to the baseline definition. In almost all

cases the REBS method leads to smaller and Stohl’s method to larger national emissions than the GDB method, again revealing455

systematic problems in the first two methods. Due to the large emissions in China these problems
:::
the

:::::::::
differences

::
in

:
a
:::::::::
posteriori

::::::::
emissions become especially apparent there, with almost a factor 3 emission difference, corresponding to almost 30% of the

2012 global SF6 emissions.

Global emissions

The 2012 SF6 global emissions are shown in Fig. 10. The bars represent inversion results using different backward calculation460

periods between 1 and 50 days (light to dark shading). The horizontal dashed line illustrates a reference value calculated by
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Figure 10. SF6 global emissions derived by the inversions. Results are shown for the three applied baseline methods and for the five applied

backward simulation periods between 1 and 50 days. The horizontal dashed line represents the reference value of the AGAGE 12-box model

with shaded error bands.
::::::::::
Uncertainties

:::::::
represent

:
a
:::
1σ

::::
range.

Simmonds et al. (2020) with the AGAGE 12-box model. Notice that this is the same value used to calculate the a priori

emissions, so the line represents also the global a priori emissions,
::::::

which
::::::
should

:::
be

::::
kept

::
in

:::::
mind

:::
for

:::
the

:::::::::::
interpretation

:::
of

::
the

::::::
results. Since the uncertainty of the global emissions is relatively small, global emissions derived by the inversion should

roughly match the value of the box model, regardless which backward simulation period was used.465

For the REBS method, calculated global emissions (red) decrease dramatically with growing backward simulation time,

showing values between 3.15 Gg/yr and 9.80 Gg/yr. This is a consequence of the method’s incapability to remove emission

contributions from the baseline when the backward simulation period expands, leading to a systematical overestimation of the

baseline and underestimation of the emissions. The resulting bias increases with growing simulation period and as a result

global emissions estimates deviate strongly from the box model.470

In the case of Stohl’s method (blue), derived global emissions do not show such a systematic decrease with longer backward

simulation periods as observed for the REBS method. This is because Stohl’s method not only selects low mixing ratio obser-

vations, but also uses model information to maintain the baseline. For longer backward simulation periods, higher simulated

mixing ratios are subtracted from the pre-selected observations to compensate for more direct emission contributions. Never-

theless, global emissions significantly exceed the reference value of the box model for all applied simulation periods, implying475

a systematic overestimation of emissions through too low baselines. The overestimation of the global emissions increases with

longer backward simulation times larger than 5 days. This suggests that the method overcompensates for additional direct

emission contributions when the simulation period expands, subtracting systematically too high values from the pre-selected

observations.

:::
We

::::::
further

:::::::::
investigate

::::::
whether

:::
the

:::::::::::
encountered

:::::
biases

:::
can

::
be

:::::::
reduced

:::
by

:::::::::
optimizing

:::
the

:::::::
baseline

::
in

:::
the

::::::::
inversion.

:::::::::
Therefore,480

::
we

::::::::
repeated

::
the

::::::::
inversion

::::
with

::::::
exactly

:::
the

:::::
same

:::::
setup,

:::::
except

:::::::::
optimizing

:::
the

::::::
REBS

:::
and

::::::
Stohl’s

:::::::
baseline

::
as

::::
part

::
of

::
the

:::::::::
inversion.

::::::
Results

:::
are

::::::
shown

::
in

:::::::
Fig. A2.

::
In

::::
case

::
of

:::
the

::::::
REBS

::::::
method

:::
the

:::::::
baseline

:::::::::::
optimization

:::
has

::::
only

::::
little

:::::
effect

:::
on

:::
the

:::::
global

::::
total

::
a

::::::::
posteriori

::::::::
emissions

:::
for

::::::::
backward

:::::::::
simulation

:::::::
periods

:::::::
between

::
1

:::
and

:::
10

::::
days

:::
and

::::::::
becomes

:::::::::
noticeable

::::
only

::::
after

::
20

:::::
days.

::::
The
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::::::
greatest

::::::::::::
improvements

:::
can

:::
be

::::::::
observed

::
for

:::
the

::::::
50-day

::::::::::
simulation,

:::::
where

:::
the

::::
bias

::
is

::::::
almost

::::::
halved.

::::
Still,

:::
for

::::::
longer

:::::::::
simulation

::::::
periods

:::
the

:::::::::
increasing

::::::::::::
improvements

:::::::
through

:::
the

:::::::
baseline

:::::::::::
optimization

::::::
cannot

::::::::::
compensate

:::
for

:::
the

:::::::
growing

::::::::::::::
underestimation485

::
of

:::
the

::::::::
emissions

::::
and

:::::::::
substantial

:::::
biases

:::::::
remain.

::::::::::
Optimizing

::::::
Stohl’s

:::::::
baseline

:::::
shows

:::::
great

:::::::::::::
improvements,

::::::::
especially

:::
for

::::::
longer

::::::::
simulation

:::::::
periods.

:::::
These

::::::::::::
improvements

:::::::
increase

::::::::::::
systematically

::::
with

:::::::
growing

::::::::
backward

:::::::::
simulation

::::::
period

:::
and

::::::
results

:::
get

::::
very

::::
close

::
to

:::
the

::::
box

:::::
model

:::::::
outcome

:::
for

:::
the

:::
20-

::::
and

::::::
50-day

:::::::::
simulation

::::
case.

:

Considering the inversion results based on the GDB method, global emissions are in good agreement with the box model

result for all tested backward simulation periods
:
,
::
as

:::
the

::::::
global

:
a
:::::::::
posteriori

::::::::
emissions

::::
stay

:::::
close

::
to

:::
the

:::::
global

::
a
:::::
priori

::::
value.490

Furthermore,
::::
these global emissions stay almost unchanged for different backward simulation periods, demonstrating again the

method’
::
the

:::::::
method’s ability to ensure a flawless transition between the forward (Flexpart CTM) and backward calculation

:::::
adjust

::
the

:::::::
baseline

:::::::::
according

::
to

:::
the

:::::::
sampled

::::::::
emissions

:::
of

:::::::
different

:::::::::
simulation

::::::
periods.

The advantage of longer backward simulation periods

As an argument for a relatively short backward simulation period Stohl et al. (2009) stated that "the value for the inversion of495

every additional simulation day decreases rapidly with time backward". Certainly, this is true for countries and regions that are

well covered by the global monitoring network. For instance, for France the SRR increases rapidly in the first few backward

simulation days but flattens to a linear increase for longer backward simulation periods (Fig. 11a). A similar behavior can

be observed for many countries in the Northern Hemisphere, although the curve’s slope for the first few days varies. For

countries poorly covered by the monitoring network, however, the SRR is close to zero for the first 5 to 15 backward days500

and increases exponentially afterwards
::::
only

::::::
longer

::::::::
backward

::::::::::
simulations

::::::
might

::::::
provide

:::::::::::
information

:::
for

:::
the

::::::::
inversion

:
(see

Fig. 11b). For these poorly-monitored countriesonly backward simulations beyond the usual 5-10 days used in most studies

provide information for the inversion. For these countries
::::::::
countries, the SRR increase with time flattens to a linear increase only

for very long transport times, even beyond the 50 days used in this study.

Figure 12 further illustrates the impact of different backward simulation periods on the inversion, by showing emission505

increments for the GDB method and for backward simulation periods of 1, 10 and 50 days. In case of 1-day backward cal-

culations (Fig. 12a) the inversion significantly optimizes a priori emissions only in East Asia and parts of Europe. As the

backward simulation period is extended to 10 days (Fig. 12b), the inversion optimizes emissions in larger parts of the Northern

Hemisphere but in the Southern Hemisphere emission increments are still small. In case of 50 days (Fig. 12c), the inversion

optimizes emissions even far away from observation stations (e.g. South America or South Africa). In India, where SRR values510

are also small and a priori emissions (and thus emission uncertainties) are high (see also 11b), the emission increments even

switch from positive to negative by extending the period from 10 to 50 days. Also, the calculated relative uncertainty reduction

increases by extending the backward simulation period (see Fig. A3a-c).

The use of flask samples

An advantage of the GDB method is the possibility to include flask measurements from fixed sites or moving platforms in515

the inversion. By contrast, the REBS and Stohl’s method require short measurement intervals at fixed sites for the statistical
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Figure 11. SRR for individual countries and different backward calculation periods between 1 to 50 days, considering all in situ
::::::::
continuous

measurement stations in Tab 1. The shown values are averages over the grid cells of a) France, USA, China and b) India, South Africa, Brazil,

for the year 2012.

baseline calculation.
::::
Here,

:::
the

::::::::
baseline

:::::
could

::
be

:::::
taken

::::
from

::::::
nearby

:::
or

::::
same

:::::::
latitude

:::::::::
continuous

:::::
sites,

::
or

::::::::::
represented

:::::::
through

:::::::
baselines

::
at
:::
the

:::::::
domain

::::::
border

::
in

:::::
case

::
of

:::::::
regional

:::::::::
inversions

:::::::::::::::::::
(Manning et al., 2021).

:
Figure 13

:
a
:
shows the relative change in

a posteriori emissions
:::
and

::::::::
Fig. 13b

:::
the

::::::::
additional

:::::::
relative

::::
error

::::::::
reduction

:::::
when

:
using flask measurements additionally to the

in situ
:::::::::
continuous

:
measurements for the 50 days

::::::
50-day backward simulation. One can see substantial differences in the USA,520

Eastern Europe, Asia, and Southern Africa, illustrating the great value of this additional information. Further, the inclusion

of flask measurements slightly increases the relative error reduction in their surroundings (e.g. USA, South Africa, see
:::::
South

::::::
Africa,

::::
East

::::
Asia

:::
and

:::
the

::::
Near

:::::
East,

:::::
where

::::
also

::
an

:::::::::
additional

::::
error

::::::::
reduction

:::::::
occurs.

:::::
While

:::
this

:::::::::
additional

::::
error

::::::::
reduction

::::
can

::
be

::::::::
relatively

::::
large

:::
(up

::
to

:::::
73%)

:::
for

::::
grid

::::
cells

::
in

:::
the

::::::
vicinity

::
of

:::
the

:::::::::::
measurement

:::::
sites,

:
it
:::::::
quickly

::::::::
decreases

:::::
down

::
to

:
a
:::
few

:::::::
percent

::::
with

:::::
larger

:::::::
distance

::
to
::::

the
::::::::::::
measurements.

::::::::::::
Consequently,

:::::
flask

::::::::::::
measurements

:::::
show

::::
only

:::::
small

::::::::
influence

:::
on

:::
the

::::
total

::::::
global525

:::::::
emission

:::::::
estimate

:::
(<

::::
1%),

:::
but

:::
can

::::
have

::
a

::::
large

::::::
impact

::
on

:::::::::
calculated

:::::::
national

::::::::
emissions

::
of

:::::::
specific

::::::::
countries

:
(Fig. A3c,d).

::::
A4).
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Figure 12. SF6 emission increments calculated with the inversion by using the GDB method and a backward simulation period of a) 1 day,

b) 10 days and c) 50 days
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Figure 13.
::
a) Relative change in a posteriori emissions ,

:::
and

::
b)

:::
the

:::::::
additional

::::
error

::::::::
reduction when using flask measurements in addition

to in situ measurements
::::::::
continuous

:::::::::::
measurements

::
for

:::
the

:::::
50-day

::::::::
simulation.

:::
The

:::::::
locations

::
of

:::
the

:::
flask

:::::::::::
measurements

:::
are

::::::
marked

:::
with

:::::
black

:::
dots.

:::
For

::::::::
countries

::
in

:::
the

::::
Near

::::
East

:::
the

::::::::
additional

::::
use

::
of

::::
flask

::::::::::::
measurements

:::::::
changes

:::::::
national

:::::::
emission

::::::::
estimates

:::
by

::::
40%

::
to

::::::
100%.

:::::
South

::::::
African

::::
and

::::::::
American

::::::::
emissions

:::
are

::::::::
modified

::
by

:::::::
around

::::
10%.

:

Reliable global emissions can only be obtained with long backward simulation periods

In previous sections, we have used global mixing ratio fields from the GDB method where great care has been taken to avoid530

biases that would affect the baseline, and we have used global a priori emissions that correspond to the rather well known

global SF6 emissions. These are optimal conditions for the inversion that are rarely fulfilled for other species than SF6. For

many species global emissions are less well known, and with fewer observations than for SF6 also the global distribution

(and, thus, the baseline) is more uncertain. However, a skillful inversion should tolerate such biases and still produce reliable
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Figure 14. Global SF6 emissions using the GDB method shown for different sensitivity cases, using backward simulation periods between 1

and 50 days, and a 50 days
:::::
50-day

:
backward simulation case, where additionally to in situ

::::::::
continuous

:
measurements also flask measurements

were included in the inversion. The sensitivity cases include a) doubled and b) halved a priori emissions; biased global mixing ratio fields

with a uniform bias of c) -0.003 ppt and d) +0.003 ppt in every grid cell; and combinations of the two test types; e) doubled a priori emissions

plus -0.003 ppt global field bias; f) halved a priori emissions plus +0.003 ppt global field bias.The dashed red
::::
pink lines indicate

:::::::
represent

the emissions that would result from attributing
::::::
expected

:::::::::
relationship

:::::::
between the global field

::::::
baseline bias in the

:::
and

:
a
:::::::
resulting

:::::::
emission

:::
bias

:
if
::

a global mixing ratio fields
:::
box

:::::
model

:::
was

::::
used

:::
and

::
the

::::
bias

:::::::
attributed

:::::
solely to emissions during

::
in

::::::
different

::::::
periods

:::::::::::
corresponding

:
to
:
the backward simulation period

:::
times.

results. While we lack information for verifying that regional emissions are reliable, for SF6 we can at least test whether global535

emissions can be determined by our inversion in the presence of biases.

Figure 14 shows global a posteriori emissions when biases in (1) the a priori emissions and (2) global mixing ratio fields

were added. This is shown for different backward simulation periods between 1 and 50 days and for the 50 days case with

::::::
50-day

:::
case

::::
with

:::
the

:
inclusion of flask measurements. Note here that for all these sensitivity cases

::::::
shown

::
in

::::::
Fig. 14 we use the

same absolute a priori emission uncertainties, as for the original a priori emissions without any artificial bias.540

Comparing the inversion results for doubled (Fig. 14a) and halved (Fig. 14b) a priori emissions clearly shows that the

corresponding biases in the global a posteriori emissions are reduced substantially with increasing backward simulation period

and converge towards the rather well known global SF6 emission from the box model. However, it is clear that a substantial bias

remains even with a backward simulation period of 50 days. It seems likely that an extension of the backward simulation period

beyond 50 days would further reduce the bias. The inclusion of flask measurements leads to slight additional improvements.545
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Another sensitivity test was performed with artificially biased global mixing ratio fields by subtracting (Fig. 14c) or adding

(Fig. 14d) 0.003 ppt from/to the FLEXPART CTM model output in every grid cell of the 3D mixing ratio fields. 0.003 ppt

is equivalent to roughly 1% of the 2012 global mixing ratio increase and thus corresponds to about 3 days of global SF6

emissions. To still fit the model to the observations, the inversion will try to compensate such a bias in the baseline with a

bias of the opposite sign in the emissions. As always, the inversion can only attribute this additional bias to emissions within550

the simulation period. Therefore, shorter backward simulation periods require a greater modification of emissions than longer

periods, in order to compensate for the baseline bias. To fully compensate the baseline bias equivalent to 3 days of emissions,

global a posteriori emissions (dashed, pink line) would need to deviate strongly from the box model
::::::::
reference value for the

1 days
::::
1-day

:
case, but converge towards it with increasing backward simulation time.

:::
This

::
is

::::::
shown

::
by

:::
the

:::::::
dashed

::::
pink

::::
line,

:::::
which

::::::::
indicates

:::
the

:::::::
expected

::::::::::
relationship

::::::::
between

:::
this

:::::::
baseline

::::
bias

:::
and

::
a
::::::::
resulting

:::::::
emission

::::
bias

::
if

:
a
::::::
global

:::
box

::::::
model

::::
was555

::::
used

:::
and

:::
the

::::
bias

::::::::
attributed

::::::
solely

::
to

::::::::
emissions

::
in
::::::::

different
::::::
periods

::::::::::::
corresponding

:::
to

:::
the

::::::::
backward

:::::::::
simulation

:::::
times.

:
In fact,

with a positive baseline bias negative emissions would be required for backward simulation times of less than 3 days, as the

baseline exceeds the observations. The inversion results do not show this extreme behavior, since for short backward simulation

times high SRR values are found only in small regions, and the emission changes there are bound by the prescribed a priori

uncertainties. Notice that in our case of a known added bias, this is rather a shortcoming, as this shows that the inversion is not560

able to compensate the baseline bias for short backward simulation times. Only for the longest times, the emissions converge

towards the expected global emissions (dashed pink lines), and only for such long backward simulation times baseline biases

equivalent to 3 days of emissions become negligible.
::
We

::::
also

:::::::::::
investigated

:::
the

::::::::
inversion

:::::::
behavior

:::
for

:::::
larger

::::::::
baseline

::::::
biases,

:::::::::::::::
subtracting/adding

::::::::::
(Fig. A5a/b)

:::::
0.05

:::
ppt

::::::
from/to

:::
the

::::::
global

:::::
fields,

:::::::::::::
corresponding

::
to

:::::::
roughly

::
50

::::
days

:::
of

:::
the

::::
2012

::::::
global

::::
SF6

::::::::
emissions.

:::::
Here

:::::
again,

:::
the

::::::
results

::
for

:::::
short

:::::::::
simulation

:::::
times

::::
seem

::::::::::::
unpredictable,

:::
i.e.

::::
they

::
do

:::
not

::::::
follow

:::
the

::::::::
described

::::::::
expected565

:::::::
behavior,

::::::::
indicated

:::
by

:::
the

::::
pink

::::::
dashed

:::::
lines.

:::::
Only

::
for

:::
the

:::::::
50-days

:::::::::
simulation

:::::::
periods

::::::
results

:::::::
converge

::
to
::::

the
:::::::
expected

::::::
global

::::::::
emissions

::::::::
consistent

::::
with

:::
the

:::::::::
respective

:::::::
baseline

::::
bias.

:

Finally, we also combined doubled a priori emissions with a -0.003 ppt bias in the global mixing ratio fields (Fig. 14e) and

halved a priori emissions with a +0.003 ppt bias (Fig. 14f). For both cases, the inversion becomes less sensitive to biases in the

a priori emissions and the global fields with longer backward simulation periods.570

::::
Final

:::::::
remark

::
In

:::
this

:::::
study,

:::
we

:::::
show

:::::
many

:::::::::
advantages

:::
for

:::::
using

::::::::
relatively

::::
long

::::::::
backward

:::::::::
simulation

::::::
periods

:::
for

:::
the

::::::::
inversion.

::::::::::::
Nevertheless,

::
the

::::::::::::
improvement

::
of

:::::::
regional

:::::::
emission

:::::::
patterns

::
is

:::
still

:::::::
limited

::
by

:::
the

::::::::::
observation

:::::::
network.

::
A

::::
lack

::
of

:::::::::::
observations

::
in

:::
one

::::::
region

:::::
cannot

::::::
simply

:::
be

:::::::::::
compensated

::
by

:::::::::
extending

:::
the

::::::::::
simulations

:::
for

::::::
stations

:::
in

::::
other

:::::::
regions

::
to

::::
very

::::
long

:::::::
periods.

:::
For

:::::::::
backward

::::::::
simulation

:::::
times

:::
of

:::::
20-50

:::::
days,

:::
the

::::::::
emission

:::::::::
sensitivity

::
is

:::::::::
distributed

::::
over

:::::
large

:::::
areas

:::
but

::::::
usually

::::
still

:::::::::::
concentrated

::::::
within575

:::::
broad

::::::
latitude

::::::
bands.

::::
The

:::::::::
additional

::::::::::
information

::
to

:::
be

::::::
gained

:::::
from

::::
such

::::
long

:::::::::
simulation

::::::
times,

:::
on

:::
top

::
of

::::
the

::::::::::
information

:::::::
provided

:::
by

:::
the

::::::
shorter

:::::::::
simulation

::::::
times,

:::
can

::::::::
probably

::::
best

::
be

:::::::::
compared

::::
with

:::
the

:::::::::
inversions

:::::
done

::::
with

:
a
:::::::::

multi-box
::::::
model

::::
such

::
as

:::
the

:::::::
AGAGE

:::::
8-box

::::::
model

::::::::::::::::::::
(e.g. Rigby et al., 2013)

:::
that

:
is
:::::::
capable

::
of

::::::::::
determining

:::
the

:::::::::
emissions

::
in

:::::
broad

::::::
latitude

::::::
bands.

:::::::::::
Consequently,

::
if
:::
the

:::::::::
emissions

::
in

::::::
certain

:::::::
regions

::::
with

::
a

:::::
dense

::::::::::
observation

:::::::
network

:::
are

:::::::
already

::::
well

::::::::::
constrained

::
by

:::::::
shorter
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::::::::
simulation

::::::::
periods,

:::
the

:::::::
residual

::::::::
emission

::::
will

::
be

:::::::::
attributed

:::::::
correctly

:::
as

:::
an

:::::::
emission

:::::
total

::
to

:::
all

:::::
other

::::::
regions

:::
of

:::
the

:::::
same580

::::::
latitude

::::
band

:::::
with

:
a
::::
poor

::::::
station

:::::::::
coverage.

:::
The

::::::::
effective

::::::::
resolution

:::
of

:::
the

:::::::
obtained

:::::::::
emissions

::
in

::::
such

::::::::
data-poor

:::::::
regions

::::
may

::
be

::::
very

::::::
coarse

:::
but

:::
the

::::::
result

:::::
might

::::
still

::
be

:::::::::::
informative.

:::::::::::
Furthermore,

:::
the

::::::::
emission

:::::::::
sensitivity

:::
for

:::
the

::::::
20-50

:::
day

:::::::::
backward

:::::
period

::
is
::::
still

:::
not

:::::::::
uniformly

:::::::::
distributed

::::
over

::
a
:::::::
latitude

::::
band

::::
and

::::
thus

:::::::
provides

:::::
some

:::::::
limited

:::::::
regional

:::::::::::
information.

:::::::
Perhaps

::::::::
supported

::::
with

:
a
:::::::
limited

::::::
number

::
of

:::::::::::
strategically

::::::
located

::::
flask

:::::::::::::
measurements,

::::::::
inversions

:::::
with

::::
long

::::::::
backward

:::::::::
simulation

:::::
times

::::
could

:::::::
provide

::::::
coarse

:::
but

:::::
robust

:::::::::::
information

::
on

:::::::::
emissions

::
in

::::::
poorly

:::::::
sampled

:::::::
regions.

::::::::::::
Independently,

:::
the

:::::::
growing

::::::::::
correlation585

:::::::
between

:::::::
modeled

::::
and

:::::::
observed

:::::::
mixing

:::::
ratios

::::
with

::::::::
increasing

:::::::::
backward

:::::::::
simulation

:::::
length

:::::::
(Tab. 2;

::::::::
averaged

::::
over

::
all

::::::::
stations)

:::
also

::::::
shows

::::
that

:::::
longer

:::::::::
backward

::::::::::
simulations

::::
hold

:::::::::
additional

::::::::::
information,

:::::
even

::::::
though

:::
the

::::::::::
information

::::
gain

::::::::
decreases

:::::
with

::::
every

::::
day

:::::
added

::
to

:::
the

:::::::::
simulation

::::::
length

:::
and

::::::::
probably

:::::::
becomes

::::::::
marginal

:::
for

::::
very

::::
long

::::::::
backward

:::::::::
simulation

::::::
times.

::::::::
However,

::
we

:::::::
propose

::
to

:::::
make

:::
use

::
of

::::
this

::::::::
additional

::::::::::
information

::::
and

:::::
apply

:::::
longer

:::::::
periods

::::::::
whenever

:::::::
possible

::
to

:::::
make

:::
the

:::
best

::::
use

::
of

:::
the

::::::
existing

::::::::::
observation

::::::::
network.590

4 Conclusions

We have examined the use of LPDMs for inverse modeling of GHG emissions by varying the backward simulation period in

the range of 1 to 50 days, testing several methods for estimating a baseline, investigating the influence of biases in the a priori

emissions and the baseline, and exploring the value of flask measurements for the inversion. We found the following:

– A baseline method that is purely based on the observations at the observation site itself, such as the REBS method, leads595

:::
may

::::
lead

:
to unreliable inversion results that are highly sensitive to the length of the LPDM backward simulation and

can lead to entirely unrealistic a posteriori global total emissions. For instance, for the year 2012 inversions with the

REBS method produce a posteriori global total SF6 emissions of
::::::
ranging

:::::::
between

:
9.8 Gg/yr and 3.2 Gg/yr for backward

simulation periods of
::::::
between

:
1 day and 50 days, respectively, compared to a well known reference value of around 8.0

Gg/yr.
:::::::::
Optimizing

:::
the

:::::::
baseline

:::::
shows

::::
little

::::::
effect

::
for

:::::::::
simulation

:::::::
periods

:::::::
between

::
1

:::
and

:::
20

::::
days,

:::
but

:::::
could

::::
half

:::
the

::::
bias600

::
in

::
the

:::::::
50-day

::::::::
simulation

:::::
case.

::::::::
Although

:::
the

::::::::::::
improvements

::
of

:::
the

:::::::
baseline

::::::::::
optimization

:::::::
increase

::::
with

:::::::
growing

:::::::::
backward

::::::::
simulation

:::::::
period,

::
the

:::::::::::::
simultaneously

:::::::
growing

::::
bias

::::::
cannot

::
be

::::::::::::
compensated.

– A baseline method that is based on the observations at the site itself but corrects for emissions occurring during the

LPDM backward simulation period leads to smaller sensitivity to the backward calculation time but may still lead to

substantially biased emissions irrespective of backward simulation period. For instance, inversions with Stohl’s method605

overestimate the well known 2012 SF6 global total emissions by 2.2 - 3.6 Gg/yr (28-45%).
:::::::::
Optimizing

:::
the

::::::::
baseline,

:::::::
however,

::::::
shows

::::
great

:::::::::::::
improvements,

::::::::
especially

:::
for

:::::
longer

:::::::::
simulation

:::::::
periods.

:

– A global distribution based (GDB) approach, where the LPDM backward simulation is nested into a global mixing ratio

field, is superior and leads to a posteriori emissions that are far less sensitive to the LPDM backward calculation length

and that are consistent with global total emissions
::::::
lengths

:::
and

::::
stay

::::
close

::
to

:::
the

::::::
global

::::
total

:::::::
emission

:::::
value. In contrast to610
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station-specific baselines, the GDB method allows the inclusion of low-frequency measurements (e.g., flask samples) or

data from mobile platforms into the inversion.

– Statistical comparisons of a priori modeled versus observed mixing ratios show
::::::
suggest that longer LPDM backward

simulations outperform shorter simulations. In particular, extending the trajectory length from the usual 5-10 days to 50

days reduces
:::
can

:::::
reduce

:
the mean squared error and increases

:::::::
increase the correlation. .615

– Inverse modelling
::::::::
modeling is highly sensitive to biases in the a priori emissions as well as biases in the baseline. We

could show that this sensitivity decreases
::
can

::::::::
decrease

:
with the length of the backward simulation period . While it

is nearly impossible to correct
:::
and

:::
we

::::
find

::::
that

:::::
longer

:::::::::
backward

:::::::::
simulation

::::::
periods

::::
can

::::
help

::
to

::::::
correct

::::::
biased

::::::
global

:::::::
emission

:::::
fields.

::
In

:::
the

::::::::
presented

:::::
case,

:
it
::
is

:::
not

:::::::
possible

::
to

::::::
correct

:::::::
strongly biased global a priori emissions with backward

simulation periods of 1-10 days,
:::::
while

::::
they

:::
are

:::::::
captured

:::::
quite

::::::::
accurately

::::
with

:
50-day backward simulationscan capture620

global emissions quite accurately even in the presence of large biases.

– The additional use of flask measurements improves the
::
has

:::
the

::::::::
potential

::
to

:::::::
improve

:::
the observational constraint on SF6

emissionssubstantially
:
,
::::::::
especially

:::::
close

::
to

:::
the

:::::::::::
measurement

:::::
sites. However, existing flask sampling sites are often not

well located for inversion purposes. We
::::::
Similar

::
to

::::::::::::::::
Weiss et al. (2021)

::
we suggest that placing a few additional flask sam-

pling sites downwind of potential emission regions in currently undersampled regions
::::
parts

::
of

:::
the

:::::
world

:
(in particular,625

tropical South America, tropical Africa, India, Australia and the Maritime Continent) would have disproportionately

large value for improving regional and global a posteriori emission fields.

Following these results, we strongly recommend to abandon
:::::
advise

::::::
against

:
the use of baseline methods based purely

:::
that

:::
are

:::::
purely

:::::
based

:
on the observations of individual sites, for inverse modeling. We also recommend .

:::
At

::::
least

:::::
great

:::
care

:::::
needs

::
to
:::
be

::::
taken

::::
that

::::::::
problems

::::
such

::
as

:::::::::::
demonstrated

::
in

::::
this

:::::
paper

::
do

:::
not

:::::
occur.

:::
In

::::
order

::
to
::::::
reduce

::::::
biases,

:::
the

:::::::::::
optimization

::
of

:::
the

:::::::
baseline630

::
as

:::
part

:::
of

::
the

::::::::
inversion

::::::
might

::
be

:::::::::
necessary,

:::
but

:::::
would

:::::
likely

:::
not

:::
be

::::::::
sufficient

::
to

:::::
avoid

:::::
biases

::::::::::
completely.

:::
We

::::::::::
recommend

::::
also

to employ longer LPDM backward simulation periods, beyond the usual 5-10 days, as this leads
:::
can

::::
lead to improvements in

overall model performance, allows
:::
can

:::::::
produce

::::
more

:::::
robust

::::::
global

:::::::
emission

::::::::
estimates

:::
and

::::::
might

:::
help

:
to constrain emissions

:
,
::
at

::::
least

::
at

::::
very

:::::
coarse

:::::::::
resolution, in regions poorly covered by the monitoring network, and produces more robust global emission

estimates. When consistency between regional and global emission estimates is important, even longer backward simulation635

periods than 50 days may be useful. Finally, we suggest to take additional flask measurements at continental sites in the Tropics

and Southern Hemisphere as they would greatly enhance inversion-derived global emission fields.
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together with an users guide can be freely downloaded at https://doi.org/10.5281/zenodo.1249190. The source code of FLEXPART 10.4 is

also freely available on the FLEXPART website: https://www.flexpart.eu/downloads (described in detail by Pisso et al., 2019). Atmospheric
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Table A1. Surface flask measurement sites

Site ID Station Latitude Longitude Altitudea

ALT Alert, Canada 82.5◦N 62.5◦W 190

ASC Ascension Island, UK 8.0◦S 14.4◦W 90

ASK Assekrem, Algeria 23.3◦N 5.6◦E 2715

AZR Serreta (Terceira), Portugal 38.8◦N 27.4◦W 24

BAL Baltic Sea, Poland 55.4◦N 17.2◦E 28

BHD Baring Head, New Zealand 41.4◦S 174.9◦E 90

BKT Bukit Kototabang, Indonesia 0.2◦S 100.3◦E 875

BMW Tudor Hill (Bermuda), UK 32.3◦N 64.9◦W 60

BSC Constanta (Black Sea), Romania 44.2◦N 28.7◦E 5

CBA Cold Bay (AK), USA 55.2◦N 162.7◦W 57

CHR Christmas Island, Kiribati 1.7◦N 157.2◦W 5

CPT Cape Point, South Africa 34.4◦S 18.5◦E 260

CRZ Crozet, France 46.4◦S 51.8◦E 202

DRP Drake Passage, USA 59.0◦S 63.7◦W 10

DSI Dongsha Island, Taiwan 20.7◦N 116.7◦E 8

EIC Easter Island, Chile 27.2◦S 109.4◦W 69

GMI Guam (Mariana Island), USA 13.4◦N 144.7◦E 5

HBA Halley, UK 75.6◦S 26.2◦W 35

HFM Harvard Forest (MA), USA 42.5◦N 72.2◦W 1000

HPB Hohenpeissenberg, Germany 47.8◦N 11.0◦E 941

HSU Humboldt State University, USA 41.0◦N 124.7◦W 8

HUN Hegyhatsal, Hungary 47.0◦N 16.6◦E 344

ICE Storhofdi, Iceland 63.4◦N 20.3◦W 127

KEY Key Biscane (FL), USA 25.7◦N 80.2◦W 6

KUM Cape Kumukahi (HI), USA 19.5◦N 154.8◦W 8

LEF Park Falls (WI), USA 45.9◦N 90.3◦W 868

LLN Lulin, Taiwan, Province of China 23.5◦N 120.9◦E 2867

LMP Lampedusa, Italy 35.5◦N 12.6◦E 50

MEX Mex High Altitude Global Climate Observation Center, Mexico 19.0◦N 97.3◦W 4469

MID Sand Island, USA 28.2◦N 177.4◦W 16

MKN Mt. Kenya, Kenya 0.1◦S 37.3◦E 3649

NAT Natal, Brazil 5.5◦S 35.3◦W 20

NMB Gobabeb, Namibia 23.6◦S 15.0◦E 461

OXK Ochsenkopf, Germany 50.0◦N 11.8◦E 1172

PAL Pallas, Finland 68.0◦N 24.1◦E 570

PSA Palmer Station, USA 64.9◦S 64.0◦W 15

PTA Point Arena (CA), USA 39.0◦N 123.7◦W 22

SGP Southern Great Plains E13 (OK), USA 36.6◦N 97.5◦W 374

SHM Shemya Island, USA 52.7◦N 174.1◦E 28

TIK Tiksi, Russian Federation 71.6◦N 128.9◦E 29

USH Ushuaia, Argentina 54.8◦S 68.3◦W 32

UTA Wendover (UT), USA 39.9◦N 113.7◦W 1332

UUM Ulaan Uul, Mongolia 44.5◦N 111.1◦E 1012

WIS Sede Boker, Israel 30.9◦N 34.8◦E 482

a The altitude specifies the sampling height in meters above sea level.
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Table A2. Aircraft flask measurement programs

Site ID Aircraft Programs Latitude Longitude Altitudea

BNE Beaver Crossing, Nebraska, United States 40.8◦N 97.2◦W 616 - 7855

CAR Briggsdale, Colorado, United States 40.7◦N 104.3◦W 1795 - 8469

CMA Cape May, New Jersey, United States 38.9◦N 74.3◦W 280 - 8010

DND Dahlen, North Dakota, United States 47.5◦N 99.1◦W 587 - 8023

ESP Estevan Point, British Columbia, Canada 49.4◦N 126.4◦W 246 - 5740

ETL East Trout Lake, Saskatchewan, Canada 54.3◦N 104.9◦W 811 - 7823

HIL Homer, Illinois, United States 40.0◦N 87.9◦W 555 - 8051

LEF Park Falls, Wisconsin, United States 46.0◦N 90.2◦W 583 - 4018

NHA Worcester, Massachusetts, United States 42.9◦N 70.5◦W 245 - 8069

PFA Poker Flat, Alaska, United States 64.8◦N 148.2◦W 222 - 7444

RTA Rarotonga, Cook Islands 21.2◦S 159.8◦W 15 - 6483

SCA Charleston, South Carolina, United States 32.9◦N 79.5◦W 218 - 8070

SGP Southern Great Plains, Oklahoma, United States 36.6◦N 97.5◦W 437 - 5716

TGC Sinton, Texas, United States 27.7◦N 96.7◦W 250 - 8074

THD Trinidad Head, California, United States 41.1◦N 124.2◦W 231 - 8034

WBI West Branch, Iowa, United States 41.7◦N 91.3◦W 591 - 8204

a The altitude specifies the range of sampling heights in meters above sea level.
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Table A3. Setting parameters of the REBS method. For more information see Ruckstuhl et al. (2012).

Setting Parameters Description

b = 2.5 tuning factor which governs the weight of outliers in the

baseline

span= 1
6

the ratio of observation points used to compute one base-

line value. (the goal is a temporal window of 2 months).

It regulates the amount of baseline smoothing.

maxit = c(10, 10) maximum number of iterations
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Table A4. Nudging kernel settings for surface and aircraft measurement sites. The kernels are set to have an equal spatial length (in meters)

in the x and the y direction. For surface measurement sites in the northern hemisphere, an upper limit for hy was set to 25°; σobs defines the

standard deviation of measurements over the simulation period at each nudging location; σmax describes the maximum value of σobs from

all surface observation stations. For aircraft measurement sites, the kernel size depends on the height level above ground H. For additional

information on the parameters see Groot Zwaaftink et al. (2018)

surface measurements sites

hemisphere spatial kernel width hy [°] kernel height hz [m] temporal kernel length ht [s] kernel relaxation time τ [s]

northern hemisphere hy = σmax
σobs

· 2 hz = 300 ht = 86,400 · σmax
σobs

τ = 3600

southern hemisphere hy = 25 hz = 500 ht = 86,400 · σmax
σobs

τ = 3600

aircraft measurements sites

height H [km above ground] spatial kernel width hy [°] kernel height hz [m] temporal kernel length ht [s] kernel relaxation time τ [s]

H 6 0.5 hy = 10 hz = 100 ht = 86,400 · hy

1° τ = 3600

0.5<H 6 1 hy = 20 hz = 250 ht = 86,400 · hy
1° τ = 3600

1<H 6 2 hy = 30 hz = 500 ht = 86,400 · hy
1° τ = 3600

2<H 6 3 hy = 40 hz = 500 ht = 86,400 · hy
1° τ = 3600

3<H 6 4 hy = 50 hz = 500 ht = 86,400 · hy
1° τ = 3600

4<H 6 5 hy = 60 hz = 500 ht = 86,400 · hy
1° τ = 3600

5<H 6 6 hy = 70 hz = 1000 ht = 86,400 · hy
1° τ = 3600

6<H 6 7 hy = 80 hz = 1000 ht = 86,400 · hy
1° τ = 3600

7<H 6 8 hy = 90 hz = 1000 ht = 86,400 · hy
1° τ = 3600

8<H 6 9 hy = 100 hz = 1000 ht = 86,400 · hy
1° τ = 3600
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Figure A1. Variable-resolution grid on which emissions are optimized by the inversion.
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Figure A2.
::::::::
Calculated

:::
SF6:::::

global
::::::::
emissions

::::
when

:::::::
baseline

:::::::::::
concentrations

::
are

::::::::
optimized

::
as

::::
part

::
of

::
the

::::::::
inversion.

::::
Grey

::::
bars

:::::::
represent

:::
the

::::::::::
improvements

:::::::
obtained

::
by

:::
the

::::::
baseline

::::::::::
optimization.

::::::
Results

::
are

::::::
shown

::
for

:::
the

:::::
REBS

:::
and

:::::
Stohl’s

::::::
method

:::
and

:::
for

::
all

:::
five

::::::
applied

::::::::
simulation

:::::
periods

:::::::
between

:
1
:::
and

:::
50

::::
days.

:::
The

::::::::
horizontal

::::::
dashed

:::
line

::::::::
represents

:::
the

:::::::
reference

::::
value

::
of

:::
the

:::::::
AGAGE

:::::
12-box

:::::
model

::::
with

::::::
shaded

::::
error

:::::
bands.
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Figure A3. Relative uncertainty reductions (1− upost

upri
) calculated with the inversion by using the GDB method and a backward simulation

period for a) 1 day, b) 10 days, c) 50 days, and d) for the 50 days
:::::
50-day

:
case, where also flask measurements were included
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Figure A4.
::::::
Relative

::::::
change

::
in

:::::::
national

:
a
::::::::
posteriori

:::::::
emissions

::
of

::::::
selected

::::::::
countries,

:::::
when

::::
flask

:::::::::::
measurements

:::
are

::::
used

::
in

:::::::
addition

::
to

::::::::
continuous

:::::::::::
measurements

:
in
:::

the
::::
case

::
of

:::::
50-day

:::::::::
simulations.
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Figure A5.
:::::
Global

:::
SF6::::::::

emissions
:::::

using
:::
the

::::
GDB

::::::
method

::::::
shown

::
for

::::
two

::::::::
sensitivity

::::
tests,

:::::
where

::
a
::::::
uniform

::::
bias

::
of

::
c)

:::::::
-0.05 ppt

::::
and

::
d)

:::::::
+0.05 ppt

::
is

::::
added

::
to
:::::
every

:::
grid

:::
cell

::
of

:::
the

:::::
global

:::::
mixing

::::
ratio

:::::
fields.

::::::
Results

::
are

::::::
shown

::
for

::::::::
backward

::::::::
simulation

::::::
periods

::::::
between

:
1
:::
and

:::
50

::::
days,

:::
and

::
for

::
a
::::::
50-days

::::::::
backward

::::::::
simulation

::::
case,

:::::
where

:::::::::
additionally

::
to

::::::::
continuous

:::::::::::
measurements

:::
also

::::
flask

:::::::::::
measurements

::::
were

:::::::
included

:
in
:::
the

::::::::
inversion.

:::
The

:::::
dashed

::::
pink

::::
lines

:::::::
represent

::
the

:::::::
expected

:::::::::
relationship

:::::::
between

::
the

::::::
baseline

::::
bias

:::
and

:
a
:::::::
resulting

:::::::
emission

:::
bias

::
if

:
a
:::::
global

:::
box

:::::
model

:::
was

::::
used

:::
and

::
the

:::
bias

::::::::
attributed

::::
solely

::
to
::::::::
emissions

::
in

::::::
different

::::::
periods.

:::
For

::::
these

:::
two

::::::::
sensitivity

::::
tests,

::
a

::::
priori

:::::::::
uncertainties

::::
were

::
set

::
to

:::::
500%.
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