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Abstract. Carbon sequestration in soils under agricultural use can contribute to climate change mitigation. However, the 

spatial-temporal monitoring of soil organic carbon (SOC) requires more efficient data acquisition. The use of soil Vis-NIR 

spectroscopy is a promising research field in this context. However, the interpretation of the recorded spectral signal with 

regards to SOC is not trivial due to the complexity of the soil matrix, and factors affecting the measurements under field 

conditions. A model-building process is required to relate the spectral signal to the SOC content. For this study, spectral on-10 

the-go proximal measurements and soil sampling were conducted on a long-term field experiment (LTE) located in the state 

of Saxony-Anhalt, Germany. SOC values ranged between 14-25 g kg-1 due to different fertilization treatments. Partial least 

squares regression (PLSR) models were built on behalf of spectral laboratory and field measurements conducted with two 

spectrometers and preprocessed by various methods. A data correction of the field data was done with three different 

approaches: linear transformation, piecewise direct standardization (PDS), and external parameter orthogonalization (EPO). 15 

The models were then thoroughly interpreted with regards to spectral wavelength importance using regression coefficients 

(RC) and variable importance in projection scores (VIP). The detailed wavelength importance analysis disclosed the challenge 

of using soil spectroscopy for SOC monitoring. The use of spectrometers with a differing spectral resolution for soil Vis-NIR 

measurements under varying soil conditions revealed shifts in wavelength importance. Still, some wavelengths related to SOC 

were extracted (560 nm, 1330 nm, 1400 nm, 1720 nm, and 1900 nm) by various preprocessing methods and were highly 20 

important in models trained on both, laboratory, and field measurements. Furthermore, we showed, that the correction of 

spectral field data with spectral laboratory measurements improved the predictive performance of the models built on behalf 

of the proximal on-the-go sensing measurements. 

1 Introduction 

Soil organic carbon (SOC) is one of the most studied soil properties among diverse disciplines such as agriculture, plant 25 

science, ecology, and environmental science. It is of particular interest in the study of agricultural systems as an indicator of 

soil quality. Furthermore, it plays an important role in the context of climate change mitigation. With appropriate agricultural 

soil management, CO2 soil emissions can be mitigated and the soil carbon sequestration increased as these soils are far from 

their storage capacity (Lal, 2004; West and Marland, 2012). The initiative “4 per mile” launched at the Paris COP 21 Climate 
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Change Agreement (UNFCCC, 2015), aims to increase the global SOC stocks by 0.4 percent per year through agricultural 30 

practices to mitigate the atmospheric CO2 concentration derived from anthropogenic activities (Lal, 2016). The potential of 

reaching the desired SOC stocks should be assessed by considering the feasibility and effectiveness of management practices 

(Minasny et al., 2017; Poulton et al., 2018). For this reason, spatial-temporal monitoring of SOC in soils under agricultural use 

is needed.  

Long-term field experiments (LTEs) provide a good insight to monitor changes in SOC stocks with regards to soil management, 35 

its temporal variability, and the balance under different treatments. LTEs have been established for more than a century to 

evaluate the effect of different agricultural management on soil and crop characteristics which can only be observed in the 

long term (Körschens, 2006). Grosse et al. (2020) and Grosse and Hierold (2019) provide an overview of German LTEs. They 

identified a total of 205 LTEs with a minimum duration of 20 years, of which 140 trials are still ongoing. 50 trials have a 

duration between 49-99 years and 3 trials have lasted more than 100 years. Most of the LTEs correspond to arable field crops 40 

(168) and most of them were established for fertilization experiments. However, repeated sampling and conventional 

laboratory measurements of SOC on all LTE plots are expensive in terms of manpower and analysis costs. 

Striving toward more cost and time-efficient SOC data acquisition, the use of VIS-NIR (400-2500 nm) spectroscopy has 

increased over the last years (Soriano-Disla et al., 2014; Angelopoulou et al., 2020; Ahmadi et al., 2021). The SOC predictions 

in combination with spectral data are done through the model building by different approaches such as machine learning 45 

methods (Angelopoulou et al., 2020) and partial least squares regression (PLSR), with the latter being one of the most applied 

methods due to its capacity to address multicollinearity and achieve dimensionality reduction (Viscarra Rossel et al., 2006; 

Stenberg et al., 2010). The raw spectral data is affected by instrumental noise and baseline variations. Thus, it is necessary to 

apply preprocessing methods such as scatter-correction and spectral derivatives, although there is not a standardized procedure 

concerning soil spectra. Model interpretation and, hence the identification of SOC-specific wavelengths can be achieved 50 

through different approaches, some are intrinsically included in the PLSR model, i.e. regression coefficients, loading weights, 

explained variance, etc. (Sarathjith et al., 2016). The interpretation of the recorded signal information with regards to SOC is 

not trivial as spectral absorption features are caused by the stretching and bending of structural molecule groups which are 

embedded in a complex soil matrix. Due to the soil complexity, an overlap of spectral response from organic and minerals 

compounds is observed (Ladoni et al., 2010). Although fundamental features associated with SOC are found in the MID-55 

Thermal range (2500-25000 nm), weak overtones and combinations of fundamental vibrations due to the bending and 

stretching of NH, OH, and CH groups dominate the VIS-NIR range (Reeves, 2010; Ladoni et al., 2010; Knox et al., 2015). 

Different examples of important wavelengths associated with SOC in the VIS range (400-700 nm) (Rossel et al., 2006; Brown 

et al., 2006; Daniel et al., 2004), and in the NIR range (700-2500 nm) (Dalal and Henry, 1986; Daniel et al., 2004; Sudduth 

and Hummel, 1991; Shephered and Walsh, 2002) were identified. It is known that some wavelengths will have more relevance 60 

in a regression model as they are associated with specific soil properties (Lee et al., 2009; Sarathjith et al., 2016).  

Several factors affect spectral measurements. Steps included in the measurement protocol such as instrument type, instrument 

setup, replicate measurements, sample preparation, and internal standard impact the accuracy and precision of the obtained 
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data (Pimstein et al., 2011; Gholizadeh et al., 2017). Ge et al. (2011) stated that while it has not been profoundly studied, 

multiple instruments/scanning environments can have a significant effect on the soil spectra, and, consequently, on the 65 

modeling. Ellinger et al. (2019) studied the uncertainty propagation of the spectral signal in PLSR models considering 

repetitions and preprocessing methods. While under laboratory conditions most aspects can be controlled or accounted for, 

field measurements pose additional challenges: On-the-go measurements do not allow for replicate measurements of the same 

sample. Additionally, the contact between soil and spectrometer might be lost while the spectrometer is pulled through the 

soil, and the spectra are recorded under varying soil moisture (Sudduth and Hummel, 1993; Boregki and Lee, 2006; 70 

Bricklemyers and Brown, 2010; Minasny et al., 2011; Biney et al., 2020). Other factors to consider are surface roughness, crop 

residuals and/or roots, incident light, soil texture, bulk density, and soil structure (Minasny et al., 2011; Bellon-Maurel and 

McBratney, 2011) which adds more disturbance effects to the spectral signal. To remove the effect of field conditions on the 

spectra, different methods such as direct standardization, piecewise direct standardization, external parameter 

orthogonalization, and orthogonal signal correction (Nawar et al., 2020) could be used when measurements obtained under 75 

laboratory conditions are available. 

This study aims to evaluate the ability of soil spectroscopy obtained from proximal on-the-go measurements to predict SOC 

since this data could provide a valuable source for spatio-temporal monitoring of SOC variation at field scale. Two instruments 

with different spectral resolutions were used to collect data under laboratory and field (on-the-go below ground and site-

specific above ground) conditions to evaluate if the prediction of on-the-go spectroscopy can be used for SOC monitoring, by 80 

maintaining an adequate performance compared with the controlled laboratory conditions. A data correction of field 

measurements to improve the predictive model performance for SOC estimation is done by using 3 different approaches and 

model interpretation with regards to wavelength importance in PLSR models is performed with two indices: regression 

coefficients (RC) and variable importance in projection scores (VIP), to analyze for consistency of important wavelengths 

associated with SOC from laboratory conditions to field measurements.  85 

2 Methods 

2.1 Study area 

Data collection was conducted on the LTE site Static Fertilization Experiment in Bad Lauchstädt, Saxony-Anhalt, Germany 

(51°24' N, 11°53'E, 113 m a.s.l). The climate is characterized by an average total annual precipitation of 470-540 mm and an 

average mean temperature of 8.5-9.0°C. The soil was classified as Haplic Chernozem developed from loess (Altermann et al., 90 

2005) according to the German soil classification system (Ad-hoc-AG Boden, 2005). Topsoil texture varies between highly 

clayey silt (Ut4) and highly silty clay (Tu4) according to the German soil survey system (Ad-hoc-AG Boden, 2005). The Static 

Fertilization Experiment was initialized in 1902 by Schneidewind and Gröbler and is about 4 ha in size (Merbach and Schulz, 

2013). It has eight subfields (Fig. 1) and was initialized with a crop rotation of winter wheat – sugar beet – summer barley – 
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potato. From 2015 onwards, sugar beet and potatoes were replaced by silage maize to reduce the workload. The crop rotation 95 

was initiated by different crops on adjacent fields so that always all crops are grown simultaneously on the experimental site. 

Subfield one is limed with 30 dt every four years in spring. Since 1926, legumes were added to the crop rotation on subfield 

eight every 7th and 8th year. Additionally, the overall 288 plots differ according to their mineral and organic fertilizer treatments. 

Farmyard manure is applied with 20 t ha-1 and 30 t ha-1, respectively, to one-third of the area of each field while the remaining 

third is left without organic fertilizer. Mineral fertilizer is applied in different combinations of N, P, and K, including the 100 

comparison of different N fertilizer types during a certain period. Subfields four and five of the experimental site were adapted 

in 1978 to investigate additional fertilizer treatments concerning different amounts of N in combination with an adapted organic 

fertilizer treatment. More details are given in Körschens and Pfefferkorn (1998).  

2.2 Soil organic carbon data 

The soil samples were acquired at 50 locations, at 0-10 cm depth (Fig. 1) according to a stratified random sampling design. 105 

Strata for random sampling were obtained by grouping the LTE plots according to their similarity by k-means cluster analysis. 

The following archive data were used to characterize each LTE plot: planted crops, agricultural treatment factors, total C, total 

N, available P, available K, and pH. In the end, 10 plots were randomly selected from each of the resulting five clusters, making 

a total of 50 plots to be sampled. Subsequently, one sampling point was randomly selected from each of the 50 plots excluding 

plot margins. The soil samples were air-dried, sieved (2 mm), and ground before carbon measurements with dry combustion. 110 

Total carbon was measured using the high-end elemental analyser vario EL cube CN (Elementar Analysensysteme GmbH) 

with 3 replicates per sample. The carbonate content was also measured, but values resulted below the detection level. 

Therefore, the total carbon was considered organic carbon.  

 2.3 Spectral measurements 

Spectral measurements were taken using two devices: ASD FieldSpec 4 Hi-Res by Malvern Panalytical and Veris® Vis–NIR 115 

spectrophotometer by Veris Technologies, Inc (hereinafter will be called ASD and Veris, respectively). The ASD measures 

the Vis-NIR range (350–2500 nm), with a Full-Width Half Maximum of 3 nm in the Vis and 10 nm in the NIR, and an output 

of 1 nm spectral resolution. The Veris has an Ocean Optics USB4000 instrument (300 to 1100 nm) and a Hamamatsu TG 

series mini-spectrometer (1100 to 2200 nm), resulting in an output spectral resolution of 4-6 nm. 

Field measurements were done with the ASD after crop harvest in sunny and dry soil conditions in September 2018. The 120 

spectra were measured at the soil surface at each sampling point using a 50 cm x 50 cm frame pointing north. Spectra were 

recorded at 5 replicate measurements with 3 external and 25 internal scans leading to a total of 15 spectra per sampling point. 

Veris field measurements were done the year after soil sampling in September 2019 due to logistic reasons. Several transects 

were recorded covering the entire field, with a 2-3 m distance and a measurement depth of about 12 cm. The device is built in 
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a shank pulled through the soil by a tractor; measurements are made through a sapphire window mounted on the bottom of the 125 

shank Approximately 20 spectra per second are acquired (Christy, 2008).  

ASD and Veris laboratory measurements were made in air-dried and sieved (2 mm) samples. For these measurements, the 

Veris spectrometer was removed from the shank. Soil samples were divided into 3 subsamples and filled in Petri dishes. Each 

subsample was measured 3 times and rotated 90° to measure another 3 times resulting in 6 replicate measurements with 3 

external scans each. Internally, the ASD was set to conduct 25 readings, the Veris conducted 20 readings for each scan. 130 

Laboratory measurements resulted in 18 spectra per sample.  

2.4 Data preparation for model building 

In this study, SOC and spectral measurements were averaged for each sampling location. For Veris and ASD laboratory 

measurements the 18 spectra per sample were averaged. For ASD field measurements the recorded 15 spectra per sampling 

point were averaged. From the Veris on-the-go field measurements, the 10 spectra nearest to each sampling point within the 135 

same LTE plot were averaged. The ASD spectra were affected by steps in reflectance values at the splice of the three sensors 

at 1000 and 1800 nm of the spectroradiometer. Consequently, an ASD splice correction was implemented using the spectacles 

R-package (Roudier, 2020) which is based on the method described by Beal and Eamon (2010). For the Veris, the spectral 

range between 1000 to 1100 nm was removed due to the noise generated at the beginning and end of the two spectrometers. 

The spectral range selected for the model building was 400-2200 nm to allow for comparison between both devices, and to 140 

remove the beginning and end of the spectral range due to noise. Outliers were removed from the spectral measurements 

assigned to each sampling point by the adjusted quantile function in the mvoutlier package (Filzmoser and Gschwandtner, 

2018). In the case of the Veris on-the-go data, the outlier removal was done before the selection of the 10 nearest spectra. 

The aim of data preprocessing is to reduce the scattering effects that influence the spectral signal. There is not a unique 

recommended preprocessing method to predict SOC. Therefore, different techniques were applied to observe the influence on 145 

model prediction and wavelength importance. The four applied combinations were: Savitzky–Golay (SG; Savitzky and Golay, 

1964), Savitzky–Golay + continuum removal (SGCR; Clark and Roush, 1998), gap segment algorithm (gapDer; Hopkins, 

2003), and multiplicative scatter correction (MSC; Martens et al., 1983). Details are presented in Table 1. SG, SGCR, and 

gapDer were obtained using the prospectr R-package (Stevens and Ramirez Lopez, 2014) and the MSC by using the pls R-

package (Mevik et al., 2019). A total of 16 datasets for the model building were obtained from a combination of the average 150 

spectral measurements using the two devices in the field and laboratory, and four different preprocessing techniques.  

2.5 Model building and evaluation 

PLSR (Wold et al., 2001) was applied to build regression models for SOC prediction. Model training, tuning, and evaluation 

were performed with a stratified 5-fold nested cross-validation (see details in Ellinger et al., 2019). To avoid spatial correlation 

between test and training data, neighboring samples within 8 m distance were grouped in the same fold. Model evaluation was 155 

done with 5 repetitions. Thus, 25 PLSR models were obtained for each dataset. Equal data subdivisions were used to compare 
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different preprocessing methods, spectrometers, and field versus laboratory measurements. Root mean square error (RMSE) 

and R-squared were used as an error metric of model performance. Also, the Concordance Correlation Coefficient (Lin, 1989) 

is presented in predicted versus observed values plots. 

2.6 Field data correction 160 

To improve the model performance of ASD and Veris field spectral data, three approaches were used for correction: linear 

transformation, piecewise direct standardization (PDS), and external parameter orthogonalization (EPO). The linear 

transformation was done by using a linear regression between the field and laboratory data of the average spectral value at 

each sampling location for each wavelength. The PDS algorithm (Wang et al., 1991) is a common method to relate each 

wavelength of a master spectrum with those of a secondary spectrum (laboratory and field in our case). The optimal parameters 165 

required to apply PDS are the PLSR number of components and the size of the wavelength window. This study considered a 

number of components of 1 to 10 and a windows size of 1 to 20 for parameter tuning. The EPO (Roger et al., 2003) uses the 

projection of the primary and secondary data into an orthogonal space. The EPO algorithm components and the procedure for 

its calculation are described by Minasny et al. (2011). It requires the determination of the number of EPO components. In our 

study, 1 to 10 EPO components were tested. To select the respective parameters for each data correction approach, nested 170 

cross-validation was applied following the same subdivision (external and internal validation) used for the PLSR model 

building. 

2.7 Wavelength importance 

Two indices were used to evaluate the wavelength importance in the PLSR models: RC and VIP. These indices can be obtained 

from the PLSR output and used for variable identification (Mehmood et al., 2012). The RC are the coefficients associated with 175 

each wavelength to predict the response variables, and they are expected to have higher values (in absolute magnitude) when 

variables are important to the model prediction. The VIP scores (Wold et al., 1993) are calculated as the weighted sum of 

squares of the PLSR weights, which consider the amount of explained variance in each extracted latent variable. A common 

criterion used for VIP variable selection is to keep wavelengths with scores above 1 (Farres et al., 2015). The equation is 

defined as: 180 

𝑉𝐼𝑃௝ ൌ ට
௣ ∑ ൣ௪ೌೕ/‖௪ೌ‖మ൧ಲ

ೌసభ

∑ ௌௌೌ
ಲ
ೌసభ

                           (1) 

where p is the total number of variables, SSa is the sum of squares explained by the ath PLSR component. Hence, the weights 

wj are a measure of the contribution of each variable according to the variance explained by each PLSR component where 

waj/‖wa‖2 represents the loading weight (wa) importance of the jth variable. Meanwhile, the RC were directly extracted from an 

object created using the pls package, the VIP were calculated by using the plsVarSel R-package (Mehmood et al., 2012). To 185 

compare the wavelength importance between different spectrometers and measurement conditions, local maxima and minima 

were identified for RC and the local maxima values for VIP, with a window width span of 100 nm for RC and 50 nm for VIP. 
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This resulted in a lower number of wavelengths for the Veris data due to the comparatively lower spectral resolution. The plots 

of local peaks were done using the ggplot2 R-package (Wickham, 2016). 

3 Results  190 

3.1 Performance metrics 

The measured SOC content has a mean value of 19.6 g kg-1and a range between 14-25 g kg-1, showing a range of SOC values 

derived from the different fertilization treatments. Figure 2 presents the RMSE and R-squared boxplots from the five cross-

validation repetitions for each dataset. For both devices, models built on behalf of the laboratory measurements resulted in a 

better predictive accuracy (Fig. 2) and a lower dispersion with a higher concordance correlation coefficient in the 1:1 plots 195 

(Fig. 3) in comparison with the field measurements. These results show the expected performance decline from ASD laboratory 

– Veris laboratory – ASD field – Veris field, even though the model performance of the Veris field data still shows adequate 

accuracy. The best model for each subgroup was: ASD laboratory–MSC (R2=0.9, RMSE=0.9 g kg-1), ASD field–MSC 

(R2=0.77, RMSE=1.4 g kg-1), Veris laboratory–gapDer (R2=0.86, RMSE=1.1 g kg-1), and Veris field–gapDer (R2=0.7, 

RMSE=1.6 g kg-1), showing that the best preprocessing method changed with the device but was maintained between 200 

laboratory and field when using the same spectrometer. 

3.2 Corrected field data 

To improve SOC estimation of models using field measurements with both ASD and Veris, corrections were done based on 

their corresponding laboratory data using 3 approaches: linear transformation, PDS, and EPO. The optimal parameter values 

for PDS and EPO are presented in Table 2. It can be observed that the optimal parameter values of Veris datasets for model 205 

building are lower compared with ASD for both, the PDS and EPO algorithms.  

The predictive accuracy on behalf of the field data was improved for both, Veris and ASD data, (Fig. 4), although, it was not 

equally effective among the preprocessing methods. In general, EPO was the best approach when comparing the different 

preprocessing methods with exception of SGCR where the best results were obtained with the linear transformation. 

Meanwhile, the performance of PDS was generally below the other two approaches. Fig. 5 displays the respective scatter plots; 210 

the corrected data tend to be less dispersed and their concordance correlation coefficient is higher compared to the original 

field data. Nevertheless, even after correction, the predictive performance of the models trained on behalf of the corrected field 

data was still below that of the models trained with the laboratory data. By considering the highest improvement of the data 

correction in all cases, the comparison of the wavelength importance presented next is based on the spectrally corrected field 

data using EPO for SG, gapDer, and MSC, and linear transformation for SGCR preprocessing methods.  215 

3.3 Wavelength importance  
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Boxplots of the tuned number of PLSR components corresponding to the 25 models built for each of the 16 datasets are 

presented in Fig. 6. The median value of the number of components was 15 or lower, and the variance of values for each of 

the 16 datasets differed according to the spectrometer, measurement condition, and preprocessing technique. In general, the 

models built with ASD and Veris laboratory data presented a lower dispersion compared with the respective models derived 220 

from field data. This corresponds to lesser disturbance effects, and, therefore, explains their better accuracy. Models derived 

after preprocessing with gapDer tend to have fewer components compared to the other preprocessing methods, which could 

be caused by the lower number of resulting variables when gapDer is applied to the raw data.  

Figure 7 shows the RC values, and Fig. 8 the VIP values that correspond to the 25 models (repeated cross-validation) for each 

of the 16 datasets. When comparing devices, the absolute RC values were lower for models built with ASD laboratory data 225 

compared to those of the models built with the Veris laboratory data (Fig. 7A) and increased with the decline in the model 

accuracy presented in Fig. 2. The magnitude of the RC values for the field data was lower for SG, gapDer and MSC (corrected 

by using the EPO algorithm) compared to their corresponding laboratory data. The dispersion from the median value is 

generally low, although it is higher in the case of models built from Veris laboratory and field data using gapDer. The 

fluctuation of RC values makes it difficult to compare important wavelengths among the datasets. i.e. identify wavelengths 230 

that are important for SOC prediction regardless of the measurement condition, device, and preprocessing method. This holds 

especially true for the models obtained from ASD data, where more wavelengths were considered for the model building due 

to the higher spectral resolution. In contrast, VIP values are standardized; thus, their magnitude is comparable among datasets 

and presents low dispersion in all cases. The pattern of VIP values was similar in some cases, particularly, between models 

built from ASD laboratory and field data using the same preprocessing method.  235 

To facilitate the identification of wavelengths that relate to SOC and are, therefore, important independent of measurement 

condition, device, and preprocessing method, local peaks were identified for the median RC and VIP values (Fig. 9 and 10). 

Table 2 presents the peak matches of VIP local maxima between the models obtained using ASD laboratory data with MSC 

preprocessing (best model performance) and those from the models built on behalf of the other datasets. Due to differences in 

spectral resolution, the search range of peak matches was different for ASD (±10 nm) and Veris (±20 nm) datasets. For the 240 

RC local maxima and minima (Fig. 9), several peaks were concentrated in the NIR range independent of the device or 

preprocessing method, and in some cases, there is a match in the local peaks between devices and methods, but the sign is 

flipped. Regarding VIP, some noticeable peaks were around 1400 and 1900 nm, and others in the range of 1900-2200 nm.  

The local peaks of VIP scores with the data of best model performance (ASD laboratory using MSC), presented most matches 

with ASD laboratory data using SG preprocessing (11 matches), fewer matches with gapDer (7 matches), and least with SGCR 245 

(6 matches) following the order of model accuracy. Regarding the ASD field data, SG also presented 11 matches, followed by 

MSC (10 matches), SGCR (6 matches), and gapDer (4 matches). Concerning the comparison of Veris laboratory and field data 

with the best model, fewer matches were observed, Veris laboratory data presented most matches (9) with MSC preprocessing 

and 6-7 for all but the gapDer preprocessing which resulted in only 3 matches. 
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 4 DISCUSSION 250 

4.1 Model performance 

The RMSE of the models is comparable to other studies when using ASD (Jiang et al., 2016, Liu et al., 2018) and Veris 

(Ellinger et al., 2019) under laboratory conditions; and has better accuracy than the results observed by Christy (2008) with 

Veris on silty soils under different fields, and ASD field measurements reported by Nocita et al. (2012) and Denis et al., (2014); 

both under sandy-loam and clay soils. The lower accuracy of the models using field measurements is likely due to factors such 255 

as varying soil moisture, illumination, and surface roughness (Viscarra Rossel et al., 2009; Jiang et al., 2016). This is 

particularly evident with soil moisture, where studies have obtained better performance under dry conditions (Minasny et al., 

2011; Rienzi et al., 2014). The difference in predictive model performance between ASD field and Veris field data is caused 

not only by the spectral resolution but also by the device-dependent characteristics in data acquisition. The Veris field data 

were collected on-the-go below ground. Accordingly, for model training to relate the spectral information to SOC, the average 260 

of spectral measurements close to the respective soil sampling location was derived. While the top centimeter was very dry 

during measurement, there, was a notably higher soil moisture content at 12 cm depth. Additionally, in the on-the-go 

measurements, the soil contact of the sensor is affected during the movement due to the presence of clods, and stones. Thus, 

the Veris field spectral measurements are affected by more disturbance effects compared to the site-specific above-ground 

ASD measurements. Models obtained from the ASD laboratory data presented better performance compared with the Veris 265 

laboratory data displaying the mere effect of the inbuilt sensors and the lower spectral resolution. The soil spectral signal tends 

to have similar patterns, thus small changes in the slope of the continuous data are better observed with the higher resolution 

of the ASD. Regarding differences among preprocessing techniques, MSC shows better results with models derived from ASD 

data, and gapDer with models derived from Veris data. SG consistently presented good performance in each device and 

preprocessing technique. MSC and SG are widely used (Rinnan et al., 2009; Chen et al., 2013). MSC is a scatter-correction 270 

technique centered on reducing physical variability, thus, facilitating the modeling of soil chemical effects. SG is a spectral-

derivative that removes multiplicative and additive effects (Dotto et al., 2018). In the case of gapDer, it creates datasets with 

the lowest number of wavelengths due to the size of the smoothing window, resulting in a lower number of resulting variables.  

4.2 Wavelength importance 

Differences in magnitude and sign of RC were identified, a finding which has also been reported by Ge et al. (2011) when 275 

using different instruments. It could be caused by models highly dependent on the instrument and scanning environment, 

hampering the transferability of models using different devices. The lower number of matching wavelength peaks in the models 

built on behalf of the Veris data compared to the best model trained with ASD data was expected due to the lower information 

content of the spectra (lower spectral resolution). From the identified wavelengths that relate to SOC independent of the 

measurement condition, device and preprocessing, the wavelengths peaks around 1400 and 1900 are also related to other soil 280 
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properties, particularly the stretching and bending of the O-H bonds of free water (Conforti et al., 2018). Regarding the 

importance of these wavelengths, Kawamura et al. (2021) suggested that the retained water of air-dried soils influences SOC 

predictions because water retention increases with organic matter. Other high peaks in the range of 1900-2200 nm could be 

associated with the overtones and combination bands from CH compounds. More similarities in the local peaks were identified 

with VIP compared to RC. VIP demonstrated to be a good method to identify wavelength importance from local peaks, its 285 

usefulness has also been reported in other studies concerning SOC prediction (Viscarra Rossel et al, 2008; Jiang et al., 2016; 

Kawamura et al., 2017). In general, differences in wavelength importance were observed depending on the measurement 

condition, device, and preprocessing techniques, although with some concurrences at specific local peaks. It has to be noticed 

that both RC and VIP values are likely to change depending on the selected number of components in the PLSR (Fig. 2) which 

in turn also depends on the respective preprocessing method and spectral resolution of the recorded data.  290 

Several of the wavelengths considered important for SOC prediction in both RC and VIP were found in the NIR range, agreeing 

with results reported by Peng et al. (2014) and Wang and Pan (2016), who used successive projections algorithm and VIP 

scores respectively. These results could be attributed to a stronger influence of CH bands, and also water content in the case 

of ASD and Veris in the field, as it is observed on the peaks of RC values around 1400 nm and 1900 nm in both cases (Fig. 

9B and 9D). A notorious peak around 950-1000 nm of VIP values in the case of the Veris field datasets (Fig. 10D), could be 295 

attributed to soil water, although some wavelengths in this range were also identified as important for SOC in other studies 

(Lee et al., 2009; Vasques et al., 2009). In contrast to our findings, other studies report a dominance of important wavelengths 

in the VIS range (Yang et al., 2012; Colombo et al., 2014). These differences could be attributed to the soil particularities, 

measurement settings (e.g. spectrometer, protocols), and preprocessing techniques since SOC influences a wide range of 

wavelengths in the Vis-NIR region. In line with our findings, Lee et al. (2009) evaluated the performance of the 3 independent 300 

spectrometers and their corresponding wavelength ranges included in an ASD field spectrometer and reported the 1800-2500 

nm range to result in better predictive performance for SOC.  

When comparing different preprocessing methods, patterns were more similar in the models derived from ASD measurements 

compared with those derived from Veris data. This goes in line with our previous findings: The models built with differently 

preprocessed ASD laboratory data presented similar model performance (Fig. 3) and low variation in the number of 305 

components (Fig. 6). Preprocessing techniques can significantly affect both, predictive performance (Dotto et al., 2018) and 

wavelength importance (Peng et al., 2014). 

The Veris data preprocessed with gapDer had resulted in the best models for both, laboratory and field data. This could be 

caused due to the total number of local peaks being lower with gapDer compared with the other preprocessing methods, and 

by differences in resolution, while it is more similar when the same preprocessing method is used (MSC). Matching patterns 310 

of important wavelengths independent of the preprocessing method are promising. For it implies that these wavelengths are 

ultimately reflecting the response of the soil characteristics rather than being caused by the data transformation. Some of the 

most frequent important wavelengths independent of the devices used in the field and laboratory and the preprocessing methods 
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are similar to those reported by other studies: 560 nm (Brown et al., 2006), 1330 nm (Kooistra et al., 2003), 1400 nm, and 

1900 nm (Conforti et al., 2018), and 1720 nm (Sudduth and Hummel, 1991).  315 

4.3 Spectral correction of the field measurements 

The spectral correction of the field data on behalf of the laboratory data improved the model performance, which could help 

to obtain better information under field conditions. Concerning the parameters for PDS and EPO, lower values were determined 

for Veris compared to ASD which could be expected due to the lower spectral resolution of the Veris data. The best results 

were obtained by using the EPO method, meanwhile, linear transformation showed better results than the PDS algorithm when 320 

comparing several datasets, indicating that is also a valid alternative for data correction. Nawar et al. (2020) also found the 

best performance with EPO compared to PDS when using a cubist model for SOC prediction, which they related to the capacity 

of the EPO algorithm to remove the effect of soil moisture in the spectral signal. Nevertheless, the different data correction 

approaches satisfactorily improved SOC prediction on behalf of the spectral field data. This is of particular importance in the 

context of spatially continuous SOC monitoring, which has to be conducted under field conditions. But, while spectral data 325 

correction with site-specific spectral soil measurements is commonly applied to remote sensing data (Stevens et al., 2008; 

Peng et al., 2015; Jiang et al., 2016; Crucil et al., 2019), the spectral correction of proximal-sensed spectral field measurements 

with spectral laboratory data is less commonly used. Only few examples related to SOC prediction are found that employ PDS 

(e.g. Ji et al., 2015a, Nawar et al., 2020) and EPO (Ji et al., 2015b, Nawar et al., 2020, Wijewardane et al., 2020). Applications 

related to on-the-go spectral recording are hardly available (e.g. Nawar et al., 2020). Our results indicate that spectral correction 330 

with laboratory data is a promising approach to be considered while using on-the-go spectral field measurements for SOC 

monitoring.  

Despite the loss of accuracy in SOC estimation using field measurements, it is possible to identify similarities in the wavelength 

importance between models from field and laboratory data, including the Veris on-the-go field measurements, which had been 

sampled at different depth and date, indicating that even with additional uncertainties the models can show relevant 335 

wavelengths associated with SOC. This consistency of the models is not only important for SOC monitoring with on-the-go 

proximal sensing but also when combining data from different devices, and measurement protocols to build universal models 

of soil spectroscopy and establish it as a measurement method. The collection of worldwide data in large spectral libraries 

follows this line of thought (e.g. Roudier et al., 2017; Liu et al., 2018; Seidel et al., 2019).  

5 Conclusions 340 

The PLSR models presented good performance to predict SOC from on-the-go field measurements to allow for spatial-

temporal SOC monitoring. We demonstrated that spectral correction of the sensor’s field data with its laboratory data resulted 

in an improvement in predictive model performance, particularly by using the EPO algorithm. Hence, we consider spectral 
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correction not only important while using remotely sensed spectral data (as commonly applied), but also while using 

proximally sensed data for spatial-temporal SOC monitoring under field conditions and suggest including it in any protocol 345 

for spectral field measurements.  

The detailed model insight and interpretation of important wavelengths with regards to SOC detected matches in important 

wavelengths independent of the sensor and measurement conditions showing the capability of the models to detect important 

wavelengths even when the measurement conditions and acquisition methods differ. This consistency justifies the application 

of the methodology due to the physical meaning of the SOC-spectra relationship. Nevertheless, this detailed analysis also 350 

disclosed the challenge of using soil spectroscopy for SOC monitoring. Differences in wavelength importance were observed 

depending on the measurement instruments, and preprocessing methods, which added complexity to identifying relevant 

wavelengths. This is also a key aspect to consider when building large spectral libraries to generate universal spectral models 

to establish soil spectroscopy as a measurement method for SOC. Further work is needed to explain the differences between 

sensors and measurement conditions to develop best-practice protocols and standards for soil spectroscopy. 355 
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Tables 580 

Table 1 Preprocessing methods and corresponding wavelength ranges. 

Preprocessing method 
ASD wavelength range 

Veris wavelength 
range 

Abbreviation 

Savitsky-Golay 405-2195 432-2201 SG 

Saviztky-Golay w=11 and continuum removal 405-2195 432-2201 SGCR 

Gap segment algorithm (w=11, s=10) 415-2185 408-2186 gapDer 

Multiplicative scatter correction 400-2200 403-2201 MSC 

w = window size, s = segment size 

 

Table 2 Optimal parameter values of PDS and EPO used for model building.  

  Veris ASD

 PDS EPO PDS EPO

  ncomp w ncomp ncomp w ncomp

SG 1 2 7 4 5 9

SGCR 2 4 5 5 8 8

gapDer 1 2 5 3 3 8

MSC 1 2 6 2 9 9
SG: Saviztky Golay, SGCR: Saviztky Golay + continuum removal, gapDer: gap segment algorithm (gapDer), MSC: 585 
multiplicative scatter correction, ncomp: number of components, w: windows size, PDS: Piecewise Direct Standardization. 
EPO: External Parameter Orthogonalization.  
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Figure 1: Study area located in Bad Lauchstädt. SF: subfield number. Sampling points were selected by stratified random 

sampling. Coordinate reference system: EPSG 25833. 605 
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Figure 2: Predictive model performance of all 16 datasets (5 values per boxplot). A: Root mean square error (RMSE) and B: 

R squared (R2). SG: Saviztky Golay, SGCR: Saviztky Golay + continuum removal, gapDer: gap segment algorithm (gapDer), 

MSC: multiplicative scatter correction. 
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Figure 3: Predicted versus observed values for the 16 datasets (average of 5 predictions). CCC: concordance correlation 

coefficient. SG: Saviztky Golay, SGCR: Saviztky Golay + continuum removal, gapDer: gap segment algorithm, MSC: 615 

multiplicative scatter correction. 
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Figure 4: Predictive model performance of the 8 field datasets before and after spectral correction (5 values per boxplot). A: 

Root mean square error (RMSE) and B: R squared (R2) of the model prediction. SG: Saviztky Golay, SGCR: Saviztky Golay 620 

+ continuum removal, gapDer: gap segment algorithm, MSC: multiplicative scatter correction. PDS: Piecewise Direct 

Standardization. EPO: External Parameter Orthogonalization. 
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Figure 5: Predicted versus observed values comparing ASD and Veris field data before spectral correction and the best results 625 

after the data correction (average of 5 predictions). CCC: concordance correlation coefficient. SG: Saviztky Golay, SGCR: 

Saviztky Golay + continuum removal, gapDer: gap segment algorithm, MSC: multiplicative scatter correction.  
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Figure 6: Boxplots of the tuned number of components of the 25 PLSR models built from each of the 16 datasets. SG: Saviztky 630 

Golay, SGCR: Saviztky Golay + continuum removal, gapDer: gap segment algorithm, MSC: multiplicative scatter correction. 

 

https://doi.org/10.5194/egusphere-2022-273
Preprint. Discussion started: 31 May 2022
c© Author(s) 2022. CC BY 4.0 License.



28 
 

 

Figure 7: Regression coefficients from 25 models for each dataset. The black line is the median, the gray area shows the 

interquartile range, and the dashed lines represent the minimum and maximum values. SG: Saviztky Golay, SGCR: Saviztky 635 

Golay + continuum removal, gapDer: gap segment algorithm, MSC: multiplicative scatter correction. 
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Figure 8: Variable importance in projection from 25 models for each dataset. The black line is the median, the gray area shows 

the interquartile range, and the dashed lines represent the minimum and maximum values. SG: Saviztky Golay, SGCR: 

Saviztky Golay + continuum removal, gapDer: gap segment algorithm, MSC: multiplicative scatter correction. 640 
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Figure 9: Median local maxima and minima values of regression coefficients for each dataset. SG: Saviztky Golay, SGCR: 

Saviztky Golay + continuum removal, gapDer: gap segment algorithm, MSC: multiplicative scatter correction. 
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Figure 10: Median local maxima values of Variable importance in projection for each dataset. SG: Saviztky Golay, SGCR: 

Saviztky Golay + continuum removal, gapDer: gap segment algorithm, MSC: multiplicative scatter correction. 
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