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Abstract. The multiscale analysis of fracture lineament patterns helps defining the geometric scaling laws and the 

relationships between outcrop- and regional-scale structures in a fracture network. Here, we present a novel analytical and 10 

statistical workflow to analyze the geometrical and spatial organization properties of the Rolvsnes granodiorite lineament 

(fracture) network in the crystalline basement of southwestern Norway (Bømlo Island). The network shows a scale-invariant 

spatial distribution described by a fractal dimension D ≈ 1.51, with lineament lengths distributed following a general scaling 

power-law (exponent  = 1.88). However, orientation-dependent analyses show that the identified sets vary their relative 

abundance and spatial organization/occupancy with scale, defining a hierarchical network. Lineament length, density, and 15 

intensity distributions of each set follow power-law scaling laws characterized by their own exponents. Thus, our multiscale, 

orientation-dependent statistical approach can aid in the identification of the hierarchical structure of the fracture network, 

quantifying the spatial heterogeneity of lineament sets and their related regional- vs. local-scale relevance. These results, 

integrated with field petrophysical analyses of fracture lineaments, can effectively improve the detail and accuracy of 

permeability prediction of heterogeneously fractured media. Our results show also how the geological and geometrical 20 

properties of the fracture network and analytical biases affect the results of multiscale analyses and how they must be 

critically assessed before extrapolating the conclusions to any other similar case study of fractured crystalline basement 

blocks. 

1 Introduction 

Crystalline rocks are characterized by very low intrinsic permeability, usually in the order of 10-18 m2 (Achtziger-Zupančič et 25 

al., 2017; Brace, 1984), so that that their capability to transmit and/or store fluids is mainly related to the structural 

permeability associated with fracture and fault networks created by brittle deformation and the associated fluid-rock 

interaction (Caine et al., 1996; Caine and Tomusiak, 2003; Ceccato et al., 2021b, a; Evans et al., 1997; Pennacchioni et al., 

2016; Schneeberger et al., 2018; Stober and Bucher, 2015). When studied at different scales, fracture and fault networks 

commonly exhibit variable geometrical and spatial characteristics, which may significantly affect the overall permeability 30 
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structure (spatial heterogeneity and anisotropy of permeable zones) of the fractured crystalline rock (Le Garzic et al., 2011; 

Hardebol et al., 2015; Holdsworth et al., 2019; Torabi et al., 2018). One way to obtain quantitative constraints upon the 

scale-dependency of fracture and fault network attributes is to perform a multiscale analysis of, for example, their length and 

spacing distributions. The aim of these multiscale analyses is to obtain scaling laws that can quantify the variability of 

fracture network properties across scales (Bonnet et al., 2001; Bossennec et al., 2021; Castaing et al., 1996; Chabani et al., 35 

2021; Dichiarante et al., 2020; Gillespie et al., 1993; McCaffrey et al., 2020; Odling, 1997). 

1.1 Presentation of the problem 

Quantifications across scales and scaling laws are usually derived from the analysis of lineament maps traced by remote 

sensing techniques (Bour et al., 2002; Castaing et al., 1996; Odling, 1997). In the past, much effort has been invested in the 

definition of a direct mathematical, quantitative relationship between lineament map parameters and permeability/porosity 40 

parameters (Davy et al., 2006). However, in order to provide realistic qualitative and quantitative constraints on fracture 

network permeability, the analysis of lineament maps requires the integration of deterministic field inputs with the geology 

of the remotely sensed “lineaments” (Bertrand et al., 2015; Bossennec et al., 2021; Hardebol et al., 2015; Bossennec et al., 

2022). Furthermore, lineament maps provide very large and statistically robust datasets, which are, however, subject to 

analytical, methodological, and interpretative biases (Peacock et al., 2019; Scheiber et al., 2015). Therefore, accurate 45 

statistical analyses need to be performed to evaluate the possible biases affecting each dataset and the extrapolation limits of 

the observations retrieved from their analyses (Bistacchi et al., 2020; Dichiarante et al., 2020; McCaffrey et al., 2020). 

1.2 Structure of the paper 

In this paper, we present a methodological approach, which, when informed by statistical tests, aims to support the decision-

making process during the analysis and identification of the most appropriate scaling laws describing fracture network 50 

properties variability across scales, as derived from the analysis of multiscale lineament maps. In addition, we integrate 

previously obtained geological, geochronological and petrophysical data about the geology and permeability of the identified 

lineaments to constrain the permeability structure of fractured crystalline basement units.  

We describe the case study of the Bømlo crystalline basement formed by the Rolvsnes granodiorite (Western Norway) 

(Scheiber and Viola, 2018). The lineament network detected in the Rolvsnes granodiorite developed during a prolonged 55 

brittle tectonic history within an initially massive, isotropic granitoid rock. The in-situ analysis and characterization of the 

structural  elements forming this fracture and fault zone network, e.g., the Goddo Fault Zone (GFZ, Fig. 1), has previously 

allowed us to reconstruct the absolute and relative timing of the various brittle deformation phases that affected the area and 

to quantify the geometry and petrophysical properties of the fractures (Ceccato et al., 2021b, a; Scheiber and Viola, 2018; 

Viola et al., 2016), although the larger-scale geometry and organization of the fracture and fault network on Bømlo remained 60 

poorly constrained and thus needed further constraining and quantification. To this end, fracture network maps of the study 
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area were obtained from the manual picking of lineaments on LiDAR digital terrain models, aerial, and Unmanned Aerial 

Vehicle (UAV, drone) orthophotos of the exposure area of the Rolvsnes granodiorite (Fig. 1). 

The analyzed attributes include: (i) fractal dimension D of the lineament network; (ii) lineament orientation; (iii) cumulative 

length distribution of lineaments at each analyzed scale and for each orientation set; (iv) intensity/density scaling for the 65 

whole lineament network and for each orientation set; (v) heterogeneity of lineament spacing distribution. These parameters 

are usually adopted for the quantification of the spatial occupancy and of the “fractal” character of fracture-lineament 

networks (fractal dimension D and length distribution scaling laws), to constrain their physical connectivity and spatial 

organization (spacing and length), and, ultimately, for the quantification of the permeability structure of the host fractured 

medium (Bonnet et al., 2001; Healy et al., 2017; Nyberg et al., 2018; Peacock and Sanderson, 2018). The statistical tests 70 

adopted to constrain the most representative fitting curves and distributions include: (i) Least Square Regression (LSR) and 

Maximum Likelihood Estimation (MLE) coupled with Kolmogorov-Smirnov (KS) statistical tests adopted on cumulative 

distributions (Dichiarante et al., 2020; Kolyukhin and Torabi, 2013; Rizzo et al., 2017); (ii) bivariate box and whiskers plots 

to evaluate the distribution of fracture spacing heterogeneity parameters and their statistical significance. 

Our statistical, orientation-dependent multiscale analysis permits to: (i) identify groups of regional- vs. local-scale lineament 75 

sets based on the variation of geometrical and scaling parameters; (ii) define statistically robust scaling laws for the 

geometrical properties and the range of scales within which those laws can be applied; (iii) evaluate the difference between 

scaling laws retrieved from the entire network and those from individual sets. This multiscale and statistical approach tries to 

overcome the natural bias of lineament maps retrieved from remote sensing of natural outcrops, which are inherently 

incomplete due to partial exposure, resolution and analytical biases. The implications of the adoption of general scaling laws 80 

on the upscaling/downscaling of fracture network properties, as well as the possible analytical biases and sources of errors in 

the analytical approach, are then evaluated and discussed. In this work, rather than trying to accurately quantify the scaling 

parameters, we focused on highlighting and analyzing the weaknesses and uncertainties that invariably accompany this sort 

of lineament analysis even when very robust statistical approaches and analytical methods are applied (Dichiarante et al., 

2020). By integrating this information with existing field structural analyses and modeling of lineaments petrophysical 85 

properties (Ceccato et al., 2021b, a; Scheiber and Viola, 2018), we provide further constraints on the multi-scale 

heterogeneity in magnitude, orientation, and spatial distribution of the permeability structure of the studied fractured 

crystalline basement.  

 

2. Geological setting 90 

The crystalline basement of the Island of Bømlo belongs to the Upper Allochthon units of the Caledonian orogen (Gee et al., 

2008). Our lineament maps represent the fracture pattern affecting the Rolvsnes granodiorite, a pre-Scandian (466 ± 3 Ma; 

zircon U-Pb dating) granitoid pluton hosted in the Upper Allochthon metamorphic units (Scheiber et al., 2016) (Fig. 1). The 
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Rolvsnes granodiorite recorded a prolonged and multi-phase brittle deformation history (Scheiber et al., 2016; Scheiber and 

Viola, 2018), only briefly summarized in the following, while the reader is referred to the cited literature for a more detailed 95 

and comprehensive description of the tectonic history of the area. Overall, the whole tectonic history of the area is the 

expression of three main deformation episodes (Bell et al., 2014; Fossen et al., 2017, 2021): (1) Caledonian convergence and 

continental collision from the Mid-Ordovician to the Silurian; (2) extensional tectonics related to the late-Scandian orogenic 

collapse during the Devonian, and (3) prolonged and multi-phase extensional tectonics related to the North Sea rifting from 

the Permian to the Cretaceous. During this tectonic evolution, the pre-Scandian Rolvsnes granodiorite did not record 100 

penetrative ductile strain and was instead affected by pervasive brittle deformation. Each tectonic stage recorded in the 

granodiorite is associated with a characteristic set of fracture and fault zones that dissect Bømlo (Scheiber and Viola, 2018): 

(1) NNW- and WNW-striking conjugate strike-slip faults developed coevally with ENE-WSW and NE-SW-striking reverse 

faults during Caledonian convergence; (2) the same structures were reactivated with opposite kinematics during the early 

stages of late-Scandian orogenic collapse; (3) NW- and NNW-striking normal faults ascribable to the regional Permian-to-105 

Jurassic rifting phase of the North Sea, which partially reactivated earlier, inherited structures. During the latest rifting stages 

of the North Sea, in the Early Cretaceous, new N- to NNE-striking fracture corridors and normal faults overprinted the 

previously formed fracture pattern. This tectonic history is reflected in the field by a sequence of three main classes of 

fracture and fault zones: (i) pre-Permian, ESE-WNW and NE-SW striking mineralized shear fractures and minor faults; (ii) 

Permo-Jurassic major normal faults, mainly NW-SE and N-S striking; (iii) Cretaceous fracture clusters striking N-S to NNE-110 

SSW (Scheiber et al., 2016; Scheiber and Viola, 2018). 

A key structure for the detailed analysis of the timing of deformation, the geometry of the deformation structures, and the 

effects of deformation on the petrophysical properties of the crystalline basement of Bømlo, is the Goddo Fault Zone (GFZ, 

Fig. 1), (Ceccato et al., 2021b,a; Scheiber and Viola, 2018; Viola et al., 2016). The GFZ is an east-dipping normal fault that 

accommodated multiple slip increments during the prolonged Permian-to-Cretaceous rifting of the North Sea, recording 115 

several stages of reactivation, during which a complex network of brittle structural facies developed in the fault core (sensu 

Tartaglia et al., 2020). Structures like the GFZ actually controlled the permeability and fluid flow evolution from rifting to 

current times of the crystalline basement (Ceccato et al., 2021b,a; Viola et al., 2016). 

The Rolvsnes granodiorite is interpreted as the onshore analogue of the crystalline basement of the Utsira High, which, 

similarly to Bømlo, is affected by a complex fracture and fault network (Fredin et al., 2017; Trice et al., 2019). The Utsira 120 

High crystalline basement is composed of (likely multiple) pre-Scandian igneous intrusions of similar age and composition 

to the Rolvsnes granodiorite (Lundmark et al., 2014; Slagstad et al., 2011). The fracture network in the Utsira High 

developed under tectonic conditions like those of the Bømlo crystalline basement, but with several significant differences 

mainly related to the structural position of the two crystalline basements within the North Sea rifting region (Bell et al., 

2014). 125 
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3. Methods 

In this study, the word “lineament” is used to refer to any linear feature of the topography as detected on a digital 

representation of the surface. The topography of Bømlo is cut through by deep linear grooves resulting from the penetration 

at depth of erosional processes exploiting fracture and fault zones of the crystalline basement (Scheiber and Viola, 2018). 

Therefore, the mapped lineaments represent fracture and fault zones identified in the field. In the followings, the terms 130 

fracture(s) and fault zone(s) refer only to the geological structures observed in the field, which indeed assemble the remotely 

sensed lineaments. The lineament maps (Fig. 2a) used for the presented multiscale analyses have been generated in ArcGIS 

10.8 by manually picking the same digital terrain model (DTM) of selected areas of the Island of Bømlo at different scales of 

observation. DTM’s from high-resolution (1 m/pxl) airborne Light Detection and Ranging (LiDAR, kindly provided by 

Norges Geologiske Undersøkelse) surveys (Fig. 1) have been used for the manual picking of lineaments at the 1:5,000; 135 

1:25,000 and 1:100,000 scales. The details of LiDAR data acquisition and DTMs elaboration can be found in Scheiber et al. 

(2015). In addition, the dataset of lineaments interpreted from LiDAR DTM at the 1:5,000 scale was integrated with the 

interpretation of aerial orthophotos from the Bing Maps database (https://www.bing.com/maps). Bing aerial imagery was 

also adopted to distinguish between natural and man-made linear structures and to check for artefacts and potential 

misinterpretation of linear features on LiDAR-derived DTMs in the absence of systematic ground truthing. The 1:100 140 

outcrop-scale lineament picking was performed on digital orthophotos of a key GFZ outcrop (Figs. 1, 3a) as obtained from 

the elaboration of the imagery collected via UAV-drone surveys through Structure-from-Motion (SfM) algorithms. Details 

on this acquisition and its elaboration methods can be found in Ceccato et al. (2021a). Topographic lineaments were traced 

as single, linear segments (not polylines) interpreting their topographic expression on DTMs. The obtained lineament maps 

are included in the dataset related to the present paper available at https://data.mendeley.com/datasets/3ymhkpmr9s/1. This 145 

interpretation technique introduces two major analytical biases on the obtained lineament maps: 1) the interpreted length 

may only partially represent the entire lineament (which may be covered by deposits or be differently expressed in the 

topography, thus being not visible in its entire length, e.g., Cao and Lei, 2018; 2) as a consequence, abutting relationships, 

intersections between lineaments and lineament network topology and connectivity remain highly speculative and 

susceptible to subjective biases (Andrews et al., 2019). The orientation of mapped lineaments, expressed as azimuth angle 150 

from the geographic north, was calculated in ArcGIS 10.8 using Easy Calculate 10 (https://www.ian-

ko.com/free/free_arcgis.htm) and the Orientation Analysis Tools (https://is.muni.cz/www/lenka.koc/prvnistrana.html). Rose 

diagrams plotting lineament azimuths were produced with the MARD 1.0 software (Munro and Blenkinsop, 2012). 

Lineament density P20 (m-2) and intensity P21 (m/m2) (Dershowitz and Herda, 1992) were calculated as the ratio between the 

total number of lineaments and total length of lineaments, respectively, over the total area of the land exposure in each 155 

lineament map. 
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3.1. Fractal dimension – Box-counting method 

The fractal dimension of each lineament map at different scales was computed with the box-counting method (Bonnet et al., 

2001; Gillespie et al., 1993) by using the freely available function boxcount.m in MATLAB R2019b (http://www.fast.u-

psud.fr/~moisy/ml/boxcount/html/demo.html). The box-counting method consists in subdividing the analyzed image in 160 

progressively smaller square boxes of side b and counting how many of them contain a segment of the analyzed lineament 

network. Plotting the number of boxes Nb containing at least one lineament against the side length b on a log-log diagram 

should yield a straight curve, whose slope defines a power-law function with D as the fractal exponent (Bonnet et al., 2001). 

The fractal dimension obtained from the box-counting method quantifies the scaling properties of the spatial occupancy of 

the lineament network (Bonnet et al., 2001). We have analyzed (i) the entire lineament maps at each scale of observation, 165 

and, additionally, (ii) selected sub-areas of the lineament maps completely exposed on the land surface (that is, without  any 

sea cover). Entire lineament maps inherently present discontinuous exposures of lineaments, which crop out on different 

islands of the Bømlo archipelago and are “separated” by sea branches and bays. Therefore, we have analyzed by box-

counting also the spatial occupancy (and the related fractal dimension D) of the exposed land surface of the Bømlo Island 

archipelago as shown in Fig. 1 in order to check if the fractal characteristics of the exposed land surface affect the fractal 170 

parameters of the fracture network. The selected areas, instead, represent continuous exposures of lineaments over several m2 

or km2 (depending on the scale of observation). For each lineament map we have then analyzed selected areas of continuous 

exposure (Fig. Supplement S1). For the lineament map of the GFZ outcrop we have analyzed eight sub-areas of 25 (four 

areas) and 100 (four areas) m2 each. For the 1:5,000 lineament map, we have analyzed six sub-areas of 1 km2 each. For the 

1:25,000 lineament map, we have analyzed ten sub-areas of 1 (six areas) and 4 (four areas) km2 each. For the 1:100,000 175 

lineament map, we have analyzed four sub-areas of 4 (three areas) and 9 (1 area) km2 each. Selected areas and lineament 

maps, and the complete results of the box-counting analyses are reported in the Fig. Supplement S1 and in the Online 

Repository (https://data.mendeley.com/datasets/3ymhkpmr9s/1). 

3.2. Cumulative length distribution analyses 

Length data of lineaments have been organized as cumulative distributions and plotted in log-log diagrams of the length L of 180 

lineaments on the X-axis versus N(l>L), the cumulative number of lineaments with length l > L (Fig. 2b-c). The cumulative 

length distributions were then normalized by the area of the land surface reported on each map over which the lineaments 

were picked. Single-scale distributions report the lineament lengths at a specific scale of observation. Multiscale 

distributions report the sum of the cumulative length distributions observed at different scales. We have analyzed the 

multiscale/single-scale normalized distribution functions of (i) all lineaments included in each lineament map at different 185 

scales and (ii) each lineament orientation set at different scales.  
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3.2.1. Fitting of multiscale cumulative length distributions 

The single-scale cumulative length distributions have been merged to form a single multiscale distribution. The 

mathematical functions fitting multiscale cumulative distributions are commonly retrieved by manual fitting of the 

distributions by assessing the slope of the tangent to the observed distributions (e.g., Bertrand et al., 2015; Bossennec et al., 190 

2021; Castaing et al., 1996; Le Garzic et al., 2011). Here we apply a more quantitative method by adopting least square 

regression (LSR) in Microsoft Excel to the multiscale cumulative distributions. Manual fitting has been performed as well 

(results are reported and compared to LSR fitting in Fig. Supplement S2). 

3.2.2. Fitting of single-scale cumulative length distributions 

Single-scale cumulative length distributions have been analyzed by means of the Maximum Likelihood Estimation (MLE) 195 

and Kolmogorov-Smirnov (KS) statistical tests to retrieve the best fitting mathematical function (Dichiarante et al., 2020; 

Kolyukhin and Torabi, 2013; Rizzo et al., 2017). The mathematical functions considered were negative exponential, power-

law and log-normal (Fig. 2b). The advantage of adopting MLE-KS statistical tests derives from the possibility to also 

retrieve the function parameters (namely the exponent  for the exponential, the exponent  for the power-law and the mean 

 and standard deviation  for the log-normal functions) in addition to the mathematical function best approximating the 200 

observed cumulative length distributions. A dedicated MATLAB script implementing the freely available functions provided 

in the latest version of FracPaQ (Healy et al., 2017; Rizzo et al., 2017) was used to this purpose. The results of the MLE-KS 

tests are reported in “checkerboard” diagrams, following the method proposed by Dichiarante et al. (2020) (Fig. 2d). Such 

diagrams allow to image the results of the MLE-KS tests on the selected portions of the cumulative distribution, i.e., the best 

fitting mathematical function for varying subdomains of the cumulative distribution. A subdomain is defined as a segment of 205 

the cumulative distribution curve bounded by a lower and upper cut value (Fig. 2c-d). The upper cut (UC) value represents 

the distance, expressed in terms of percentage of the total number of elements contained in the cumulative distribution, from 

the shortest observed length. The lower cut (LC) value represents the distance, in terms of percentage of the total number of 

elements contained in the cumulative distribution, from the longest observed length. On the checkerboard diagrams, the LC 

values are plotted versus the UC values (Fig. 2d). Each point of the checkboard represents a specific percentage range of the 210 

total cumulative distribution between the upper and lower cut limits over which the MLE-KS tests were run. The plotted 

symbol represents the mathematical function among those considered (power-law, exponential, log-normal) for which the 

MLE-KS tests yielded the highest fitting score, whereas the symbol is color-coded according to the retrieved value of the 

fitting scores (namely the H-percentage HP and the P-percentage PP parameters, see Rizzo et al., 2017; Dichiarante et al., 

2020). This analytical approach allows for the determination of the mathematical function that best fits the truncated 215 

cumulative distribution and for the evaluation of the effects of truncation and censoring biases (Fig. 2c-d). We report in the 

main text and tables the range of UC values for which each function fits best: the upper cut values quantify the “truncation” 
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of the cumulative distribution at short lengths, and this has been demonstrated to deeply affect the results of MLE-KS tests 

(Dichiarante et al., 2020).  

3.3. Spatial distribution analysis 220 

The spatial distribution of lineaments has been quantified following the approach by Sanderson and Peacock (2019). We 

analyzed the spacing between lineaments collected along virtual scanlines computed with the NetworkGT toolkit in QGis 

3.12.2 (Nyberg et al., 2018) (e.g., Fig. 2e). The lineaments were classified and grouped into orientation sets. A grid of 

equally spaced virtual scanlines (100 m spacing for the 1:5,000 scale and 500 m spacing for the 1:25,000 and 1:100,000 

scales) oriented perpendicular to the selected lineament set orientation was drawn upon the imported lineament map with 225 

NetworkGT (e.g., Fig. 2e). Intersections between each virtual scanline and map lineaments were also obtained in 

NetworkGT. For each scanline, we analyzed the statistics (mean – , standard deviation – S and minimum and maximum 

values) for several parameters (Fig. 2e): (i) spacing (S) between lineaments; (ii) Coefficient of Variation (CoV) of the 

spacing, defined as the ratio between the standard deviation of spacing along a scanline and its average (CoV = S/) 

(Gillespie et al., 2001); (iii) coefficient of heterogeneity (Vf) and its statistical significance (V*) according to Sanderson and 230 

Peacock (2019). The CoV of spacing is commonly adopted to assess the spatial organization (clustering vs. uniform 

distribution) of lineaments along scanlines (e.g. Gillespie et al., 2001). CoV values > 1 are usually related to clustered 

lineaments; CoV = 1 should represent a (negative) exponential-random distribution of spacing intervals, and CoV < 1 is 

usually related to log-normal (uniform) spacing distributions (Gillespie et al., 2001; McCaffrey et al., 2020; Odling et al., 

1999). The spacing heterogeneity, i.e., the deviation of the spacing distribution along a scanline from a uniform distribution, 235 

is quantified by the Vf and V* coefficients computed with the Kuiper method (Sanderson and Peacock, 2019). The coefficient 

of heterogeneity Vf quantifies the deviation from a theoretical uniform distribution of the observed spacing distribution along 

a given scanline expressed as the sum of the moduli of the positive and negative deviations (see Sanderson and Peacock, 

2019; Fig. 2e). The coefficient V* quantifies the statistical significance of the heterogeneity factor Vf:  

𝑉∗ ൌ 𝑉௙ ൬ඥ𝑁௜ ൅ 0.155൅
଴.ଶସ

ඥே೔
൰  240 

where Ni represents the number of lineaments intersected by the scanline. Stephens (1970) demonstrated that for V* > 1.75, 

2.0 and 2.3, the null hypothesis of uniformity can be rejected at the 95%, 99% and 99.9% levels, respectively. Thus, the 

coefficient V* can be used to quantify the probability that a certain spacing distribution is uniform or not. 

We present the results of this analyses as CoV-V* diagrams (Fig. 2f) in which we plot the statistical distribution of the values 

of CoV vs. V* as box-and-whiskers. In doing so, we can qualitatively evaluate if, statistically, a set of lineaments has a 245 

random or organized spatial distribution (Sanderson and Peacock, 2019). With this method, four main spatial organization 

types can be distinguished (Fig. 2f): (i) uniform distribution, characterized by CoV << 1 and V* < 1.75; (ii) random 

distribution, characterized by CoV ≈ 1, V* < 1.75; (iii) corridor/clustered distribution, characterized by CoV > 1 and V* > 
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1.75-2.00; (iv) fractal distribution, characterized by CoV >> 1 and V* >> 1.75-2.00. Scanlines with more than 10, 5 and 3 

lineament intersections were considered on maps at 1:5,000, 1:25,000, and 1:100,000, respectively. 250 

Given the limited number of intersections recorded by each virtual scanline in our maps (Ni << 30), more advanced and up-

to-date analyses of the spacing variability (Marrett et al., 2018; Sanderson and Peacock, 2019; Bistacchi et al., 2020) were 

not possible. The Vf-V* method proposed by Sanderson and Peacock (2019) yields statistically meaningful results for 

datasets containing a number of intersected lineaments Ni > 6. Our datasets unfortunately do not always satisfy this 

requirement. To perform the analysis on a statistically meaningful number of samples (total number of scanlines, NSL >10), 255 

we had to reduce the minimum number of spacing data each scanline had to contain to be included in the dataset. Therefore, 

our analyses report the results from scanlines showing a minimum number of intersections Ni >10, >5, and >3 for the 

analyses performed at the 1:5,000, 1:25,000 and 1:100,000 scale, respectively. 

All parameters and the related abbreviations are reported in Table 1. 

4. Results 260 

4.1. Lineament maps description  

The manual picking of topographic lineaments on different digital representations of the selected areas of Bømlo led to the 

production of maps at different scales (Fig. 3, Supplement S1-S3-S4). The orthophotos retrieved from UAV-drone surveys 

and the related lineament map (Fig. 3a, Supplement S3a) helped to characterize the main outcrop of the GFZ along the 

eastern shoreline of Goddo Island (Ceccato et al., 2021b,a; Viola et al., 2016). The investigated areas extend for 2127 m2 265 

over which we picked 930 lineaments. Lineament mapping on LiDAR DTM and aerial imagery at the 1:5,000 scale (Fig. 3b, 

Supplement S3b) was performed on the best exposed areas along the coastline of the Goddo Island and nearby smaller 

islands. The resulting lineament map covers more than 17 km2 and includes 3,835 lineaments. Furthermore, we generated 

additional lineament maps from the interpretation of the LiDAR DTM at the 1:25,000 and 1:100,000 scales over the same 

area (83 km2; Fig. 3c-d, Supplement S3c-d). The 1:25,000 lineament map contains 894 lineaments, whereas the 1:100,000 270 

map contains 249 lineaments.  

4.2. Fractal dimension 

The fractal dimension of the lineament maps at all scales was evaluated by applying the box-counting method (Bonnet et al., 

2001; Gillespie et al., 1993). The number of filled boxes Nb decreases with increasing box size b following a power-law 

relationship (Fig. 4). The power-law exponents (the fractal exponents) retrieved from the box counting analyses of the entire 275 

lineament maps at different scales range between 1.45 and 1.61 (Fig. 4). On average, the lineament network exposed on the 

discontinuous outcrops of the Bømlo islands archipelago is characterized by a fractal dimension D = 1.51± 0.14 (2S). The 

analysis of the spatial occupancy of the exposed land surface of the Bømlo islands archipelago yielded a fractal dimension D 

= 1.72 (Fig. 4, see supplementary dataset in the Online Repository). 
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Figure 4 shows the box-and-whiskers diagram of the fractal exponent D for each scale of observation as obtained from the 280 

analyses of selected areas. The fractal dimensions D obtained from the analyses of both entire lineament maps (cross marker 

in Fig. 4) and selected areas (box-and-whiskers in Fig. 4) are always smaller than the fractal dimension D of the exposed 

land surface on the Bømlo islands archipelago (D = 1.72; gray solid line in Fig 4). Similarly, the fractal dimension of the 

whole lineament maps at 1:5,000, 1:25,000 and 1:100,000 scales always over-estimate the fractal dimensions D obtained 

from the analyses of selected areas. This is not true for the GFZ lineament map at the 1:100 scale, in which the average 285 

fractal dimension of the considered sub-areas is systematically larger than that of the entire lineament map (D = 1.46). The 

distribution of D values from sub-areas from the 1:100 and 1:5,000 scales overlap and are very similar from a statistical 

point of view (D > 1.46). Similarly, the sub-areas of the 1:25,000 and 1:100,000 scales yielded similar distributions of D (D 

< 1.45).  

 290 

4.3. Lineament Orientation 

The comparison of the rose diagrams at different scales of observation allows to define some dominant trends (Fig. 5a-b). 

The five main orientation sets are (Fig. 5a, Supplement S4, Table 2): (a) a N-S-striking Set 1; (b) a NE-SW-striking Set 2; 

(c) a ENE-WSW-striking Set 3; (d) a ESE-WNW-striking Set 4, and (e) a SE-NW-striking Set 5. These sets display a 

significant variation of their relative abundance across scales. At the smallest scale of observation (1:100,000), Set 5 is 295 

dominant, whereas at the largest observation scale (1:100), Sets 1 and 2 are dominant (Fig. 5b). At intermediate scales 

(1:5,000; 1:25,000), all sets are equally represented (Table 2). Set 3 is the least represented, occurring only in small 

percentages (<10%) at all scales (Table 2). Sets 2 to 5 have a constant average orientation across scales but the average 

orientation of Set 1 lineaments changes with scale of observation. N-S-striking orientations are dominant at the smallest and 

largest scales of observation. At the intermediate scale, Set 1 presents either a NNW- (scale 1:5,000) or a NNE-dominant 300 

strike (scale 1:25,000) (Fig. 5a). Therefore, we have subdivided Set 1 into Set 1a, including NNE-SSW-striking lineaments, 

and Set 1b, including N-S- to NNW-SSE-striking lineaments. This subdivision will be adopted for discussing the spatial 

organization of the lineaments. 

4.4. Cumulative length distributions 

The results of LSR fitting and MLE-KS tests are reported and summarized in Fig. 6 and Table 3; the checkerboards diagrams 305 

are reported in the supplementary material (Fig. Supplement S5). 

The results of the MLE-KS tests suggest that a log-normal function best approximates the entire single-scale distribution in 

all considered cases (Fig. Supplement S5; Table 3). Variably truncated distributions are best approximated by either negative 

exponential or power-law functions (Table 3). In particular, the truncated length probability distributions for both single sets 

and the entire lineament network mapped at 1:100 are best represented by negative exponential functions, with  ranging 310 

between 0.65 and 1.25. Truncated distributions retrieved from lineament maps at 1:5,000 are best fitted, in most cases, by 
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power-law functions with a minimum exponent  of 2.2. Truncated length distributions for lineaments mapped at 1:25,000 

and 1:100,000 scale are well approximated by negative exponential functions, with an average  of 0.004 and 0.0017, 

respectively (Table 3).  

Figure 6a reports the cumulative length distributions for the entire set of lineament maps normalized to the area of 315 

investigation at each scale of observation. The multiscale normalized cumulative distributions obey a general power-law 

relationship valid over five orders of magnitude (1 m to 10,000 m). The power-law exponent  is 1.88 (Fig. 6a). Figure 6b 

reports the multiscale cumulative length distributions for each lineament set normalized for the area of investigation. Also in 

this case, multiscale distributions obey a general power law scaling with a characteristic exponent  for each set ranging 

between 1.62 and 2.12 (Fig. 6b, Supplement S2).  320 

4.5. Lineament density and intensity 

As also suggested by the cross-scale variation of the relative proportions of the orientation sets (Fig. 5a-b), also the 

normalized density P20 (m-2) and intensity P21 (m/m2) of each lineament set vary across scales. The variations of density and 

intensity are both described by a power-law relationship in log-log diagrams plotting the scale on the X-axis (e.g., 105 = 

1:100,000) and the density P20 or intensity P21 on the Y-axis (Fig. 7a-b) (e.g., Castaing et al., 1996). The variation trend for 325 

the total lineament density P20 of each map at different scales is characterized by power-law exponents  = 1.77 (Fig. 7a). 

Sets 1, 2, and 3 display  values larger than the average value; Sets 4 and 5 display  values smaller than the average values. 

Similarly, the variation trend for P21 is characterized by a power-law exponent  = 0.86 (Fig. 7b); Sets 1, 2, and 3 show  

values larger than the average value. Sets 4 and 5 display  values smaller than the average value. 

4.6. Spacing and organization at different scales 330 

The CoV-V* diagrams highlight a similar trend for all analyzed lineament sets with increasing scale of observation (from 

1:100,000 to 1:5,000). At the 1:5,000 scale (Fig. 8a), Set 1a and 1b lineaments are characterized by CoV ≤ 1 and V* ≤ 1.75, 

suggesting a random-to-uniform spatial distribution. At smaller scales, CoV for Set 1 exhibit a tendency towards random-to-

uniform distribution (Fig. 8b-c). Set 2 lineaments display CoV on average >1 at the 1:5,000 scale, and V* >1.75 for a 

significant number of data (>40% of the total number of data), suggesting a clustered spatial distribution. At smaller scales, 335 

both CoV and V* values generally decrease, although some of the analyzed scanlines still display CoV >1 and V* >1.75-2.00. 

Set 3 lineaments are too scattered and sparce to allow for a meaningful analysis of their spatial arrangement and, therefore, 

they are not reported in Fig. 8. Set 4 lineaments mapped at the 1:5,000 scale on average show CoV values >1, but V* is rarely 

>1.75. At smaller scales, both CoV and V* decrease progressively. CoV and V* for Set 5 lineaments are generally <1 and 

<1.75, respectively. The most significative variation across scales in spatial distribution occurs for Set 2 and Set 4, both of 340 

which exhibit a tendency towards clustering at the large scale (1:5,000; CoV > 1, V* > 1.75; Figs. 8a-9d), whereas they 

exhibit a tendency toward a random-to-uniform distribution at the smaller scales (1:25,000 and 1:100,000; CoV < 1; V* < 
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1.75; Figs. 8b-c, 9e). None of the lineament sets show a tendency to develop fractal behavior with a power-law spacing 

distribution. 

5. Discussion 345 

In the following, we firstly assess the geometrical characteristics, scaling laws and exponent values obtained for the 

Rolvsnes granodiorite fracture network. Then, we evaluate the possible biases affecting the analyzed datasets and their effect 

on the quantification of the fracture network geometrical properties. In addition, we discuss the implications of applying the 

scaling relationships to the quantification of fracturing and reservoir permeability at different scales by integrating our results 

with field geological data.  350 

5.1. Characterization of geometric properties of the Rolvsnes granodiorite lineament network 

The fractal dimensions D retrieved from the analysis of the 2D entire lineament maps cluster around 1.5 (Fig. 4), similar to 

what is commonly reported from other case studies on lineament pattern fractal dimensions (Bonnet et al., 2001; Hirata, 

1989). Also, the normalized cumulative distribution of lineament lengths effectively defines a single scaling law, which can 

be best described by a power-law relationship with an exponent  = 1.88 (Fig. 6a; Table 5). The general scaling law obtained 355 

for the overall lineament network is very similar to that derived from many other case studies of fracture networks affecting 

both crystalline basements and (meta)sedimentary rocks, with an average power-law exponent close to  = 2 (cf. Bertrand et 

al., 2015; Bonnet et al., 2001; Bossennec et al., 2021; Chabani et al., 2021; Le Garzic et al., 2011; McCaffrey et al., 2020; 

Odling, 1997; Torabi and Berg, 2011). The power-law scaling relationship defined by the lineament density P20 values is 

characterized by a power-law exponent  = 1.77, similar to the value of 1.7 commonly observed in many other fault 360 

networks (Castaing et al., 1996; Bonnet et al., 2001, and references therein). 

5.1.1. Scale-invariant lineament network 

A similar fractal dimension D and power-law scaling relationship are commonly used as evidence for the occurrence of a 

fracture network whose geometrical properties (size of fractures, i.e., length, and spatial correlation and organization) are 

scale-invariant (Bonnet et al., 2001). This suggests that, at a first approximation, the documented lineament pattern in the 365 

Rolvsnes granodiorite is self-similar at any scale of observation. However, the Rolvsnes granodiorite case appears to be 

more complex than it would seem at a first glance. The detailed analyses of lineament maps, fractal dimension D and the 

geometrical properties of orientation sets revealed similar patterns of variation through the scales of observation.  

5.1.2. Lineament Types within a hierarchical fracture network 

For each scale of observation, the box-counting analyses of sub-areas of the lineament maps yielded similar D values (2 370 

always < 0.1), suggesting that the lineament network is rather homogeneous in space in terms of spatial occupancy. 
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Nonetheless, these results highlight a general decrease of the fractal dimension D from the largest (1:100) to the smallest 

(1:100,000) scale of observations (box-and-whiskers of Fig. 4).  

Theoretically, a proper scale-invariant lineament map should exhibit a similar fractal dimension D irrespective of the scale of 

observation, of the change in resolution and of the detail of the lineament maps.  375 

A variation trend in the detected fractal dimensions across scales might, therefore, suggest a change in the spatial occupancy 

(fractal dimension) of the lineaments detected at the different scales in different proportions. Indeed, the occurrence of 

lineament orientation sets that are dominant at different scales (local vs. regional scale), showing inherent different spatial 

occupancy properties (different fractal dimensions of each orientation set), might results in different fractal dimension D 

values detected at different scales of observation. Accordingly, the observed variation trend of the fractal dimension of the 380 

Rolvsnes granodiorite lineament network is consistent with a change in the dominant lineament sets orientation and the 

associated geometrical properties and spatial distribution (see discussion below). In this perspective, the larger D values (D > 

1.45) at larger scales of observation (1:100; 1:5,000) are consistent with the occurrence of lineament sets more abundant at 

the local and outcrop scales occupying a larger surface of the maps. Vice versa, the smaller D values (D < 1.45) at smaller 

scales (1:25,000; 1:100,000) suggest the occurrence of regional lineaments with a decreased spatial occupancy.  385 

Even if there is a small variability in the fractal dimension D values, none of the measure fractal dimensions, either from 

small sub-areas or entire lineament maps, are similar to the fractal dimension D = 1.77 retrieved from the areal occupancy of 

the exposed land surface of the Bømlo Island archipelago. The relationship between fractal dimensions of exposed land 

surface and fracture maps remains to be understood and would deserve further analyses, which however go beyond the scope 

of the present paper.  390 

The Rolvsnes granodiorite lineament network is composed of five main orientation sets with variable relative abundance, 

density, and intensity across scales (Figs. 5 and 7, Table 2). The observed variations of density and intensity are predictable 

and can be described by a general power-law function, the exponent of which is characteristic of each orientation set (Fig. 7; 

Table 5). Even though the single-scale cumulative length distribution for each orientation set can be best approximated by 

scaling laws other than power-law (Table 3), the multiscale cumulative length distribution is best approximated by a power-395 

law scaling relationship (Fig. 6b; Table 5). Again, each orientation set is characterized by its own power-law exponent (Fig. 

6b; Table 5), which differs slightly from that computed for the entire lineament network. 

Some lineament sets display similar trends of variation of the relative abundance and intensity, such that they can be grouped 

into two main set types (Figs. 6b, 9; Table 5): (1) Type A includes Sets 1, 2 and 3, characterized by comparable P20 and P21 

variation trends across scales ( ≈ 1.90;  ≈ 0.95) and length distributions (≥; (2) Type B includes Sets 4 and 5, 400 

characterized by comparable P20 and P21 variation trends across scales ( ≈ 1.60;  ≈ 0.70) and length distributions (<. 

This classification into Type A and B lineament sets is not directly reflected in the CoV-V* diagrams (Fig. 8a-b), the latter 

rather suggesting a scale-dependent organization of spacing for each lineament set.  

Therefore, the observed density/intensity variation and spatial organization trends indicate the occurrence of a hierarchical 

(scale-dependent) organization of lineament sets within a network presenting overall scale-invariant geometrical properties 405 
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(e.g., Le Garzic et al., 2011). In this hierarchy, Type B lineaments represent the higher-order structures, controlling the 

geometrical properties of the network at the regional scale (Fig. 9d-e). Type A lineaments represent lower-order structures 

and control the geometrical properties of the network at the local-to-outcrop scale (Fig. 9d-e).  

At the smallest investigated scale, the homogeneously spaced, WNW-to-NW-striking Type B lineaments (Fig. 9d-e) 

dominate the network. These lineaments are characteristic of – and predominant over – the whole of onshore western and 410 

southwestern Norway (Gabrielsen et al., 2002; Gabrielsen and Braathen, 2014; Tartaglia et al., 2022), as well as offshore 

(Preiss and Adam, 2021). The power-law exponent for Type B lineaments ( < 1.7) suggests that long lineaments represent a 

substantial part of the overall lineament population. These observations also suggest that Type B lineaments probably result 

from the homogeneous distribution of deformation at the regional-scale, while still representing localized zones 

accommodating significant deformation at the outcrop-scale, when compared to Type A structures (Ackermann et al., 2001). 415 

Therefore, these lineaments probably represent major fractures and normal fault zones formed and repeatedly reactivated 

during the prolonged brittle tectonic history of the Rolvsnes granodiorite (Ceccato et al., 2021a; Preiss and Adam, 2021; 

Scheiber and Viola, 2018; Viola et al., 2016). The schematic representation of lineaments in Fig. 9d-e highlights an 

heterogeneous distribution of Type B lineaments, which is not captured by the statistical analysis of spacing heterogeneity. 

Indeed, the Rolvsnes granodiorite can be subdivided into several domains of the lineament maps where either Set 4 or Set 5 420 

lineaments are predominant at the regional scale (“Set 4-5 domain” – grey and dashed transparent areas in Fig. 9d-e). These 

domain-type distribution of regional lineaments were already reported by Scheiber and Viola (2018). At the largest analyzed 

scale, the lineament network is mainly dominated by random-to-clustered, NNW-SSE to NE-SW-striking Type A lineament 

sets (Fig. 9d-e). Accordingly, the general power-law exponent ( ≥ 2) suggests that, among Type A lineaments, short 

lineaments represent a significant part of that population, probably resulting from an incipient stage of distributed faulting 425 

and deformation accommodation (e.g., Ackermann et al., 2001). 

 

5.2. Analysis of reliability, biases and limitations of the scaling laws 

The scaling laws described here have several limitations in their applicability related to: (i) occurrence of different 

orientation sets; (ii) network heterogeneity at different scales; (iii) analytical biases. 430 

5.2.1. Reliability and biases behind orientation set definitions 

The lineament sets defined by this study are grouped in classes based on their azimuthal orientation. As such, they may or 

may not share a genetic relationship. However, field analyses (Scheiber et al., 2015, 2016; Scheiber and Viola, 2018) have 

demonstrated the occurrence of systematic sets of fractures, genetically related in terms of chronology, tectonic phase, and 

orientation, which can be identified from remote sensing techniques. Thus, we assume that the identified orientation sets 435 

effectively represent groups of genetically correlated fractures (see below, Section 5.3).  
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The lineament orientation reported by the 1:100 rose diagram differs significantly from the orientations of all other diagrams 

(Fig. 5). Even though the number of lineaments interpreted from UAV-drone imagery is statistically significant (NLin = 930), 

the N-S- trending outcrop exposure, its 3D topography, and the location of the exposed area along a major fault zone 

(Ceccato et al., 2021b,a) are such that it is necessary to question whether the obtained results are truly representative of the 440 

larger-scale lineament network. The observed variations of density, intensity, and relative abundance of orientation sets 

across scales could be affected by several analytical and interpretative orientation-dependent and classification biases. 

First of all, under-sampling of specific lineament orientations during manual interpretation may be due to (Scheiber et al., 

2015): (i) interpretative biases of the operator; (ii) changes in resolution of the digital representation of the terrain (DTMs 

and orthophotos) with the changing scale of observation; (iii) constant direction of the light source adopted for the LiDAR 445 

DTM hill shading (from NW in our study). The change in resolution would affect equally each orientation set, thus 

maintaining a constant relative abundance across scales. Likely, constant direction of the light source may affect the 

detection of lineaments at specific orientations, but systematic effects have not been identified by previous studies (Scheiber 

et al., 2015). Also, the topography, surface extension, perimetral shape and exposure of outcrops with rough topography 

(such as the GFZ outcrop analyzed here at 1:100 scale) might affect the exposure and detection of specific lineaments and 450 

thus orientation sets – some sets may be more visible than others. In particular, gently dipping fractures or fractures parallel 

to the surface of the outcrop might be underrepresented. Moreover, rose diagrams only report the number of lineaments, and 

do not consider their spatial persistence (length), such that fractures related to the main GFZ and expected to be dominant at 

the local scale might be represented by very few, but longer lineaments. Thus, the small number of lineaments can be diluted 

and obscured by the large number of short lineaments related to background fracturing.  455 

This notwithstanding, by considering the relative abundance of orientation sets retrieved only from the 1:5,000; 1:25,000 and 

1:100,000 lineament maps, we can still observe the relative decrease of Sets 1, 2, 3 along with the increase of Set 5 

lineaments at progressively smaller scales of observation (Fig. 4b). This suggests that the observed variation trends reflect an 

effective variation in relative abundance of lineaments across scales and represent a real characteristic of the lineament 

network. 460 

5.2.2. Network vs. orientation set scaling laws 

The studied lineament network exhibits some general power-law relationships describing the multiscale behavior of both 

lineament length distribution ( = 1.88), density P20 ( = 1.77) and intensity P21 ( = 0.86) (Table 5). These general power-

law scaling laws may effectively be adopted to retrieve fracture network properties (geometrical properties and permeability) 

at any scale of observation. However, the adoption of a general scaling law for the geometrical properties without taking into 465 

consideration the peculiarity of each orientation set building up the network, may lead to an erroneous extrapolation of the 

analyzed properties. For example, lineament sets exhibit different power-law exponents for density P20 and intensity P21 

distributions, which, in our case study are systematically smaller for Type A sets, and larger for Type B sets than the 

exponent of the network taken as a whole (Fig. 7). Adopting power-law exponents larger than the actual exponent of the 
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individual lineament set would lead to an overestimation of the network properties at larger scales, and vice-versa. In the 470 

case of the Rolvsnes granodiorite lineament network, this overestimation/underestimation could be significant and reach one 

order of magnitude in terms of intensity and density (Fig. 7).  

5.2.3. Spatial organization and scaling limitations 

Field investigations (Ceccato et al., 2021b,a; Scheiber and Viola, 2018) have revealed the highly heterogeneous distribution 

of fractures at the outcrop scale. Most of the identified fracture sets at the outcrop occur with either a clustered spatial 475 

organization or a variable intensity over short distances (50-100 m; Ceccato et al., 2021a). This clearly represents a 

limitation to the acritical extrapolation of the general power-law determined in this study, and thus the lower bound for the 

application of the proposed power-law scaling (Bonnet et al., 2001). Similarly, the “zonal” spatial distribution of Set 4 and 5 

lineaments identified at small scale of observation (see the identified “Set 4 domain” and “Set 5 domain” reported in Fig. 9d-

e) needs to be accounted for when evaluating the upper limit of applicability of the general scaling laws defined here. The 480 

outcrop-scale spatial heterogeneity and the overestimation/underestimation effects due to applying a general power-law 

scaling become relevant when considering the role that different fracture sets may have in the definition of the net 

permeability of a fractured crystalline basement, as highlighted by field studies (Ceccato et al., 2021b,a; Gabrielsen and 

Braathen, 2014; Torabi et al., 2018). 

5.2.4. Analytical biases and statistical methods to overcome them 485 

In the light of the discussion above, it is therefore important to analyze the mapped distributions with appropriate methods 

and to always consider the regional lineament network as composed of different orientation sets, each of which is 

characterized by its own geometrical and scaling properties. Additionally, we need to consider all potential sources of error 

and estimate the analytical/human biases that potentially affect our analyses. 

It is worth noting that, manual fitting of our multiscale distribution slightly overestimates the power-law exponents retrieved 490 

from LSR methods (Fig. Supplement S2). This might be since LSR methods consider the entire distribution, including the 

portions of the distributions affected by censoring and truncation, which are inherently excluded by manual fitting. 

Most published length datasets and the related fitting results have been analyzed qualitatively (e.g., manual multiscale fitting 

or LSR of truncated distributions). Indeed, the review process of similar published datasets (for example, particle size 

distributions) with updated statistical methods has revealed a fundamental mis-fitting of mathematical distributions, and 495 

therefore a fundamental misunderstanding of the mathematical function describing the distribution of the investigated 

geological parameter (Phillips and Williams, 2021). MLE-KS tests have already demonstrated their strength in the analysis 

of fault attribute distributions (Dichiarante et al., 2020; Kolyukhin and Torabi, 2013). In our case, the results of length 

cumulative distributions fitting with MLE-KS tests differ significantly from the multiscale LSR power-law relations reported 

in Fig. 6. Even when the distribution is best approximated by a power-law function (e.g., most lineament sets mapped at 500 
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1:5,000; Table 3), the values of the power-law exponents retrieved from MLE-KS tests ( >2.2) differ from those obtained 

from the LSR fitting of multiscale distributions ( < 2.12). 

Even though we might apply very robust statistical methods for the evaluation of the significance of the results of lineament 

map analyses, we still struggle to accurately quantify the scaling parameters or to define general, statistically robust scaling 

laws. Nevertheless, the first step to improve our accuracy in the quantification of scaling laws and scaling parameters is to 505 

consider and discuss the most important biases and analytical errors that might affect the analysis results and lead to 

deviation from the “natural” scaling laws. 

The observed deviations in curve fitting results (both that of single-scale distributions from the power-law, and that of the 

single-scale power-law exponents from the multiscale ones) are commonly observed in almost all natural fracture networks. 

Remarkable deviations from a power-law scaling behavior have been previously explained as resulting from several causes: 510 

(i) analytical biases (such as truncation and censoring of lineaments; (Dichiarante et al., 2020; Manzocchi et al., 2009; 

Odling, 1997; Yielding et al., 1996); (ii) subdivision of long lineaments into segments (segmentation; Ackermann et al., 

2001; Cao and Lei, 2018; Scholz, 2002; Schultz et al., 2013; Xu et al., 2006); (iii) effectively different scaling properties at 

different scales of observation (Castaing et al., 1996; Le Garzic et al., 2011; Kruhl, 2013).  

Power-law fitting is usually retrieved from short segments in the central portions of a “truncated” cumulative distribution 515 

(e.g. Dichiarante et al., 2020). Truncation and censoring biases may affect large portions (even >50% of data) of the 

cumulative distribution. This would mean that most (>>50% of data) of the analyzed dataset is biased, and thus of little use 

to any kind of statistically significant analysis, such that the related fitting results are not statistically meaningful. The 

multiscale distribution analysis can reveal the overarching scaling law of the fracture network and of each lineament set, but 

the actual values of the exponents of the fitting laws need to be carefully evaluated by also considering the statistical 520 

significance of the analyzed dataset. 

Segmentation of long lineaments into shorter segments may be due to several causes, both introduced into the dataset by 

analytical/interpretative biases, and intrinsically related to the network topology, fracture chronology and geological fracture 

formation processes. Segmentation may result from partial exposure and cover of the fracture network, and it may increase 

the power-law scaling exponent, without affecting the type of scaling-law function (Cao and Lei, 2018). Segmentation may 525 

be related to the progressive growth stages of fault/joint patterns evolving with increasing accommodated deformation and 

faulting maturity from a network composed of completely isolated short fractures to a network formed by a few long, single 

lineaments, through fracture interaction and interconnection (Ackermann et al., 2001; Michas et al., 2015; Scholz, 2002). 

This has been demonstrated to affect both the shape of the mathematical function describing the length distribution 

(exponential vs. power-law), as well as the power-law exponent at a specific scale of observation (Schultz et al., 2013). 530 

However, this may explain the difference in scaling relationships observed during the evolution of a fracture network 

through time but not at different scales of observation. In addition, the subjective choice of tracing single segments 

composing a longer lineament as separate fractures rather than tracing a single, continuous, long lineament, may likely affect 

the cumulative length distributions of the fracture network. Tracing single segments would increase the number of short 
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segments compared to longer segments, at constant P21 intensity, increasing the total number of traced lineaments, and thus 535 

increasing the power-law exponent of the distribution (Xu et al., 2006). This segmentation bias may justify the fact that 

power-law exponents of the LSR multiscale length distributions of each fracture set (Fig. 5b) are systematically smaller than 

those obtained from single-scale MLE-KS tests at 1:5,000 scale. Whether or not this sampling bias may effectively affect the 

mathematical shape of the cumulative distribution would deserve further investigations, which goes beyond the scope of the 

present paper.  540 

Thus, the most plausible option is that the fracture network may effectively present different scaling properties at different 

scales of observations (Kruhl, 2013). Indeed, fault and fracture networks may exhibit a hierarchical organization, which 

inherently implies scale-dependent geometrical properties and spatial distribution of lineaments (Castaing et al., 1996; Le 

Garzic et al., 2011). In fact, this is also consistent with the observed variation of relative abundances of orientation sets 

across scales: each lineament set contributes differently to the overall fracture network geometrical characters and thus the 545 

variation of the relative abundance may also lead to variations in geometrical properties (spatial organization and length 

distributions) at different scales (e.g., Le Garzic et al., 2011).  

5.3. Integration of remote sensing and field observations 

The fracture pattern of the Rolvsnes granodiorite includes three main classes of fractures and fault zones (Scheiber et al., 

2016; Scheiber and Viola, 2018): (i) pre-Permian, ESE-WNW and NE-SW striking mineralized shear fractures and minor 550 

faults; (ii) Permo-Jurassic major normal faults, mainly striking NW-SE and N-S; (iii) Cretaceous fracture clusters striking N-

S to NNE-SSW.  

Smaller normal faults and mineralized shear fractures described by Scheiber and Viola (2018) are subparallel to the 

lineament Sets 2-3-4 defined here. They form the background fracture pattern of the Rolvsnes granodiorite (Ceccato et al., 

2021a). In particular, Set 4 lineaments are subparallel to the ESE-WNW orientation of the (relatively) oldest generation of 555 

fractures identified in the field (Scheiber and Viola, 2018). Indeed, the regional distribution of Set 4 and the geometrical 

characteristics discussed above stress their importance as regional structures accommodating significant deformation through 

the brittle deformation history of the Rolvsnes granodiorite (Scheiber and Viola, 2018). Conversely, NE-SW minor faults 

and shear fractures, subparallel to Sets 2 and 3 lineaments, accommodated only limited deformation, which may be 

compatible with their local-scale distribution and geometrical characteristics (e.g., Ackermann et al., 2001). Permo-Jurassic 560 

normal fault zones are oriented NW-SE to N-S, similarly to our Set 5 and Set 1(b) lineaments. The geometrical characters 

and spatial distribution of Set 5 lineaments suggest their role as important zones of deformation accommodation at the 

regional scale. N-S to NNE-SSW fracture clusters are comparable to Set 1(a) orientations; they are indeed local-scale 

structural features and are inferred to have accommodated limited deformation during Cretaceous rifting of the North Sea 

(Scheiber and Viola, 2018). 565 
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Summarizing, although our lineament classification in Type A and B is certainly an oversimplification of the actual 

complexity of the natural fracture network, it provides valuable information as to the geometrical characteristics of faults and 

fractures and their regional/local importance as zones of deformation accommodation. 

5.3.1. Constraints on the multiscale permeability structure of crystalline basement 

As constrained by field studies, each lineament/fracture set may contribute differently to the bulk permeability of a fractured 570 

crystalline basement block (Ceccato et al., 2021b,a; Gabrielsen and Braathen, 2014; Torabi et al., 2018). The effects of the 

background fracturing of the Rolvsnes granodiorite on permeability is secondary (Ceccato et al., 2021a), it being mainly 

composed of minor sealed faults and mineralized fractures belonging to Set 2-3-4 lineaments. It is the regional scale 

structures, like our Type B lineaments (Set 5; e.g., the GFZ) that effectively control permeability, fluid flow, and reservoir 

compartmentalization at the regional scale (Ceccato et al., 2021a; Holdsworth et al., 2019). Results from in-situ 575 

petrophysical analyses and discrete fracture network modelling of fault zone permeability have shown that these structures 

behave as mixed conduit-barrier for fluid flow, and they are characterized by a strongly anisotropic permeability tensor 

(Caine et al., 1996; Ceccato et al., 2021a). Fluid flow is promoted parallel to the main fault plane, especially parallel to the 

(sub-horizontal) intersection directions of the dominant fracture sets within the fault damage zone, whereas the anisotropic 

permeability of the fault core brittle structural facies buffers cross-fault fluid flow (Ceccato et al., 2021b,a; Tartaglia et al., 580 

2020). Conversely, fracture clusters, comparable to our Set 1(a) lineaments, may represent effective fluid pathways at the 

outcrop scale, acting as preferential conduits for vertical fluid flow within the basement (Ceccato et al., 2021b, a; Torabi et 

al., 2018; Place et al., 2016; Souque et al., 2019).  

In summary, by integrating field and remote sensing data we can improve the conceptual models and their dimensioning in 

an attempt to describe the anisotropic permeability structure of a fractured crystalline basement at different scales (e.g., Fig. 585 

11 of Ceccato et al., 2021b). Our results constrain the heterogeneous structure of a fractured basement block in terms of 

orientation and spatial distribution of permeability. The permeability of the fractured basement at the regional-scale is 

characterized by the occurrence of rhombohedral-shaped compartments (the fault-bounded polygonal domains of Ceccato et 

al., 2021b) that are homogeneously distributed and defined by the higher-hierarchical order Type B lineaments. Their 

extension is determined by the spacing of Type B lineaments, ranging in the order of 500-1,000 m at the regional scale 590 

(Table 4). Fluid flow is promoted along the major fault planes and parallel to the sub-horizontal intersections of fracture sets 

dominant within the fault damage zones (Ceccato et al., 2021a). Within these rhombohedral compartments, permeability is 

heterogeneously distributed at the 50-100 m scale, following the random-to-uniform spacing distribution of lower-

hierarchical order Type A (Set 1b) lineaments (Table 4). At the outcrop scale, these N-S lineaments are represented by 

fracture clusters, which promote vertical fluid flow (Ceccato et al., 2021b,a). 595 

Accordingly, any underestimation/overestimation of spatial distribution and density of the lineaments may deeply affect the 

accuracy of hydrological and petrophysical models of fractured basement blocks at the outcrop and at the sub-seismic 

resolution scale (Bertrand et al., 2015; Le Garzic et al., 2011).  
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6 Conclusions 600 

The fractured crystalline basement of the Rolvsnes granodiorite on Bømlo is characterized by the occurrence of a fractal 

fracture network controlled by a general power-law scaling law for the distribution of fracture lengths. However, detailed 

orientation-dependent analyses have revealed that this first-approximation scale-invariant lineament network is composed of 

lineament sets, which individually exhibit a scale-dependent hierarchical spatial distribution, and parameter variation trends 

with the scale of observation. Different trends of intensity/density variation across scales for each orientation set have been 605 

detected, as well as different scaling laws for length distribution of each orientation set. These results, integrated with field 

observations, suggest that the documented lineament network results from the summation of different geological structures 

(e.g., faults vs. joints, major fault zones vs. incipient minor faults) organized in a hierarchical manner and characterized by 

different geometrical and scale-dependent properties.  

The hierarchical lineament network affecting the Rolvsnes granodiorite controls the anisotropy and directionality of the 610 

permeability structure of the basement at different scales. At the regional scale, the crystalline basement is characterized by a 

rhombohedral pattern of basement compartments bounded by regional fault zones impermeable to cross-fault fluid flow. 

Within these compartments, the permeability structure is controlled by local-scale fracture clusters, promoting subvertical N-

S striking fluid flow.  

Our study allows us to draw some general conclusions about the methods for characterization of fracture network and their 615 

analysis: 

- Firstly, the presented multiscale analytical workflow may represent a valid option for the quantification of large, 

inherently incomplete (due to analytical and subjective biases) lineament datasets. The lineament maps retrieved 

from digital terrain and surface models of the Rolvsnes granodiorite offer very large datasets, which are inherently 

incomplete due to partial exposure and/or incomplete sampling of lineament due to partial exposure, resolution or 620 

human biases. Thus, a statistical approach such as that proposed in this paper is highly recommended when aiming 

to retrieve relevant information from datasets that, for several reasons, are only partially representative for the entire 

fracture network. 

- Detailed orientation-dependent, multiscale analyses of the lineament network can provide the different scaling laws 

and geometrical properties for each constituent lineament set, which can be adopted to improve the detail and tune 625 

the accuracy of permeability models of fractured crystalline basements considering outcrop-scale structural features. 
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- The integration of multiscale length distribution analyses, multiscale intensity/density estimations and multiscale 

description of spatial organization provides useful information for the classification of topographic lineaments as 

different geological structures (e.g., fracture clusters vs fault zones) with specific hierarchy and control on the 

permeability of the fractured basement. 630 
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Tables 

 835 

Table 1. Summary table of the parameters and related nomenclature adopted in this paper. 
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Table 2. Table presenting the orientation data for the identified lineament sets for each scale of observation. Azimuth (°) 

represents the average strike of the manually picked lineaments. Total L represents the sum of the length of all picked lineaments 840 

in each map for each set. 
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Table 3. Summary table of MLE-KS test results on distribution fitting. The Table reports only results of the analyses of datasets 

containing a significant number of lineaments (NLin ≥ ~50). Fitting score: value of the HP parameter obtained from the MLE-KS 845 

tests. Range (UC%): range of Upper Cut values within which the fitting score is maximum for the selected fitting function. Xmin: 

minimum length above which the fitting is performed, corresponding to the lower bound of the Range of Upper Cut values.  
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Table 4. Spacing, CoV and V* statistical parameters. The Table reports the mean (), the standard deviation (S), the 850 

minimum and maximum values of Spacing (S), CoV and V* obtained from scanline statistical analyses. 

 

 

Table 5. Summary table reporting the power-law scaling and the values of the related parameters retrieved from the multiscale 

analysis of cumulative length distribution, lineament density and intensity.  855 
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Figure 1. Simplified geological map of part of the Bømlo Island centered on the Rolvsnes granodiorite overlaying the Digital 

Terrain Model obtained from high-resolution (1 m/pxl) LiDAR survey (counrtesy of Norges Geologiske Undersøkelse). The inset 

shows the location of the study area (red square) and the location of the Utsira High within the North Sea (blue square). The trace 860 

of the exposed Goddo Fault Zone (GFZ) is indicated by the red dashed line. 
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Figure 2. Explanatory figure for the Method section. (a) Example of lineament map retrieved from the analysis of small scale 

DTMs. (b) Schematic representation of power-law, negative exponential and log-normal distributions, each of which defines a 

linear relationship between length L and cumulative number N(l>L) on a log-log, linear-log or log-linear diagram, respectively. (c) 865 

Example of cumulative length distribution, plotted on a log-log diagram, obtained from the analysis of lineament maps explaining 

graphically what the upper cut and lower cut values are. The blue and red circles represent the upper and lower cut values related 

to the checkerboard in (d). The orange segment represents the sub-domain of the cumulative distribution, included between the 

upper cut and lower cut bounds, fitted by the power-law relation identified by MLE-KS tests. (c) Example of checkerboard 

diagram. Each symbol (circle, triangle, square) represents a different fitting function, and each symbol is color-coded according to 870 

the fitting score yielded by the MLE-KS test for the portion of the cumulative distribution delimited by upper and lower cut values 

(plotted on the Y-and X-axis, respectively). The orange square represents the results of the MLE-KS tests performed on the 

distribution subdomain shown in (c). (e) Schematic representation of a virtual scanline and the related diagram showing the 

difference (d values) between the observed lineament distribution and a theoretical uniform (constant) distribution of spacings. (f) 

Box-and-whiskers Coefficient of Variation (CoV) vs. the statistical significance of the coefficient of heterogeneity (V*) diagram 875 

showing the expected ranges for uniform, random, clustered and fractal spacing distributions. The box-and-whiskers (light blue 

for CoV, cyan for V*) report the values of the zeroth (q0), first (q1/4), third (q3/4) and fourth (q1) quartile of the distribution of CoV 

and V* results. The central dot represents the median value of the results distribution (second quartile, q2/4). 
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Figure 3. Lineament Maps produced by manual lineament picking on outcrop orthophotos (a) and DTM from LiDAR surveys (b-

c-d). 
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Figure 4. Results of the box-counting method applied to the lineament maps of Fig. 3. The dashed interpolation curves represent 885 

the results from box-counting analyses of the entire lineament maps for each scale of observation. The gray dotted curve 

represents the results of the box-counting analyses applied to the distribution of the exposed land surface in the Bømlo islands 

archipelago. The solid gray line represents the value of D for the land surface (D = 1.71). The box-and-whiskers represent the 

distribution of the fractal dimension D obtained from the box-counting analyses of selected sub-areas of lineament maps for each 

scale of observation. Encircled dots represent the average value of D obtained from the analyses of sub-areas. The cross marker 890 

represents the fractal dimension D obtained from the analysis of the entire lineament map (lineaments maps and selected sub-

areas are reported in Supplementary Fig. S1, the whole dataset is available at the Online Repository). 
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Figure 5. Rose diagrams (a) and histograms of the relative frequencies (b) of the identified orientation sets at different scales of 895 

observation. 
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Figure 6. (a) Log-log diagram of lineament length L vs. cumulative number of lineaments N(l>L) per unit area showing the 

cumulative length distribution for the whole lineament maps reported in Fig. 3. (b) Log-log diagram as above showing the 900 

cumulative length distribution for each orientation set. 
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Figure 7. Lineament density (P20) and intensity (P21) variation across scales for each orientation set (Set 1 to 5) and for the entire 

lineament network (Total). 905 

 

 

Figure 8. Box-and-whiskers plot reporting CoV-V* values quantifying the spatial organization of the orientation sets 

identified in the lineament map at (a) 1:5,000; (b) 1:25,000; and (c) 1:100,000 scale.  

 910 
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Figure 9. Schematic summary of the results and interpretations for the Rolvsnes granodiorite case study. (a) Rose diagrams of the 

orientation of lineaments at different scales (1:5,000; 1:25,000; 1:100,000) with the classification into Type A (Sets 1, 2, 3) and B 

(Sets 4, 5) lineaments. (b) Schematic log-log diagram showing the observed general trends of P20 and P21 variations with scale. The 

values of  and  exponents are reported for the entire lineament network (grey dashed line), Type A (orange line) and Type B 915 

(light blue line) lineaments. (c) Schematic log-log diagram showing the observed general scaling laws retrieved for the cumulative 

length distributions. The values of the exponent  are reported for the entire lineament network (grey dashed line), Type A 

(orange line) and Type B (light blue line) lineaments. (d) Schematic representation of the lineament distribution at 1:5,000 scale. 

The reported lineaments are redrawn from the 1:5,000 lineament map and represent the spatial organization observed within the 

Rolvsnes granodiorite. (e) Schematic representation of the lineament distribution at 1:25,000–1:100,000 scales. The reported 920 

lineaments are redrawn from the 1:25,000–1:100,000 lineament maps and represent the spatial organization mapped on the 

Rolvsnes granodiorite. Note the clustered organization of Set 2 lineaments and the two domains (highlighted by transparent grey 

and dashed areas) where Set 4 and Set 5 lineaments are dominant, respectively. 


