
Dear Editor, 
 
Thank you for the opportunity to revise our manuscript. We have addressed all comments from both 
reviewers. In particular, we addressed the issue of the uncertainty of the field data for soil map 
validation.  Please find line numbers corresponding to the revised manuscript for all major revisions. 
 
Kind regards, 
 
Jonathan 
 
 
Response to review by Dr. Colby Brungard (RC1) 
 
Reviewer Comment: 
“I have two concerns with this analysis. My main concern with the research regards the (im)precision of the 
validation data. The methodology that was used to evaluate the soil 
map accuracy assumes that there is no uncertainty in the labels of the validation observations (e.g., soil texture or 
rock fragment classes), even though the authors 
recognized the error/uncertainty in field collected observation in section “4.2.1 Sources of 
field sampling error”. I am uncomfortable with this because I feel that not accounting for 
measurement error in the validation data has the potential to obfuscate the ‘true’ accuracy 
of the soil maps (either higher or lower than is presented).” 

Author Response: 
We appreciate Dr. Brungard’s comment and he makes a valid point. We agree that the potential uncertainty 
associated with field estimated texture may bias the accuracy assessment. In response to this issue we conducted 
a global meta-analysis of field-based soil texture estimation uncertainty. We added a new table (Table 2) 
presenting these findings and used the results from this analysis to estimate the potential uncertainty with using 
our field-based evaluation dataset. We also added new sections to the methods, results, and discussion specifically 
focusing on this issue. 
 
However, we also feel that this issue is not confined to field collected validation data. It is often assumed that 
laboratory measured soil properties have both high accuracy and precision, and therefore any inaccuracy or 
imprecision is ignored. However, a recent interlaboratory comparison found considerable variability in lab 
measured soil property values among labs. For example, 6th FSCC interlaboratory comparison found that 
percent clay values had a coefficient of variation of 32% among 50 participating laboratories (Cools and 
Vos, 2010). Furthermore, our work found significant variation in soil texture measurements among 3 
different soil laboratories in Ghana, with a CV of 47% for clay based on 10 soils with contrasting textures 
(2020, unpublished data). Such high imprecision complicates the ability to identify a true or standard 
value that can be used to evaluate accuracy. Based on these interlaboratory comparisons, it would be 
incorrect to simply assume a single laboratory-based texture class measurement represents the ’Gold 
Standard’ for analysis of soil map accuracy. In fact, a recent study by Vos et al. (2016; 
10.1016/j.geoderma.2015.12.022) that assessed the variance of field-based texture class 
estimates and their precision in determining a soil's particle size distribution, found that between 57-
72% of deviations between field and laboratory derived texture estimates was due to laboratory 
measurement uncertainty and the fact that only texture classes were estimated in the field and not 
mass fractions. 
So how do we deal with multiple sources of uncertainty? One approach is to determine the minimum 
level of measurement precision needed to inform a particular outcome. While soil particle size mass 



fractions (high measurement precision) are often required for soil modeling, soil texture classes (low 
measurement precision) are generally sufficient for on-farm soil management. Thus, using soil texture 
classes lowers our level of measurement precision which in turn minimizes the different sources of 
uncertainty (e.g., lab, field). Our use of the GAEZ soil suitability ratings and classes further lowered the 
measurement precision, which in turn further minimized the inherent uncertainty associated with lab 
and field-based measurements. We have added additional text to the discussion in section to expand on 
these points. 
 
 
Reviewer Comment: 
“The authors do attempt to account for the accuracy of the validation observation class labels using the results of 
several authors (Line 479) to argue that since sandy soils are often the most accurately identified and since most of 
the soils in the study are sandy 
then the validation observations are probably okay. The generalization of soil classes into 
soil suitability classes also helps address this issue; however, using the numbers provided 
by the authors may suggest that this is not an entirely robust assumption. For example, 
Salley et al., indicates that field technicians (and I assume that field technicians, not 
trained soil scientists collected the validation observations) are only able to correctly 
identify the true textural class 41% of the time (a rather dismal number), but that this 
improves to 78% if the adjacent textural class is accounted for. This suggests that the 
accuracy of the validation observations might be expected to be between 41% and 78%.” 
 
Author Response: 
We agree with Dr. Brungard that a 41% correct classification rate is rather dismal, but it is incorrect to assume that 
the 59% misclassification is solely attributable to field technician. We acknowledge that a large portion of this error 
is likely attributable to the field technician but we must also acknowledge that the laboratory measurements also 
have inherent inaccuracy. Widening the classification criteria to also include adjacent textural classes greatly 
improved the accuracy reported by Salley et al., (2019), and we also include this type of comparison in our analysis. 
Our study goes a step further by further generalizing our classification criteria by using the GAEZ soil suitability 
ratings and classes. Although this type of analysis was not evaluated in Salley et al., one would expect a further 
increase in accuracy well above 78%, and thus serves as a more reliable metric for accuracy evaluation given the 
inherent uncertainty associated with each data type (i.e., field vs. lab). See additional text addressing this issue on 
lines 461-474, lines 604-620, and lines 668-725. 
 
Reviewer Comment: 
“A more in-depth, if rather crude, analysis* however suggests that the true accuracy of the 
class labels for the validation dataset is between 64% and 82%. Thus, if the true accuracy 
of the validation observations is 82% then even if the soil maps were 100% accurate 
(which they are not) then the maximum accuracy that the soil maps could achieve would 
be 82%. This suggests that the reported accuracy metrics are not robust making a clear 
accuracy assessment difficult. Because the uncertainty of class labels in the validation 
data is not accounted for in the analysis I feel that the methods are not appropriate for 
this type of analysis.” 
 
Author Response: 
We appreciate Dr. Brungard’s analysis and have expanded on this approach to quantify field texture estimation 
uncertainty. We also expand upon two important points: 

1. It is incorrect to assume that laboratory data is 100% accurate and that any difference between field and 
laboratory data is due to inaccuracy in field measurements. In the best-case scenario, field and laboratory 
data disagree in only 18% of cases, however based on previous work (including our own), some portion of 
this error is attributable to laboratory uncertainty. Previous studies have shown that certain soils, due to 



their minerology or chemical make-up, are not well-suited for laboratory particle-size analysis and field-
based estimates may be considered more reliable than lab data (Landon, 1988). For example, with highly 
weathered oxide-rich tropical soils traditional laboratory techniques often underestimate clay 
content due to the soil’s resistance to dispersion (Silva et al., 2015). These types of highly 
weathered and/or oxide rich soils (Plinthisols, Ferralsols, Acrisols) are common throughout our 
study area. 

2.  Second, the calculated accuracy range of 64% -82% for validation observations is based on an 
exact matching criteria. By widening the classification criteria to include adjacent classes or by 
using the GAEZ soil suitability ratings, the accuracy range for the validation observations will 
likely increase above the 64-82% accuracy which we feel is an acceptable level of accuracy given 
the inherent uncertainty associated with either type of validation data. 

Additional text addressing this issue was added on lines 668-725. 
 
Reviewer Comment: 
“There are several methods that might be employed to address the imprecision of the 
validation observations such as: 1) selecting a subset of the validation observations and 
running these through a lab (e.g., hydrometer) to verify class labels or 2) Use a method 
that accounts for measurement uncertainty (though I will admit to not knowing of a 
method to do such a comparison without retreating to a statistics textbook).” 

Author Response: 
We appreciate these suggestions and agree that future work is needed to address issues relating to the uncertainty 
of validation data. But more work is needed to quantify the uncertainty of the validation data, both field and lab 
data. There needs to be greater recognition of the uncertainty associated with laboratory-based soil particle size 
analysis, which for certain soils can be quite high. Therefore, we feel that Dr. Brungard’s first suggestion does not 
solve the issue of validation uncertainty. We agree with his second suggestion about using a statistical method that 
accounts for measurement uncertainty, and while some of the soil maps evaluated in this study contain measures 
of uncertainty that could be used in the validation procedure, this would also require a validation sample set with 
quantified uncertainty that would allow for the calculation of probability distribution functions for both the map 
and validation datasets. Our solution to the uncertainty problem was to (1) estimate field texture estimation 
uncertainty via a meta-analysis, and (2) base our evaluation on several sets of validation labels with increasing 
degrees of generality (i.e., soil texture class, soil texture groups [includes adjacent classes], GAEZ suitability). While 
the ‘true’ accuracy of each set of validation labels is unknow, we can infer (as Dr. Brungard did for the soil texture 
class labels) an estimate of accuracy based on previous studies. As we stated earlier, it is important to understand 
the level of precision required to address a particular outcome, and in the case of agricultural management of 
rainfed maize, the GAEZ suitability labels provide an appropriate level of precision and inferred accuracy.  While 
the accuracy of validation labels based on soil texture classes may be too low (64% -82%) to reliably evaluate the 
map sources, we feel that the GAEZ labels are sufficiently accurate and corroborate the results from the other 
labels. 

Based on Dr. Brungar’s comments we have added additional analysis, a new table (Table 2) and 
additional text in the methods, results, discussion and conclusions to address these issues  

Reviewer Comment: 
“I am also uncomfortable with the conclusions. The authors state “results from this study highlight the 
need for on-site verification technologies… that can constrain the… site-based soil map predictions”. I 
generally agree with this, but feel that this conclusion focuses too much on such technologies. What 
about improving the soil maps? If soil maps were 100% accurate then they would be a very useful source 
of soil information and we wouldn’t need on-site verification technologies. I realize that no soil map (or 
any map) will every be 100% accurate, but the authors should consider this in their conclusions. Also, 



what about training more soil scientists? A broader cadre of local professional soil scientists could 
provide such site-specific information and might be more familiar with local soils and issues.” 
 
Author Response: 
We thank Dr. Brungard for this insightful comment and we fully agree with these additional suggestions 
for improving the utility of soil maps for farm scale management. We have revised our conclusions to 
include these valuable suggestions (lns. 690- 706). 

 

 

Technical Corrections: 
1. Figure 5 and 5. A-d. I believe this would be much more helpful if these were to show the 

resampled depths instead of the original depths. Also, do i-n show M2F observations at the 
pedon scale or farm scale? 
Response: We have updated this figure to show resampled depths for the original maps. Panels 
i-n show M2F observations at point-support. This has been added to the figure caption. 
 

2. iSDAsoil soil maps are generated from a suite of ensemble models. My own application of 
ensemble modeling techniques suggests that they can miss the extreme values (although this 
observation was likely a result of the specific ensemble method that I tested). It might be more 
informative to use the predictions from Hengl et al 2015. 
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0125814 If the authors want 
to test ALL available maps for Ghana, then this would be good to include, but I leave this to the 
authors discression. 
Response: This is an interesting finding regarding ensemble modeling and while we agree it 
would be interesting to test for any differences between SoilGrids v1 and v2, our goal was to 
test current soil map data sources likely to be used for soil decision making. Since SoilGrids v2 
supersedes v1, we only included the most recent data. We added additional text to the 
discussion addressing this issue in section 4.2.2 on lines 766-771. 

“In predictive soil modelling, model error is composed of two components: bias, which 
relates to model accuracy; and variance, which relates to model precision or uncertainty. 
SoilGrids and iSDA maps both employ ensemble modelling approaches to calculate spatial 
predictions of model uncertainty (SoilGrids: Quantile Random Forest; iSDA: Ensemble 
Bootstrapping). Ensemble models are effective at increasing model accuracy and are often 
implemented using some form of model averaging (Polikar, 2012). Assuming the different 
soil models produce different errors at each location, averaging the model outputs 
generally reduces the error (model bias) by averaging out the error components. A 
downside of model averaging is that it has a smoothing (variance-reducing) effect which 
can remove valid information from the outer ranges of the soil property distribution. There 
are many cases where the ability to predict these ‘extreme’ values is crucial, for example, 
at the smallholder farm scale where the risk or cost associated with incorrectly identifying 
soil constraints can be high for cash-constrained farmers. Depending on the soil 
management scenario, there are financial costs associated with both false negative results 
(i.e., failure to detect constraint – Type 2 error; e.g., failure to lime a very strongly acidic 
soil before applying fertilizer) and false positive results (i.e., false detection of constraint – 



Type 1 error; e.g., applying lime to a neutral soil). While the mean or median predicted soil 
values may not indicate the presence of soil constraints, spatial predictions of model 
uncertainty can be used to determine where constraints have a predicted probability of 
occurrence. Future research is needed to evaluate information on soil map uncertainty and 
how this information can be effectively communicated and incorporated into smallholder 
agronomic decision making.” 

 
 

3. Please explain the balanced error rate in more detail. Is this (UA + PA)/2 or some other equation? 
What does this mean? Please also clarify that the error rate seems to be an error metric with the 
users and producer’s accuracy rates are accuracy metrics. 
Response: The balanced error rate (BER) is the average of the errors in each property class. This 
includes both the errors of omission or false negative rate (FNR) (i.e., [False negative/(False 
negative + True positive)])) and the error of commission or false positive rate (FPR) (i.e., [False 
positive/(False positive + True negative)]). BER is calculated as: ½(FPR +FNR). BER is useful 
because it accounts for both types error, Type I and II errors. When datasets have high class 
imbalance the overall error rate is not very informative. Using the average of the FNR and FPR, 
BER can account for problems of class imbalance, where models that overpredict the dominant 
class will receive a higher BER. We added additional text to the methods on lines 302-318: 

“The balanced error rate (BER) is the average of the errors in each property class. This 
includes both errors associated with a failure to predict the correct class (false negative or 
Type II error), as well as the error associated with allocating a sample or site to the wrong 
class (false positive or Type I error). BER is calculated by taking the average of the false 
negative rate (FNR) (i.e., [False negative /(False negative + True positive)]) and the false 
positive rate (FPR) (i.e., [False positive/(False positive + True negative)]): 

BER = (FPR +FNR)/2,         (1) 

Using the average of the FNR and FPR, BER is sensitive to problems of class imbalance, where 
models that overpredict the dominant class will receive a higher value (e.g., close to 1.0).The 
balanced error rate (BER) is the average of the errors in each property class.” 

 
 

4. The paragraphs from lines 255-265 seem duplicated. Please revise. 
Response: We have revised this section. 

 
5. Please put the discussion of SQ ratings and associated equations in their own paragraph as it is 

confusing as currently written. 
Response: We have separated this section into its own paragraph. 

 
6. Line 339: How do you know the delineation procedure captured 48% of the fields area if you do 

not have farm field maps? (the lack of such maps was stated earlier as the justification for the 
delineation proceedure). 
Response: It is correct that we do not have delineated farm boundaries but we do have two 
pieces of information: (1) the total farm area, and (2) the locations of three points within the 



farm boundary. By creating a convex hull (in our case a triangle since we only have three points) 
and applying a narrow buffer (10m), we were able to delineate an area within each field. Based 
on the known area of each field we were then able to compare our delineated area to the total 
field area, which on average captured 48% of the fields area. This is described in the methods 
section (2.5 Soil map accuracy assessment at field-support). 

 
7. Line 509: ... of the point soil data... 

Response: Correction was made. 
 

8. Line 525: scale does not really translate well to discussing gridded variables. I think that the 
neighborhood size, or distance-over, is a more accurate description. Also, maybe a salient point 
to this discussion: the source of the geospatial source data (DEM’s in particular) is important. A 
30m DEM from contours will be much different than a 30m DEM derived from upscaled LiDAR. 
Response: For gridded variables scale refers to both the spatial extent or neighborhood size and 
the grid resolution. We have clarified this point. We agree that the accuracy and precision of the 
source data is important but our main point here is that increasing spatial resolution (i.e., grid 
size) doesn’t automatically produce a more accurate map due to scaling effects.  
  

9. Please check the following sentences for grammatical errors: 48, 89, 91, 308, 331, 369, 370, 591 
Response: Grammatical errors have been corrected. 

 
10. Line 153 should be grouped with the preceding paragraph. 

Response: We have incorporated this change. 
 

11. Please check references. Lines 169 and 172 are missing, also Ritchie and Roser does not seem 
complete. 
Response: References have been added and updated 

 
12. Line 230, what about user’s accuracy? 

Response: We have corrected this omission. 
 

 

 

  



Response to anonymous reviewer (RC2) 
 
Reviewer Comment: 
“This manuscript compares soil maps (conventional and digital soil mapping) in terms of their prediction 
accuracies and their accuracies for soil suitability assessment for maize farms across Ghana. It aims to assess 
whether these soil maps could provide useful information for guiding farm management. This is an important 
question, and the manuscript is well written and provides a useful analysis, finding limitations in the ability of the 
soil maps to predict constrained soils. I have a few suggestions and queries below, but overall would think it could 
be published with some revisions.” 
 
“Section 2.5 describes field-support validation of predictions and I like the fact that this is being done, but am not 
convinced by the details of how it has been applied. The described process seems to be (for each field) first 
inferring a field boundary, second extracting from the soil map the predictions from all pixels within the field 
boundary, and third averaging these predictions; the result is compared with the average of the three sampled 
soil data from the field. But given your field-support validation data here are the average of three known points, 
shouldn’t your associated prediction be the average of the predictions (as extracted from the soil maps) at these 
three same points? This could still be referred to as ‘field-support validation’, but would be comparing like with 
like, rather than two slightly different definitions of ‘field support’. (While I don’t expect this to make a huge 
difference to your results, I think it would be a more justifiable approach.) 
 
Author Response: 
The reviewer poses an important question about how to conduct a field-support validation. The intent of 
validation at a field-support is to estimate and evaluate the average soil property values within a field. Thus, 
validation samples are collected that represent the field average, and the map accuracy is evaluated within the 
entire area contained within the field.  Since soil maps have different spatial support (ISDA=30m, 
SoilGrids=250m), the number of predicted values intersected by a field will vary, but the goal is to obtain an 
average predicted value for each field. If we were to only take the predicted value at each validation point, the 
average estimated field value would not reflect the average value predicted by the map. The figure below (Fig.1) 
illustrates this, which shows a map of predicted clay percentage (0-10 cm) from the ISDA map in southern 
Ghana. The three small black circles are validation point that have a clay surface texture (0-10 cm). If we were to 
only take the pixels that intersected our validation points, we would conclude that the map and the validation 
points agreed at the field-scale. Whereas, when we take the average value for the field (i.e., all pixels within 
field, all points within field), we see that the map predictions are not in agreement with the validation data. For 
additional clarification on conducting validation at different spatial support, we direct the reviewer to the 
following papers: https://bsssjournals.onlinelibrary.wiley.com/doi/full/10.1111/sum.12694,  
http://dx.doi.org/10.1016/j.geoderma.2014.11.026. 
 
  



 

 
Reviewer Comment: 
“Line 237: Is the Balanced error rate the (unweighted) average of the Producer’s accuracies for the classes? I’m 
not convinced/sure about what this measure is saying – if there is a class (e.g. silty clay/sandy clay) with very few 
data (presumably because it is quite rare in the region of interest), won’t the balanced error rate place too much 
importance on predictions of this class? Perhaps add a sentence after line 237 to clarify why use the balanced 
error rate. (I could see why a BER as a weighted average of PA values could be useful, for instance where you 
know that for some reason some classes were over-represented in your data, and had some knowledge of what 
the real proportions of the classes across the region of interest should be – but to use equal weights in the 
averaging seems to me to be saying that your initial expected proportions were equal for all classes, which seems 
unlikely to me.)” 
 
Author Response: 
The balanced error rate (BER) is the average of the errors in each property class. This includes both 
errors associated with a failure to predict the correct class (false negative or Type II error), as well as the 
error associated with allocating a sample or site to the wrong class (false positive or Type I error). BER is 
calculated by taking the average of the false negative rate (FNR) (i.e., [False negative /(False negative + 
True positive)]) and the false positive rate (FPR) (i.e., [False positive/(False positive + True negative)]): 
BER =  ½(FPR +FNR). BER is useful because it accounts for both types error, Type I and II errors. When 
datasets have high class imbalance the overall error rate is not very informative. Using the average of 
the FNR and FPR, BER can account for problems of class imbalance, where models that overpredict the 
dominant class will receive a higher BER. We added additional text to the methods on lines 302-318: 

Figure 1. ISDA map of predicted clay percentage (0-10 cm). Small 
black circles show location of validation sites with clay surface 
textures (0-10). For reference, a clay textural class requires >=40% 
clay. 



“The balanced error rate (BER) is the average of the errors in each property class. This 
includes both errors associated with a failure to predict the correct class (false negative or 
Type II error), as well as the error associated with allocating a sample or site to the wrong 
class (false positive or Type I error). BER is calculated by taking the average of the false 
negative rate (FNR) (i.e., [False negative /(False negative + True positive)]) and the false 
positive rate (FPR) (i.e., [False positive/(False positive + True negative)]): 

BER = (FPR +FNR)/2,         (1) 

Using the average of the FNR and FPR, BER is sensitive to problems of class imbalance, where 
models that overpredict the dominant class will receive a higher value (e.g., close to 1.0).The 
balanced error rate (BER) is the average of the errors in each property class.” 

 

 
Reviewer Comment: 
“I wonder if another test might be helpful to provide further context about the quality of predictions from the 
maps. With the dataset that has 3 points sampled in each field, you could test how accurate predictions would be 
if you used just one of the sampled points from the field as ‘representative’ of the field, and evaluated how 
accurate this was at predicting the two other points in the field (to evaluate how good management would be 
based on a single ‘representative’ sample from the field). If there is a lot of within-field variation, even this might 
give poor prediction accuracies. This might add further insight into what is written on line 562 – “…fail to meet 
the accuracy requirements…” – would the use of a sample from the field also fail?” 
 
Author Response: 
The reviewer poses an interesting idea and we agree that in-field variability is an important consideration for 
field sampling but this was beyond the scope of this project. This would be an interesting analysis for future 
work. 
 
Reviewer Comment: 
“Line 431: I can’t see the numbers you are referring to here in Table 2, they seem to me to be a lot higher than this 
– from my interpretation of the numbers in Table 2, it seems that OA-adj was over 80% in many cases (eg iSDA, 
OA-adj, soil texture: 0.9). Also check the numbers on line 593, and check the numbers throughout.” 
 
Author Response: 
Yes, these numbers were incorrectly reported. We have reviewed and corrected all numbers reported in the text. 
A new table was added, so Table 2 is now Table 3. 
 
Reviewer Comment: 
“Regarding everything being predicted as ‘no constraint’ (eg by iSDA, Fig 8) – I think that predicting the more 
extreme values of soil constraints is always going to be difficult, and the ‘expected value’ as extracted from the 
soil map will rarely give the extreme values – I guess a bit like predicting rare events. A possible point for 
discussion is that you could use the map of predictions + its uncertainty to give (for each pixel/prediction location) 
a probability of constraint, and this could be a more appropriate way of informing management decisions. 
(Although this would very rarely be done in practice, could note that tools to implement this type of analysis of the 
soil map + its uncertainty map could be something worth looking at in future?)” 
 
Author Response: 



This is a very good point and the idea to use the prediction uncertainty is a good one. We agree that 
predicting the extremes can be challenging, especially when dealing with global soil maps. However, the 
risk or cost associated with incorrectly identifying these soil constraints can be extremely high at the 
smallholder scale. There are financial costs associated with both false negative results (i.e., failure to 
detect constraint – Type 2 error) and false positive results (i.e., false detection of constraint – Type 1 
error). The uncertainty information could help with this type of risk analysis. We agree that this type of 
analysis is worth looking at in the future and we have added this point to the discussion on lines 766-
782: 

“In predictive soil modelling, model error is composed of two components: bias, which relates to 
model accuracy; and variance, which relates to model precision or uncertainty. SoilGrids and iSDA 
maps both employ ensemble modelling approaches to calculate spatial predictions of model 
uncertainty (SoilGrids: Quantile Random Forest; iSDA: Ensemble Bootstrapping). Ensemble models 
are effective at increasing model accuracy and are often implemented using some form of model 
averaging (Polikar, 2012). Assuming the different soil models produce different errors at each 
location, averaging the model outputs generally reduces the error (model bias) by averaging out the 
error components. A downside of model averaging is that it has a smoothing (variance-reducing) 
effect which can remove valid information from the outer ranges of the soil property distribution. 
There are many cases where the ability to predict these ‘extreme’ values is crucial, for example, at 
the smallholder farm scale where the risk or cost associated with incorrectly identifying soil 
constraints can be high for cash-constrained farmers. Depending on the soil management scenario, 
there are financial costs associated with both false negative results (i.e., failure to detect constraint – 
Type 2 error; e.g., failure to lime a very strongly acidic soil before applying fertilizer) and false 
positive results (i.e., false detection of constraint – Type 1 error; e.g., applying lime to a neutral soil). 
While the mean or median predicted soil values may not indicate the presence of soil constraints, 
spatial predictions of model uncertainty can be used to determine where constraints have a 
predicted probability of occurrence. Future research is needed to evaluate information on soil map 
uncertainty and how this information can be effectively communicated and incorporated into 
smallholder agronomic decision making. “ 

 
 

 


