
Response to Manuscript # egusphere-2022-243 “Predictability of rainfall induced-

landslides: The case study of Western Himalayan Region” by Swadhi Ritumbara 

Das and Poulomi Ganguli  

We would like to thank the reviewer for the valuable comments and for providing us with an 

opportunity to improve our manuscript. In this response document, we address each of the 

comments raised by the reviewer. Our responses are embedded within the comments (in 

BLACK) in BLUE. The new additions to the revised manuscript are embedded below in 

BROWN. 

Response to Reviewer 2 Comments 

The paper is well written but could benefit from clarifications and better explanations of some 

of the steps. In my opinion, there are major issues in the methodology which need to be 

addressed and improved before publication. 

We value the reviewer's positive comments on our work. We have made our sincere efforts to 

revise the manuscript in light of reviewers’ comments. We have addressed each of comments 

raised by the reviewer in the subsequent section. 

 

Comment 1.1: The authors consider a 30d window to determine what the triggering rainfall is 

and select the one with the maximum intensity. This is critical for a couple of reason. First, 

there is no justification for the selection of 30d and it seems unrealistic that a certain rainfall 

event could trigger a landslide 20 or so days after. Furthermore, let’s say you have a landslide 

at day 40 and one at day 50. You could identify as triggering for landslide 40d the rainfall event 

at day 15. Now, for the landslide at day 50 you might identify a rainfall at day 35. That would 

mean implying that the rainfall event at day 35 was not responsible for the landslide 5d after 

(the one happening on day 40) but was for the one happening at day 50. This is just a practical 

example of how the methodology could fail. 

Response: We appreciate the reviewer’s feedback. We would like to point to the reviewer that 

the review of the literature shows that 3-, 5-, 7-, 10-, 15-, 30-day antecedent rainfall has 

significant influence in triggering rain-induced landslides (Kim et al., 1992; Pasuto and 

Silvano, 1998; Chleborad, 2003; Heyerdahl et al., 2003; Johnston et al., 2021). Further, an old 

rainfall event typically displays less impact in triggering landslides than the recent one (Vallet 

et al., 2015). The choice of a 30-day time window is based on an antecedent soil moisture 

condition prevalent over a catchment that may trigger flash floods followed by landslides 

owing to compound occurrences of extreme rain on already saturated soil (Bertola et al., 2021). 
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The review of the literature shows efforts to calibrate antecedent rainfall in triggering landslides 

and found that antecedent rainfall conditions up to 30-day are sufficient to trigger rainfall-

induced landslides (Marques et al., 2008; Khan et al., 2012; Lee et al., 2014; Johnston et al., 

2021). Pasuto and Silvano (1998) found the best correlation between landslide frequency and 

15-day antecedent rainfall. Kanungo and Sharma (2014) analyzed that landslides are more 

biased towards antecedent rainfall than daily rainfall and this bias increases from 3 to 30 days. 

Giannecchini et al. (2012) revealed that antecedent rainfall has an important role in triggering 

landslides. This also depends on the type of soil where antecedent rainfall increases the pore 

water pressure in low permeability soils. Dahal and Hasegawa (2008) showed the correlation 

coefficient of antecedent rainfall corresponding to 3-, 5-, 10-, 30-days with daily rainfall and 

confirmed that antecedent rainfall can be considered for modelling shallow landslides. Also a 

study by Abraham et al. (2019) suggest that landslides are more biased towards 40-day 

antecedent rainfall than 30-day antecedent rainfall. Hence in the present assessment, we have 

considered up to 30-day duration for modelling shallow landslides.  

 

Comment 1.2: Previous studies already showed that it’s typically not the strongest intensity 

that triggers landslides. E.g., Staley et al. (2013), looked at debris flow and showed that “there 

were statistically significant differences between peak storm and triggering intensities”, 

confirming that it’s not always the strongest rain to trigger them. While the 30d window might 

be less unrealistic for deeper landslides and for other properties (other than maximum intensity) 

but not for shallow landslides or when looking at maximum intensity. Surely what happens 

days before the landslides is important, but more as a antecedent condition than a triggering 

factor. 

Response: As suggested by the first reviewer, we have already revised our results considering 

mean intensities of rainfall in a 30-day time window preceding the day of landslides. Since 

from the landslide inventory records, we find most of the events in the analyzed location are 

small to medium in nature (see Table 1 in the response letter and Table A1 in the revision), we 

point to the reviewer that the choice of 30-day is sufficient for modelling rain-induced 

landslides. Following Brunetti et al. (2010), we have adopted a frequentist method to determine 

rainfall thresholds for landslides. The methodology adopted is summarized in Appendix section 

(Figure A1) in the revised manuscript. Following this, we derive new threshold curves 

corresponds to exceedance probability of 10%, 15%, 20%, 30% and 50% for at-sites and 1%, 

5%, 10%, 20%, 30% and 50% exceedance probability levels at regional scale (Region 2). The 

associated threshold equations are presented in Tables 2-3. 
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Figure 1 (Fig. S1 in revision): Detailed flowchart of the method followed to plot the threshold curves 

from the best-fit lines. 

 

Table 1*. Details of landslides inventory records as adopted in this study 

Stations Distance 

(km) 

Number 

of events 

Classification of landslides1 Locational accuracy according to 

NASA COOLR database (in km) Small Medium Large Very 

large 

Banihal 6-22 20 1 20 0 0 1-25 

Katra 3-24 21 1 20 0 0 5-25 

Mandi 2-22 15 2 13 0 0 1-50 

Solan 7-22 16 0 16 0 0 5-25 

Dehradun 1-20 12 4 8 0 0 25-50 

Joshimath 1-24 16 2 13 0 1 1-50 

*Table A1 in the appendix section of the revised manuscript.1Landslide classifications are based on the literature 

(Kirschbaum et al., 2015; Juang et al., 2019). 
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Comment 2: The authors decide to use a maximum intensity-duration threshold. That is 

different from both the most used applications: mean intensity-duration ID or total rainfall-

duration ED threshold. For ID, mean intensity is expected to decrease with duration, capturing 

both strong-short events and long lasting, typically less intense, events. For ED, as duration 

increases, you need more overall rainfall, so ED have a positive exponent. Now, there is no 

expectation of a dependency between max intensity and duration, if not only that has events 

become longer (and/or possibly that short events, if they are convective, they have stronger 

intensities, but this would depend a lot on the local climatology). 

Response: Agreed and incorporated as suggested in the revision. In the revised manuscript, we 

have considered the mean rainfall intensities instead of the maximum intensity. Our revised 

analysis showed, a negative exponents for derived power-law relationships for few stations, 

however, yet positive exponents for remaining sites (Figure 2; Fig 10. in revised manuscript). 

However, we would like to point to the reviewer that finally, the regional ID threshold curve 

for region 2 shows a negative exponent (see Figure 3 in the response document; Fig 11. in 

revised manuscript). Tables 2-3 presents derived rainfall ID threshold relations for at-site and 

regional estimates.
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Figure 2. (Figure 10 in revision) Relation between average rainfall intensity (in mm) -versus- duration (in hours) for storms dating from 2007 to 2019 in 

the WHR. The red dashed line represents the best fit line. The circles indicate individual storm events; the circle in green shows antecedent rain events preceding 

30-day before the landslides, whereas squares in brown show precedent rain events before the day of landslides. The dotted-black and cyan line represents threshold 

curves corresponding to 30% and 20% exceedance probabilities respectively. For Katra, only 30% exceedance probability curve is shown due to limited number 

of records available for this station. The equations for empirical ID threshold curves at 10%, 15%, 20%, 30% and 50% exceedance probabilities are presented in 

Table 2 for all at-site locations. 



6 | P a g e  
 

 

Figure 3. (Figure 11 in revision) Regional Intensity (in mm)-versus- Duration (in hours) curve for WHR. The red dashed line represents the best fit line. The 
circles indicate individual storm events; the circle in green shows antecedent rain events preceding 30-day before the landslides, whereas squares in brown show 
precedent rain events before the day of landslides. The lines parallel to the best-fit line show the threshold curves correspond to different exceedance probabilities, 
such as 1%, 5%, 10% and 20% levels. The associated equations for ID threshold equations are presented in Table 3.
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Table 2: Intensity-Duration threshold relationships correspond to different exceedance probabilities  

Stations 10% 15% 20% 30% 50% 

Banihal -* 
    

Katra - - 
   

Mandi 
     

Solan  
     

Dehradun -           𝐼𝐼15 = 0.07𝐷𝐷0.08 
   

Joshimath 
     

*‘-’ shows that threshold relations could not be computed due to the lack of sufficient observations 

 

 

 

 

 

 

 

 

 

 

  𝐼𝐼20 = 0.003𝐷𝐷0.13 𝐼𝐼30 = 0.24𝐷𝐷0.13 𝐼𝐼50 = 0.7𝐷𝐷0.13 

𝐼𝐼10 = 1.09𝐷𝐷−0.16 𝐼𝐼15 = 1.143𝐷𝐷−0.16 𝐼𝐼20 = 1.18𝐷𝐷−0.16 𝐼𝐼30 = 1.25𝐷𝐷−0.16 𝐼𝐼50 = 1.48𝐷𝐷−0.16 

𝐼𝐼15 = 7.43𝐷𝐷−0.59 𝐼𝐼20 = 7.5𝐷𝐷−0.59 𝐼𝐼10 = 7.34𝐷𝐷−0.59 𝐼𝐼30 = 7.64𝐷𝐷−0.59 𝐼𝐼50 = 7.98𝐷𝐷−0.59 

  𝐼𝐼20 = 0.203𝐷𝐷0.08 𝐼𝐼30 = 0.438𝐷𝐷0.08 𝐼𝐼50 = 1.126𝐷𝐷0.08 

𝐼𝐼10 = 1.16𝐷𝐷−0.21 𝐼𝐼15 = 1.213𝐷𝐷−0.21 𝐼𝐼20 = 1.253𝐷𝐷−0.21 𝐼𝐼30 = 1.318𝐷𝐷−0.21 𝐼𝐼50 = 1.445𝐷𝐷−0.21 

 𝐼𝐼15 = 0.06𝐷𝐷0.17 𝐼𝐼20 = 0.14𝐷𝐷0.17 𝐼𝐼30 = 0.26𝐷𝐷0.17 𝐼𝐼50 = 0.584𝐷𝐷0.17 
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Table 3: Regional Intensity-Duration threshold relationships correspond to different exceedance probabilities for the whole WHR 
Regions 1% 5% 10% 20% 30% 50% 

    Region 1* - -     

Region 2 𝐼𝐼1 = 0.795𝐷𝐷−0.14 𝐼𝐼5 = 0.9585𝐷𝐷−0.14 
    

* Region 1 contains only one station, i.e., Banihal. ‘-’ shows that threshold relations could not be computed due to the lack of sufficient observations 

 

 𝐼𝐼10 = 1.0471𝐷𝐷−0.14 𝐼𝐼20 = 1.1563𝐷𝐷−0.14 𝐼𝐼30 = 1.241𝐷𝐷−0.14 𝐼𝐼50 = 1.655𝐷𝐷−0.14 

 𝐼𝐼10 = 0.066𝐷𝐷0.17 𝐼𝐼20 = 0.14𝐷𝐷0.17 𝐼𝐼30 = 0.26𝐷𝐷0.17 𝐼𝐼50 = 0.584𝐷𝐷0.17 
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Comment 3: The author used a power law fit to find the threshold (can that even be called a 

threshold if it’s defined to best fit the triggering events?). Why didn’t they use other methods 

available from literature? Why didn’t they consider also non-triggering events in the definition 

(since they are available)? 

Response:  Agreed and incorporated. First, we have considered the mean intensities instead of 

maximum intensity to derive the power-law relations against the event duration. Next, as 

explained earlier, Following Brunetti et al. (2010), we have adopted a frequentist method to 

determine rainfall thresholds for landslides.  

 
Comment 4: The authors consider for each gage the landslides within a 100km radius. Is that 

realistic? Is the spatial variability in rainfall such that 100km can be considered more or less 

homogeneous, especially in the case of convective events? Furthermore, do the author make 

sure the same landslide do not get assigned to multiple gages (it’s hard to tell from the figures, 

but it seems they could be less than 200km apart). 

Response: Agreed; as suggested we have reduced the radial distance between stations and 

landslide locations to d = 25 km. We would like to point that the Global landslide catalogue 

does not provide enough landslide information to such a small distance. Therefore, we have 

also considered GSI landslide catalogue (Bhukosh, 2022) to incorporate additional landslide 

events for states of Himachal and Uttarakhand. We have compiled the information available 

from both databases and came out unique landslide events for each stations, which do not 

overlap between regions. Further, we point out to the reviewer that distance between stations 

are kept sufficiently large to avoid the chances of overlaps between landslide events. To this 

end, we present the great circle distances of intra-state stations in Table A3 (Table 4 in the 

response document) in the revised manuscript. 
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Table 4: Great-circle distance between inter-state sites 

Intra-state Stations Great-circle distance (km) 

Banihal and Katra 63.35 

Mandi and Solan 99.17 

Solan and Dehradun 103.5 

Dehradun and Joshimath 150.04 

 

Comment 5.1: On the comparison of rainfall between the two timeframes (historical and 

recent). More details are provided to explain how the gridded and gage products are combined.  

Response: We use the high-resolution gridded rainfall records (0.25°) archived at the India 

Meteorological Department’s  Climate Data Service Portal 

(https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html) to 

reconstruct the incomplete gauge-based daily time series using the Regularized Expectation-

Maximization (Reg-EM) approach (Schneider, 2001).  The gridded rainfall records are 

available for an extended period from 1901 to 2021. We utilize a Python-based tool to extract 

the rainfall records for the entire WHR region.  

 

The EM algorithm offers an iterative procedure to compute the maximum likelihood estimate 

in the presence of missing records (Dempster et al., 1977). The RegEM estimates regression 

coefficients by ridge regression, which is a regularized regression method in which a 

continuous regularization parameter controls the noise filtering in the time series (Schneider, 

2001). The RegEM is well established in the climatic and paleo-climatic fields and the 

credibility of the algorithm in infilling missing gaps in rainfall series are extensively discussed 

in the literature (Kalteh and Hjorth, 2009; Tsidu, 2012; Feng et al., 2013; Þórðarson et al., 

2021). We have demonstrated the skill of the RegEM algorithm in infilling missing gaps in 

rainfall time series through a detailed validation. We evaluated the model’s performance 

through an integrated test score as described in Beck et al. (2017). Our validation framework 

against daily observed rainfall time series showed the skill of the RegEM varies in the range 

of 0.43 (moderate) to 0.95 (excellent), which is robust in a statistical sense. 

https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html
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We include the process-flow describing the procedure to reconstruct daily rainfall series in 

Figure 4 (Figure A3 in Appendix section of the revised manuscript). 

 
Figure 4 (Figure A3 in the revised manuscript): Process flow describing procedure to 

reconstruct station-based daily rainfall time series using Regularized Expectation-

Maximization (Reg-EM) approach (Schneider, 2001). 

 

Comment 5.2: And how is the rainfall patterns analysis done? Does it use the gridded product? 

A combination of the two? The gridded product, according to the reference provided, only 

covers 1965-2005, which does not overlap with the landslide database timeframe, how was it 

then useful? How was missing data dealt with over that timeframe? 

Response: For rainfall pattern analysis, we have used solely the gridded products. We 

considered the two time windows i.e. present (2007-2016) versus the past (1988-2006). We 

calculate the annual average rainfall for the two periods for each rain grids and determine their 

differences, which was presented as a spatial map to analyze increasing/decreasing trends in 

average rainfall over the WHR. Our analysis showed an increase in annual average rainfall in 

low-elevated regions of the WHR. We evaluate the statistical significance of increase in annual 

average rainfall using the non-parametric Wilcoxon rank-sum test, which compare the 

similarity of distributions between two independent samples of unequal sizes, at 10% 

significance level. The results of the test statistics in terms of p-value is presented in Table A2 

(Table 5 in the response document) in the revised manuscript. 
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Table 5: Rain-grids with significant positive changes in the recent (2007-2016) versus past 

(1988-2006) rainfall magnitude 

Longitude Latitude 

Difference in annual average 
rainfall during  2007-2016 
versus 1988-2006 p-value 

73 29 3.51 0.018903* 
73 29.25 5.15 0.000574* 
73 29.5 3.97 0.024672* 
73 29.75 3.88 0.014107* 

73.25 29 4.95 0.006219* 
73.25 29.25 4.55 0.006848* 
73.25 29.5 3.00 0.015452* 
73.25 29.75 3.96 0.007458* 
73.25 30 4.30 0.004701* 
73.5 29 4.35 0.009955* 
73.5 29.25 2.91 0.007298* 
73.5 29.5 5.45 5.51E-05* 
73.5 29.75 6.37 0.005262* 
73.5 30 6.45 5.27E-05* 
73.5 30.25 6.58 1.77E-05* 

73.75 29 3.82 0.001695* 
73.75 29.25 3.59 0.001666* 
73.75 29.5 5.79 9.54E-06* 
73.75 29.75 6.47 5.46E-05* 
73.75 30 6.54 9.45E-05* 
73.75 30.25 3.61 0.014701* 
73.75 30.5 3.62 0.097975 

74 29 5.27 0.000306* 
74 29.25 6.96 0.000137* 
74 29.5 8.62 4.36E-07* 
74 29.75 5.59 0.010609* 

74.25 29 5.08 0.006364* 
74.25 29.25 8.18 1.18E-05* 
74.25 29.5 8.76 8.88E-07* 
74.25 29.75 7.43 0.000315* 
74.5 29 6.69 0.002613* 
74.5 29.25 8.53 5.69E-06* 
74.5 29.5 5.17 0.003131* 
74.5 29.75 5.90 0.000865* 
74.5 30.75 4.26 0.044295* 

74.75 29 5.31 0.013756* 
74.75 29.25 7.95 0.000175* 

75 29 2.16 0.021106* 
75 29.25 4.55 0.019964* 
75 30.25 2.27 0.05732 

75.25 29.75 5.89 0.096492 
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75.5 32.25 25.47 0.005603* 
75.5 32.5 23.87 0.047637* 

75.75 30.25 5.57 0.018998* 
75.75 30.5 5.20 0.018181* 
75.75 32.25 17.27 0.025829* 

76 30 9.35 0.000153* 
76 30.75 3.72 0.060989* 

76.25 30.75 9.80 0.039569* 
76.5 30.75 15.81 0.00195* 
76.5 33.75 26.32 0.010673* 

76.75 33.5 23.68 0.013975* 
76.75 33.75 18.53 0.009713* 

77 33.5 15.26 0.095401 
78 30.25 8.29 0.076716 
79 29.5 14.44 0.045953* 

*significant at a 10% significance level with p-value < 0.10. The p-values are obtained from Wilcoxon rank sum 
test. The null hypothesis is that rainfall time series of 2007-16 versus 1988-2006 are samples from continuous 
distributions with equal medians.  
 

Comment 6.1: Based on Figure 9, it looks like there are landslides every day. Based on this 

Figure, you’d be better off just saying “whenever it rains between June-July-August-

September, expect a landslide”.  

Response: We would like to point to the reviewer that here we do not fully agree with the 

reviewer that every rain event is associated with landslides. We present the figure for high flow 

seasons for both regions, which are generally susceptible to landslides due to extreme 

precipitation and geologic setting. Panel (b) shows region 2, which is obtained by pooling point 

rainfall measurements across five rain gauge stations based on climatologically similar 

characteristics and compares the temporal distribution of the maximum rain intensity versus 

landslide locations considering all events that have occurred within a 25 km radius of each 

station. 

 

Comment 6.2: While the triggering events, I assume, are the rainfall of the gage closest to the 

rain-gage, what are the triggering events? Which gage is chosen for those? Shouldn’t there 

always be multiple overlapping events (for each gage) of which one (or more if there are more 

landslide at the same time) is triggering and the other not? 

Response: Here in panel (a), it is of a single station Banihal (region 1). In panel (b) we consider 

five rain gauge stations by pooling point rainfall measurements based on climatologically 

similar attributes. We consider unique rain events and landslide locations, which may occur on 
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the same day but across different locations; the chance of overlapping events is rare.  The 

revised figure is added below (Figure 5). 

 

 
 

Figure 5 (Fig 9. in revision): Temporal contiguity of rain events with the maximum versus 

NOT a maximum rain intensity followed by timing of landslides for identified regimes: 

(a) Region 1 showing winter (January-March) season considering the site, Banihal and (b) 

Region 2, which is obtained by pooling point rainfall measurements across five rain gauges 

based on climatologically similar characteristics, depicts the southwest monsoon (June-

September) season. The day of landslides, unique for each station are marked in ‘x’. 
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Comment 7: The scale bar in Figure 1 and 6 is deceiving. I believe it is for the smaller subplot 

representing where the regions are within India, but they could easily be misunderstood for 

representative of the study area bigger subplot, leading the reader to overestimate by a lot the 

size of the domain. 

Response: Agreed and incorporated in the revised manuscript. 

 
Figure 6 (Fig. 1 in revision): Spatial locations of rain gauges across the WHR (See Table 1 for details). 

The elevational profile shows the locations of high hills across the northern part of the WHR, 

which gradually decreases from the north to the south. The digital elevation model of 1-Arc 

second (approximately 30 m) spatial resolution was derived from the SRTM-1 Arc Second 

Global data product archived at USGS Earth explorer (https://earthexplorer.usgs.gov/). The 

elevation map of India is projected using spatial analysis software Arc GIS Desktop version 

10.8.1. The inset shows the location of the WHR over the Indian subcontinent. 
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Figure 7 (Fig. 6 in revision): Spatial distribution of historical landslides versus the mortality. (a) 

Landslide inventory map for the period 2007-2016 and (b) temporal distribution of fatality. 

 

Comment 8: What is the temporal resolution of rainfall? The authors refer to daily data, report 

values for daily durations (in the intensity-duration plots), but then use intensities in mm/h. Are 

hourly records available? If yes, why are the authors then using daily sums which could lead 

to underestimation of the threshold (e.g., Marra et al., 2019, Gariano et al., 2020, Leonarduzzi 

et al., 2020)? If not, why are hourly intensity reported? How are they computed? 

Response: The rainfall data has daily temporal resolution. The event intensity is determined 

by the sum of the precipitation divided by the event duration. Here, we report intensity in terms 

of hours by multiplying the duration to 24. At present, we have used daily records due to the 

sparsity of observation records in this region. However, the gauge-based station records are 

considered as the best available quality controlled observations for the region. Further, we point 

to the reviewer that several studies so far have successfully derived rainfall ID threshold 

relations for selected regions across India (Abraham et al., 2022, 2019; Dikshit et al., 2019b, 

a) and elsewhere (Leonarduzzi et al., 2017; Paranunzio et al., 2019). This gives us the 

confidence in using daily rainfall records to derive ID threshold relationship at selected sites 

across the WHR, which are highly vulnerable to shallow-to-deep landslides, and have not been 

investigated earlier. We have added the following sentences in the conclusion section of the 

revised manuscript: 
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“While we acknowledge that the use of coarser temporal resolution of rainfall records may lead 

to underestimation of the rainfall thresholds for landslides (Marra et al., 2019, Gariano et al., 

2020, Leonarduzzi et al., 2020), the availability of high-resolution ground-based observations 

are one of the primary constraints for the region. While the primary strength of point rain gauge 

measurement records lies in their ability to capture local scale processes precisely, the satellite-

based rainfall measurements available at sub-daily time scales have embedded uncertainties 

since satellites do not measure rainfall by itself and should be related to precipitations based 

on one or multiple surrogate variables. These uncertainties, may cascade in the process of 

temporal samplings, error propagations from algorithms and satellite instruments itself 

(Gebremichael et al., 2005; Toté et al., 2015; Wu et al., 2012). Nevertheless, several studies so 

far have successfully derived rainfall ID threshold relations for selected regions across India 

(Abraham et al., 2022, 2019; Dikshit et al., 2019a, b) and elsewhere (Leonarduzzi et al., 2017; 

Paranunzio et al., 2019). While the availability of high-resolution sub-daily records is limited 

in the area, we plan to investigate the uncertainty associated with using assimilated high-

resolution rainfall products, such as Multi-source Weighted-Ensemble Precipitation (MSWEP; 

Beck et al., 2017b) and Precipitation Estimation from Remotely Sensed Information using 

Artificial Neural Networks (PERSIANN; Nguyen et al., 2019) in rainfall ID threshold 

estimation as a future research avenue.”  
 

Comment 9: Two stations are unavailable in the timeframe of the landslide database, does it 

make sense to still consider them? 

Response: We agree. To maintain uniformity of rainfall time series, we reconstructed the 

rainfall time series using a robust machine learning algorithm and maintained uniform lengths 

of five decades (1970-2019) across all sites. For infilling the missing gaps, we use RegEM 

algorithm followed by the quantile-mapping-based statistical post processing. Keeping in view 

the performance of the post processed data, we decide to use the infilled time series. Overall, 

we show a reasonably good fit between observed versus infilled time series with performance 

skills that ranges from 0.43 (moderate) to 0.95 (excellent), which is robust in a statistical sense. 

The model skill in reconstructing precipitation time series is discussed in detail on page 10, 

lines 253-255. 
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