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Abstract. Secondary ice production (SIP) is an important physical phenomenon that results in an increase of ice particle
concentration and can therefore have a significant impact on the evolution of clouds. In this study, idealized simulations of a
mesoscale convective systems (MCS) was conducted using a high-resolution (250-m horizontal grid spacing) mesoscale model
and a detailed bulk microphysics scheme in order to examine the impacts of SIP on the microphysics and dynamics of a
simulated tropical MCS. The simulations were compared to airborne in situ and remote sensing observations collected during
the High Altitude Ice Crystals - High Ice Water Content (HAIC-HIWC) field campaign in 2015. It was found that the observed
high ice number concentration can only be simulated by the models which include SIP processes. Inclusion of SIP processes
in the microphysics scheme is crucial for the production and maintenance of high ice water content observed in tropical
convection. It was shown that SIP can enhance the strength of the existing convective updrafts and result in the initiation of
new updrafts above the melting layer. Agreement between the simulations and observations highlights the impacts of SIP on

the maintenance of tropical MCSs in nature and the importance of including SIP parameterizations in models.

1 Introduction

Secondary ice production (SIP) is recognized as a fundamental cloud microphysical process (e.g., Cantrell and Heymsfield,
2005; Field et al. 2017). Production of secondary ice involves processes that require the presence of pre-existing ice particles.
SIP is different from primary ice production (PIP), which commences by the nucleation of ice either homogeneously in strongly
supercooled droplets or heterogeneously on the surface of ice-nucleating particles (INPs) (e.g., Kanji et al., 2017).

The first in situ observations of SIP go back to the early 1960s (e.g., Murgatroyd and Garrod, 1960; Koenig, 1963, 1965).

Multi-year in situ measurements have shown that SIP is an very common phenomenon, and it occurs in different types of
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clouds from polar regions to the tropics (recent SIP studies, e.g., Lloyd et al., 2015; Lawson et al., 2015, 2017; Lasher-Trapp
et al., 2016; Keppas et al.,2017; Mignani et al. 2019; Korolev et al., 2020; Li et al., 2021; Luke et al. 2021 and many others).

The primary effect of SIP is the enhancement of ice particle concentration which, depending on environmental conditions,
may exceed the concentration of PIP ice particles by several orders of magnitude (e.g., Hobbs and Rangno, 1985; Ladino et
al., 2017). Such an enhancement of ice particle concentration may have a significant effect on the phase composition, cloud
dynamics, precipitation rate, and cloud radiative properties, impacting the energy balance and hydrological cycle on regional
and global scales.

At present, seven mechanisms are recognized as sources of secondary ice in clouds. These include the fragmentation of
freezing droplets (hereafter FFD) (e.g., Kleinheins et al. 2021), rime splintering (i.e., the Hallett-Mossop process, hereafter
HM) (e.g., Hallett and Mossop, 1974), fragmentation due to ice-ice collisions (e.g., Vardiman 1978; Takahashi et al. 1995),
ice fragmentation due to thermal shock (e.g., Dye and Hobbs, 1968), fragmentation of sublimating ice (Oraltay and Hallett,
1989), activation of INPs in transient supersaturation around freezing drops (e.g., Prabhakaran et al., 2020), and break-up of
freezing water drops on impact with ice particles (James et al. 2021). A detailed description of the first six SIP mechanisms
and the status of associated laboratory studies are discussed in the review of Korolev and Leisner (2020). It was found that
HM and FFD are the most experimentally studied SIP mechanisms, and in which production rates of secondary ice have been
quantified. However, a detailed analysis of previous experiments by Korolev and Leisner (2020) revealed a large diversity of
the ice production rates, which led to the conclusion that these SIP processes need to be studied further. The other four
mechanisms have a limited number of laboratory experiments, and cover only a fraction of environmental conditions (e.g.,
fragmentation during ice collisions, fragmentation of sublimating ice), or only demonstrated the general feasibility of SIP
mechanisms (e.g., fragmentation due to thermal shock, activation of INPs in transient supersaturation around freezing drops).
All these led Korolev and Leisner (2020) to the conclusion that the relative contributions of each of the six SIP mechanisms
in the enhancement of ice concentrations remain uncertain.

For the last few years, there were many new efforts on systematic studies of the effect of SIP on cloud microphysics with
the help of cloud simulations (e.g., Phillips et al. 2017a, 2018; Sullivan et al. 2018; Hoarau et al. 2018; Fu et al. 2019;
Sotiropoulou et al. 2020, 2021; Dedekind et al. 2021; Hawker et al. 2021; Huang et al., 2021, 2022 and others). Most of these
modeling efforts were focused on matching simulated moments of particle size distributions (PSDs) with those observed in
situ. In many ways, the implementation of SIP in numerical models was hindered by the lack of consensus on parameterizations
of SIP mechanisms.

One of the main objectives of this work is to identify and simulate the occurrence of high ice water content (IWC) associated
with the enhancement of ice particle concentrations from SIP processes. Cloud environments with high IWC (> 1 g m™®) pose
a hazard for civil aviation and may result in engine power loss, stall, or damages (e.g., Lawson et al. 1998; Mason et al. 2006,
Mason and Grzych, 2011). The phenomenon of high IWC is well documented from in situ observations in tropical mesoscale
convective systems (MCSs) (e.g., Heymsfield and Palmer 1986, Lawson et al. 1998, Gayet et al. 2012, Fridlind et al. 2015;

Leroy etal. 2017, Strapp et al. 2021). Several previous modeling studies using different cloud microphysical parameterizations
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attempted to reproduce high IWCs. Ackerman et al. (2015) used a 1D model to explore microphysics in tropical MCSs.
Simulations performed with 3D models (Franklin et al. 2016; Stanford et al. 2017; Qu et al. 2018) pointed to the inaccuracies
in the estimation of cloud PSD, IWC, and ice category comparing to the observations. Huang et al. (2021) conducted high-
resolution simulations of tropical convection and found significant overestimates of radar reflectivity and underestimates of
total ice crystal concentration (Ni). Adding SIP in high-resolution simulations, Huang et al. (2022) found significant
improvement of simulated N; compared to the in situ observations.

In most of the previous numerical studies investigating SIP, the microphysics schemes used were based on the traditional
approach of representing ice-phase hydrometeors whereby they are partitioned into various predefined categories (e.g., pristine
ice, snow, graupel, etc.) with prescribed physical properties. This approach has several inherent limitations and problems,
including a limited range of ice properties (e.g., bulk density) that can be represented, inconsistent physical processes applied
to the categories, and the need to parameterize conversion between categories, an artificial process which can not be
constrained from observations and is purely ad hoc. To address this problem, Morrison and Milbrandt (2015) proposed a new
approach and developed a new microphysics parameterization — the Predicted Particle Properties (P3) scheme —whereby all
ice-phase hydrometeors are represented by a single “free” ice category whose physical properties evolve continuously. While
flexible in this regard, one limitation of the original P3 scheme was that it could not represent more than one population of ice
particles (with different bulk properties) at a given time and grid location. The scheme was thus generalized to allow for a
user-specified number of “free” ice categories, each of which have properties that evolve continuously and can represent any
ice type (Milbrandt and Morrison 2016).

The P3 scheme was used in the tropical convection simulations of Huang et al. (2022). While they found significant
improvement of simulated N; compared to the in situ observations by adding three SIP mechanisms, their simulations were
limited to two ice categories. This is the minimum number of categories required for including SIP processes, since at least
two categories are needed to represent the co-existence of newly formed small ice splinters and pre-existing large ice particles.
However, as will be shown below, the use of more than two ice categories may be beneficial or even necessary to model the
impacts of SIP in deep convection.

This study is focused on the examination of the effects of SIP on the microphysics and dynamics of a simulated tropical
MCS. Quasi-idealized simulations of a MCS were conducted using a near cloud-resolving configuration (250-m horizontal
grid spacing) of a 3D dynamical model with the P3 microphysics scheme. Model configurations with up to four free ice
categories were tested. The enhancement of ice particle concentration by SIP is represented by HM and FFD mechanisms. In
the absence of a consensus on SIP parameterizations, these two processes were described by two specific parameterizations
proposed in the literature, which provide a sufficient enhancement of N; above the melting layer consistent with in situ
observations in the MCSs (Korolev et al. 2020). Simulated ice PSD, N;, IWC, radar reflectivity, and Doppler velocity were
compared against in situ and remote sensing observations collected during the HAIC-HIWC field campaign in 2015 (Strapp
et al. 2021). Without looking for exact match between model simulations and observations, this study aimed to show whether

the simulation with SIP produces better estimation of the observed microphysics compared to the simulation without SIP.
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The remainder of the paper is structured as follows. The next section describes the observation data used for evaluation. In
section 3, the setup of the model, the microphysics scheme, and the parameterizations of SIP are detailed. Section 4 describes
the choice of control simulation with regard to the number of ice categories in P3. Section 5 assesses the impact of SIP on the
formation of ice clouds based on the control simulation. The role of SIP in strengthening and sustaining tropical convection is
discussed in section 6. This is followed by an assessment of the impact of ice-ice collection efficiency on the simulation. The

final section offers a summary of the study and conclusions.

2. Observation data

In situ data employed in this study were collected from the National Research Council of Canada (NRC) Convair-580 and
Service des Avions Francais Instrumentés pour la Recherche en Environnement (SAFIRE) Falcon-20 research aircrafts. The
coordinated flight operations of the NRC Convair-580 and SAFIRE Falcon-20 in the frame of the HAIC-HIWC campaign
were performed out of Cayenne (French Guiana) during May 2015.

The measurements of PSDs were performed by three particle probes, which covered different particle size ranges. The
Droplet Measurement Technologies (DMT) Cloud Droplet Probe (CDP: Lance et al. 2010) was used for measurements of
droplets in size range 2 um < D < 50 um. The Stratton Park Engineering Company (SPEC) 2D imaging-stereo (2D-S: Lawson
et al. 2006) covered the nominal size range from 10 to 1250 um. The DMT Precipitation Imaging Probe (PIP: Baumgardner
et al. 2001) provided measurements of particles in the nominal size range from 100 um to 6.4 mm (PSD). The processing
software employed a retrieval algorithm of partially viewed particle images (Heymsfield and Parrish 1979; Korolev and
Sussman 2000), which allowed the enhancement of particle statistics and extended the maximum size of the composite PSD
up to 12.8 mm.

All particle probes were equipped with anti-shattering tips to mitigate the effect of ice shattering on the measurements of
ice particle concentration. Residual shattering artifacts were identified and filtered out with the help of the inter-arrival time
algorithm (Field et al. 2006; Korolev and Field 2015).

The bulk IWC was measured by an Isokinetic Probe (IKP: Davison et al. 2008). The IKP allowed measurements of IWC
up to 10 g m= at the aircraft speed 200 m s~%. Such a high upper limit of IWC well exceeded maximum IWC (~5 g m=)
measured during the HAIC-HIWC campaign and ensured that the measured IWC never exceeded the IKP saturation level.

Both aircraft were equipped with the same instruments for measurements of PSDs and bulk IWC and used the same
processing algorithms applied to these measurements. Such arrangement minimized differences in systematic errors specific
to different types of instruments and synchronized data processing. Therefore, if any potential biases in data acquisition and
data processing existed, they would be the same for both data sets collected from the NRC Convair-580 and SAFIRE Falcon-
20.

Besides comparisons with IWC and N;, model results are also compared with reflectivity and Doppler velocity measured
by the NRC aircraft X-band radar (NAX) installed on the NRC Convair-580 (Wolde and Pazmany 2005). Statistics of the
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NAX data included the MCS cloud segments that precipitated down to the ground surface level. Cloud segments with outflow

cirrus having radar returns disconnected from the ground were excluded from the statistics.

3. Model configuration
3.1. Atmospheric model and initialization

The model used in this study is the Global Environmental Multiscale (GEM) model (C6té et al. 1998; Girard et al. 2014).
GEM is used for operational numerical weather prediction (NWP) in Environment and Climate Change Canada (ECCC) as
well as research in ECCC and Canadian universities. The dynamical core of GEM is formulated based on the non-hydrostatic
fully-compressible primitive equations with a terrain-following hybrid vertical grid. As such, it can be run at cloud-resolving
(sub-km grid spacing) scales. It can be run on global or limited-area domains and is capable of one-way nesting. In this study,
an idealized model configuration was used to simulate tropical deep convection, with a horizontal grid spacing of 250 m in a
simulation domain of 160 km x 160 km, with 83 vertical levels over a tropical ocean surface. The horizontal grid spacing of
250 m is nearly at the cloud-resolving scale (Bryan et al. 2003; Lebo and Morrison, 2015). It is also close to the corresponding
distances (110 to 180 m) of the 1 Hz in situ observation data from the aircraft which flew mostly at 110-120 m s for Convair-
580 and 150-180 m s* for Falcon-20. To resolve the vertical profiles near the tropical melting layer, vertical grid spacings of
approximately 100 m were used between the altitudes of 4 and 7.5 km. The readers are referred to Table 1 for more details of
dynamics/numerics and physics configurations used in the model.

The atmospheric initial conditions were horizontally homogeneous, based on an initial sounding taken from the operational
global GEM analysis at 12 UTC on 15 May 2015 at 6.769° N and 49.551° W. The initial profile (Figure 1) had 1697 J kg™ of
convective available potential energy (CAPE). The GEM analysis also provided the initial sea surface temperature. The
location and time were chosen based on the occurrence of an extensive mesoscale system that formed in this region and was
observed (Figure 2) during the HAIC — HIWC field campaign (Strapp et al. 2021).

To initiate the model storm, the updraft nudging method of Naylor and Gilmore (2012) was used to force convection during
the first 15 min of the simulation. Three distinct updrafts 15 km apart from each other in the western part of the simulation
domain were initialized. Each updraft was forced by perturbing the vertical air velocity (w;) in a spheroid with a horizontal

radius of 10 km and vertical radius of 1.5 km, centered at 1.5 km altitude:

z(Z ifo<pB<

Winag = {WmaxCOS (2 ,8), Lf'O <p<1 , (1)
0, if p>1

Wy = W_g +dts X a X max(Wpqg — We_1q, 0), (2)

where £ is the distance from the center of the spheroid normalized by its radius, o is an inverse nudging timescale (0.5 s™2),

dts is the model time step, w4, is the maximum updraft speed (10 m s™%) for nudging.
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3.2. Cloud microphysics scheme

All cloud microphysical processes in the GEM simulations were represented by the P3 two-moment bulk microphysics
scheme, where up to four (free) ice categories were used. For each ice category, there are four prognostic (i.e. advected) mixing
ratio variables: the total ice mass, the rime mass, the bulk volume, and the total number. From the prognostic variable fields,
various bulk physical properties can be computed. The size distribution of each category is represented by a complete gamma
function. The liquid-phase component of P3 consists of two-moment categories for cloud droplets and rain. For details on the
representation of each hydrometeor category and the parameterized microphysical processes, readers are referred to Morrison
and Milbrandt (2015); for details on the multi-category configuration, see Milbrandt and Morrison (2016).

It should be noted that there have been several further key developments to P3 since the first version of the multi-ice-
category scheme, along with various minor modifications. Major developments include a triple-moment treatment of rain
(Paukert et al. 2019), introduction of a prognostic liquid fraction for wet ice (Cholette et al. 2019), and a triple-moment
treatment of ice (Milbrandt et al. 2021). The version of P3 used in this study does not include these major modifications. The
impacts of these components of P3 on SIP may be examined in future work. It is possible, for example, that triple-moment
ice, which in principle results in a better representation of the PSD dispersion, may be important for some aspects of modeling

SIP and its impacts. However, such work is outside of the scope of this study.

3.3. Parameterization of SIP

The following two SIP mechanisms were examined in this study. Other mechanisms will be considered in the future.

3.3.1 Rime splintering/Hallet-Mossop (HM)

The pristine version of P3 used in this study (i.e., prior to SIP-related modifications examined here) includes a
parameterization of the HM mechanism if two or more ice categories are used. The requirement for at least two categories is
to prevent dilution of ice particle properties when two populations of ice are forced to be represented by a single size
distribution and set of physical properties (see Milbrandt and Morrison 2016). The parameterized HM process produces a
maximum of 350 ice crystals per mg of collected liquid water, with crystal sizes of 10 um, during riming of rain within a
temperature range of -3°C > T > -8°C, with the peak value at -5°C and varying linearly to 0 at the extreme temperature ranges.
This ice multiplication parameterization has been used in several traditional (fixed ice category) microphysics schemes (e.g.,
Reisner et al. 1998). This is similar to the original HM parameterization in P3 as used in Milbrandt and Morrison (2016).

One modification for HM parameterization in this study is to exclude the use of collected liquid water from the situation
where raindrops (100 pm < D < 3500 um) were collected/nucleated by small ice particles (D < 100 pm). From the point of

view of SIP mechanism, it is more appropriate to apply this part of collected liquid water to the FFD mechanism.
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3.3.2 Fragmentation of freezing drops (FFD)
The parameterization of the FFD mechanism was implemented following Lawson et al. (2015):
Ny =25 x107"D* (3)

where N is the average number of ice fragments per drop, and D is the drop diameter in micrometers. The parameterization
of the FFD process was applied for raindrops (100 um < D < 3500 pum) which were nucleated by ice particles (D < 100 pum).
Following Keinert et al. (2020) the activity of the FFD process was limited to the temperature range -25°C < T < -2°C. Within
the temperature range, the current parameterization is not temperature dependent. Further studies are undergoing for exploring
the impacts of variation due to temperature.

3.3.3. Ice collection efficiency

Although not directly part of SIP, ice aggregation is another process that impacts N; and may therefore be important in
affecting high ITWC. There are several different approaches to parameterize the ice collection efficiency, which is a key
parameter in the aggregation parameterization (Hallgren and Holster 1960; Lin et al. 1983; Cotton et al. 1986; Ferrier et al.
1994, 1995; Milbrandt and Yau 2005a,b; Seifert and Beheng 2006). Khain and Pinsky (2018) showed that the collection
efficiencies in these parameterizations vary by more than two orders of magnitude for any given temperature between -40°C
and 0°C. Sensitivity simulations conducted in the frame of this current work showed a high sensitivity of the modeled IWC
and N; to the collection efficiency of ice. The collection efficiency used in this study follows Cotton et al. (1986). Further

discussion of the sensitivity of the modeling results to the ice aggregation parameterization is presented in section 7.

4. Establishment of the control configuration

The number of ice categories used in the P3 scheme can impact the overall simulation results (Milbrandt and Morrison,
2016). SIP results in large quantities of small ice splinters, which can be co-located with pre-existing larger ice particles, and
thus bimodal or multi-modal ice size distributions may occur. This cannot be represented with the single-ice-category
configuration since P3 uses complete gamma size distributions for each hydrometeor category. Thus, SIP — or any other ice
initiation process — could result in the “dilution” of the bulk particle properties of existing ice where the microphysics scheme
tries to represent two or more populations of ice particles within a single size distribution and with a single set of bulk physical
properties (e.g., mean size). Thus, before examining the impacts of SIP in the simulation, a control configuration must be
established based on the minimum number of ice categories needed to represent ice particle evolution in P3 with sufficient
detail. This is determined by the number of categories beyond which adding more does not change the simulated average
profiles for more than 15% for the fields of interest (e.g., IWC and N;). To address this a series of sensitivity tests was conducted
using the baseline version of P3 (with no SIP), varying the number of ice categories from 1 to 4, and using P3 with SIP

included, varying the number of categories from 2 to 4.
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Table 2 summarizes the complete list of experiments conducted in this study. For the experiments starting with “BASE”
(denoting the baseline P3 configuration), no SIP is activated. The experiments starting with “SIP” use the new parameterization
for both FFD and HM process. In the following analysis, we focus on the simulation results between 90 and 150 min, when
the convective systems are more complex and more closely resemble the observed MCS.

As described in section 3, three convective cells were initiated in the eastern part of the simulation domain. Figure 3 shows
the upward longwave flux from the BASE-1ICE simulation at the top of the atmosphere (Figure 3a-d) and the radar reflectivity
of the vertical cross-sections (Figure 3e-h) indicated by black lines in (Figs. 3a-d) for simulation times 30, 60, 120, and
180 min. The initial formation of the three convective updrafts can still be seen at 30 min (Figure 3a). By 60 min, these updrafts
started to merge, forming a larger system (Figure 3b). This system then moved westward (towards the right of the domain)
and developed into a sustained system (Figure 3c). By 180 min the convection began to weaken (Figure 3d, h).

Figure 4 shows averaged profiles for the baseline simulations with different numbers of ice categories. The mean profiles
of IWC (Figure 4a) and N; (Figure 4b) consider all points with IWC larger than 0.001 g m3. The maximum vertical wind speed
(Wmax; Figure 4c) and average temperature profiles (Figure 4d) apply to the entire model domain. The mean rainwater profiles
(Figure 4: Profiles from the baseline simulations without SIP. (a): ice water content (IWC), (b): ice number concentration N;,
(c): maximum vertical wind speed Wmax, (d) air temperature (the four simulations have only slightly different temperature that
is not distinguishable in the figure) T, (e): rain water content RWC, (f): median radar reflectivity. The profiles are calculated
based on data from 90 to 150 min of simulation. (a) and (b) are horizontally averaged over regions with IWC > 0.001 g m™®,
(c) is the horizontal maximum across the domain, (d) is a horizontal average over the whole domain, (e) is an average over the
area with both ice water path and rain water path larger than 1 g m, and (f) shows median values of reflectivity including
points with either IWC or RWC larger than 0.01 g m™ within the mask used for (e).e) are calculated for the area with both ice
water path and rain water path larger than 1 g m=2. The radar reflectivity profiles (Figure 4f) are the median values including
points with either IWC or rain water content (RWC) larger than 0.01 g m within the mask used for Figure 4e.

For the altitude range between 5 and 12 km, adding one more ice category to one, two and three-category baseline
simulation produce maximal changes of 12%, 23% and 7% for IWC respectively (Figure 4a). Similarly, the maximal changes
of 25%, 31% and 14% are found for N; (Figure 4b). The radar reflectivity (Figure 4f) for the one-ice category run (BASE-
1ICE) is about 4 to 6 dBZ lower than the three or four-category simulations in the same altitude range. This is likely caused
by the fact that a single ice category is not sufficient to represent the co-existence of large and small ice particles and results
in reduction of the concentration of large ice particles, leading to lower radar reflectivity. With regard to the number of ice
categories for SIP simulations, a similar conclusion to the baseline simulations was found. Adding one more ice category to
two and three-category SIP simulations produce maximal changes of 31% and 9% for IWC respectively (Figure 5a). For Ni,
the maximal changes of 70% and 15% are found (Figure 5b). Therefore, at least three ice categories in P3 appear to be necessary
and sufficient to examine the impacts of including SIP processes. Note that adding more ice categories for baseline and SIP
simulations will not change significantly the morphology of the storm. It is of passing interest to note that the similarity of the

three and four-ice category results is consistent with the 1D kinematic simulations in Milbrandt and Morrison (2016). However,

8



255

260

265

270

275

280

285

given that the use of more ice categories in P3 is generally preferable in principle (though there is added computational cost),
and that the four-ice-category simulations were already performed, BASE-4ICE is taken as the control run for the sensitivity
studies to follow; this simulation is referred to as CTR. Correspondingly, we focus on the four ice category simulation including
SIP (SIP-4ICE) for direct comparison to CTR.

5. Impacts of SIP on microphysical properties
5.1. Domain-averaged profiles

Figure 6 shows simulated average profiles for the four-ice category simulation including SIP processes, SIP-4ICE (see
Table 2) as well as for CTR. As seen in Figure 6a, the SIP-4ICE simulation has at least 100% higher IWC compared to the
control run above 6 km. SIP-41CE has significantly higher N; than CTR (Figure 6b), with differences reaching two to three
orders of magnitude near 6 km and about one order of magnitude above 11 km.

Figure 6¢ shows the maximum vertical air velocity in the domain. The simulations are very similar below the melting layer
(~4.5 km), however, above the melting layer, Wmax of SIP is 2 to 5 m s higher. This suggests that SIP enhances convection
due to the sudden production of a large number of small ice particles resulting in the rapid freezing of rainwater and depletion
of water vapor by diffusional growth. Both effects result in latent heating, which invigorates the convection. This can be
inferred from Figure 6e showing that RWC in CTR is reduced form 0.12 g m™ at 4.2 km to 0.05 g m™ at 5 km, whereas RWC
form SIP-4ICE is changed from 0.12 g m3 at 4.2 km to 0.01 g m3 at 5 km. Another potential mechanism of convection
enhancement above the melting layer will be discussed in section 6.

The medians of radar reflectivity of the SIP simulation is 5 to 10 dBZ lower compared to those of the CTR between the
altitudes of 5 and 12 km (Figure 6f). This is because the SIP simulation has smaller ice particles, despite the higher IWC
values, due to the higher N;.

In order to confirm that the simulation differences illustrated in Figure 6 are indeed the result of the inclusion of
parameterized SIP processes, and not simply a chance set of changes that could result from perturbations in the model due to
some minor code change, a set of 10 ensemble simulations were run for each configuration (CTR and SIP-4ICE) but with
perturbed initial conditions. Figure 7 shows the ensemble results for the two configurations at 120 min. Each configuration
includes 11 members (1 unperturbed + 10 perturbed members). The initial temperature profile is randomly perturbed with the
maximum range of +1°C at all model levels. The ensemble results show high consistency. The SIP simulation consistently
produces much higher IWC and N;. The vertical velocity wmax of an ensemble member is the single maximal value of a give
model level. Therefore, the profiles of wmax can be noisy. The ensemble profiles of wmax 0f CTR and SIP-4ICE overlap,
especially below the altitude of ~6 km. However, the averaged maximal vertical velocity wmax (solid lines) diverges above the
altitude of ~6 km, which indicates that the SIP simulations generate stronger updrafts in general. The RWC and the radar
reflectivity are both strongly reduced by 5 to 10 dBZ in the SIP simulations between 5 and 10 km. Similar remarks can be

made for all other times between 90 and 150 min (not shown). The results summarized in Figure 7 lend support to the idea that
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the differences between CTR and SIP-4ICE are indeed due to the effects of SIP on the microphysical and thermodynamic

fields, and not merely another model realization of a chaotic weather system.

5.2. Ice number concentration

Figure 8 shows comparisons of the probability density function of N;, F(N;), calculated from the simulations and measured
during airborne in situ observations at two different altitude (H) ranges. The Ni measured in situ is calculated for size range
between 40 pm and 12.5 mm. The ice particles smaller than 40 um is not counted due to large uncertainty of the instrument
for the size range (Baumgardner et al. 2017). The F(N;) measured in situ were averaged over all HAIC-HIWC flights for the
clouds with IWC > 0.01 g m™. Figure 8a shows a comparison of F(N;) at altitudes 6 < H < 7 km. The CTR simulation (blue
line) shows a significant underestimation of N; compared to the measured values (black line). The concentrations corresponding
to the modal value of F(N;) in CTR are nearly two orders of magnitude lower than those obtained from in situ observations.
The SIP-4ICE simulation (red line) shows good agreement with the measured values.

The general behaviour of the functions F(N;) for 11 < H < 12 km (Figure 8b) is similar to that obtained for 6 < H < 7 km
in Figure 8a. The maxima of F(N;) for CTR and observed values correspond to approximately the same ice concentrations of
10° m 3. However, the maximum of F(N;) in CTR is nearly triple that of the observed F(N;) which was reasonably close to that
of SIP-4ICE. The width of F(N;) of SIP-4ICE agrees better with the observation than that of CTR. There are almost no grid
points in CTR with a concentration above ~3x10° m3, whereas SIP-4ICE overestimated F(N;) compared to the measured
values. The overestimation of N; around 3x10° m is probably caused by uncertainty in the parameterizations of both FFD

process and ice-ice collection efficiency. This warrant further studies on better quantifications of both processes.

5.3 Ice water content

Similar to the results discussed above, Figure 9 shows comparison of probability density functions of IWC, F(IWC),
obtained from model simulations and aircraft observations at altitudes 6 < H < 7 km (Figure 9a) and 11 < H < 12 km (Figure
9b). As seen in Figure 9a, F(IWC) from SIP-4ICE is in good agreement with the observations for IWC smaller than 3.25 g
m~3. In contrast, the simulated frequency of encountering high IWC in CTR is about Y2 to 1/500 of the observed frequency
between IWC of 1 and 2 g m™3. There is no data with IWC higher than 2.5 g m2in CTR.

SIP-4ICE produces some points with IWC > 3.25 g m=3, which were not observed by the instruments. The F(IWC) of these
high IWC conditions from SIP-4ICE are below 1.7x 105, For the Convair-580 aircraft, the number of observed 1-s average
data points with IWC > 0.01 g m=3 is 59,893. This sets the limit of F(IWC) of the observation data at 1.7 x 107. If the campaign
lasted much longer, it is conceivable that these high IWC conditions might have eventually been observed.

Figure 9b shows similar results but for higher altitudes (between 11 and 12 km). The frequency of IWC between 0.3 and
1.3 g m?in CTR is about 2 to 3 orders of magnitude lower than the observed frequency. There is no data with IWC higher
than 1.30 g m™ from CTR. SIP-4ICE produces closer estimates compared to the observation data as they both have IWC up to

10



320

325

330

335

340

345

~3 g m3. Between 11 and 12 km, N; of SIP-4ICE is considerably improved compared to CTR as shown in Figure 8b. However,
the IWC of SIP-4ICE at these altitudes is still underestimated by 1 to 2 orders of magnitude beyond IWC of 0.7 g m compared
to the observation. One possible reason for this underestimate is the differences in the sampling of data. At higher altitudes
between 11 and 12 km, there are often extensive areas with thin ice clouds near the convection. The data from SIP-4ICE used
in the statistics include these areas if the IWC of the grid cell larger than 0.01 g m=. In contrast, the HAIC-HIWC campaign
targeted conditions with high IWC. The thinner ice clouds with IWC between 0.01 and 0.3 g m* might not have been
sufficiently sampled as they are less relevant to the extreme conditions causing safety issues for aviation. This difference might
partly explain the higher F(IWC) below 0.3 g m2 and lower F(IWC) above 0.3 g m™ for SIP-4ICE compared to the
observations. Another possible explanation of the underestimation is the uncertainty of the strength of simulated convections.
In this study, the maximal updraft nudging speed w;,,4,=10 m s is used as the default value. Simulations with different w,,,,
are also tested. Using w,,,5,,=15 m s in SIP-4ICE simulation will produce 63% higher averaged IWC between 10 and 11 km
than that produced by default SIP-4ICE simulation with w,,,,,,=10 m s. For SIP-4ICE simulation, the impact of w,,, for
lower altitudes between 6 and 7 km is negligible. The CTR simulation with w,,,,,,=15 m s’ produces higher IWC compared to
the default CTR simulation with w,,,,, =10 m s (20% and 50 % higher for altitudes range of 6-7 km and 10-11 km

respectively). However, these values are still significantly smaller than those of the default SIP-41CE simulation.

5.4. Longwave radiation and radar reflectivity

Figure 10 shows the upward longwave radiative flux at the top of atmosphere (TOA) for three different simulation times
(90, 120, and 150 min) from CTR (Figure 10a-c) and SIP-4ICE (Figure 10e-f). The lowest TOA flux of SIP-4ICE is on average
11.4°C lower than that of CTR. The surface of area with TOA longwave flux lower than 170 W m? of SIP-4ICE is on average
2.7 times larger than that of CTR. These suggest that the cloud tops with SIP included are higher (Figs. 10d, e) and the anvil
clouds are more extensive (Figure 10e, f).

The corresponding simulated radar reflectivity of the cross-section indicated by black lines in Figure 10 is shown in Figure
11. One significant difference between the CTR (Figure 10a-c) and SIP-41CE simulation (Figure 10d-f) is that the reflectivity
from the simulation with SIP is significantly lower than that of the control run between altitudes of approximately 5 and 10
km. This is due to the higher N; values and thus smaller ice particle sizes in SIP-4ICE.

Figure 12 shows a comparison of the frequency distribution of radar reflectivity for CTR and SIP-41CE (Figure 123, b) and
for the NRC Convair-580 X-band radar (Figure 12c). For the results of the two simulations, only the atmospheric columns
with both ice water path and rain water path larger than 1 g m2 are selected. The X-band radar data in Figure 12c was averaged
over all research flights during the HAIC-HIWC campaign. Figure 12d shows the simulated and observed median values of
the reflectivity. At altitudes higher than 10.3 km reflectivity in both the CTR and SIP-4ICE runs is lower than the measured
reflectivity. However, between 5 and 10 km, SIP-4ICE has values closer to the observations with a maximum overestimation
of 4 dBZ at 5 km. CTR clearly overestimates the reflectivity by 5 to 15 dBZ between 5 and 10 km.
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For SIP-41CE between 5 and 8 km, there is a large amount of cases with reflectivity larger than 25 dBZ which is not found
in the observation. Figure 13 shows the comparison of N; and IWC against reflectivity for CTR (panel a, b), SIP-4ICE (c, d)
and observation (e, f). Although the distributions of N; and IWC of SIP-4ICE are closer to the observation than those of CTR,
a significant amount of cases (35.8%) from SIP-4ICE has still reflectivity larger than 25 dBZ, whereas only 0.4% from the
observation is above 25 dBZ.

Figure 14 shows the 2D histograms for IWC and reflectivity (panel a-d), N; and reflectivity (e-h) for each of the 4 ice
categories in SIP-4ICE. The ice category 1 and 3 have in general lower reflectivity (1% and 3% higher than 25 dBZ
respectively) and higher N; (peak value at 10** and 10* m™ respectively). By contrast, the ice category 2 and 4 have higher
reflectivity (23% and 24% higher than 25 dBZ respectively) and lower N; (peak value at 1034 and 1028 m- respectively). This
means that the ice particles in category 2 and 4 have much larger mean sizes than those of category 1 and 3. Most of the ice
particles in category 2 and 4 with reflectivity larger than 25 dBZ are lightly rimed aggregated ice with rime fraction of ~20%.
The mean-mass diameter of these ice particles could reach several mm. It is probably that the high reflectivity above 25 dBZ
are the results of these large ice sizes.

Several possible reasons could explain the high reflectivity in the model simulation. Firstly, the model might overproduced
the large ice particles due to excessively large ice-ice collection efficiency (which is a highly uncertain parameter). Despite
the important role of ice-ice collection process in clouds, there is no consensus in the scientific literature on how to quantify
it. A further discussion on the impact of ice-ice collection efficiency on the simulation results is presented in the section 7.
Secondly, current P3 version uses a diagnostic shape parameter for the gamma size distribution of ice. The shape parameter,
which is a measure of the relative spectral dispersion, might give a wide distribution that implies too many large ice particles,
hence higher reflectivity. Note, higher moments such as reflectivity are more sensitive to the tail of the size distribution. The
triple-moment version of P3 (Milbrandt et al. 2021, JAS) uses a prognostic shape parameter which in principle should give
better size distributions for those large ice particles. However, this comparison is beyond the scope of the current study, since
the triple-moment version of P3 was not yet available when this current study began. Finally, P3 scheme uses Rayleigh
scattering approach to calculate the radar reflectivity. It is not an advanced instrument simulator that can take into account the
attenuation, multiple and Mie scattering, etc. For the X-band radar on Convair-580, the ice particles of several mm are in a
transition region between Rayleigh and Mie scattering which is not symmetric but with a stronger forward scattering lobe. To
simulate the radar reflectivity with Rayleigh scattering approach might overestimate the reflectivity for the large ice particles.
The radar reflectivity is a useful indicator to understand the model performance. However, considering that a rigorous
instrument simulator is not used in this study, it is better to be cautious with regard to the comparison with the reflectivity.

Note that at the altitude of the melting layer (~4.5 km) none of the simulations reproduce the distinct bright band that is
clearly apparent in the observation data. This is due to the fact that the version of P3 used in this study does not properly
represent the transition state of melting ice with a wet surface and ice core (nor does P3 artificially boost the reflectivity
contribution from ice during melting in order to mimic a bright-band effect). As mentioned in section 3.3, a newer version of

P3 includes a prognostic variable for the liquid mass content for each ice-phase category, which allows for mixed-phase
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particles and a corresponding improvement in the calculation of reflectivity in the melting zone (to be shown in a forthcoming

publication).

5.5. Vertical Doppler velocity

The Doppler velocity from the simulation is calculated using mass weighted fall speed of all hydrometeors subtracted from
the vertical wind speed. Figure 15 shows the simulated Doppler velocity for CTR and SIP-41CE for the vertical cross section
shown in Figure 11. The Doppler velocity below the melting layer is mostly negative due to the high fall speed of the rain.
Above the melting layer the average Doppler velocity gradually increases with altitude from -2 to 0 m s between 5 and 14
km. The gradual increase of the Doppler velocity is primarily linked to the size of ice particles. Positive values of the Doppler
velocity are associated with convective cloud regions where the updraft velocity exceeds the falls speed of the ice particles.
One difference between the control and SIP simulations is that the SIP-4ICE simulation has higher Doppler velocity between
5 and 8 km for all three times analyzed.

Figure 16 shows similar results to Figure 12 but for the Doppler velocity. To mitigate the effect of anvils the diagrams in
Figure 16a and b used the same mask as that for radar reflectivity in Figure 12a and b. Both CTL (Figure 16a) and SIP-4ICE
(Figure 16b) show distribution patterns very similar to those obtained from the observations (Figure 16c¢). Figure 16d shows
comparisons of the simulated and observed median values of the Doppler velocity versus altitude. The SIP-4ICE simulation
produces very close results to the measurements between the altitude of 5 and 9 km with maximum difference of +0.3 m s,
The CTL simulation overestimates the negative Doppler velocity by approximately 0.9 m s in the same range of altitudes
compared to the measured values. This result is consistent with the systematic underestimation of N; in CTR, and therefore,

overestimation of the mean particle sizes and fall speeds.

6. Role of SIP in tropical convection

In the previous section it was shown that wmax is higher in the SIP-4ICE simulation than in the control simulation above
the melting layer (Figure 6c), and that the inclusion of SIP results in enhanced formation of high IWC regions above the
melting layer. Altogether these results suggest that SIP plays an important role in the microphysics and thermodynamics of
tropical convection, at least for the MCS examined. In order to explore SIP impacts in more detail, in this section, the rates

and locations of SIP within the model storm and initiation of secondary convection are analyzed.

6.1. SIP productions at different altitudes

Figure 17 shows the active SIP areas and rates at different altitudes for the simulated MCS. Similar to Hu et al. (2021), the
values of w are used to distinguish three different situations: 1) SIP within updrafts (marked by red lines, w > 3 m s%), 2) SIP
within downdrafts (marked by yellow lines, w < 3 m s1), and 3) SIP with moderate vertical wind velocities (marked by blue

lines, -3 mst<w<3ms?).
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For the employed SIP parameterizations, FFD is active in the range of altitudes 5 < H < 8.8 km (Figure 17d), whereas HM
occurs in a narrower range of 5.2 <H < 6.8 km (Figure 17a). The range of the SIP activation altitudes are primarily determined
by the temperature ranges of the FFD and HM processes (section 2) and the temperature of the cloud base. The vertical velocity
has a lesser effect on the SIP activation altitudes, and it may displace the upper and lower boundaries of the SIP regions within
approximately £200 m. Within these altitude ranges, SIP is mostly found in the area with moderate vertical wind velocities,
followed by the area within updrafts, and occurs less in downdrafts for both HM and FFD processes (Figure 17a, d). The active
SIP areas of FFD are usually smaller than those of HM process in the range of altitudes 5.5 < H < 6.2 km for all three situations.
To activate the FFD process, the employed parameterization requires the presence of large size raindrops (100 um < D <
3500 pm) together with the presence of small ice particles (D < 100 um). This condition likely restricts the FFD process to a
smaller area than that of HM process.

The vertical wind speed has a significant impact on the rate of SIP. Figure 17e shows the average SIP rates (m s%) within
the active FFD areas shown in Figure 17d. For most altitudes, the rate of FFD increases with an increase of w and it is at least
one order of magnitude higher in updrafts than in the downdrafts. This is related to the lower number of precipitation-sized
drops in downdrafts compared to updrafts.

Another factor is related to the effect of w on the residence time of drops within the range of SIP activation altitude AH.
For a drop with a terminal fall velocity V4, (D) the residence time can be assessed as 7 = abs(AH/(Vfau (D) — w)).
Depending on the sign of (V¢4 (D) — w) the drop will be moved upward through AH or downward. For the extreme situation
when Vo, (D) = w the drop is suspended in an updraft indefinitely, it can freeze and generate secondary ice or mechanically
interact with other cloud particles and thereby change its fall velocity.

The rate of the HM process (Figure 17b) is higher in updrafts above 6.0 km where the riming process is active. At altitudes
below 6.0 km, the rates are similar in updrafts, downdrafts and areas with moderate vertical velocities (-3 ms!<w<3 ms?).
Figure 17c¢ shows the total SIP rate (m™ s*) from the HM process which is the product of the area of active HM and mean SIP
rate from HM shown in Figure 17a,b. The total SIP rate shows how many ice particles are produced by SIP horizontally across
the domain per 1 m of vertical layer per second. The total SIP rate from the FD process is shown in Figure 17f. Below the
altitude of 6.3 km, both the HM and FFD processes in the areas with moderate vertical wind velocities show the highest total
SIP rate, followed by the area within updrafts. The lowest total rates are found in downdrafts. The larger active SIP areas
associated with moderate vertical wind velocities (Figure 17a, d) contribute significantly to the high total SIP rates across the
domain. At altitudes above 6.3 km, updraft regions contribute more to the total SIP rates. This is due to the high average rates
in updrafts (Figure 17b, €), since the corresponding SIP areas are smaller than those with moderate vertical velocities.

The results obtained show that the vertical extent AH of FFD is deeper and its rate is higher than those of HM. This finding
leads to the conclusion that in the simulations of this study the overall contribution of FFD in the production of the secondary
ice in tropical MCSs is significantly higher than HM.
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6.2. Role of SIP in initiating of secondary convection

The freezing of rain into ice generates latent heating which should enhance the existing convection. This may explain the
increase of wmax above 6 km in the Figure 6¢ and Figure 7c in SIP-4ICE compared to CTR. As explained in the previous
subsection, below 6.3 km altitude, both FFD and HM are more active outside of the major updrafts originating below the
melting layer. High activity of the FFD and HM processes might eventually initiate new updrafts in stratiform regions inside
MCSs above the melting areas.

A Lagrangian trajectory analysis was used to trace the cloud parcels affected by SIP. For this analysis, 1152 air parcels
were selected with active SIP at an altitude of 5.6 km from the SIP-4ICE simulation between 90 and 150 min. Each selected
parcel is traced backward (t < 0 min) and forward (t > 0 min) for 15 min (At = 30 min). These parcels are then classified into
two different groups. The first group included the parcels which at t = -15 min had altitudes within 5 <H <6 km and at t = 15
min ending their trajectories at H > 6.5 km. The second group included parcels with the same initial altitudes as the first group
at t = 0 min. However, the altitude of their trajectories remained at H < 6 km at the end of forward tracing (t = 15 min). The
total number of parcels of the first category was 47 and that of the second category was 1105.

Figure 18 shows the time history of mean values of environmental and microphysical parameters of the parcels for the two
categories. Most parcels, which underwent SIP processes between -5 and 5 min, were located at the same altitude of 5.6 km at
t = 0 min. These parcels started to rise from t = -3 min, and eventually reached 7.5 km at t = 15 min (Figure 18c). On the other
hand, the other group of parcels did not rise throughout the 30 min analysis period (hereafter named non-rising parcels). The
mean altitude of these parcels decreased by about 700 m (Figure 18c¢).

Figure 18e shows that the rising parcels had an initial positive vertical speed from t = -3 to -1 min. However, their potential
temperature differences with respect to the environmental values at the same altitudes (40) were generally negative for t < -1
min, and decreased slightly from t = -3 to -1 min (Figure 18g). Thus, these parcels were not gaining positive buoyancy at this
stage. However, the 40 of the rising parcels started to increase quickly between t = 0 min and 2 min, becoming positive and
reaching a difference of nearly +1 K between t = 3 and 8 min (Figure 18g). Figure 18i, j also show very high SIP rates of the
rising parcels from the FFD process during this time period. For the non-rising parcels, there was an increase in 46 during the
same period but at a much slower rate due to smaller SIP tendency (Figure 18, j). The 46 remained negative during the whole
analysis period, and these parcels were therefore convectively stable.

The main reason for the high SIP rate between t = 0 and 2 min for the rising parcels is that there was a substantial amount
of large rain drops available for activating the FFD process (Figure 18f, h). The rain mean-mass diameter at t = 0 min was
large (560 pm). The RWC was also large (0.36 g m3). The rain mean-mass diameter for the non-rising parcels (502 um) was
slightly smaller than that of rising parcels at t = 0 min. However, the corresponding RWC was quite low (0.02 g m3). With
large RWC and rain mean-mass diameter, the rising parcels had a high SIP potential, which eventually led to greater N;, vapor

growth, increased latent heating and buoyancy, thereby enhancing secondary convection.
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As mentioned in subsection 6.1, in the simulations of this study, the FFD process plays a dominant role in SIP compared
to the HM process. This agrees with what we found in Figure 18i, j. The sudden increase of the 46 with respect to the
environment is more likely linked to the high SIP rate from FFD. SIP, in particular FFD, may therefore play a role in the
initiation of new updrafts above the melting layer.

Figure 19 shows an example of a rising air parcel. The black line represents the parcel trajectory from t = -15 to 15 min.
Fromt =-15 to 0 min, the air parcel had no significant change of altitude. Near t = 0 min, the air parcel was close to an existing
updraft (Figure 19a, red surface) and was in an area where there was rainwater (Figure 19b, red surface). Shortly after t = 0
min, the air parcel started to rise. The supply of rainwater resulted in an enhanced SIP and led to a higher rate of latent heating

and rapid increase the buoyancy.

7. Impact of ice aggregation

In addition to SIP, which clearly has significant effects on N;, formation of high IWC, radar reflectivity, and vertical wind
velocity, the aggregation of ice particles also plays an important role in determining the microstructure. Aggregation results in
a decrease of N; and increase of radar reflectivity and particle fall velocity. The rate of aggregation is characterized by the ice-
ice collection efficiency, e;. In the frame of this study, the following parameterization of the ice-ice collection efficiency has

been employed (Cotton et al. 1986):
ey = min(l00.035(T—237.16)—0.7’0.2) (4)

where T is the temperature in K.

There is a diversity of parameterizations of e; employed in models (Khain and Pinsky, 2017), which may vary by up to
three orders of magnitude. In this study, the mid-range e; in (4) is used as the default parameterization. However, the
uncertainty in e;; raises a question about the impact of the ice aggregation parameterization on the N; and high IWC formation.

To explore the effect of the ice aggregation rate on the high IWC formation, a sensitivity test (SIP-COL) was performed

with another e;; parameterization, i.e.

0.1; for T < —20°C
ei =40.06T +1.3; for—20<T < —5°C : )
1; for—5< T <0°C

As seen from Eq. (5) the new e;; varied linearly from 0.1 to 1.0 within the temperature range -20° < T <-5°C. For T < -
20°C, ¢;; = 0.1, and for -5°C < T < 0°C ¢; = 1.0. For all temperatures, e;; in (5) is much higher than that in (4). We want to
use this high e;; parameterization to show the significant impact of e;; on the simulation results.

Comparisons of distributions of N; for two SIP simulations with varying e;; and the observations are shown in Figure 20.
For the altitudes between 6 and 7 km, using the new parameterization of aggregation [given by Eq. (5)] (SIP-COL) results in
a decrease of modal value of F(N;) by two orders of magnitude compared to using that described by Eq. (4) (SIP-4ICE). At
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higher altitudes between 10 and 11 km, the SIP-COL produces ~5 times higher F(N;) at N; of 10° m and lower F(N;) by one
to two orders of magnitude for N; > 4x10° m compared to those of SIP-4ICE.

Figure 21 shows similar results to Figure 20 but for the distribution of ice mass. Between 6 and 7 km, applying the linear
approach for e; from Eq. (5) to the SIP-41CE simulation (SIP-COL), the F(IWC) between 0.4 and 2.4 g m= is slightly reduced
by up to 50%. However, the F(IWC) for extreme situation with IWC larger than 2.5 g m is somehow slightly enhanced.

For altitudes between 11 and 12 km, the SIP-COL experiment produces a lower F(IWC) up to ~1 order of magnitude for
most of IWC (> 0.16 g m?) than the SIP-4ICE simulation. Although the estimation of F(IWC) by SIP-COL between 6 and 7
km is relatively close to that of SIP-4ICE, SIP-COL produces much lower F(IWC) in higher altitudes between 10 and 11 km
than the SIP-41CE simulation. This indicates that the N; at the lower altitudes play an important role in determining the IWC

at upper altitudes.

8. Conclusion

The impacts of SIP on the microphysics and dynamics of deep convection have been examined using quasi-idealized near
cloud-resolving simulations of a tropical MCS based on storm observations during the HAIC-HIWC field campaign. GEM
model simulations using the P3 microphysics scheme were conducted using 250-m horizontal grid spacing and horizontally
homogeneous atmospheric initial conditions, with updraft nudging to initiate convection. It was established through sensitivity
tests that a minimum of three ice categories in P3 are necessary to examine SIP in detail; four categories were used for most
of the simulations. P3 was modified to include rime splintering (HM) and fragmentation of freezing drops (FFD), which have
been the most closely examined SIP mechanisms in laboratory studies. The parameterizations of the HM and FFD processes
used were based on the information available from previously published results.

In the control configuration with no SIP processes at altitudes of 6 to 7 km, the simulated ice number concentrations were
about two orders of magnitude lower than the values obtained from in situ measurements. The simulated frequency of
encountering high IWC condition is about % to 1/500 of the observed frequency between IWC of 1 and 2 g m3. With the SIP
mechanisms activated, the model results for these fields were dramatically improved compared to the observations. The
Doppler velocities above the melting layer were also notably closer to the measured values, indicating improved ice fall speeds
in the simulations with SIP active. SIP was responsible for an increase in ice concentrations of up to three orders of magnitude
at altitudes of 6 to 7 km. As a result, the total ice mass was distributed over a much larger number of particles and thus mean
particle size was smaller with a lower fall speed. Consequently, ice was more easily transported to higher altitudes, ultimately
resulting in sustained cloud regions with high IWC.

Analysis conducted in this study lead to the following general conclusions for the high resolution NWP simulations:

1. SIP processes play a critical role in the formation and maintenance of high IWC with low reflectivity at

upper levels in MCSs.
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2. SIP enhances secondary convection above the melting layer due to an increase in buoyancy caused by greater
latent heat releasing during vapor deposition on numerous secondary ice particles. Enhanced secondary convection
may in turn extend the longevity of MCSs and regions with high IWC.

3. Aggregation of ice particles results in a decrease of ice number concentration and IWC at upper levels but
is very sensitive to details of the parameterization of this process, in particular the collection efficiency, which remains
uncertain.

In order to minimize errors in interpretation of the results due to unresolved convective updrafts, the simulations conducted
in this study were all done with a horizontal grid spacing of 250 m. This is a much higher resolution than current operational
numerical weather prediction (NWP) models. However, tests with 1 km grid spacing (Figure 22) indicated that impacts of
including SIP are very similar to those at 250-m grid spacing, where 1 km is close to the grid spacing of several current
operational and experimental NWP systems. Further, the P3 microphysics scheme is already used operationally in the
Canadian 2.5-km system (Milbrandt et al. 2015). Therefore, the conclusions regarding the importance of including SIP
processes in models are not limited to numerical modelling in research mode, but also have important implications for current
and/or upcoming operational NWP, in particular for systems that provide numerical guidance for civil aviation operating at
cruising altitudes between 10 and 14 km.

Finally, although the simulations conducted with the activated SIP process clearly resulted in improved results compared
to the observations, this is not a basis for concluding that the HM and FFD parameterizations used are accurate representations
of these physical processes. While the formulations were based on either laboratory experiments or combined modelling and
in situ observational study, they are still largely ad hoc. This study further highlights the importance of these processes in deep
convection and the need to include them in some fashion in numerical models. However, accurate parameterizations that

capture the underlying physics of these mechanisms, not just their bulk effects, continue to be topics of research.
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Table 1: Summary of GEM configurations details. References to specific schemes are provided in Milbrandt et al. (2015).

Dynamics/numerics

82 vertical levels

Time step of 15 s

Nonhydrostatic primitive equations
Limited-area grid on a latitude—longitude projection
Uniform horizontal grid spacing of 0.00225 longitude (approx 0.25 km)

Upper-boundary nesting above 10 hPa

Terrain-following Gal-Chen vertical coordinate
Two-time-level semi-implicit time differencing
3D semi-Lagrangian advection
V* horizontal diffusion (V® for potential temperature)

Physics

e Planetary boundary layer scheme based on turbulence kinetic energy with statistical representation of subgrid-
scale cloudiness (MoisTKE)

Kuo-transient shallow convection scheme
P3 two-moment bulk microphysics scheme
Li—Barker correlated-k distribution radiative transfer scheme (called every 3 min)
Interaction Sol-Biosphére-Atmosphere (ISBA) land surface scheme
Distinct roughness lengths for momentum and heat/humidity

Table 2: List of simulations.

Experiment name

Coalescence efficiency

between ice particles

Number of ice category

Secondary Ice production

BASE-1ICE 1
BASE-2ICE 2
Cotton et al., 1986

BASE-3ICE 3
BASE-4ICE (CTR) 4 No SIP

Linear from0.1to 1.0
BASE-COL between -20°C and -5°C. 4

Below -20°C: 0.1, above -
5°C: 1.0
SIP-2ICE 2
SIP-3ICE Cotton et al., 1986 3 Droplet shattering: large rain droplet
(100 pm < D < 3500 pm) collected

SIP-4ICE 4 by small ice particle (D < 100 pm)

Linear from0.1t0 1.0 Hallett-Mossop: applied to the
SIP-COL between -20°C and -5°C. 4 remaining collected rain by ice

Below -20°C: 0.1, above -
5°C: 1.0
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800 Figure 1: Initial atmospheric profiles for the idealized simulations. Blue line: dew point temperature. Red line: environment
sounding (temperature). Magenta line: parcel lapse rate.
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Figure 2: GOES-13 top of atmosphere (TOA) brightness temperature at 10.7 um at 1000 UTC 15 May 2015 (Knapp et al. 2018).
805 Blue lines: Falcon-20 flight track and altitudes. Red lines: Convair-580 flight track and altitudes. Red and blue dots indicate the
locations and altitudes of the Convair-580 and Falcon-20 aircraft, respectively, at 1000 UTC. Purple line: coastline.
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Figure 3: Simulation with a single ice category in the P3 bulk microphysics scheme. a-d: upward longwave radiative flux at the top
810 of atmosphere at for different times (30, 60, 120, 180 min after the model initiation). e-h: the corresponding radar reflectivity of the
cross-section marked by the black line in a-d.
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Figure 4: Profiles from the baseline simulations without SIP. (a): ice water content (IWC), (b): ice number concentration Ni, (c):
815 maximum vertical wind speed Wmax, (d) air temperature (the four simulations have only slightly different temperature that is not

distinguishable in the figure) T, (e): rain water content RWC, (f): median radar reflectivity. The profiles are calculated based on

data from 90 to 150 min of simulation. (a) and (b) are horizontally averaged over regions with IWC > 0.001 g m'3, (c) is the horizontal

maximum across the domain, (d) is a horizontal average over the whole domain, (e) is an average over the area with both ice water

path and rain water path larger than 1 g m=, and (f) shows median values of reflectivity including points with either IWC or RWC
820 larger than 0.01 g m within the mask used for (e).
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Figure 6: Same as Figure 4, but for baseline (CTR) simulation with 4 ice categories and the SIP simulation with 4 ice categories.
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Figure 7: Same as Figure 4. Domain averaged profiles for the CTR and SIP simulations with 4 ice categories, for 11 ensemble

830 members each. The dash-dot lines show the minimum and maximum values among the ensemble members. The results are calculated
based on data at 120 min after the model initiation.
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Figure 9: Distributions of ice water content from the model simulations and observation data from the HAIC-HIWC aircraft
campaign near French Guiana in May 2015. The bin width of 0.01 g m is used. (a): between the altitude of 6 and 7 km with
observation data from the NRC Convair-580 aircraft, (b): between 11 and 12 km with the observation data from the SAFIRE Falcon-

20 aircraft.
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845  Figure 10: Longwave flux at the top of atmosphere. a-c: simulation with baseline GEM set-up with 4 free-categories of ice at 60, 120
and 180 min after the initiation. d-f: same as a-c but for the simulation with secondary ice production implemented. Black lines
indicate the location of the cross-sections shown in later results.
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850 Figure 11: Simulated radar reflectivity for the cross-sections indicated by the black lines in Figure 10.
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Figure 12: Radar reflectivity distribution frequency for (a): CTR with 4 ice categories between 60 and 180 min after model initiation,
(b): same as for (a) but for the model with SIP included, (c): from all the observation data from the NRC Convair-580 aircraft during
the HIAC-HIWC campaign, and (d): the median value for each altitude for the two model simulations and observations.
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Figure 13: 2D histogram of Ni and reflectivity (panel a, c, e) and of IWC and reflectivity (b, d, f). Panel a and b for BASE-4ICE
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Figure 14: 2D histogram of IWC and reflectivity (panel a-d) and of Ni and reflectivity (e-h) for each of the 4 ice categories. All
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Figure 15: Simulated Doppler speed for the cross-sections indicated by the black lines in Figure 10.
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890 Figure 20: Similar to Figure 8, but for different simulations: SIP-4ICE and SIP-COL.
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