August 22nd, 2022

Dear Editor and Reviewers,

Submission of “Implementation and evaluation of the GEOS-Chem chemistry module version 13.1.2 within the Community Earth System Model v2.1” to Geoscientific Model Development

Thank you for arranging this review of our work, and for your patience as we have worked to revise the manuscript. Since both reviewers noted the length of the paper, we have worked to both streamline it (by moving less critical figures to the SI) and to make it more readable by breaking specific analyses out into separate sections. We have also worked to make the paper more accessible to non-specialists through the addition of brief descriptions of key chemistry where relevant as requested by Reviewer #1, while aiming to make the paper more relevant to specialists through the addition of more technical data (in particular emissions) and diagnostic data (correlation coefficient tables). Although we recognize that the paper cannot cover all bases, we believe that these changes have helped to improve the relevance and breadth of impact of the manuscript.

As Reviewer #1’s mentioned, several of their suggestions and questions took the form of comments which were placed directly on the manuscript itself. Most such comments are listed below with a response; however, for some minor comments, we have simply made the requested change without an explicit response below. These changes are reflected in the updated manuscript.

Please find below our point-by-point responses (in **bold**) to the review comments (in *italics*) and a marked-up version of the revised manuscript. A “clean” revised manuscript will be provided through GMD’s submission system.
Reviewer #1:

Summary:
This manuscript documents the new capability of running the Community Earth System Model (CESM) with the GEOS-Chem chemistry online. Comparisons are made to the current coupled model configuration of CESM with CAM-chem chemistry module and the GEOS-Chem chemistry transport model when implemented for high performance computing (“GCHP”). This is an exciting development for both the GEOS-Chem community and the CESM community. The authors provided lengthy inter-model and observation comparisons. This work is highly relevant, and I support publication after my overall comments below are addressed as well as my minor and technical edits within the marked-up PDF are considered.

Comments:
This manuscript is very long and it is a lot to ask of your readers to commit to nearly 50 pages of figures and text. There is a lot of overlapping information in Section 2 (Coupling GEOS-Chem and CESM) and the start of Section 3 & 3.1 (Simulation setup) and I recommend the authors consider synthesizing the details, possibly restructuring these sections. The authors could then make Sections 3.2 and 3.3 their own sections. Given the authors referenced later sections when trying to explain the differences, the authors should reconsider if keeping the model intercomparisons separate from the observations is the best flow for this paper. There were times when reading the model intercomparisons I kept asking myself “which model configuration is closer to observations” and I had to wait to find out if even the model-to-observations comparison was provided.

As discussed in our opening comments, we have attempted to both shorten the paper somewhat and to make it easier to navigate. Any overlapping information between Section 2 and Section 3 has been removed from the latter. Section 3 is now purely about model setup as both Sections 3.2 and 3.3 have been moved respectively to Section 4 and Section 5. This aims to streamline the results section and make it clearer for the reader what is performed in each section. Section 4 is purely about model intercomparison, while Section 5 evaluates the model results against observations.

For the profiles of NOx, NOy, and some of the halogen species, there are satellite observations which could be used for validating at least the stratospheric portions (e.g., MLS, ACE-FTS). There are also ground-based and balloon-based observations of water vapor. The choice of climatologies for the sonde and satellite observation comparisons was not clear to me when observations for 2016 should be available to the authors (also no references were provided for these data sets). Be clear as to the reasoning behind the observations used for the validation section.

The missing references were an oversight, and we are grateful to the reviewer for pointing this out. The relevant references have now been added to the manuscript (lines 948 and 963). With regards to the use of climatologies, we chose this approach as they are part of the standard CESM evaluation package and this comparison is therefore likely to be familiar to users from the CESM community. We felt that this approach was reasonable when the focus was on evaluating differences between model configurations rather than the overall accuracy of the model. This justification is now provided on lines 922-924.

By the end, I was also trying to find ways to reduce the figures, and suggest the authors consider if all panels and figures are necessary or could be included in supplemental information.

We agree that some material is not critical to the main text. We have attempted to shorten the manuscript by moving less critical figures (including the figures showing wet deposition tendencies or surface NOx concentrations, formerly Figures 12, 13, 14, and 20) to the Supplemental Information.
Especially in the model intercomparison, there is often an assumption of the reader’s knowledge of atmospheric chemistry. Provide the chemistry background and references to support statements as to why different chemistry leads to differences between models.

We now provide some detail regarding the chemistry (including references) relevant to specific differences, with the goal of aiding the reader and supporting our statements. This includes referencing DMS chemistry in the context of oceanic sulfates (lines 626-628), how to interpret lower-stratospheric water and ozone differences (lines 552-555), the relationship between NOx and PAN (lines 715), and the importance of halogen chemistry to ozone (lines 747-749).

Be careful quoting figures. I strongly suggest adding panel labels and referencing figure panels whenever possible in the main text. Often there are numbers quoted in a paragraph that I would have expected came from the figure currently being discussed but I do not find these numbers in the figure. In some places, this may have to do with number of significant digits used in the text vs the figure; but it is unclear. When results are discussed including a lot of numbers, I suggest the authors consider tables to make it easier to digest and compare the numbers between the different models (and regions). If numbers are provided but not from the figure being discussed in that paragraph state “not shown” so the reader does not spend time trying to find it.

We have worked to make it clearer when we are not citing specifically from figures (e.g. stating “not shown” as suggested). We have also increased the number of tables in the manuscript (e.g. the new Tables 2 and 4), while trying to balance against the need to avoid further lengthening the manuscript.

The acronyms C-GC, C-CC, and S-GC are so similar it makes reading the comparisons hard to follow. The acronyms were only used in Section 3, not in Section 2 nor in the final Discussion and conclusion Section 4. I struggle to think of alternatives that may be better. Maybe using a lower-case c for CAM-chem will help (e.g., C-GC, C-Cc) or include CESM instead of simply C (e.g., CESM-GC, CESM-Cc). Also, the standalone GEOS-Chem uses GCHP, so maybe simply using GCHP instead of S-GC would help it stand out from the CESM acronym. I had to keep reminding myself if it was using GCHP, not the Classic CTM, while reading the manuscript.

Unfortunately we too were unable to think of acronyms which would work better. Our concern with using GCHP instead of S-GC is that the specific implementation of GEOS-Chem is not significant (GCHP and GC-Classic are essentially identical apart from their handling of transport), so highlighting it in such a way might be distracting. However, we have emphasized in the introduction that S-GC is the GCHP CTM, and not GC-Classic (see next comment).

Specific comments:

Is this referring to the GEOS-Chem Classic CTM or simply a free-running version of C-GC?

We now specify in the abstract that the acronym S-GC refers to the GEOS-Chem High Performance CTM (e.g. on line 393).

globally due to bromine or is this regional?

This statement (regarding the possible causes of differences in ozone) was incomplete. We have now clarified that there are other factors which may contribute, with variable roles in different regions (lines 32-34).

lower altitudes, but still in the stratosphere or in the troposphere?

We have now replaced “lower altitudes” with “in the troposphere” to clarify this sentence (line 32).

Could be rewritten, its a bit difficult to read.
We have clarified this sentence. The sentence now reads: “This difference in tropospheric ozone is not uniform, with tropospheric ozone in C-GC being 30% lower in the southern hemisphere when compared to S-GC but within 10% in the northern hemisphere. This suggests differences in the effects of anthropogenic emissions.” (lines 35-35)

So now this sentence is referring to tropospheric ozone?

We now state that this sentence refers specifically to tropospheric ozone (lines 32-35).

i don't understand how the set up of the two versions is different from simply reading the abstract.

We now clarify that the MERRA-2 meteorology is used directly in the GEOS-Chem CTM (lines 39-40).

Change to NASA MERRA-2 Reanalysis meteorology, if that fits in the word limit for the abstract.

This change has been made (lines 39-40).

I’d say reference here but i see you have the url to GEOS-Chem on the following line. What about the Bey et al. 2001 reference?

Indeed, the URL has changed since we first submitted the manuscript. The manuscript now points to http://geos-chem.org (line 58) and we have added the relevant references for both GEOS-Chem (Bey et al. 2001 for GEOS-Chem and Eastham et al. 2018 for GCHP) and CESM (see lines 53-55).

This is true for GEOS FP but MERRA-2 resolution is coarser (0.5deg x 0.625deg).

We now state both meteorological reanalysis datasets with their respective horizontal resolution (lines 81-84).

Does it also have a world-wide network of research groups? Can you give it similar accolades as you did for GEOS-Chem? Is there a good url?

CAM-chem is widely used in the research community as it offers the capability to simulate tropospheric and stratospheric composition within CESM. In particular, users can choose to run CAM-chem with specified meteorology or as “free-running” (with climate feedback). We have now added URLs for both CAM-chem (line 116) and GEOS-Chem (line 58).

I usually recommend only using acronyms after they are defined but are these here so common to the community that they do not need definitions?

The acronyms in question (WACCM, ACCMIP, CCMI, POLMIP, HTAP2, GeoMIP, and CMIP6) admittedly vary in terms of how well they are known. However, all are better known by their acronym than by their full name, and none are used again in the manuscript. We have therefore opted to keep them as acronyms (lines 110-111) rather than potentially compromise readability. However, we would be happy to revisit this decision if necessary.

Is there a url which lists CAM-chem participating in all of these activities?

We have added the following URL (line 116): https://www2.acom.ucar.edu/gcm/cam-chem

I suggest you move sentence to start of next paragraph to better connect the ideas.

We agree with the reviewer’s comment. This sentence has now been moved to the beginning of the next paragraph (line 118).

“…the only implementations of GEOS-Chem which are currently publicly available are either designed to run “offline”… or operate at regional scale and do not extend to global simulation”: What does this mean? A researcher outside of GMAO can only run GEOS-Chem Classic CTM or GCHP, or WRF-GC?
This is correct. The only other relevant implementations are a frozen (and now outdated) version of GEOS-Chem in the Beijing Climate Center’s model, and the implementation in GEOS which is (to our knowledge) only used (or usable) by researchers at NASA.

But you’re going to try [to disentangle the root causes of these differences] here, right?

Throughout this study, we have tried to disentangle the source of the differences between the C-GC and C-CC model results.

but you just said you were comparing 2016. is there a spin-up?

We perform a spin up for each simulation setup but only compare the results for the 2016. We now state explicitly the spin up periods used (lines 402-406).

This is a good description of the schematic, but there are some aspects that are not clear. Why are there dashed boxes and arrows in the Chemistry section on the right, versus the solid arrows on the left. Why is Driver/Mediator in a dashed box? Why is the GEOS-Chem source code outside the box with the chemistry options? Are CAM-Chem and GEOS-Chem headers in a table? Dynamics is not connected to anything.

Figure 1 has been regenerated with the same kind of boxes and arrows to avoid any confusion. The large blue box on the right represents a blow-up version of the data exchange between the atmosphere state and the chemistry module (whether CAM-chem or GEOS-Chem). The GEOS-Chem source code stands outside of that blue box because it is not part of the CAM source code but rather downloaded for the GEOS-Chem Github repository. Dynamics are not directly applied through the control layer but rather acts on a “dynamics container” which are then translated to tendencies.

This is not labelled as such in Figure 1.

We now state in the manuscript that this “coupling interface” is labeled as “CESM2-GC interface” in Figure 1.

I assume this is a subfolder within the top level directory of the CESM2 code. Can this be written out in more layman’s terms?

We now clearly state that the interface code is kept in a subfolder of the chemistry source code, and we have decided to keep the relative path to this subfolder within parentheses.

Using ESMF or NUOPC was supposed to make sure you could do clean testing within a modular system. How will this be accomplished otherwise?

At this time we are relying on the principle that the GEOS-Chem code base is common between all implementations, relying on interface codes which are now supplied as part of the GEOS-Chem base. We did this because we knew that CESM development is moving towards NUOPC, at which point we intend to update our interfaces to leverage that capability.

define SOA since the acronym is used later.

The acronym is now defined on first occurrence (line 199).

is this a general Modal Aerosol Model acronym or should it be MAM4? My brain defaults to spring March-April-May MAM.

The official acronym of the Modal Aerosol Model is MAM, with MAM3, MAM4 and MAM7 describing the number of modes used in the simulation. The CESM default is to run with MAM4.

Not sure if there is a journal preference but I recommend changing this to m-3
All occurrences of these in the manuscript have been modified to “m3” (instances highlighted – e.g. line 229).

Is there a word missing here? "When implemented as the standalone model,"

Indeed, a word was missing. The sentence now reads: “When implemented as the standalone model, wet deposition is calculated for large-scale precipitation using separate approaches for water-soluble aerosols (Liu et al., 2001) and gases (Amos et al., 2012) with calculation of convective scavenging performed inline with convective transport.”

Define

HNO$_3$ is now defined as nitric acid.

This link did not work for me.

The new URL is now https://geos-chem.seas.harvard.edu/.

add (H2SO$_4$) afterwards to correspond with use in Line 252

We have now added (H$_2$SO$_4$) after gas-phase sulfuric acid.

not yet defined.

H$_2$SO$_4$ is now defined (see previous comment).

what does this mean here? Are you comparing C-CC and C-GC in this table? Try to be consistent with acronyms.

The table lists the mapping in place between the GEOS-Chem and CAM-chem chemical representations. C-GC and C-CC refer to the fully-coupled CESM alongside its atmospheric chemistry module (GEOS-Chem or CAM-Chem).

Neither of these products have been introduced before. Change to "using the meteorological fields from NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2; Gelaro et al., 2017) and GEOS Forward Processing (FP; Lucchesi, 2018).

Since the MERRA-2 and GEOS-FP acronyms are now defined previously in the manuscript, the sentence now reads “using the NASA MERRA-2 and GEOS-FP meteorological fields” (line 309).

Trying to keep track of all the different module names versus the ESM name is not easy. CAM-Chem here doesn't have its own versioning, it is linked to the version of the CESM?

The Community Atmospheric Model (CAM) does have its own versioning system (C-GC and C-CC both use CAM6), but we are not aware of any subversioning system for CAM-chem. Each release of CESM is tied to its version of CAM. We have attempted to be more explicit in the revised manuscript (e.g. line 331).

Isn't this already stated on Lines 185?

Indeed, we have removed the double occurrence.

what does this mean? C-GC or C-CC? (this refers to “Whichever scenario is chosen”)

The expression “Whichever scenario is chosen” refers to the choice between CMIP6 scenarios (e.g. historical or one of the SSPs). This is now clarified.

What does this stand for?
CIME stands for the Common Infrastructure for Modeling the Earth. The sentence now reads: "Additionally, we modify CAM, CLM and the Common Infrastructure for Modeling the Earth (CIME) such that the land model can pass land type information and leaf area indices to the atmosphere model to compute dry deposition velocities."

when is this expected to happen? And on who's authority/guidance?

We now say that this is currently being discussed with the CESM team. Although we interact on a monthly basis with the team, there are no hard guarantees regarding an implementation timeline (lines 370-371).

Explain why [a complete copy of the source code is downloaded]

To make sure that the most recent version of the GEOS-Chem chemical representation is used, a full copy of the code is downloaded when first setting up C-GC. Later updates of the GEOS-Chem code can be brought in using the Git version control tool. The sentence now is: “Although a complete copy of the GEOS-Chem source code is downloaded from the version-controlled remote of GEOS-Chem repository (to ensure that the most-recent release of GEOS-Chem is used), not all files present in the GEOS-Chem source code directory are compiled” (lines 377-379).

There's a fair bit of repetition in Section 3 opening paragraph and Section 3.1 to was already provided in previous Section 2. Given how long this paper is, I recommend revisiting these sections to reduce any redundant information/model descriptions. You may find you can change Section 3.1 to be a subset of Section 2 and then Sections 3.2 and 3.3 can be more stand-alone "result" sections.

Section 3.1 (which is now just “Section 3”) only describes the model setup and we made sure that no overlap exists with Section 2, which focuses on the description of each module and their interface with the whole code. Additionally, Sections 3.2 and 3.3 have been moved to Section 4 and Section 5 respectively.

Should you be using C-GC and C-CC throughout Section 2?

We now use the C-GC and C-CC acronyms through all the sections in the manuscript for consistency.

this is odd wording. Did you preform a two-year simulation which you will evaluate against two other model simulations?

We understand that this sentence caused confusion, so we have removed the last few words. A two-year C-GC simulation was performed and evaluated against the other models and observations. The evaluations are described in the same paragraph.

It's odd to reference Section 3.2 and 3.3 without referencing Section 3.1. I advise rewriting this opening paragraph to introduce the models and then describe first a model intercomparison to establish the differences of C-GC to C-CC and then the C-GC evaluation against observations

Sections 3.2 and 3.3 have now been moved to their own Section. Section 3 now just consists of the old “Section 3.1”.

How much does the choice of initial conditions impact the difference between the model simulations? How close are the initial conditions between CESM and S-GC? If the CESM initial conditions are used where S-GC doesn't have the fields, could they not have been used entirely to start the C-GC run to be consistent?

The initial conditions used for C-GC have been obtained using the existing C-CC restart file (which contains initial conditions for MAM aerosols, CAM-chem species, and some other meteorological data). However, any species involved in the GEOS-Chem chemistry scheme has been added to this C-GC initial file, using the S-GC restart file. This S-GC restart file is obtained after a decade-long S-
GC simulation. The simulation we performed with C-GC used a one year spin up period, using the same “default” restart file which is expected to provide a reasonable representation of the early 21st century (private communication). A brief description is now provided on lines 402-411.

Our approach allows for the troposphere to be reasonably well spun-up in all three configurations. However, given the model differences between S-GC and C-GC, we realize that stratospheric concentrations might need longer timescales to reach a quasi-equilibrium. Further work would be needed to quantify the impact of the initial spin up time.

Change to 0.01 hPa to be in the same units as the CESM v2.1.1 description in line 393.

The corresponding change has been made in the manuscript.

This is first mentioned at line 299, so it should be defined at first use.

We now define the MERRA-2 acronym on its first use in the main text (lines 84-85). Although we use the term MERRA-2 in the abstract, we do not define it there due to length concerns.

Add references for these schemes

These citations (Bogenschutz et al., 2013; Zhang and McFarlane, 1995) are now included.

not defined yet

The acronym CFC has now been defined. The sentence now reads as “Finally, for long-lived species such as chlorofluorocarbons (CFCs) we use the shared socio-economic pathway 2-4.5 (SSP2-4.5) set of surface boundary conditions in both C-GC and C-CC” (lines 478-479).

have these been defined as H2O and OH?

The sentence now states “water vapor (H2O) and the hydroxyl radical (OH)”.

Based on this comparison being the third panel, I was expecting the middle panel to be discussed first.

We now generally evaluate the differences between C-GC and S-GC first, and then between C-GC and C-CC, thus following the order of the panels.

This result statement should come later where you discuss bromine, or possibly at Line 506, where you discuss reasons for all these differences.

This sentence has been moved to the corresponding paragraph and we now refer to Section 4.4 as a link to the NOx and bromine comparison Sections.

I encourage the authors to label the panels a, b, c.

We have regenerated each figure with a panel label as requested, and where possible refer to specific figure panels in the main text.

Are you trying to say [the absence of a specific pattern in the ozone delta] is likely related to transport in the online vs offline GEOS-Chem?

Not exactly – we meant more that differences might be related to different treatments of meteorological variables, rather than differences in transport (since all three model configurations use the same prescribed wind fields). We now specify that we are referring to, for example, the differing treatment of water vapor (lines 511-512).

Again, comparing first to C-CC but it is the third panel. Is there a reason to put S-GC in the middle?
We have aimed for consistency in panel ordering throughout the manuscript. However, in this case, we felt that the comparison between C-CC and C-GC resulted in a more logical flow for the comparison to S-GC, and thus began with that rather than a comparison to S-GC.

The next section specifically evaluates the surface ozone. I suggest changing this instead of "at the surface" but "from the surface"

We agree with the reviewer's comment. This change has been implemented in the manuscript.

This figure doesn't show an average. I suggest changing this to "across"

We have made this change in the manuscript.

The KORUS-AQ campaign is one location, not at all latitudes. Is there a better comparison, such as in Keller et al. (2021) evaluation, where we looked at ozonesondes across all latitudes. If you are specifically trying to highlight the GC vs CC, at least state the caveat that this is regional comparison and not global. [AND] Is this related to the KORUS-AQ study or the current study?

To further clarify that these observations are all made in one geographical location and to more clearly communicate the source of the observed differences, we have added the following sentence: “This suggests that discrepancies observed in KORUS-AQ may be related to chemistry rather than the treatment of meteorology, but a more focused regional analysis would be needed to confirm this” (lines 533-534).

I assume later you'll tell us why this might be. If not, can you provide here a reason?

The sections later in the paper go into detail as to why we observe this difference. We now state on line 544 that this will be discussed in Section 5.2.

Explain why this would impact ozone. Is this seasonal signal that is dominating the annual differences?

To further explain the role of stratospheric water vapor in ozone change, we have added the following sentence at the end of the paragraph: “This is unlikely to be due to HOx catalytic cycles depleting ozone, as OH in this region is lower in C-GC than in S-GC (panel e) and HOx cycles are in any case a minor contributor to ozone depletion in the lower stratosphere (Brasseur and Solomon, 2006). The greater water vapor (and therefore humidity) may instead result in faster heterogeneous chemistry, including the liberation of NOx from HNO3” (lines 552-555).

use "approximately" or "about" instead of a tildas.

We have replaced all tildes with the word “approximately”.

[Figure 3 middle panel] Is this in reference to the red plume that goes up from the surface to 600 hPa? From the colorbar it is hard to know which color is the 10% to know if this is limited to 900 hPa to the surface.

Yes, this increase of 10% in northern mid-tropospheric OH mixing ratio is a reference to the plume-like feature in the figure. The percentage represents the relative difference between the two model results.

add "generally", as there are some red hot spots in both difference plots

We have made the corresponding change.

I don't see this. It looks darker over the southern ocean.

This sentence was incorrect and has now been removed.

What color is zero? It looks like a slight negative bias to me, with a slight positive bias over the eastern pacific near central america.
This comment refers to Figure 4, middle panel. This panel compares surface ozone as simulated by C-GC and S-GC. We agree that there is a small difference, rather than no difference. The sentence now reads as “In the Northern Hemisphere, we observe a small difference in surface ozone mixing ratio over the oceans (less than 1 ppbv), while a difference of approximately 3 ppbv can be found over North America, Europe and East Asia.”

Is there such an asymmetry in bromine from sea salt between southern and northern hemispheres? What is the rational behind this statement?

Given that C-CC does not model sea salt bromine and that ozone is mostly lower over the oceans in C-GC compared to C-CC, we suggest that this difference may be induced by sea salt bromine. On the other hand, the difference between C-GC and S-GC mostly occurs in the Southern Hemisphere, which wouldn’t be just explained by differences in sea salt bromine. We therefore believe that this difference may be driven by other factors, such as the larger anthropogenic influence in the Northern hemisphere.

The hemispheric differences seem to be on the order of 2.5 ppb, just in different directions depending on the model comparison. Are you arguing that the C-GC and C-CC difference is not asymmetric?

We agree that there is an asymmetry, but that it is weaker. We now clarify (line 590) that this is specifically in absolute terms, since the asymmetry should also be considered against the baseline hemispheric asymmetry in ozone calculated by C-GC.

Is this suppose to quote the top left panel? The r2 value is 0.91 in Figure 5. I don’t see this number in Figure 5. Is it supposed to quote the r2 value from top right?

We indeed had a typo in this sentence. The new sentences are: “In January, we find a correlation coefficient of 0.91 and slope of 0.91 between C-GC and S-GC. In July this agreement is worsened, with a correlation coefficient of 0.80 but a slope of 0.93” (lines 599-600).

Is this an eye ball estimate from the figure or did you output this range? It looks like it starts before 15 ppbv in C-GC to me.

The range provided in the manuscript indeed started approximately around 11 ppbv. The sentence has been modified to the following: “There is also a distinctive “hot spot” in the July parity plot, with a large cluster of grid cells showing mixing ratios in the range 20-25 ppbv in S-GC but 10-20 ppbv in C-GC” (lines 602-603).

DMS has not been defined. Explain to the readers the chemistry behind this connection of DMS to Sulphate aerosols.

We have now properly defined the acronym DMS. We now provide a brief description of the relevant chemistry (lines 626-628).

These large saturated differences start at 700 hPa so I would say at least from the mid-troposphere. This would look lower down in the atmosphere if you used a log-scale for the pressure.

We agree with the reviewer’s comment. We have replaced “upper troposphere” with “tropical mid-to-upper troposphere and extratropical lower stratosphere” (line 631).

Is there a reason that surface ozone got its own subsection but surface aerosols are lumped with the zonal means?

We chose to analyze surface ozone because of its importance to oxidation as well as its importance in air quality. We had originally planned to perform a similar analysis for PM$_{2.5}$, but chose not to do so in order to save space. Such an analysis could however be included if desired.
Not all of your readers are likely meteorologists and will know where the ITCZ is located. I suggest describing this instead as "off the west coast of southern hemisphere continents" or something like that.

We have made the recommended change on lines 639-640.

Do you think this is because of the emissions in the southern latitudes as you state in line 587? Why do you think this may be? In Line 588 you claim "despite emissions of DMS from oceans".

We are not certain that these differences in surface sulfate concentrations in the ITCZ are caused by the same factors as the difference in sulfate concentrations between C-GC and C-CC in the Southern Hemisphere, in part because DMS emissions are calculated in identical fashion in all three simulations. The differences in surface sulfate concentrations could be explained by differences in a combination of factors such as deposition tendencies, aerosol representation, and OH abundance, but we have not been able to draw a firm conclusion thus far. Further work would be needed to identify the underlying factors causing these differences in surface sulfate concentrations. We now state that this issue is unresolved in Section 4.3.

I suggest this is changed to "mid- and upper tropical troposphere and throughout the lower stratosphere"

We agree with the reviewer and have implemented the corresponding change (lines 653-654).

NOx was first used at line 307 but never defined. It should be written out as NO and NO2.

NOX is now first defined on first use (line 312) as NO and NO2. In the rest of the manuscript, we refer to nitrogen oxides as NOX.

Define which species you are adding up here to be NOy

We agree that this can lead to confusion given that GEOS-Chem and CAM-chem have different species included in NOy. We have added the following sentence in the manuscript: “A full list of the species included in the lumped NOy reservoir species can be found in the legend of Figure 10 for each model configuration” (lines 663-664).

For those readers who may be red/green color blind, I suggest reploting with different color choices or using dashed styled lines. Also could use the same colors as in the tailor diagrams.

We agree. Where possible, we have modified the plots so that red and green are not used in the same Figure (e.g. Figure 9).

How does the vertical resolution of the model configurations differ and impact the zonal mean comparisons here (and in previous sections).

All three models use the same vertical resolution. The only difference is that S-GC has a higher model top. Indeed, S-GC uses a 72-layer grid where C-GC and C-CC both use a 56-layer grid. In any case, the first 56 layers have identical pressure edges. This is stated in Section 3 (lines 419-423).

I tend to read from left to right so it does throw me off a bit that you usually discuss the right panel first.

We have rearranged our discussion such that the comparison is now made in the same order as the panels (see e.g. Section 4.4.1).

The units on the y-axis are hPa and I think it stops between 2 and 1 hPa.

There was indeed a typo in the manuscript. Figure 10 displays the speciation of NOy as a function of altitude up to approximately 1 hPa.

I cannot see this subtle difference from Figure 10.
This comment refers to the following sentence: “At 10 hPa, HNO$_3$ constitutes 20% of total NO$_y$ in C-GC but 23% in both C-CC and S-GC.”. These percentages were not read from Figure 10 but rather calculated from the simulation output. We now state in the manuscript (line 689) that these values are not shown explicitly in the figure, although they can in theory be read from the figure data.

Why are there two different legends? Does this mean your NO$_y$ estimates have different make up between the GEOS-Chem and CAM-Chem models? What impact does that have on your profile comparisons in the previous figure?

The list of species that make up NO$_y$ differs between GEOS-Chem and CAM-chem. Thus, S-GC and C-GC have the same list of species included in NO$_y$, while it is a different one for C-CC. We now specify this when first mentioning Figure 10 (lines 663-664). The most significant difference is the lack of nitrate aerosols in CAM-chem, which affects the treatment of HNO$_3$ (see e.g. lines 688 to 695) and is discussed throughout the manuscript. Otherwise the speciation of NO$_y$ does not appear to vary significantly between C-CC and C-GC (see e.g. lines 681-684).

I don’t see this purple band on Figure 11.

This was a miscommunication; although N$_2$O$_5$ is an important component at altitudes above (pressures less than) 200 hPa, at altitudes below (pressures greater than) this point, PAN is the key component. The discussion has been simplified (lines 700-702) to no longer discuss N$_2$O$_5$ and instead focus on PAN.

Sometimes the authors use NOx and sometimes NO and NO2 but I don’t think the authors have yet to define NOx as NO and NO2.

NO$_x$ is now first defined early in the manuscript (line 312) as NO and NO$_2$. In the rest of the manuscript, we refer to nitrogen oxides as NO$_x$.

Can the C-CC legend be moved down slightly or stacked vertically so it doesn’t overlap with the NO$_y$ speciation

We have regenerated this figure such that the legend does not overlap with the speciation.

For example, this seems redundant with what is in line 657. Can you better connect these two paragraphs as there is overlap in the message.

We have merged this paragraph into the previous one and attempted to reduce redundancy (lines 700 – 718).

Connect this paragraph with the previous paragraph. You give the reasoning for the result before you show/discuss the result. Alternatively, could Figure 12 and 13 be in a supplemental to support the reasoning you provide in Lines 680-686?

In order to reduce the length of the main manuscript, we have decided to move Figures 12, 13 and 14 to the Supplementary Information. The two paragraphs describing the results have been merged into the main text.

How does the difference in species between GC and CC impact these profiles? e.g., Br2

This is an important question given that GEOS-Chem and CAM-chem have different representation of bromine chemistry. The most critical difference is the lack of short-lived bromine source species in this version of CAM-chem, including sea salt, which means that bromine-related tropospheric ozone depletion is largely not captured. We now refer to this difference in the manuscript (lines 761-765).
I got tripped up reading this sentence because of the similar acronyms. Can you change this to “the C-GC total Br$_y$ concentration exceeds C-CC by 1000 % at the surface”.

We agree with the reviewer’s comment and have made the corresponding change.

What do you mean here? Is the slope flattening or steepening?

We agree that this sentence was confusing. We have now rewritten it as “Above 100 hPa, the averaged Br$_y$ mixing ratio levels off, with values between 20 hPa and 2 hPa remaining roughly constant in the range of 16-20 pptv” (lines 767-768).

above 80 hPa for C-CC comparison.

We have added the following statement in the manuscript: “(and even above 80 hPa when compared to C-CC)” (lines 770-771).

in GEOS-Chem?

We now mention that this rapid washout occurs in C-GC and S-GC.

The BrNO$_3$ also looks bigger, less BrCl.

We have added a sentence comparing BrNO$_3$ and BrCl in the mid stratosphere. This sentence reads as “Larger mixing ratios of BrNO$_3$ are also present in C-CC (approximately 10 ppbv at 30 hPa) compared to C-GC and S-GC (approximately 7.4 and 7.0 ppbv respectively at 30 hPa). Smaller mixing ratios of BrCl are observed in C-CC, with a mean value of 1.8 ppbv at 30 hPa, while they reach 3.1 ppbv in C-GC and S-GC at 30 hPa. The base causes of these differences are not clear, but may be related to the presence of more complex tropospheric and stratospheric halogen chemistry in the GEOS-Chem chemical mechanism (Wang et al., 2021)” (lines 786-790).

“vertical” is redundant as profiles are not in the horizontal.

We agree with the reviewer and we have removed the word “vertical”.

Why?

We decided to exclude long-lived chlorocarbons from the analysis of the profiles of reactive chlorine because they have longer lifetimes. However, they are of course included in the simulation.

How do the differences in species representing Cly impact the comparisons in Figure 17?

We find that above 500 hPa, all three simulations have similar chlorine speciation and species not included in CAM-chem do not have major contributions above 500 hPa. Below 500 hPa, the main differences are due to chlorine from sea salt, which is not represented in CAM-chem (~90% of the surface chlorine content, excluding chlorocarbons) (line 829-830).

I do not follow this connection.

We clarified the sentence. It now reads as “As with total Br$_y$, total Cl$_y$ follows the same vertical distribution as S-GC up to 10 hPa. Above this pressure, the vertical distribution in C-GC is closer to that of C-CC” (lines 815-816).

I read the figures to have negative differences in the middle panel above 10 hPa. and Isn’t this a negative difference in the right panel of Figure 17? and starting at 200 hPa for C-GC minus C-CC

These are indeed negative differences. The sentence now reads as “Above 10 hPa, the relative difference in Cl$_y$ between C-GC and S-GC increases slowly from -2% at 10 hPa to -5% at 2 hPa, while the difference relative to C-CC remains at approximately -20% above 200 hPa” (lines 817-819).
How can you say this [a statement on production] when looking at a global annual mean? and The HCl and ClNO3 look similar to me when comparing the left and right plots below 200 hPa (upper troposphere). What are you considering for the region to be lower stratosphere?

We find higher mixing ratios of HCl in C-CC between 200 hPa and 50 hPa. For instance, at 50 hPa, we find a mean HCl mixing ratio of 0.8 ppbv in both C-GC and S-GC, but 1.1 ppbv in C-CC. By the expression “appears to occur faster”, we meant to say that there’s greater mixing ratios of HCl at these altitudes in C-CC. We now state that “larger mixing ratios of upper tropospheric and lower stratospheric HCl from chlorine source compounds are observed in C-CC” (lines 831-832).

Is there a reason to not use CO? Has it been defined yet?

Carbon monoxide (CO) had not been defined previously. This sentence now reads as “Section 5.3 evaluates the level of agreement of simulated ozone and carbon monoxide (CO) columns to measurements from the OMI/MLS and MOPITT satellite instruments”.

I missed the fact at first that each row was a different region. I highly recommend adding a detail to this sentence like “for North America (top row), Europe (middle row), and South-east Asia (bottom row).” Are the bounding boxes for these regions provided elsewhere in the paper? If so remind the reader, if not add these details.

We now state that each row corresponds to a specific region. The sentence now reads “Figure 17 compares surface mass concentrations of NO₂ as estimated by C-GC, S-GC, and C-CC for 2016 against ground station measurements for North America (top row), Europe (middle row), and South-East Asia (bottom row)”.

Have you tried comparing it to a “NOy” from the model to see if you get a better comparison?

This is an interesting point and worth studying. However, we have not considered this possibility for the present study. Evaluating NOy model results against NO₂ observations would maybe bypass the consistent overestimation that in-situ monitors generate due to HNO₃. In Section 5.1, we have added the following sentence: “Comparing in-situ NO₂ measurements against NOy model results could potentially remove the effect of interferants in the observations of surface NO₂ concentrations, but is not considered here“ (lines 870-872).

While Figure 19 clearly shows the models underestimate observations across the board, this regional discussion could be provided as a Table and I would then recommend Figure 19 to a supplemental. Other statistics like mean bias, RMSE to go with the correlation values should be considered (see Figure 3 of Keller et al., 2021 JAMES 10.1029/2020MS002413). Also keep in mind that comparing model grid boxes to point source measurements should always come with a caveat in the text that we do not expect perfect matches. I think you are saying something like that in line 828 but not specifically highlighting the grid-box representation errors.

I see later on you have the mean biases. I highly recommend a table for when you have this many numbers that you are quoting in the main text.

We agree with the reviewer’s comment and now state in Section 5.1 “By comparing model results at an approximately 2° horizontal resolution to point observations, we expect some differences due to grid-box representation errors.“. Additionally, we provide new tables (Tables 8 and 9) listing correlation coefficients of surface-level NO₂ and ozone mass concentrations.

Are the NO and NO₂ panels discussed? If not, can they be moved to a supplemental?

We now only present the panels corresponding to the NO:NO₂ ratio, while the previous figure has been moved to the SI (Figure S3).
What about referencing Figure 4 instead?

We now reference Figure 4 as suggested.

Should we be able to see these in the NO2 or NO plots? Would a better color bar show this (e.g., log scale or less saturation below 5 ppbv)?

The new Figure in the SI (Figure S3) plots NO2 and NOx on a log scale. Ship tracks can be observed for all three models.

Again, maybe a table would be more useful? or at least put the r values as insets on the panels?

We have added a new table listing the correlation coefficients between surface-level simulation results for ozone and measurements (Table 9).

The authors have already presented a lot of comparisons between the two models. Can the authors be more specific as to what further work needs to be done.

We now state throughout the paper different points that could be envisioned for future work (e.g. NUOPC-based interface, bromine sea salt emissions scaled with sea salt emissions, source of the differences in surface sulfate concentrations, role of heterogeneous chemistry on nitrogen speciation).

Why not use available ozonesonde data for 2016?

Since our goal was to show that CESM-GC produces reasonable results compared to CESM and GEOS-Chem, we used the analysis and processing codes (and datasets) which are typically used in evaluations of CESM and CAM-Chem. Several of the figures shown in the manuscript (including the ozonesonde comparison) have been generated using the CESM post-processor, which directly compares ozone profiles to a climatology of ozone sonde observations from 1995 to 2010. Even though a new climatology came out in 2016, the CESM post-processor still uses the previous dataset. To clarify, the manuscript now includes the time range of the ozone sonde measurements (line 922). We also clarify in the same section the reason for using climatology rather than a specific year.

We found that the choice of restart really made a difference on our stratospheric ozone in the GEOS-CF (GEOS ESM with GEOS-Chem chemistry) (see Section 4, Knowland et al., 2022 JAMES 10.1029/2021MS002852). How well spun up was the stratosphere in the restart file provided from version 13.1.2 GEOS-Chem (line 390)? What is the stratosphere like in the CESM initial conditions (line 389)?

The GEOS-Chem restart file was obtained from a 10-year simulation using GEOS-Chem Classic on a 4°x5° horizontal grid, which was then regridded to the horizontal grid used for this study. We agree that performance of the model stratosphere will be influenced by the restart file chosen, but we do not evaluate that influence in this work. In Section 3, we now state “For C-CC, the standard restart file provided with CESM is used to provide initial conditions. For S-GC, we use a restart file provided with version 13.1.2 of the GEOS-Chem module, which was obtained from a 10-year simulation. The CESM restart file is intended to represent the early 21st century, so we have followed the lead of previous studies which have used a 1-2 year spin up period (Schwantes et al., 2022; He et al., 2015)” (lines 402-406).

Figure 23 caption states that the observations are for a different period than the model but i do not read that here. State that these comparisons are to climatologies, like in the ozonesondes. My question again though is why not use the actual observations for this year as they are available?
We now address this issue directly in the text (lines 922-924 and 947-956). We agree however that
an additional evaluation looking at the performance for a specific year would be a useful
supplementary analysis.

Is this shown in Figure 23? If not, state so.

It is not, and we now state this explicitly in the text.

not shown

We now state that these data are not shown in Figure 23 (now Figure 20).

not shown. Again, would these numbers make for a good table?

We now state that this number is not shown in Figure 23 (now Figure 20). Although we agree that a
table would be helpful, we have chosen not to create one so as to avoid further lengthening the
manuscript.

This should have been defined at first use and then CO can be used throughout. The authors do not
make a confusing reference to Colorado which would make using CO for carbon monoxide confusing.

Carbon monoxide (CO) is now defined on first use in Section 5. All other references to carbon
monoxide have been replaced with CO.

of CAM-Chem

The sentence has been modified accordingly and now reads as “The CO model estimates using C-
CC are characterized by a bias of -9×10^{17} molec/cm^2 in the Northern Hemisphere, consistent with
previous evaluations of CAM-chem” (lines 962-970).

Capitalize [Southern Hemisphere]

We have now capitalized Southern and Northern Hemisphere throughout.

I don't follow this statement.

We have clarified the sentence. It now reads as “Across all three model configurations a north-
south gradient is observed in the model bias, with the bias in the southern hemisphere being
approximately 10^{18} molec/cm^2, which is of greater magnitude than the (negative) bias in the northern
hemisphere.”.

Are these numbers on Figure 25?

The numbers are included in Figure 25 (now Figure 22), but respectively rounded to 0.6, 0.7 and 0.7.

Is this in a figure?

We have decided to not show the dry deposition fluxes of nitrogen for all three simulations, but
rather state the results in the manuscript. The dataset we used has few measurements of dry
deposition fluxes and we decided to not include this figure, as the results can be best described in
a few sentences. This is now stated in the text in Section 5.4.

Are these numbers from the Figure 26?

These numbers represent the global mean for each of the simulations and they represent thus the
mean of the panels on the left in Figure 26 (now Figure 23). This is now stated in the text in Section
5.4.

Are these numbers in the Figure?
The correlation coefficients between model results are not displayed in the figure.

Did the authors expect these numbers to match?

Wet deposition of non-sea salt sulfur is handled by MAM in C-CC and C-GC. Since the same representation of aerosol microphysics and wet deposition is used for sulfates in both C-CC and C-GC, we expected these numbers to be similar.

Am I reading this correctly. Right hand panels, mean of the red dots? The maximum for the model seems less for S-GC than the other two models.

The reviewer is correct. The maximum for S-GC is lower than for other models. We have modified the sentence to “For instance, over North America, measurements indicate a mean sulfur wet deposition flux of approximately 5 kg S/ha/year (for the year 2005), while the results at the same stations are lower with the slope of the linear fit equal to 0.2, 0.1, and 0.2 for C-GC, S-GC and C-CC respectively” (lines 1015-1017).

not only university groups but also government agencies for research

The sentence has been modified accordingly and now reads as “GEOS-Chem is presently used and developed worldwide for research by over 100 university groups and government agencies” (line 1058).

A Data Availability Statement is missing. In the main text, there is no reference to the source of the observation datasets for the ozonesondes, OMI, MLS or MOPITT. Web address and DOIs should be provided.

A Data Availability Statement is now included below the Code availability statement. Web addresses and DOIs are now provided both in said statement, and we provide references (e.g. Deeter et al., 2014 for MOPITT data and Ziemke et al., 2011 for OMI/MLS data) in the main text.

Incomplete reference [Fast-JX]

The reference in question has been removed, as there is no journal paper to cite.
Reviewer #2:

Fritz et al present a landmark overview of a well-designed and implemented configuration of the Community Earth System Model incorporating the GEOS-Chem module. This constitutes a significant technical achievement and represents a very impressive step forward in model capability. This paper fits well within the scope of GMD and I believe is suitable for publication after consideration of the manuscript structure and some further thought is given to the level of detail of the discussion.

As the authors note on L377, the use of the same host ESM allows the differences in results to be attributed to the two chemistry modules. The new configuration offers the possibility to perform interesting chemistry module intercomparisons and offers the possibility to work towards a better understanding of the role of the chemistry scheme, and other processes connected to chemistry (aerosol processes, wet and dry deposition), in determining model performance and intermodel differences.

At this stage, that goal is still someway off, which is understandable given that this is the first paper from this project. There remains a number of differences in the implementation of key processes that inevitably lead to intermodule differences, and it will require further work to unpick the role of, say, the different dry deposition or aerosol schemes in driving differences between the two modules. The CESM-GEOS-Chem framework does allow this work to begin, but the authors might wish to say more about what possibility exists to harmonise further these key processes between modules and to further increase the modularity of the chemistry schemes. This would better facilitate being able to swap between chemistry module process-level treatments to improve attribution which is an important goal, and I would say is the most important potential outcome of this work.

This is a big paper that is doing the work of two or three: it is a description of the technical changes required, a description of the model configurations, a model/module intercomparison paper and a model evaluation paper. This is not to criticize, but it does serve to illustrate the rather huge task of the essential role of model description and evaluation. However, I do wonder if the paper has become rather overlong.

We have worked to reduce the length of the paper by moving several figures to the Supplementary Information, while also aiming to improve the paper’s clarity and structure. Section 3 now only discusses the model setup, while Section 4 (previously 3.2) and Section 5 (previously 3.3) go into detail about the model intercomparison and evaluation against observations respectively. Our hope is that this will help the reader to navigate and reduce fatigue.

The evaluation itself is often rather cursory and little is gone into in detail. This puts the success of the paper in some jeopardy - the scope is impressive but the level of detail occasionally leaves the reader hanging, and for specialists it does run the risk of being rather unsatisfactory.

We understand the reviewer’s concern, and addressing this has been a significant focus of our revisions. As mentioned above, we have aimed to improve the structure and have moved material which is not critical to the paper into the SI, with the goal of streamlining the reader’s experience. However, we have also aimed to improve the level of detail, as will hopefully be evident from our response below. This includes providing more information on total emissions; providing additional context on the likely chemistry causing differences observed between models; and breaking out diagnostic data such as correlation coefficients into separate tables so that they can be more readily accessed and interpreted by specialists. We hope that this has helped both to make the work more accessible to a broad audience and to improve its interest to specialist readers.

The paper performs a comparison between model configurations using zonal mean O3, surface O3, aerosol mass concentration, NOy, Bry and Cly, as well as an evaluation against observations of surface NOx,O3, ozone profiles (2016 model year vs climatology), satellite O3 (2004-2010 period for troposphere, stratosphere and total column), total CO column (2016 vs 2003-2013 climatology) and wet/dry deposition...
(fluxes at various stations 2005-2007). The use of different observational periods for the intercomparison could presumably be addressed with a longer transient, but the text is reasonably caveated on this point.

We understand the reviewer’s concern on this point. We have tried to, wherever possible, clarify which observations and which time period are used to compare against model results. In our study, we have used some tools provided by NCAR to post-process results from C-GC and C-CC. Since our goal was to show that CESM-GC produces reasonable results compared to CESM and GEOS-Chem, we used the analysis and processing codes (and datasets) which are typically used in evaluations of CESM and CAM-Chem. Several of the figures shown in the manuscript (including the ozonesonde comparison) have been generated using the CESM post-processor, which directly compares ozone profiles to a climatology of ozone sonde observations from 1995 to 2010.

The intermodule/model comparison is really interesting. The paper describes a whole atmosphere chemistry scheme, and so some whole-atmosphere evaluation is performed, particularly for O3/NOy/Bry/Cly. I think the impact of the structural differences in the model is probably the main result in this paper - wet deposition and Cly/Bry sources are frequently mentioned - so breaking discussion down into C-GC vs C-CC for most of the evaluation and considering in a separate section the offline S-GC runs might make things a bit simpler to follow, not least as there are huge differences arising from the different meteorologies that frequently dominate the S-GC runs, making the comparison not one between modules but more between models at a high level, i.e. between CTM-style offline meteorology and GCM-style free-running experiments, which is interesting but perhaps muddies the waters.

In light of this comment, we experimented with multiple different possibilities for the document structure. Although we agree that the proposed structure (C-GC v C-CC first, with S-GC comparisons separated out) would likely make parts of the analysis much cleaner, we found that it was difficult to avoid repetition in diagnosing model differences. We have therefore opted instead to split the intermodel and intermodule comparison into its own Section (now Section 4), with the comparison of model results to observations now separated into Section 5. We have also worked to improve the degree to which the sections are “signposted”, so that interested readers can more easily find the component of the analysis which is most relevant to them.

Better understanding the drivers of inter-module differences would be welcome. I think the manuscript would be improved significantly by examining not just the levels of key species but also the factors controlling the level of their reservoirs in more detail. The manuscript would be improved significantly if this would go further and address the species’ budgets, quantifying the inputs and outputs between the modules. While biogenic emissions are compared, it would help - from an ozone evaluation point of view - to add data on other ozone precursors such anthropogenic, soil and LNOx to this table. Similarly, sink terms in the ozone budget would also be beneficial. A table similar to Table 1 in Tilmes et al. Geosci. Model Dev., 9, 1853–1890, 2016 would be ideal for the purposes of comparison. Putting more results into such tables would be helpful for the specialist reader.

We agree and think that this is a valuable addition to the paper. We have thus sought to extract more information from our model configuration data which might inform at least the source magnitudes. Unfortunately, we have only limited output data available from the original simulations (which we do not have the resources to re-run), and are thus not able to extract much additional data such as loss rates and lifetimes (in particular, we do not have this data consistently across all three). However, we were able to provide more information on total emissions. The new Table 2 provides total annual NOx emissions from anthropogenic, soil, and lightning sources; the new Table 4, shows total annual surface emissions of key aerosols (sulfates, primary organic matter, and black carbon). The values from the model results are consistent with the ones provided in the study from Tilmes et al. (2016). These complement the existing data and tables showing biogenic VOC emissions (Table 3), sea salt emissions (Table 5), dust emissions (Section 3 text), and the burden data shown throughout the results sections.
Similarly, ideally, where key parameters or processes are identified, it may be useful to add references that indicate how the model configurations/chemistry was tuned/optimised when that model configuration was produced (e.g. is it possible to say how the sulfate dry deposition was evaluated originally in CESM2 and GEOS-Chem that means the deposition rates are so different?). This would give some traceability of the model configuration to the evaluation paper.

We have added throughout the manuscript references to the key model papers which describe the technical basis and implementation of specific processes. This includes references to the relevant implementations of stratospheric chemistry (lines 487-488) and halogen chemistry (lines 493-495), and specific references to key differences where appropriate (e.g. lines 788-790).

Specific points

The level of detail is rather variable in section 2.1

We have modified Section 2.1 to try and maintain a more consistent level of detail. In addition, we have attempted to streamline the manuscript by avoiding duplication of information in Sections 2 and 3.

Figure 1 and L161-165 - I am not sure of the timing of the various calls to dynamics, physics and chemistry - can the authors expand on why dynamics does not modify the atmospheric state in the diagram? What order are the routines (physics/chemistry) called in?

The result of dynamics is not directly applied through the control layer but rather acts on a “dynamics container” which are then translated to tendencies. This is now stated in the caption of Figure 1. We have now added a brief but more detailed description of the order of calls in the Supplemental Information.

Section 2 would benefit from a summary table that lists configurations side by side, e.g. aerosol scheme, dry deposition, as in e.g. the supplementary to Turnock et al., Atmos. Chem. Phys., 20, 14547–14579, 2020.

We have added a table summarizing the model configuration (Table 6).

Section 2.3.4 repeats some of the detail in L328 and L185.

We agree that this was somewhat redundant. We have now removed the second occurrence of this statement.

L366 missing words after to ensure

The sentence now reads as “Although a complete copy of the GEOS-Chem source code is downloaded from the version-controlled remote of GEOS-Chem repository (to ensure that the most-recent release of GEOS-Chem is used), not all files present in the GEOS-Chem source code directory are compiled” (lines 377-379)

L470-481 if the authors prefer to keep the three-panel structure (see comment above) it would be helpful to describe the figures in the same order that they are presented (L-R)

We agree with the reviewer. We have kept the same order for all Figures (C-GC, S-GC, C-CC) and we have thus modified the text to describe the results in that order. We also now label all figure panels.

L587 'emission' regions?

We have made the corresponding modification (line 626).
L617 what understanding of the ozone and aerosol do the subsequent analyses aim to improve? What beyond assessment of model skill does the comparison with observation aim to do?

The subsequent analysis (i.e. Section 5) aims to evaluate the model results against both surface ozone concentration measurements and vertical profiles so that we can understand what the dominant factors are in surface ozone when simulated by C-GC, and whether C-GC broadly moves us away from or towards the observations relative to either model. In this sense the reviewer is correct that this paper is concerned more with model skill than with a deeper understanding of atmospheric chemistry, which we hope will be gained through future applications of the model.

L648 are the aerosol reactive tendencies stored? Can this be further assessed?

The aerosol reactive tendencies were unfortunately not stored when the simulations were performed. Further assessment of the role of heterogeneous chemistry on NO\textsubscript{y} partitioning in C-GC would be an interesting follow-up to the present study. We now state this in Section 4.4.1.

L657 reads strangely

The corresponding sentence has been split in two and now reads as: “However, between 200 and 900 hPa the dominant contributors are HNO\textsubscript{3} and PAN [peroxyacetyl nitrate]. In this pressure range, the C-GC and S-GC simulations also show a significant contribution from nitrate aerosol (NIT) and BrNO\textsubscript{3}.”

We would again like to thank the reviewers for their time and insight, and believe that their input during this review process has improved the paper substantially. Thank you again for considering our manuscript for publication in *Geoscientific Model Development*.

Best wishes,

Sebastian Eastham