
Signal contribution of distant areas to cosmic-ray neutron sensors –
implications on footprint and sensitivity
Martin Schrön1, Markus Köhli2,3, and Steffen Zacharias1

1UFZ - Helmholtz Centre for Environmental Research GmbH, Leipzig, Germany
2Physikalisches Institut, Heidelberg University, Heidelberg, Germany
3Physikalisches Institut, University of Bonn, Bonn, Germany

Correspondence: Martin Schrön, martin.schroen@ufz.de

Abstract.

This paper presents a new theoretical approach to estimate the contribution of distant areas to the measurement signal of

cosmic-ray neutron detectors for snow and soil moisture monitoring. The algorithm is based on the local neutron production

and their transport mechanism, given by the neutron-moisture relationship and the radial intensity function, respectively. The

purely analytical approach has been validated with physics-based neutron transport simulations for heterogeneous soil moisture5

patterns, exemplary landscape features, and remote fields at a distance. We found that the method provides good approximations

of simulated signal contributions in patchy soils with typical deviations of less than 1 %. Moreover, implications of this concept

have been investigated for the neutron-moisture relationship, where the signal contribution of an area has the potential to

explain deviating shapes of this curve that are often reported in literature. Finally, the method has been used to develop a new

practical footprint definition to express whether or not a distant area’s soil moisture change is actually detectable in terms10

of measurement precision. The presented concepts answer long lasting questions about the influence of distant landscape

structures in the integral footprint of the sensor without the need for computationally expensive simulations. The new insights

are highly relevant to support signal interpretation, data harmonization, and sensor calibration, and will be particularly useful

for sensors positioned in complex terrain or on agriculturally managed sites.

Keypoints15

– The signal contribution of distinct patches in the footprint can be estimated analytically without dedicated simulations,

– Learning about the contribution of individual landscape features may explain the shape of the neutron-moisture relation-

ship,

– A new practical footprint definition expresses whether or not remote soil moisture changes are visible in the CRNS

signal.20
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1 Introduction

Cosmic-Ray Neutron Sensing (CRNS) is an established measurement technique for water content in soils and snow (Andreasen

et al., 2017). The high integration depth and the large measurement footprint have been shown to provide an important advan-

tage for field-scale applications compared to conventional point-scale sensors. However, the intrinsic integration over the whole

footprint volume conceals the individual contributions of different patches and may result in biased observations (Franz et al.,25

2013; Schrön et al., 2018; Schattan et al., 2019).

The footprint has been initially characterized by its radius of around 300 m by Zreda et al. (2008) and Desilets and Zreda

(2013) without significant dependency on soil moisture or air humidity. Later, Köhli et al. (2015) revisited the physical as-

sumptions of the underlying neutron simulations and proposed a moisture-dependent footprint radius in the range from 130 m

to 240 m. Besides the epithermal neutron transport, also thermal neutron footprints were investigated by Jakobi et al. (2021).30

These studies take into account the high complexity of neutron transport physics, which usually can only be investigated with

computationally expensive Monte-Carlo simulations. The accepted definition of the epithermal footprint radius, R86, covers

the 1− e−2 ≈ 86% quantile of detected neutrons. This measure was introduced by Desilets and Zreda (2013) and has been

inherited by Köhli et al. (2015) in order to maintain consistency. However, the definition involves four problematic aspects: (i)

The radial intensity function, Wr(h,θ), does not follow a simple exponential shape (Köhli et al., 2015; Schrön et al., 2017).35

Therefore, the 1− e−2 limit may be misleading when it is used to draw conclusions about the intensity-radius relationship

elsewhere. (ii) High-quantile values for strongly non-linear functions may overestimate the long-range influence of neutrons,

regardless of how often and where they have probed the soil. (iii) The fact that the definition of the footprint has been developed

for homogeneous situations increases the uncertainty and the interpretation of more heterogeneous and more complex terrain.

And (iv), the definition hardly allows to investigate problems and questions that often arise during practical applications: Is40

the detector sensitive to remote soil moisture changes? Does a certain patch of the area influence the detector signal? By how

much?

As a standard solution for such questions, neutron transport physics-based Monte Carlo codes could be employed with

detailed modeling of the local conditions (as has been done by, e.g., Franz et al., 2013; Köhli et al., 2015; Schrön et al., 2018;

Schattan et al., 2017; Li et al., 2019, among others). However, this technique is impractical for quick assessments and mostly45

limited to scientific applications.

While cosmic-ray neutron sensors are usually employed to track soil moisture changes in the area of their footprint, com-

plex structures or heterogeneous patterns in the footprint may influence the measurement undesirably. The dependency of the

measured neutrons on soil moisture changes has been originally expressed by the neutron-moisture relationship (Desilets et al.,

2010; Köhli et al., 2021) and has also been adapted for snow (Schattan et al., 2017). Many natural sites are highly heteroge-50

neous and thus knowledge of the contribution of distant areas to the measurement signal would be very useful, e.g. to support

calibration sampling, sensor location design, data interpretation, and uncertainty assessment. Typical events modulating water

abundance and distribution are, for example, land management activities like harvesting (Franz et al., 2016; Tian and Song,

2019), plowing (Kasner et al., 2022), irrigation (Li et al., 2019; Ragab et al., 2017), natural events like rain water interception
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in forests (Baroni and Oswald, 2015; Andreasen et al., 2017; Schrön et al., 2017), snow melt and redistribution (Schattan et al.,55

2019), or different soil dry-out rates due to different soil hydraulic conductivity (Scheiffele et al., 2020).

In the past, spatially (and temporally) variable factors within the footprint influencing the neutron signal have often been

identified as the source of unexplained features in the data. These discoveries sometimes boosted scientific insights on neutron

transport, and even led to more reliable hydrological data (see, e.g., Bogena et al., 2013; Schrön et al., 2017, 2018; Schattan

et al., 2019; Rasche et al., 2021). However, at most heterogeneous sites, CRNS calibration and validation remains a challenge,60

since the influence of the differing structures or patches in the footprint to the signal is usually not known (Coopersmith et al.,

2014; Lv et al., 2014; Iwema et al., 2015a; Franz et al., 2016; Heistermann et al., 2021a). For this reason, many authors

reported differing shapes of the neutron-moisture curve and conducted site-specific empirical re-parameterizations to fit their

data (Rivera Villarreyes et al., 2011; Lv et al., 2014; Iwema et al., 2015b; Heidbüchel et al., 2016). Others developed directional

sensors to focus the measurement only on specific parts of the landscape (Francke et al., 2022), which remains a technological65

challenge on its own.

One way to approach the estimation of signal contributions of different areas in the footprint is to use the radial intensity

function Wr. First attempts to realize this idea have been performed by Schrön et al. (2017), who improved the sensor calibra-

tion by applying different weights to areas depending on size, distance, and landuse class, and also by Schrön et al. (2018), who

excluded the contribution of a concrete area around a grass land site in order to improve reliability of soil moisture dynamics70

measured by stationary CRNS.

In the present study we aim at generalizing this concept for typical combinations of heterogeneous land use and soil moisture

patterns. Our hypothesis is that the contribution to the detector signal of various complex areas in the footprint can be estimated

analytically based on the existing theories about neutron production and transport. The first section will describe the proposed

approach and discuss its potential limitations. Then, the method will be evaluated by dedicated neutron transport simulations75

for various scenarios of different soil moisture patterns, land-use types, and geometries. We further aim at exploring two

applications of this concept, first, to assess its explanatory power for the shape of the neutron-soil moisture relationship. And

second, to provide a more practical footprint definition expressing whether or not a distant area’s soil moisture change (e.g.,

by irrigation or rainwater interception, or faster drainage) is actually visible to the neutron signal in terms of measurement

precision.80
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2 Methodological concept

2.1 The radial intensity function

The sensitivity of a central detector to an infinitesimal ring at distance r has been described by Köhli et al. (2015) and refined

by Schrön et al. (2017) as:

Wr(h,θ,P,Hveg)∼ F1 e
F2r +F3 e

F4r , (1)85

which is a combination of two exponential functions with factors and slopes (F1...4(h,θ,P,Hveg)) that represent the com-

plex nature of neutron transport in homogeneous environments. This radial intensity function Wr (see Fig. 1a) depicts the

number of detected neutrons that originated in the soil at the distance r (in m) under certain homogeneous conditions of air

humidity h, (soil) water equivalent θ, air pressure P , and vegetation height Hveg. It can also be expressed as Wr∗(h,θ) with

r∗ = r(P, Hveg) being scaled by air pressure and vegetation influence (see Schrön et al., 2017, for the details). We use this90

simplified formulation in the following, while results can be easily transferred to other pressure and vegetation conditions by

rescaling r as mentioned.

An alternative parameterization, W ∗
r ≈Wr(h,θ), has been proposed by Schrön et al. (2017) as an approximation for average

humidity and soil moisture conditions:

W ∗
r =

(
30e−r/1.6 + e−r/100

)
·
(
1− e−3.7r

)
. (2)95

This approximation can be evaluated in a computationally more efficient way, as it does not depend on humidity and soil

moisture, but at the same time it is less accurate towards the extreme ends of dry or wet conditions.

The integral of Wr(h,θ) over all radii r represents the total number of detected neutrons, N :

N(h,θ) =

∞∫
0

Wr(h,θ)dr . (3)

In other words, the detectable neutron intensity at the center of the radial footprint is the sum of all the ring intensities, Wr,100

across in the whole domain Ω.

Based on this definition, Köhli et al. (2015) derived the hitherto accepted CRNS footprint radius, R86, as the distance within

which 86 % of all the detected neutrons originated:

0.86N(h,θ) =

R86∫
0

Wr(h,θ)dr . (4)
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Figure 1. Basic functions of CRNS theory. a) The radial intensity function, Wr(θ = 0.10,h= 5), representing the intensity contribution of

all points at distance r to the detector signal. b) The conversion function, N(θ,h= 5), for a typical stationary CRNS sensor.

2.2 The concept of signal contributions from sub-domain areas105

Let Ai ∈ Ω be a set of sub-domain areas with water content θi, constituting the whole domain Ω (see Fig. 2 for an exemplary

illustration). We propose that the total measured neutron intensity at the center, or effective neutron intensity N̂ , is the sum of

all the neutrons which were generated in Ai, weighted by their ability to reach the sensor, i.e.,

Signal from area Ai = N(θi)︸ ︷︷ ︸
production

×
∫
Ai

Wr(h, θ̂)︸ ︷︷ ︸
transport

. (5)

This quantity can be expressed as the product of the locally generated neutrons, Ni =N(θi), and the radial intensity weight110

of its area, wi. The total signal then is:

N̂ =

∑
iwiNi∑
iwi

, where wi =

∫
Ai

Wr , Ai ∈ Ω . (6)

In a homogeneous domain, where Ni =Nj ∀ i, j, the integral weight wi of an arbitrary subset area Ai directly represents

the area’s contribution to the measured neutron signal, only depending on size and distance. In an inhomogeneous scenario,

the contribution depends also on the local count rate Ni. For example, the effective signal of a symmetrical domain containing115

two identical half-spaces with a sensor in the center would be an equal combination of the individual intensities, N̂ = 0.5N1+

0.5N2.
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Figure 2. Exemplary scenario of the site “Schäfertal“ (51.6551°N, 11.0525°E, Wollschläger et al., 2017). Relevant areas Ai within the

footprint of the central CRNS detector (+) are indicated by black borders, e.g., the agricultural land (A2, A13), forest sites (A4, A7),

buildings (A8, A9), or the river creek (A10). The dashed circle illustrates the conventional footprint definition, R86, within which 86 % of

detected neutrons probed the soil. (Satellite image by Google Maps)

The relative contribution ci of the area Ai to the sensor signal is particularly useful for inhomogeneous, i.e., patchy scenarios

and can be expressed as:

ci = wiNi/N̂ . (7)120

In the above example, the relative contribution of the field 1 would be c1 = 0.5N1/N̂ =N1/(N1 +N2).

The proposed method can be applied to an arbitrarily complex combination of areas Ai. The weight of the areas could be

determined in two ways. In an angular environment, the integral over Ai could span over the respective range of angles and

radii (see Schrön et al., 2018, section 3.5):

∫
Ai

Wr =
1

2π

ϑ2∫
ϑ1

r2∫
r1

Wr dr
′dϑ′ , where Ai(ϑ1,2, r1,2) . (8)125

In gridded environments, the spatial integral is simply the sum of the weights over all grid cells (see Schrön et al., 2017,

section 2.3):∫
Ai

Wr =
∑
j

Wrj/rj ∀j ∈Ai . (9)
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For computational implementations, it is often easier to perform calculations on Cartesian coordinate systems (the latter

option), such that the individual weight of each grid cell follows Wr/r. Here, r is the distance between the detector and the130

center of a grid cell and Wr is the radial intensity at this distance. As for all numerical approximations, the size of the grid cell

should be small compared to relevant structures in the footprint.

2.3 Potential limitations and remarks

The simplified approach cannot claim to be able to simulate the complex physics of neutron transport for every possible sce-

nario. Just from the way it is formulated, some potential limitations of this approach can be already expected. The performance135

tests in the present study aim at challenging some of these objections with synthetic examples and evaluations by Monte Carlo

simulations.

A direct limitation is that Wr has been initially defined as a radially symmetric function, assuming equal contribution

at distances r in all directions. However, most heterogeneous regions are not radially structured, such that highly variable

soil moisture patches would lead to asymmetric weights in different directions, giving the corresponding footprint radius an140

amoeba-like shape (see, e.g., Köhli et al., 2015; Schattan et al., 2019, Figs. 9 and 9, respectively).

The Wr function has also been derived for homogeneous conditions, and thus sharp borders of soil moisture patterns may

not be resolved adequately. This is particularly true in regions of high sensitivity, such as the first few meters below and around

the detector. These cases could lead to road-effect-like biases (Schrön et al., 2017, 2018) and should be avoided in realistic

applications.145

Moreover, the actually detected neutron flux at the center not only depends on the neutron response of all the individual

fields, but also on secondary interactions with water and soil between the detector and the remote field. These intermediate

fields may influence the neutron’s travel path and moderation probability since neutrons typically undergo several interactions

with the soil on their way to the detector (Köhli et al., 2015).

The approach also treats each area individually and cannot reproduce spatial interaction effects. They can occur when150

neutrons generated in an area typically diffuse to nearby areas, influencing their apparent local neutron intensity (see, e.g.,

Schrön et al., 2018). For this reason, scenarios in this study will exhibit sufficient space between distinct areas such that their

neutron contribution can be assessed individually.

When it comes to evaluation of the presented approach with measurement data, it should be noted that results obtained from

Wr-based approaches as well as from URANOS particle origins only represent detected neutrons with preceding soil contact,155

while a considerable fraction of the CRNS-measured signal is direct radiation from incoming neutrons (see Schrön et al., 2016,

Fig. 3). This additional signal component is usually rather constant, but could lead to a slightly lower magnitude of signal

contributions in real-world examples.

It is briefly noted that similar analysis could also be conducted for vertical footprints, i.e., the sensor’s penetration depth.

For example, the question, at which depth groundwater rise is visible to the CRNS, could be answered by similar methods as160

described above, using the depth-weighting function Wd instead of Wr (Schrön et al., 2017). However, neutrons undergo much
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more interactions in the soil on their way to the detector, in strong contrast to horizontal transport, such that we suspect this

endeavour to be less promising, especially for strong vertical soil moisture profiles.

2.4 Conversion between neutrons and soil moisture

The measured neutron count rate N of a CRNS sensor is usually estimated with a neutron-moisture relationship N(θ), where θ165

is the soil water content in the homogeneous sensor footprint. In this study, we postulate that this relationship can also be used

to calculate the neutron intensity of each fractional area in the footprint individually (see Fig. 1b). Furthermore, we propose

to estimate the effective soil moisture product, θ̂, by assuming an equally mixing neutron gas at the center of the footprint,

N̂ ∝
∑

Ni, given by Eq. (6):

θ̂ = θ
(
N̂
)
. (10)170

This is not a trivial assumption, especially for heterogeneous regions, where the average (i.e., effectively measured) soil

moisture may often be biased towards dryer areas due to the non-linearity of this relationship. The terms N(θ) and θ(N)

depict the conversion functions used to derive neutrons from soil moisture and the other way round, respectively. In this study,

we use the updated version of this relationship developed by Köhli et al. (2021) (Fig. 1b) which also depends on air humidity

and better follows standard simulations results than the equation from Desilets et al. (2010):175

N(θ,h) =N0

(p1 + p2 θ

p1 + θ
·
(
p3 + p4h+ p5h

2
)

+ e−p6 θ (p7 + p8h)
)
, (11)

where N0 is a detector-specific scaling parameter (here: 1950 cph), h is the air humidity (here: 5 g/m3), and p1...8 =(0.0226,

0.207, 1.024, −0.0093, 0.000074, 1.625, 0.235, −0.0029) is the parameter set “uranos drf“ from Köhli et al., which employs

an energy-dependent detector response function (drf) for typical CRNS configurations (Köhli et al., 2018). For the case of pure180

water, this equation reduces to: N(θ→∞)→N0 p2 (p3 + p4h+ p5h
2)≈ 0.2N0.

2.5 Physical neutron transport simulations

Neutron transport simulations were employed, using the Monte Carlo code URANOS (Köhli et al., 2015, 2018; Köhli et al.,

2021; Köhli et al., 2022). The model setup was generated with standard layers and parameters, such as an air pressure of

1013hPa, vertical cut-off rigidity 5 GV, domain size of 1000× 1000m, and a central cylindrical detector with 9 m radius. The185

detector size is just a numerical parameter, typically used to reduce the computational effort, and will have no impact on the

results if the area below the detector is kept homogeneous. Neutron origins were counted as the location of the first non-air

contact of a detected neutron.

Water content has been added to various regions in the ground layer in order to resemble the investigated soil moisture

patterns. However, soil directly below and in the immediate vicinity of the detector has been kept homogeneous because the190

detector cannot resolve structures below its own extent. Modelled materials include soil with 50 % porosity, water (1 g/cm3),
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concrete (2 g/cm3), and in some cases an additional above-ground layer of 20 m height containing a uniform mixture of gas

to represent forests or houses. The "house gas" mimics air surrounded by cement walls with soil-like material (0.15 kg/m3,

10 % water), the "tree gas" represents Cellulose with 3 kg/m3. The input material definitions for all scenarios are listed in the

supplement material, see also Köhli et al. (2022) and their URANOS code repository for more details.195

3 Results and Discussion

3.1 Heterogeneous soil moisture patterns

In order to provide a reliable representation of the average soil moisture in an heterogeneous domain, it is necessary to consider

the specific soil moisture conditions of each individual area. We challenge the presented approach with complex soil moisture

patterns that are designed to cover difficult aspects of neutron transport for the test.200

Figures 3 and 4 show soil moisture distributions at 1000 m and 500 m scales, respectively. The different areas are arranged

such that fields that would theoretically contribute equally to the sensor (due to same size, distance and water content) still

require their neutrons to pass other fields on their way to the detector that have much different soil moisture. The two different

scales of the domain are also chosen to investigate the long-range (distance to corner: r < 707m) and short-range (r < 354m)

performance of the analytical approach.205

Figures 3a and 4a indicate the soil moisture pattern at the different domain scales, while the conventional footprint radius

R86 is indicated by a dashed line. Based on these hypothetical distributions of soil moisture, the individual contributions ci of

each area to the neutron signal at the center (0,0) has been calculated following Eq. (7), with the results presented in in Figs. 3b

and 4b. It is clearly visible that the area with θ = 20 vol.% has the highest contribution to the signal, since it covers the direct

vicinity of the detector in the center and also most of the remaining fields. As expected and in accordance with the theory,210

highest contribution is evident for areas that are closer to the detector and dryer than others.

We briefly showcase the calculation of the contribution of an exemplary area A, e.g., the bent field with θA = 50 vol.% in

the upper right quadrant of Fig. 4. To compute the weight of the area, one can either weight each grid cell i of the matrix

with Wri/ri and sum it up, or integrate Wr from radii r1 = 98m to r2 = 167m and from angles ϑ1 = 2◦ to ϑ2 = 88◦. The

last option is easier for radial geometries. The integration over the radii gives 0.118 for the radial weight of a full circular ring215

(relative to the total weight of the domain,
∫
Ω
Wr), while the angular weight of the circular section equals 86◦/360◦ ≈ 0.239.

This results in the normalized spatial weight of wA ≈ 0.118× 0.239 = 2.7%. It would already be the sought contribution to

the detector signal if the domain was homogeneous. In this heterogeneous example, however, the spatial weight needs to be

multiplied with the neutrons produced by this area, NA =N(θA = 50%)≈ 651cph, and normalized by the effective count

rate measured in the centre, N̂ ≈ 860cph, resulting in a contribution of cA = wANA/N̂ ≈ 2% to the detector signal.220

The results of this theoretical calculation were compared in the last step with the results of dedicated URANOS simulations.

Figs. 3c and 4c show the simulated relative contribution of each area to the overall signal, where red crosses indicate the origin

of neutron particles that have later hit the virtual detector. In most areas, the spatial contributions are in very good agreement

with the theoretical estimations. In a few cases, the contribution of remote dry areas are underestimated which may be due
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to the uniform soil moisture condition of θ̂ ≈ 20 vol.% assumed for anchoring the radial intensity function Wr(h, θ̂). While225

the long-range transport is slightly underestimated in this case, typical scenarios are probably not as complex such that a

better choice of Wr could be made. Moreover, the contribution of wet fields that are arranged behind dry areas are slightly

overestimated by the analytical approach, which is an effect of intermediate scattering of those neutrons on their way to the

detector. While this effect is replicated in the Monte Carlo simulation, it cannot be resolved by the analytical approach.
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detector signal estimated with the analytical method, and c) simulated

with URANOS.

-200-150-100 -50 0 50 100 150 200

200

150

100

50

0

-50

-100

-150

-200

20%

5%

70%

70%
50%

5%

50% 50% 30%

5% 70% 5%

a) Soil moisture map

-200-150-100 -50 0 50 100 150 200

200

150

100

50

0

-50

-100

-150

-200

78.6%

1.6%

0.1%

0.8%
1.9%

7.6%

0.7% 5.5% 0.8%

1.3% 0.6% 0.5%

b) Estimated signal contributions

-200-150-100 -50 0 50 100 150 200

200

150

100

50

0

-50

-100

-150

-200

76.4%

2.0%

0.1%

0.9%
2.0%

8.7%

0.5% 6.1% 0.8%

1.6% 0.4% 0.4%

c) Simulated signal contributions

Figure 4. Scenario 500×500m with a) a complex soil moisture pat-

tern (greyscale), see also Fig. 7 for details. b) Contribution to the de-

tector signal estimated with the analytical method, and c) simulated

with URANOS.

11



Overall, the method of estimating the signal contributions of different areas in and beyond the CRNS footprint shows a230

good agreement and might be helpful for the assessment of measurement sites without rigorous neutron transport modeling.

Although higher-order corrections for interactions of the neutrons across different fields cannot be resolved with this analytical

approach, results in Figs. 3–4 indicate good overall accuracy of the estimated contributions. Where precision matters, and

under highly heterogeneous conditions (e.g., patchy snow cover), more accurate estimations may be tackled with Monte Carlo

simulations.235

3.2 Complex land-use features

Many field sites are not only characterized by heterogeneous soil moisture patterns, but also exhibit complex land-use types,

such as tree groups, water bodies, and even urban structures (Lv et al., 2014; Iwema et al., 2015a; Schrön et al., 2018; Fersch

et al., 2020). A general view on such conditions will be provided with the following example.

This exemplary scenario consists of four regions of equal area and distance from the detector, and a fifth reference region240

with the same soil moisture content as the remaining field (θ = 20vol.%). The five regions span over a distance from 50 m

to 100 m and over a 45° arc, while they are separated by a 25° arc space. The land use features represented in this example

are: soil (reference area, θ1 = 20vol.%), concrete pavement (equivalent to θ2 = 10vol.%), a forest (θ3 = 30vol.% plus 20 m

tree gas), a water body (θ4 →∞), and a building-like structure (θ5 = 10vol.% plus 20 m house gas to mimic the height of the

building).245

Results shown in Fig. 5 indicate an estimated contribution of the reference area of c1 ≈ 2.1% (panel b), which is well

matched by the simulation, 2.3± 0.3% (panel c). The building and the concrete pavement exhibit the same dry material

composition in the ground and thus lead to similar estimated contributions, c2 = c5 = 2.5%. In contrast, the simulation shows

much higher contribution of the building, 3.2± 0.4%, since it accounts also for the above-ground house material. The same

holds for the forest area, c3 = 1.9%< 2.7± 0.3%. As expected, the water body shows the lowest contribution, c4 = 0.98%<250

0.75± 0.17%.

In general, the analytical approach seems to provide good performance throughout different land use regimes, with minor

deviations at the pure-water end of the soil moisture spectrum. Significant limitations of the purely ground-driven approach are

evident for above-ground objects, such as forests or buildings. In these cases, however, the method might still be applicable by

defining a "soil moisture equivalent" of those land use types. For example, setting θ∗3 = 9 vol.% and θ∗5 = 4 vol.% would lead255

to a perfect match with the simulations for the forest and the building, respectively. While these values certainly depend on the

specific material composition and distance of the actual building or forest, future studies may show whether the contribution

of these very special land use types can be generalized.
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3.3 Impact on the N(θ) relationship

The insight that different areas in the footprint have different contribution to the finally detected signal raises the question260

whether complex terrain can change the shape of the N(θ) relationship, which was initially derived from homogeneous model

conditions. In fact, many authors reported deviation of their data from the standard N(θ) curve and reacted by empirically

deriving site-specific parameterizations to change its shape (Rivera Villarreyes et al., 2011; Lv et al., 2014; Iwema et al.,

2015b; Heidbüchel et al., 2016; Schattan et al., 2017, 2019). In this section, we suggest that the effect of non-homogeneous

signal contributions might help to explain these observations. Following the idea of the areal correction introduced by Schrön265

et al. (2018), we aim at generalizing this approach to a correction based on the signal contributions.

The application of such a correction will be explained by the following theoretical example. Consider an area of interest

A1 ∈ Ω, for which the soil moisture dynamics are to be measured by a neutron detector. A second area, A2 =Ω \A1, which

does not respond to soil moisture changes, e.g., a concrete pavement, a building, a water body, a swamp, or rocky terrain lies

within the sensor footprint. This area will generate a constant, invariant stream of neutrons, N(θ2 = const.), and thus dampen270

the total effective neutron measurement as a function of θ1.

In order to correct for the damping effect, we propose to rescale the amplitude of the neutron counts by the signal contribution

c1 from area A1, because only this fraction will be able to stimulate neutron dynamics:

N̂resc =
N(θ1)−Nref

c1
+Nref , (12)

where Nref =N(θ2) is a stationary reference offset (i.e., an invariant neutron stream from area A2) around which the amplitude275

will be stretched in order to make sure that the correction sustains identity for θ1 = θ2. If θ2 is not known, the mean observed

neutron counts could be a first-order approximation, as has been done in an urban terrain by (Schrön et al., 2018).

The approach is tested in an exemplary scenario with a central area of 20 m radius and variable soil moisture, θ1, surrounded

by an area of constant soil moisture of θ2 = 10 vol.% (Fig. 6a). The signal contribution of the inner area varies from 30 %

to 41 % depending on θ1, with a mean of c1 ≈ 33% (Eq. 7). Figure 6b shows the simulated effective neutron intensity of280

the central detector as a function of θ1 (blue points), the standard N(θ) relationship (black line, see also Fig. 1b), and the

function Nresc which was rescaled by the factor c1 (Eq. 12) to resemble the damping effect (blue dashed line). The shaded

area represents the mentioned range of c1 and demonstrates the robustness of the approach if the signal contribution cannot be

determined precisely.

In summary, this application of the signal contribution theory offers an explanation for site-specific parameterizations of the285

N(θ) relationship, which could be tested with existing and future CRNS data sets.
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Figure 6. Exemplary scenario to demonstrate the impact of signal contributions on the N(θ) relationship. a) Scenario with variable soil

moisture, θ1, in a central area of 20 m radius, surrounded by constant soil moisture of θ2 = 10 vol.% (e.g., concrete pavement). The signal

contribution of the inner area is c1 ≈ 33%. b) The simulated effective neutron intensity of the central detector as a function of θ1 (blue

points) appears damped compared to the standard relationship (black line, see also Fig. 1b). However, the function can be rescaled using

c1 and Eq. (12) to resemble the damping effect (blue dashed line). The shaded area represents the range of c1 (30–41 %) depending on soil

moisture.
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3.4 Remote field at a distance

In this section, the signal estimation approach is challenged with a more simplistic scenario, but this time without radial

symmetry, in order to represent typical land use geometries. The investigated domain is split in two half spaces with different

soil moisture, like two agricultural fields neighbouring each other or like partly irrigated land.290

In a first exemplary scenario, the soil moisture of the two fields is set to θ1 = 10 vol.% and θ2 = 30 vol.%. According to

Eqs. (6)–(7), the dry area contributes c1 ≈ 58% and the wet area c2 ≈ 42% of the total neutron count rate, while the apparent

soil moisture average is θ̂ ≈ 15.2 vol.% (Eq. 10). This value is substantially lower than the naive mean, θ̂ < 20.0 vol.% due to

the non-linearity of the θ(N) relationship (Fig. 1b). URANOS simulation results confirm this approach with θ̂sim ≈ 14.8 vol.%.

In order to extend the analysis to arbitrary domain splits, we now consider a scenario that consists of two areas split at the295

distance R from the center, where A1(x < R) is the field around the central detector and A2(x > R) is the remote field. The

interface between the two fields is a straight line orthogonal to the x-axis as illustrated in Fig. 7. The total neutron count rate

can be described following Eq. (6):

N̂(θ1,θ2) = (1−w)N(θ1)+wN(θ2) , (13)

where w =
1

π

∞∫
R

Wr(h, θ̂) arccos
R

r
dr .300

The weight w in the Cartesian geometry is expressed in radial coordinates to avoid any corner effects, since the nature of

neutron transport and detection usually follows radial symmetry. The term π−1 arccosR/r represents the length of an arc within

the circle area constrained by x > R (see also Fig. 8a). It can be derived from the opening angle of the sector, cosα=R/r,

where 2α is the same fraction of 2π as is the arc of the total circumference 2πr.

In general, a purely radial geometry, where soil moisture changes in the whole region defined by r > R, would be a more305

simple scenario to calculate. However, we consider these radial field arrangements to be a rather rarely encountered situation

compared to the much more typical straight field geometries. In cases where circular fields and the corresponding soil moisture

differences are relevant (e.g., for Pivot irrigation Finkenbiner et al., 2019), the integrand can simply be solved without the

arccosR/r term.

In the homogeneous case with soil moisture θ1 = θ2, the apparent average soil moisture also equals θ̂ = θ1 and the total310

neutron count rate results to N̂(θ1,θ2) =N(θ1). If the remote area changes from θ1 to θ2, however, the weighting function of

the total domain changes slightly. The influence of this change on Wr(h,θ1 → θ̂) is usually marginal for small changes or high

distances, but the calculation could be re-iterated along updates of θ̂ if precision matters.

We have investigated an example scenario of a remote field at the minimal distance R= 207m and soil moisture distributions

of θ1 = 5 vol.% and θ2 = 10 vol.% (Fig. 7a). Equations (13) and (7) describe the influence of the remote field to the detected315

neutron count rate in the center. The estimated contribution to the total neutron signal is c2 = wN(θ2)/N̂(θ1,θ2) = 2.9%

(Fig. 7b). This is significant to most CRNS detectors, since typical count rates of 1000 cph imply uncertainties between 0.6 %

(daily) and 3.2 % (hourly resolution). Simulation results shown in Fig. 7c precisely confirm this result with 3.0%. Here, the
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red crosses depict the locations where detected neutrons had first contact with the soil, indicating the contribution of the

corresponding region to the signal.320

The slightly asymmetric distribution of these origins often indicate an amoeba-like shape of the footprint, see also the red

line in Fig. 7c. This suggests that the assumption of a symmetric footprint radius, R86, no longer holds (as has been shown also

by Köhli et al., 2015; Schattan et al., 2019).

Interesting to note that the effectively measured soil moisture in this example is θ̂ = 5.1 vol.%. Although the remote field

is very close to the outer margins of the radial footprint R86, it still contributes 3% to the total neutron intensity and thereby325

increases the CRNS-average soil moisture by 0.1 volumetric percent. The dry-bias can be explained by the large distance of

the wetter field (which is even larger than R at all but one point), as well as by the strong non-linearity of Wr towards lower r

(Fig. 1a), and the non-linearity of the θ(N) relationship (Fig. 1b).

In general, an exact understanding of the weighting function Wr(h,θ) plays an essential role for precise estimation of far-

field influences. This sensitivity can be illustrated using the approximation W ∗
r (Eq. (2)). It is usually less accurate due to330

the missing dependency on air humidity and soil moisture. Considering an exemplary scenario with θ1 = 5 vol.% and a field

at R= 57m distance with θ2 = 10 vol.%, the “actual“ signal contribution of the remote field is c2 = 15.3% calculated by

URANOS. The accurate theoretical estimation using Wr(h,θ) yields c2 = 14.7%, while the simplified W ∗
r approach only

yields 11.9%.

3.5 A practical footprint definition based on field distance and detector sensitivity335

This section proposes a more practical definition of the footprint size for rectangular field geometries. The definition will

be build upon the answer to the following research question: “At what distance are soil moisture changes still visible to the

CRNS?“, or more precisely: “At what maximum distance R from a distant field should the detector be located, such that a

change in soil moisture by ∆θ = θ1 − θ2 still has significant contribution ∆N ≥ σN to the detected neutron signal?“.

As it has been shown in the previous sections, the intensity distribution around the sensor, Wr(h,θ), weights different regions340

of the footprint in a highly inequal way. Therefore, a new approach is suggested to interpret the footprint as the distance R, to

which a remote change of soil moisture is still visible in the detector signal.

In order to assess this sensitivity, we reject all neutron intensity changes below a certain significance level of the sensor.

The relative stochastic precision of a neutron detector, σN = 1/
√
N , highly depends on the count rate N (Zreda et al., 2012;

Weimar et al., 2020). It is a function of detector volume, its efficiency, atmospheric conditions, soil moisture, and temporal345

aggregation (see e.g., the concept of N0,base in Schrön et al., 2021).

For average conditions, usual CRNS detectors with an average count rate of N ≈ 1000 cph can achieve a precision of

σN = 3.2% per hour, or σN/
√
24 = 0.6% per day. With regards to increasingly improving detectors and to the generally

relevant time scales of 6–12 hours, we will condition our analysis on the σN = 1% uncertainty limit. I.e., we will consider

CRNS detectors sensitive to a certain environmental change if the induced relative change of the count rate exceeds 1 %. Note350

that this definition implicates that the practical footprint R may be different for different detectors, site conditions, and temporal
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Figure 7. Scenario with a) soil moisture distributed in the main field (θ1, white) and in the remote field (θ2, grey) at the distance of R= 207m,

the circle indicates the R86 footprint. b) Contribution to the detector signal estimated with the analytical method, and c) simulated with

URANOS (neutron origins as red crosses, angular footprint shape in 30° steps as red line).
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Table 1. Analytical results for the minimal footprint distance R, such that soil moisture changes of a remote field (θ2 = θ1+10 vol.%) in an

initially uniform domain (θ2 = θ1, h= 5g/m3) become visible by the CRNS (see Fig. 7 for an illustration with R= 207m). Cases consider

CRNS measurement precision values of σN = 1% and 2%, more cases for σN , h, and ∆θ are presented in the Supplement S1. Conventional

footprints R86 are displayed for comparison, soil moisture is displayed in vol.%. The effectively apparent soil moisture θ̂ is dry-biased due

to the non-linearity of θ(N).

θ1 θ2 θ̂ R(1%) R(2%) R86

1 % 11 % 1.1 % 239.8 m 178.6 m 214 m

5 % 15 % 5.2 % 185.2 m 120.6 m 218 m

10 % 20 % 10.4 % 141.3 m 79.5 m 206 m

15 % 25 % 15.6 % 107.2 m 51.4 m 189 m

20 % 30 % 20.7 % 81.5 m 32.2 m 170 m

25 % 35 % 25.9 % 62.3 m 19.6 m 150 m

30 % 40 % 31.0 % 48.2 m 11.4 m 137 m

35 % 45 % 36.2 % 38.4 m 6.2 m 127 m

40 % 50 % 41.3 % 31.5 m 3.6 m 121 m

45 % 55 % 46.4 % 26.5 m 2.4 m 120 m

50 % 60 % 51.5 % 22.6 m 1.8 m 119 m

aggregations. Yet, as current commercial stationary systems are limited to N ≈ 5000 cph, this approach can be regarded as

relevant to all existing installations.

Following the above concept of the remote fields, changes of remote soil moisture conditions will only be measureable if the

difference between the total neutron count rates before, N̂(θ1,θ1), and after the change, N̂(θ1,θ2), is larger than the precision355

limit:

N̂(θ1,θ1)− N̂(θ1,θ2)

N̂(θ1,θ1)
= 1− N̂(θ1,θ2)

N̂(θ1,θ1)
> σN . (14)

Equations (13) and (14) can be solved for R numerically, while an analytical solution is not straight forward due to the

complexity of Wr(h,θ). To facilitate easy application of this approach for scientists and CRNS users, an interactive online

tool has been developed and briefly presented in the Appendix A. For the change θ1 → θ2 we suggest to use ∆θ = 10 vol.%,360

which is a good compromise between typical artificial or natural variations of soil moisture that are of interest for hydrologists.

The supplements contain the results for R using more combinations of parameters for h (1–15 g/m3), θ1 (1–50 vol.%), ∆θ

(±2.5–20 vol.%), and σN (1–3%).

Calculation results of the distance R are shown in Table 1 for a range of soil moisture θ1 from 1 to 50 volumetric percent,

where θ2 is always larger by +10 vol.%. The measurement precision is investigated for two cases, σN = 1% and 2%. It is365

evident that the distance to the field must be much smaller if the detection precision is worse. For example, standard detectors
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Figure 8. a) Schematic illustration in radial coordinates of the practical footprint definition. It represents the maximal orthogonal distance

R to a remote field (grey) such that its change of soil moisture from θ1 to θ2 = θ1 +∆θ is still sensible by the central detector. b) Main

field soil moisture θ1 over distance R to the remote field, for sensor precision σN = 1%, air humidity h= 5g/m3, and three wetting cases

∆θ. Assuming a main field soil moisture of 15 vol.%, for instance, an increase in remote field soil moisture by +5 vol.% is sensible (i.e.,

∆N > σN ) if the distance to that field is not larger than 60 m. The dotted line is an analytical formulation of R (Eq. 15) as a function of the

conventional footprint radius R86 (shown as dashed line for comparison) and performs well in approximating the simulated values (points).

at 2-hourly resolution (σn ≈ 2%) would be able to reliably detect +10 vol.% soil moisture changes of an adjacent field at

R= 1m distance.

Figure 8b shows the calculated ranges for h= 5g/m3, σN = 1% and three different soil moisture changes of the remote

field, ∆θ =+5 . . .20 vol.%. For arid regions between 1 and 5 percent of soil water content, the changes of +5 vol.% are visible370

to the detector at distances above 150 m. In humid climate up to 25 vol.% water content, wetter remote fields beyond 20 m

distance will not show significant contribution to the detector. In wetland areas, +5 vol.% changes of soil moisture are hardly

measureable even if this area covers almost half of the footprint. Higher soil moisture changes of ∆θ = 10 vol.% and 20 vol.%

(e.g., during irrigation) are much more prominent in the neutron signal and thus allow the remote field to be at a larger distance

from the sensor.375

The figure also indicates the conventional footprint radius R86 (dashed line) based on Köhli et al. (2015) and Schrön et al.

(2017). Under most conditions, R86 is much larger than R, as it accounts for neutron intensity changes in all directions (not

only a one-sided remote field), and it has not been restricted to the mentioned accuracy limits and soil moisture changes. The

radial footprint definition also fails to explain that extensive irrigation of a remote field in arid regions can be sensible much

beyond the conventional footprint radius.380
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Similar to the wetting of the remote field, ∆θ > 0, also the case of soil drying, ∆θ < 0 has been investigated. Due to the

non-linearity of N(θ), the neutron production in dry areas is disproportionally higher than the neutron reduction in wet areas.

This leads to a strong influence of distant dry fields under otherwise wet conditions, which consequently manifests in longer

maximal distances R by factors of 1.5 (under wet) to 2.0 (under dry conditions). For example, in an area with θ = 20 vol.%, a

dry-out by −10 vol.% can be detected from a field at up to 140 m distance, while a wetting of that field by +10 vol.% is only385

detectable from up to 80 m distance. The corresponding tabulated data is provided in the supplements.

Using a numerical fit, the new practical footprint distance R can be expressed relative to the conventional footprint radius

(solid lines in Fig. 8b):

R= R86(h,θ,P ) · exp(0.31− 8θ− 5∆θ) , (15)

where θ = θ1 in units of m3/m3, ∆θ =±0.05m3/m3, and σN = 1%. Practical functions for higher soil moisture changes ∆θ390

and higher measurement uncertainty σN could be determined using the presented calculation procedure or the provided data

in the supplements.

The relative formulation based on R86 already accounts for most dependencies on air pressure, air humidity and other factors.

The equation has been tested for various air humidity conditions, for instance, and indicated good performance (not shown).

If the radial footprint radius is not known, an even further simplified approximation for average air humidity h, standard air395

pressure P , ∆θ =±0.05m3/m3, and σN = 1% would be:

R≈ 225m · exp(0.25− 9θ− 5∆θ) . (16)

While these relationships may be useful to quickly assess the potential influence of distant fields on the sensor signal, we

strongly encourage researchers to perform experiments (e.g., strategic irrigation) that could appropriately falsify the presented

theory.400

4 Conclusions

This paper presents an analytical approach to determine the contributions of distant areas in the footprint to the detected signal

within the framework of Cosmic-Ray Neutron Sensing (CRNS). In various examples using splitted fields, heterogeneous soil

moisture pattern, or complex land use types, the calculations have been verified with neutron transport simulations. The results

showed that even complex distributions of simulated neutron intensities can indeed be approximated using the new approach,405

indicating that secondary interactions between individual areas are of minor importance. The approach could be easily adapted

to individual site conditions in order quantify the influence of structures, vegetated land, or irrigated fields in the footprint. The

proposed method has the potential to improve sensor positioning, site-specific calibration, and signal interpretation.

Based on this concept, two applications for the CRNS signal interpretation have been a investigated. First, we found that

knowledge about the signal contribution of the area of interest could help to explain seemingly site-specific shapes of the N(θ)410

relationship. The area’s signal contribution value could be used to rescale the neutron-moisture relationship, such that the
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damping effect of invariant landscape features can be excluded from the signal (Fig. 6). Second, a new footprint definition has

been proposed which represents the maximum orthogonal distance to a remote field (Fig. 8a) such that its soil moisture changes

are still visible in the measured neutron signal. In the presentation of the results, a typical detector precision of σN = 1% and

positive soil moisture changes of ∆θ =+5 to +20 vol.% have been chosen, while the approach is adaptable to any combination415

of parameters. The resulting practical footprint distances for wetting remote fields are 1–90 m (wet climate), 18–180 m (humid),

and 100–255 m (arid), showing the strong dependence on the initial soil moisture conditions in the field. In contrast, the dry-

out of remote fields (∆θ < 0) is usually easier to detect due to the non-linearity of the neutron-water relationship, leading to

1.5–2.0× larger distances.

To date, the footprint of a CRNS sensor has been interpreted as a regular circle. The presented results show that the as-420

sumption of the radial geometry of the footprint is not suitable for very heterogeneous and complex structured regions. In fact,

remote fields extending beyond the minimum tangential distance R< x, by this definition, usually provide less signal contri-

bution than radial fields beyond R86 < r. This is why R is usually shorter than R86. However, in some cases, R can even be

larger than R86 for very dry regions and strong soil moisture gradients. This already indicates the low explanatory power of the

radially symmetric formulation for some situations with rectangular geometries. Here, the new cartesian footprint definition425

could be more informative.

In situations when sensor placement is not possible in homogeneous environments, it is crucial to realize that the sensor does

not inherently provide a simple areal average of the heterogeneous soil moisture patterns in the footprint. In fact, this study

showed that parts of the footprint can have different contribution to the averaged signal depending on their size and distance,

while the non-linear nature of N(θ) will often underestimate the average soil moisture of two equally sized areas, as was also430

shown by Franz et al. (2013).

To learn more about the way how a CRNS station responds to its environment, we recommend to apply the presented method

by forward-modeling various soil moisture scenarios. This way, one could learn about the potential signal contributions from

different landscape compartments, the implications for data uncertainty, and for hydrological process identification. The tool

can also be used to quantify the challenges in signal interpretation already in the preparation phase prior to measurement435

campaigns. This could be an important aid with regard to the optimization of sensor placements.

The method could also support hydrological modeling or geostatistical inverse models, where forward-operators are required

to predict the neutron intensity in a computationally efficient way (Shuttleworth et al., 2013; Franz et al., 2015; Heistermann

et al., 2021b). Here, the analytical calculations could facilitate spatial neutron modeling even in complex environments without

computationally expensive Monte Carlo transport simulations. In addition to first evidence provided by Schrön et al. (2018),440

we recommend future studies to evaluate this approach against dedicated simulations and real field data.

Code and data availability. Simulation data is attached as supplemental material. Analysis scripts are available as interactive Jupyter Note-

books from https://github.com/mschroen/crns-signalcontrib
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Appendix A: Interactive calculation of the footprint distance

To test and apply the presented method, researchers and users may employ an easy-to-use online tool, available from: https:

//github.com/mschroen/crns-signalcontrib. We developed an interactive Jupyter Notebook which is hosted on GitHub and can

be run using Binder, a service that allows to run python code from the browser without installations or prior knowledge.

All necessary numerical calculations related to the footprint distance and sensitivity concept are already implemented in the455

notebook, such that calculations of the footprint distance, signal contributions, and significance tests can be performed for

user-defined soil moisture conditions (Fig. A1).

Figure A1. Showcase of an interactive Jupyter Notebook hosted by Binder. The tool allows to calculate the footprint distance, contributions,

and significance of certain soil moisture conditions. It is accessible from the browser and does not require prior installation or programming

knowledge.
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