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Robbie Mallet (referee n°2) - global comment
Global comment as a community comment :

I was really pleased to see this paper come up in TCD. I think that generating radar freeboard data from ERS1/2 is one of
the most pressing tasks for the sea ice community, and so I agree with Jack Landy’s review. Overall I think the paper is well
written and addresses what is a very significant gap in our knowledge of the Arctic Ocean. In particular I think the figures are
well-designed. I do have a couple of concerns, questions and suggestions over wordings, citations etc. I hope the authors will
take these in the spirit of discussion, rather than as negative criticism. I really do think that this research is high-quality and
useful.

Global comment as a referee :

I left a community comment on this manuscript (https://doi.org/10.5194/egusphere-2022-214-CC1) before being nominated
as a referee. I have therefore read and considered the manuscript again. As part of this, I investigated the data that was made
available to me as a nominated reviewer. I wanted to see the size of the correction/calibration applied by the neural network
presented in this paper. This has led me to question the nature of the ‘correction’ being applied, and whether it is reasonable
to present this data product as a series of ‘corrected’ radar freeboard values at all. I would like to review this manuscript again
once the queries raised here have been addressed.

Answer to Robbie Mallet (referee n°2) - global comment

We would like to thank the reviewer for his careful reading of the manuscript and for the relevant remarks that have helped
to improve the quality of the manuscript. In order to fit with your comments, we have made a revision of the manuscript that
should have corrected the textual issues and well improved the readability of the document. We hope that these modifications
will meet your requirements.

In our understanding, the main concern of the reviewer is : "To what extent can we claim that the resulting product is a
corrected or calibrated retrieval when it doesn’t reflect the variability in the raw, retracked values ? " Expressed in other word,
the referee states that "nothing of the original radar freeboard measurement remains in the corrected value" and that is an issue.

First, we would like to indicate that your detailed analysis on the correlations between raw freeboard and calibrated radar
freeboard have pointed out difficulties that have motivated the calibrations (past studies) and thereafter the use of a neural
network.

Using the exact same processing chain as for CryoSat-2 (with a TFMRA-50 retracker), the Envisat, and ERS radar freeboard
estimates are very different to what we are supposed to observe in terms of magnitude and spatial patterns. Indeed, LRM
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waveforms are strongly impacted by the size of the footprint which is much larger in LRM than in SAR Mode (~ 180 km? to
~ 5 km? [Stammer et al, 2018]). This is the main cause for the misfit between Envisat and CS-2 radar freeboards. In order to
deal with this issue, differences between CS-2 and Envisat have been analyzed, please see Guerreiro et al. 2017, Paul et al. 2018
and Tilling et al. 2019 for a complete overview. As mentioned in the manuscript, the first two studies point out that the radar
freeboard differences between the two altimeters are correlated (not especially linearly correlated) to the sea ice roughness,
characterized by the waveform backscatter, the leading edge width or the pulse peakiness. The third study identified a link
between the misfit and the distance between floes and leads.

The optimal solution would be to find a theoretical model, such as the Brown’s model over open ocean, to represent the
radar response over sea ice in order to correctly retrack the waveform. Despite significant progress in SAR mode (SAMOSA+,
LARM, etc.), these models are not yet able to represent all the complexity of this response even in SARM. For instance, they are
not able to represent snow penetration effects (i.e. volume backscatter effects). Moreover, in LRM, no study reports relevant
retracked height over sea ice floes with a physical retracker and the complexity of the response is still poorly understood.
The objective of this paper is neither to model any effect of the ice surface condition, nor to understand its influence on the
FBr but rather to reconstruct the best possible ERS-2 radar freeboard with our actual knowledge consistently with Envisat
and CS-2 ones. To do so, roughness or more globally sea ice surface state proxies are used to post-correct the estimated
radar freeboard using as a reference Envisat previously calibrated on CS-2. Our study is based on the principle that the radar
freeboard computed with a TFMRAS50 from LRM waveforms is strongly polluted by the surface roughness. Then, we propose
to calibrate LRM radar freeboard on CS-2 using some parameters characterizing the sea ice surface roughness. The same
methodology is applied to calibrate ERS-2 radar freeboard on a CryoSat-2 like radar freeboard from Envisat. Thereafter, some
other parameters such as the ice concentration or the sea ice age were added to improve and consolidate the learning of the NN
so to reach a better match with CS-2 (in the case of Envisat and Envisat calibrated for ERS-2).

Unlike the review suggests, we would like to specify that the sea ice age is not directly used in the regression, we use a MYI
fraction. The way this fraction is calculated has been developed in the manuscript, but it is not discrete values, as it is considered
by the reviewer. Also, we would like to specify that correlations calculated with a variable that takes only two values can not
be relevant.

To illustrate that the calibration is based on the PP and the LES, Figure 1 shows radar freeboard for April 2011 for CS-2,
for Envisat with the calibration presented in the manuscript and one with another model trained only with the raw freeboard,
the Pulse Peakiness and the Leading edge slope. It shows that these three parameters are sufficient to represent the magnitude
and the patterns we are supposed to see in the Arctic. The other parameters help the calibration to get closer to CS-2 radar
freeboard and bring more spatial variability.
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Figure 1. Radar freeboard from CS-2 (left), Envisat calibrated presented in the paper (middle) and Envisat using only the raw free-
board+LES+PP (right)



65

70

75

80

85

90

The correction we have to process is strongly non-linear, so this is the reason why we have chosen a neural network ap-
proach, which has the specificity to handle well with non linearities. Then, correlation between parameters based on linear
approximation are not representative of the dependencies between parameters (inputs/output) in the neural network. Indeed,
it is much more complicated to estimate the relative importance of each parameter in a regression, and it is not given by the
correlations between the inputs and the predicted value. As it has been already mentioned, the main reason is that the relations
that have been established by the neural network are not linear, while the correlation only evaluate whether the variables are
related by a linear relation. Figure 2 shows the "partial dependencies" which refers to an illustration (statistically computed) of
the relations between each input parameters (x-axis) and the predicted value (y-axis). It also illustrates the relative importance
of each parameter: a parameter with no influence would have a horizontal curve as a mean state but it is not a quantitative
approach. Partial dependency plots should be interpreted with caution, it refers to the mean state of statistical computation, de-
pends on a discretization choice and values of input parameters have been standardized (mean = 0 and Standard deviation=1).
The Figure 2 presents 2 panels, one for Envisat calibration (left) and one for ERS-2 calibration (right). Nevertheless, we can
say that curves are not linear, no input is unused or with a very low influence, we can also note that LES and PP have the largest
influence on the predicted radar freeboard.

Partial dependencies Envisat/CryoSat-2 201011-201203 Partial dependencies ERS-2/Envisat 200210-200304
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Figure 2. Partial dependencies plots for Envisat and ERS-2 calibration, from top left to top right, inputs are, the raw radar freeboard, the
month, the pulse peakiness, the Leading edge slope, the concentration and the fasy 1.

The question of the non-linearity is central in our study but also in your analysis. But, since the correction is not linear at
all, the largest raw radar freeboard is not necessarily the largest corrected freeboard, just as it is not the largest raw freeboard
that will benefit from the largest correction. The raw radar freeboard, even noisy, still gives information on how the altimeter
perceives the surface and how much it should be corrected, which remains an important information. We expect that the raw
freeboard define the space and time variability of the calibrated radar freeboard over the whole period but this is hard to show
since we don’t have any reference of the expected variability of the SIT/FBr/FB during 1995-2010. To enhance the fact that
the raw radar freeboard impacts the corrected radar freeboard, figure 3 shows the relative difference between the predicted FBr
of the NN presented in the paper and one from a NN trained without the raw FBr for April 2011. It shows that for a large part
of the basin, the difference of FBr is up to 25% of the predicted radar freeboard.

Finally, it’s important to keep in mind that we have trained the neural network to reach the best score i.e. the best coefficient
of determination (compared to CS-2 for Envisat and to Envisat corrected for ERS-2). Choosing the best NN, means choosing
the combination of hyperparameters and even the choice of input parameters that gives the best scores. This means that the
fraction of MYT allows to better fit CS-2 radar freeboard, that’s why we keep it. However, it’s even expected to find a good
correlation between the sea ice age and the sea ice freeboard because, in average, older ice will be thicker.
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Figure 3. Relative difference in % between the corrected freeboard of our study and one with the same NN trained without the raw freeboard

To sum up, the purpose of this paper is to retrieve a consistent radar freeboard estimation for ERS-2 using the current
knowledge on LRM waveforms over sea ice. Because LRM waveforms are highly impacted by the surface state and poorly
understood over sea ice, raw freeboard have to be calibrated. Two calibrations need to be implemented to get consistent ERS-2
radar freeboard, first Envisat against CS-2 and then ERS-2 against Envisat calibrated radar freeboard. The calibration is first
based on surface roughness proxy because evident link have been emphasized with the size of the correction (previous studies)
and secondly on auxiliary data that were used to reach better fit with CS-2. The calibrated radar freeboard is partly driven by
the raw radar freeboard, both parameters are not linear correlated as it would say that the calibration did not perform well. The
"age" or in our case the MYT fraction is not the key input for the NN training. Furthermore, ’ice with a higher-than-average
raw FBr in a given month" can not necessarily "end up with a higher than average corrected FBr value" as the calibration is not
linear.

Please find below the details on how your specific comments have been taken into account. We have split in two part the
specific comments, as the referee gives two detailed comments, one as a community and one as a referee. In this document, the
referee’s comments are in bold type, the answers are in italic type, and the corrections to the revised manuscript are in normal

type.

Answers to Robbie Mallet (referee n°2) : specific comments

Specific comments - Referee comment

L280: I think you should by convention use the coefficient of determination rather than Pearson-r as a test score.
Otherwise you’ll end up with highly correlated relationships that have the wrong slope?

This is an error in the manuscript, we do use the coefficient of determination as the score for our regression. The correction
has been made in the manuscript.
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You need to explain quite a lot more about what’s going on in Figure 6. The manuscript should not feature undefined
letters and symbols, and there are many in this figure.

Caption has been largely developped as following :

Summary diagram of the uncertainty budget from along track to the propagation by the neural network.

replaced by:

Summary diagram of uncertainty budget during along track, gridding and calibration steps. Top left panel corresponds to the
along track to grid uncertainty budget. Top right panel defines the notations, for the Monte Carlo procedure : €2 for the Neural
Network input parameters, I" for the Neural Network output parameter (radar freeboard) with o and or, the corresponding
uncertainties. The middle panel corresponds to the training of M models with noisy inputs and outputs. Bottom panel show the
predictions of the N noisy input with the M neural network trained. -y is the predicted radar freeboard estimation for one pixel
of the MxN predictions. M=100, N=200.

Similar to above, you should explain much more about what’s going on between lines 277 285. Papers in The Cryosphere
should be accessible to scientists without extensive experience in machine learning. Don’t be afraid to use the supple-
ment for this, as I appreciate it’s wordy. For instance, why did you choose 5 hidden layers and 100 neurons, and what
are the implications of your choice? Why a sigmoid? There are noticeably no references to support your choices, and
there’s no element of later discussion about the impacts.

We have chosen a MLP because it has a very simple architecture but can deal with non-linear problem, which is the case of
this study. The choice of the architecture (number of layer and neurons per layer) as explained in the manuscript as been fixed
by testing a large amount of setup (called gridding) and choosing ones that have give the best score on the validation sample,
with a reasonable time of learning. Concerning the activation function, the sigmoid was chosen to allow negative FBr as it is
for target FBr and not to drop the value and bias the statistics of the predicted values. The sigmoid activation function was
chosen so that it could allow negative FBr values in order not to artificially drop the negative predicted FBr values.

Machine Learning is largely used for various application even for geosciences but settings architecture and hyperparameters
resides in testing testing and testing to get the best model with the best score. Citing study that use a MLP for geosciences will
not be relevant as the hyperparameters highly depends on the issue we want to deal with so it could even be wrong. The
paragraph you refer in your comment have been detailed to make it clearer. The implication of all choice is that by choosing
the Neural Network type, MLP, with trained the best model possible so to have the best prediction possible comparing to a
reference (CS-2 or Envisat calibrated).

The neural network is a multilayer perceptron regressor (MLP) composed of 5 hidden layers, each composed of 100 neurons.
The activation function used is a sigmoid. Hyper-parameters have been tuned by dichotomy by choosing at each step the hyper-
parameter combination with the highest mean score (average score made on 5 models) on the test sample. The score used for
this regression is the Pearson correlation coefficient. To determine the most suitable hyper-parameter combination, the dataset
is randomly split into a training and a testing dataset, corresponding respectively to 90% and 10% of the initial dataset. To avoid
overfitting, we use early stopping to interrupt the training when the score is not improving anymore. Once the hyper-parameter
combination is set, the MLP is trained with the whole dataset. The NN trained is then applied to the LRM monthly grids to
obtain a monthly LRM-corrected radar freeboard.

replaced by:

The neural network used is a multilayer perceptron (MLP). Both calibrations have been processed with Scikit learn [Pe-
dregosa et al, 2011]. The MLP is composed of 5 hidden layers, each composed of 100 neurons. The choice of hyperparameters
: number of neurons, the learning rate, the regularization term, batch size, activation functions, solver for the weights opti-
mization, have been done using gridding methodology, e.g. testing combinations and take the one that give best score. The
evaluation criterion, called the score, is chosen as the determination coefficient. Models are trained on 90% of the dataset and
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tested on the remaining 10%, the splitting in random. During the tuning step, models are cross validated, it means that they are
each trained 5 times with the same combination of hyperparameters but without the same train/test dataset, the 5 scores are then
analyzed to determine the best combination. Cross validation give a better idea of the model performance as the dependence to
the training dataset is limited. The activation function for the hidden layers neurons is a sigmoid, motivated by possible negative
radar freeboard values and the optimizer is and ADAM [Kigma et Ba, 2014]. Moreover, in order to avoid over-fitting, an early
stopping criterion is used to stop the model training as soon as the score is not improved during 10 consecutive iterations, with
a defined tolerance.

Finally, once the hyperparameters combination is set, the MLP is trained on the whole dataset to provide the calibration
function. The trained model is then applied to the LRM monthly grids to obtain a monthly LRM-corrected radar freeboard.

I also have the view that ‘radar freeboard’ is not a geophysical quantity to be measured with an uncertainty. Instead it
is precisely the retracked elevation of a waveform returning from sea ice, and is specific to a given radar’s geometry and
the chosen retracking algorithm. See the original definition in the supplement of Armitage Ridout 2015, and Tilling
et al. 2019 for how different radars will generate different Rfbs even if they could ‘look at’ the same ice. Similarly,
different retrackers will generate different Rfbs when ‘looking’ at the same waveform, all of them valid and precise.

So I think you should change the phrase ‘radar freeboard correction’ to ‘radar freeboard calibration’, as you’re not
correcting some uncertain value. Instead you’re calibrating the Rfb from one instrument so that it’s consistent with
another instrumental geometry. The same with ‘radar freeboard estimation’ - you’re not estimating it: it’s a precise
value resulting from the radar geometry and choice of retracker. I have a lot more to add on this issue, but it’s quite
philosophical/ subjective and I think we need to first focus on the issue concerning the representation of the TFMRAS0
Rfbs in the ‘corrected’ product.

If we understood your comment correctly, we don’t have the same point of view. The geophysical quantity we want to estimate
is the freeboard. For that purpose, we measure the height over the floes and the height over the leads that are extrapolated below
the floes. The so-called radar freeboard is the difference between both heights. These two heights are subjects to uncertainties
(like for all measurements) which are propagated to the difference. Among these uncertainties, we have the speckle noise, the
interpretation of the retracking to estimate the range e.g. the retracking step. I can’t find any definition of radar freeboard on
Armitage and Ridout 2015’s paper supplement more than "The radar freeboard is then simply the retrieved elevation of the sea
ice floe relative to this interpolated sea level’ but it is also the definition we consider with an uncertain SLA and uncertain sea
ice floe elevation anomaly or what we call ILA (Ice Level Anomaly) in reference to SLA.

Note that "error” is used in the manuscript while dealing with speckle noise because Wingham et al 2006 used that termi-
nology, but it refers to uncertainties, both words were often mistaken to qualify uncertainties until a few years ago. This has
been clarified in the manuscript.

We do agree that the word ’corrected’ is a bit confusing, as we also deal with uncertainties. Even though, an uncertain value
can not be corrected, at least the uncertainty can be reduced contrary to an error that is known and could be corrected. These
two words have a different signification.

In order to clarify the reading, we suggest replacing corrected by calibrated while dealing with the predicted radar freeboard
from the NN or the surface state bias corrected radar freeboard.

Specific comments - Community comment

L.25) I would question whether ““thin ice is more sensitive to climatic hazards”. Bitz and Roe (2004) argued the opposite:
that thick ice is thinning faster, because areas of thin ice grow more quickly in winter. Age products also show that
thicker, older ice is disappearing from the Arctic and being replaced by thinner, seasonal ice (e.g. Nghiem et al., 2007).
So I’m not sure it makes sense to say that thin ice is more sensitive to climatic hazards, when thin ice is coming to
dominate the Arctic and is more robust to temperature perturbations.
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We do agree that because of the global warming, multi-year ice have started to disappear and be replaced (in area) the next
winter by FYI. Thin ice thickness will be recovered more easily than thick ice if it melts. Nevetherless, the thinner the ice is, the
faster it undergoes melting and breakup when temperature rise in late spring. It will be more supposed to break while occuring
climate hazard such as cyclones or strong winds [Rheinleender et al 2022]. During all seasons, thin ice will ridge, raft, diverge
easier than thick ice [Stroeve et al 2018] so can highly affect sea ice area (and of course volume). We suggest the following
modification :

Thin ice is indeed more sensitive to climatic hazards than thicker ice but it especially enables to compute the volume.
replaced by:

Thick and old ice is disappearing and being replaced by younger, thin ice that has a higher mechanical sensitivity. Thin ice
is more prone to deformation [Stroeve et al 2018] that induce area changes, and is more sensitive to climate hazards such as
cyclones or strong winds [Rheinl@nder et al 2022]. Thickness is a key parameter for sea ice study, it varies a lot according to
the regions and it modulates the sea ice volume evolution in the Arctic ocean [Landy et al 2022].

L32) I don’t agree that it’s “commonly accepted” that Ku-band radar waves penetrate the snow layer when it is suf-
ficiently cold. I think that assumption is still up for discussion, and I would argue the opposite. I’'m not aware of any
in-situ or airborne CryoSat evaluation ever done over sea ice that has produced evidence that Ku-band radar waves
consistently return from the snow-ice interface. For instance, neither of the airborne CryoVex 2006 and 2008 cam-
paigns (Willatt et al. 2011) indicated that this was consistently the case over FYI. Results from a different radar system
in Antarctica (Willatt et al. 2010) also showed that radar waves do not always return from the ice surface. Results from
a third radar system deployed on MOSAIC (on SYI) indicate that more Ku- band power comes back from the snow
surface than from the ice surface (Stroeve et al., 2020 Fig. 7; Nandan et al., 2022 Fig. 8). Garnier et al. (2022; Figure 9)
shows results from CryoVex 2017 where the difference between Ka and Ku band ranging is at times negative, further
casting doubt on the assumption. Moving to satellite-based evidence, Armitage and Ridout (2015) calculated CryoSat-
2’s penetration factor as 82%. Ricker et al. (2015) used buoys to show that snow accumulation caused increases in Rfb,
not decreases (implying that the radar waves are not penetrating fully). This agrees with the work of Gregory et al.,
(2022; Figure 9) that shows that snowfall is correlated (not anti-correlated) with Rfb over both ice types. I would also
argue that the often-cited work of Beaven et al. (1995) was not realistic — it featured snow that was shovelled, sifted
through a screen, and then artificially smoothed at the surface by the weight of a metal plate before measurement. It is
also striking that what the authors identify as the snow-ice interface appears at 20 cm range when it was 21 cm away
in free space. Since it was 21 cm away in free space it should have appeared further away, at something like 25 cm in
range due to the wave-propagation delay. There’s no need to mention all this in your paper, but I wanted to briefly state
my evidence before making the point that full Ku-band penetration is not a settled consensus, even for cold, dry snow. I
think it would be fair to say that full penetration is ‘““commonly assumed in satellite-based sea ice thickness products”.
But just because we’re forced to assume it in our products doesn’t mean the we should actually believe or accept the
assumption.

We do agree that the knowledge of how far into the snow layer Ku-band radar waves can penetrate is still under deep discus-
sion in the community. There is no possible consensus on the fact that signal penetration will depend on salinity, temperature,
humidity, snow age and other parameters... However, it is important not to confuse the results of studies done in Antarctica
with those done in the Arctic, just as it is important not to confuse the SAR results with the results of field studies, since the
SAR treatment impacts the waveforms and does not only reflect the behavior of the ku-wave in snow. We suggest the following
modification :

It is commonly accepted that the Ku frequency penetrates the snow layer when it is sufficiently cold, in other situations this
assumption can be questioned (Ricker et al., 2014; Nandan et al., 2017).
replaced by:
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Implementing this method requires the assumption that the Ku-band radar wave completely penetrates the snow layer, which
is still widely discussed and is not the subject of a definitive consensus (Ricker et al., 2014; Nandan et al., 2017).

L381: Year of this citation is 1986.

We have taken into account this semantic shade in the manuscript.

L65: I think we’re not really measuring sea ice thickness, but instead estimating it based on freeboard measurements (or
radar-altimetry measurements). This might seem like a semantic point, but I think users of sea ice thickness products
do benefit from this distinction. “‘estimates’ rather than ‘“measurements’ is more commonly used by convention (e.g.
Tilling et al., 2018, Kurtz et al., 2014; Landy et al., 2017).

Increasing the along-track resolution of the aperture radar has led to considerable advances in the measurement of sea ice
thickness.

replaced by:

Increasing the along-track resolution of the aperture radar has led to considerable advances in sea ice thickness estimation.

L75: I think readers like me who aren’t expert in roughness would benefit from a citation here. Is LRM definitely more
impacted by a given roughness than SARM? I can believe it, but would like to read some evidence.

Kurtz et al 2014 pointed out that ice roughness or more generally, sea ice surface properties impact the waveform of return
echoes. Such as a lot of remote sensing instruments, the illuminated area will impact your measurements. Concerning the
difference of roughness impact between SARM and LRM range measurement, it’s due to the acquisition processing itself.
Knowing how both work (see https://www.aviso.altimetry.fr/en/techniques/altimetry.html), the theoretical return power will be
the same for both nadir and off-nadir in LRM whereas in SAR most of the return echo power will be concentrated to nadir, which
reduces the impact of off-nadir and give the peaky shape to SAR waveforms and a lower impact of surface roughness [Raney
et al 1998]. It was a bit more explicated in section 3.4. We propose to add this citation in the sentence you are mentioning and
add a reference to the section where it is more explained.

Contrary to SARM, LRM altimetry measurements are strongly impacted by the surface roughness of the surface illuminated
by the radar, also affecting the freeboard measurement.

replaced by:

Because LRM altimetry has a larger footprint than SARM altimetry (by a factor 30), LRM range retrieval are significantly
more impacted by surfaces roughness of the [Raney et al 1998] than the more nadir-focused measurement (SAR technologies).

L103: I think you mean NSIDC 0611? This product gives the maximum of the ice age distribution in a grid cell at each
timestep (see quote below). So I’m not sure how you’ve used these max values to generate an MYI fraction product? I
think it could be done if you had access to the Lagrangian data, which is out there. But if you’ve used this I think you
should state that. (Tschudi et al. (2020) states ‘“This approach does not consider new ice that may form within a grid
cell because it retains only the oldest ice in its accounting. Thus, the product is effectively an estimate of the oldest ice
in a given grid cell.”)
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The type is attributed to the 20hz along track measurements from the NSIDC age nested in two categories (whether the age
is greater than 1 year). During data gridding, the type is also gridded and gives us an idea of the fraction of MYI by averaging
the ice type into cells.

L103-104 : This information comes from the NSIDC 0061 sea ice age product (Tschudi et al., 2019) that is aggregated into
two classes (MYT and FYT).

replaced by :

The study also requires a sea ice type product, this information is derived from the NSIDC 0061 sea ice age product (Tschudi
et al., 2019) that is aggregated into two classes (MYI and FYI) according to the age of the ice (FYI : ice age between 0 and 1
year, MY1 : ice age of at least one-year) at a weekly frequency. Data are respectively available as daily and weekly map with a
12,5 km grid resolution. The fraction of MY is derived from the ice type information during the gridding processing step.

L115: I think at some point you should direct the reader to Kwok and Haas (2015), which discusses some key issues in
the product that you’ve chosen.

This section aims to present the dataset not to discuss it, however, we added the reference to section results as following:

The bias between OIB and Envisat estimation could also be attributed to the OIB snow depth which estimation seems
sensitive to the algorithm used (Kwok and Haas, 2015; Kwok et al., 2017).

L310: “Surface roughness is identified as the largest source of uncertainty” - I didn’t really understand how you made
it to this conclusion. I think this is specifically a reference to Fig. 8 of Landy et al. (2020). The error in the sea ice
roughness over FYI is 4cm, and the error from the snow basal salinity (just part of the “penetration bias’) is 7 cm,
and the uncertainty due to snow depth is 6 cm. So over FYI the roughness uncertainty is smaller than either the snow
depth or the snow salinity. As such I don’t think roughness can be reasonably characterised as “the largest source
of uncertainty” over FYI based on Landy et al. 2020 Fig. 8. Over MYI the sea ice roughness uncertainty is equal
to the snow depth uncertainty, and admittedly larger than “partial snow penetration” uncertainty. So the statement
is narrowly true if you only consider MYI and don’t factor in the (highly related) uncertainty in snow depth in the
comparison. But I think that only considering the largest source of uncertainty and ignoring the other uncertainties is
a pretty risky strategy, given the other sources are comparable and perhaps actually larger in magnitude? If you are
wedded to this approach, I think you should state that this will induce a pretty serious underestimate in your uncertainty
values (which is important info for product end-users).

This sentence is inexact, it has to be shaded to "surface roughness is identified as one of the largest sources of uncertainty".
Nevertheless, the other sources of uncertainty while measuring the FBr, as summed up in Landy et al 2020, is the uncertainty
due to SLA (off nadir and low density) and the limited Ku-band penetration in the snowpack (caused for instance by snow
basal salinity for FYI or metamorphic snow for MYI) not the snow depth. The point that was not explained in the manuscript,
incorrectly, is that the uncertainties due to partial signal penetration in the snow are only indirectly taken into account, we don’t
ignore it. Indeed, it is not so trivial when comparing freeboards from different retrackers, to differentiate between roughness
and penetration [Ricker et al 2014]. We believe that a "significant” part of the uncertainty on penetration is included in the
uncertainty on roughness presented in [Landy et al 2020]. For this reason, we made the choice not to add values for the
undefined limited penetration of the signal in the snowpack in this uncertainty budget. The problem of penetration is not
ignored, but the manuscript lack of information on this point. As contribution of sources are not defined, yes, it is possible that
the final uncertainties are underestimated. We suggest the following modifications:

Landy et al. (2020) decomposed it in two, the FBr systematic uncertainty budget, on the one hand, the uncertainties due to
the penetration of the signal in the snow (depending on its salinity or if it is composed of metamorphic snow, according to the
type of ice) and 310 in the other hand, the surface roughness. Surface roughness is identified as the largest source of uncertainty
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and we, therefore, choose to consider only this source in our systematic uncertainty evaluation. Roughness is estimated to be
respectively about 20 % and 30% of the sea ice thickness for FYI and MYI (Landy et al., 2020). Note that this systematic
uncertainty budget only concern CS-2 mission which are afterward propagated to Envisat and ERS-2, indeed other mission
will be "corrected" from surface roughness effect during the calibration procedure.

replaced by :

In Landy et al 2020, the FBr systematic uncertainty budget is decomposed in two parts, on the one hand, the uncertainties
due to the penetration of the signal in the snow (depending on its salinity or if it is composed of metamorphic snow, according
to the type of ice) and in the other hand, the surface roughness. We assume, as in Ricker et al 2014, that the comparison of
the freeboard from different retrackers does not enable to separate the contribution of the roughness from the signal partial
penetration. We therefore assume to consider both sources as one mixed contribution, estimated to be respectively about 20 %
and 30% of the sea ice thickness for FYI and MYI (Landy et al 2020). The systematic uncertainties can be underestimated as
the penetration of the radar waves in the snow uncertainty may be poorly handled. Note that this systematic uncertainty budget
only concerns CS-2 mission which is afterward propagated to Envisat and ERS-2, indeed other missions will be "calibrated"
from surface roughness effect during the calibration procedure.

Fig. 6: I see in the top panel that you’ve “summed the squares”, which has the implicit assumption that uncertainties
that you have considered are uncorrelated. It may be that you have good evidence to support this that I’m ignorant of,
but it seems, for instance, that speckle noise may well be (anti?)correlated with surface roughness? Just as an example.
I think that the omitted snow uncertainties involving penetration & depth are more likely than not to be correlated in
some way. I think you should state that you’ve assumed the uncertainties are uncorrelated in your analysis, and give
the reader some information as to what the results of that assumption may be.

Yes, we assumed the uncertainty due to the speckle noise and the SLA uncertainty to be uncorrelated, as it is precised | 304
in the manuscript. The speckle noise will not be correlated to the surface roughness but it is attributed to the surface asperities
which are of the order of magnitude of the wavelength of the signal, about 2 cm, that causes interference in the signal. But a
surface can have several roughness scales, for instance MYI highly rough can have asperities of about 2cm as well as newly
formed sea ice, both will present speckle noise that induce the same uncertainty on the range.

By construction, systematic and random uncertainties are not correlated, so this is not really an assumption. Concerting the
uncertainties due to snow penetration, we redirect you to the previous comment (and here the snow depth is not considered, so
its uncertainty either).

Figs. 7 & 8: These are really well designed and presented

Thank you for this comment.

L381: 4) Why take snow density as constant? SnowModel-LG outputs depth and density, and includes some physics of
densification/settling over time. So I think it’s odd to use one of its variables and not the other, since they’re so linked in
the model. Snow impacts thickness retrievals by weighing the floe down and slowing radar waves: both of these effects
are proportional to the mass of overlying snow — not the depth (see Mallett et al., 2021). So I think it makes a lot more
sense to use both the depth and density (the SWE) in your thickness retrievals rather than just the depth. Here’s a plot
of the seasonal densification of SnowModel-L.G snow north of 88N for the period 1995-2018. You’ll see that as well as
being more dense than your assumption, it also evolves over the season.
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As suggested, we have done the scatter plot using the snow density from the model, figures have been updated in the
manuscript. Nevertheless, it was not possible for CanCoast due to SnowModel-LG output coverage, and as we take OIB
snow depth for OIB/Envisat SIT conversion, we have chosen to keep a constant density to keep consistency. It is interesting to
see that the comparisons look really similar than with a constant snow density. Comparisons with moorings even give worse
results with higher biases than using constant density. You can find the statistics in figure 4, 5, 6 and 7.

Fig 13: ’m a little unclear what the radar freeboard timeseries is supposed to represent. I imagine it mostly reflects the
trend and variability in sea ice extent, and I think you should point this out to the reader. A simple correlation with SIE
would quantify this relationship and reveal if the quantity is useful. For the part of it that doesn’t represent SIE, would
decreasing volume reflect a thinning of sea ice? Thinning snow (Webster et al., 2014) will mask the effect of thinning ice
on the Rfb. In areas where the snow is really thinning quickly, the Rfb could potentially even increase even if the ice is
thinning. I guess I would like to see a little interpretation of this quantity figure 13 rather than being left to do it as the
reader.

The time series present the radar freeboard volume we have computed during the ERS-2, Envisat and CryoSat-2 period. We
chose to show the evolution of the volume of radar freeboard instead of mean radar freeboard as it is more difficult to interpret
as the mean freeboard depend on the number of pixel covered by ice and is not necessary representative of the global ice
state because low concentration area have the same weight as compact ice area. The motivation of computing the volume is to
represent better this evolution. according to [Landy et al 2022], figure 8, the anomaly in volume are mainly driven by thickness
anomalies and not area for the Arctic, so this would not reflect the variability of sea ice area. Concerning the impact of snow
on trend, you are right, it would change the trend as snow load have changed during the past 30 years, but it will give the same
trend as using a snow depth climatology to derive the volume as it has been done in the majority of the previous studies. We
suggest adding the following precision:

The evolution of the snow load is not taken into account in Figure 13, which means that the evolution of the volume is not
fully represented, in the same way as if the total volume were derived with a snow depth climatology. Indeed, a decrease in
FBr volume may merely indicate that the snow depth is greater and the ice thickness unchanged.

L450: I think you should state the limitations in your uncertainties here. In particular (and I think this is key), do the
“observed” thicknesses fall within your uncertainty bounds? If not, then either your uncertainty bounds are wrong or
the validation data is wrong. I think uncertainty bounds on retrievals are not useful unless you can show that observed
data fall within them.

Thank you for this suggestion, uncertainties of satellite estimates have been added to validation plots for the review. Nev-
ertheless, as explained in the manuscript section results, conclusion are not as simple to draw out, validation or retrieval are
not necessarily wrong if validation dataset don’t fall within uncertainties bounds. First, because validation data also present
uncertainties but also because validation procedure of monthly satellite estimation assume that we observe in average the same
sea ice surface than the validation do and that can be questioned for airborne or submarines dataset for instance.

Figures 4,5,6 and 7 present the 95% confidence interval of the SIT but without taking into account uncertainties on snow
depth, densities etc for the FBr to SIT conversion step.

The plots have been updated with the variable snow density. For esthetical reason, bounds are not represented for compar-
isons with other satellite-based SIT estimation.
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Figure 4. Comparative scatter-plots between Envisat sea ice thickness or radar freeboard estimations and other data sets. The x-axis indicates
the sea ice thickness from (a) OIB total ice freeboard, (b) Air EM snow plus ice thickness, (c) Can Coast ice thickness, (d) UK/US submarines
draft and (e) ICESat-1 total freeboard. (f) compares our Envisat radar freeboard with SI-CCI Envisat solution. Colorbars represent the
normalized density. A logio has been applied before the normalization for (e) and (f) due to the large number of data. N is the number of
the couple of values that are compared, Med refers to the Median, SD the Standard deviation, RMSE the Root Mean Square Error and r the
correlation coefficient.
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Figure 5. Comparative scatter-plots between Envisat sea ice thickness estimations and anchored moorings data sets. Each dot corresponds
to a monthly averaged value. The x-axis indicates the sea ice thickness from (a) BGEP, (b) BGEP vs Env CCI, (c) Davis Strait, (d) IOS
CHK/EBS and (e) Transdrift Laptev Sea ice draft. The colorbar shows the MY fraction. N is the number of the couple of values that are
compared, Med refers to the Median, SD the Standard deviation, RMSE the Root Mean Square Error and r the correlation coefficient.

References

Guerreiro, K., Fleury, S., Zakharova, E., Kouraev, A., Rémy, F., and Maisongrande, P.: Comparison of CryoSat-2 and EN-
VISAT radar freeboard over Arctic sea ice: toward an improved Envisat freeboard retrieval, The Cryosphere, 11, 2059-2073,
https://doi.org/10.5194/tc-11-2059-2017, 2017.

Kingma, D. P. and Ba, J.: Adam: A Method for Stochastic Optimization, CoRR, 2014.

Laforge, A., Fleury, S., Dinardo, S., Garnier, F., Remy, F., Benveniste, J., Bouffard, J., and Verley, J.: Toward improved
sea ice freeboard observation with SAR altimetry using the physical retracker SAMOSA+, Advances in Space Research, p.
S0273117720300776, https://doi.org/10.1016/j.as1.2020.02.001, 2020.

Landy, J. C., Petty, A. A., Tsamados, M., and Stroeve, J. C.: Sea Ice Roughness Overlooked as a Key Source of Uncertainty
in CryoSat-2 Ice Freeboard Retrievals, Journal of Geophysical Research: Oceans, 125, https://doi.org/10.1029/2019JC015820,
2020.

Landy, J. C., Dawson, G. J., Tsamados, M., Bushuk, M., Stroeve, J. C., Howell, S. E. L., Krumpen, T., Babb, D. G., Komarov,
A. S., Heorton, H. D. B. S., Belter, H. J., and Aksenov, Y.: A year-round satellite sea-ice thickness record from CryoSat-2,
Nature, 609, 517-522, https://doi.org/10.1038/s41586-022-05058-5, number: 7927 Publisher: Nature Publishing Group, 2022.

Nandan, V., Geldsetzer, T., Yackel, J., Mahmud, M., Scharien, R., Howell, S., King, J., Ricker, R., and Else, B.: Effect of
Snow Salinity on CryoSat-2 Arctic First-Year Sea Ice Freeboard Measurements: Sea Ice Brine-Snow Effect on CryoSat-2,
Geophysical Research Letters, 44, 10,419-10,426, https://doi.org/10.1002/2017GL074506, 2017.

13



Air EM US/UK Submarines Can Coast

6 " N=477 ” 6 " N=2022 b, 6 N=409 ”
Bias = 0.816 a Bias = -0.217 Bias = 0.096 Cc
Med = 0.869 (@) Med = -0.163 (b) Med = 0.047 ()
5  SD=0.846 5  SD=0.567 5 SD=0.616
RMSE = 1.175 RMSE = 0.607 RMSE = 0.623

r=0.260 r=0.740

E
@
24 4 :
4
| §
53 3 '
[V}
RS
D2 2
wn
~ .
a1 1
w

0 0

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6
sea ice thickness (m) sea ice thickness (m) sea ice thickness (m)

0.0 0.2 0.4 0.6 0.8 1.0
Normalized density

Figure 6. Comparative scatter-plots between ERS-2 sea ice thickness estimations and 3 in-situ data sets. The x-axis indicates the sea ice
thickness from (a) AirEM total thickness, (b) UK/US Submarines draft and (c) Can Coast sea ice thickness. Colorbar indicates the normalized
density. N is the number of the couple of values that are compared, Med refers to the Median, SD the Standard deviation, RMSE the Root
Mean Square Error and r the correlation coefficient.

Paul, S., Hendricks, S., Ricker, R., Kern, S., and Rinne, E.: Empirical parametrization of Envisat freeboard retrieval of Arctic
and Antarctic sea ice based on CryoSat-2: progress in the ESA Climate Change Initiative, The Cryosphere, 12, 2437-2460,
https://doi.org/10.5194/tc-12-2437-2018, 2018.

14



425

10S EBS AWI moorings

3.0 ' N=153 2 30 N=44 7 -1.0
Bias = -0.782 Bias = -0.662

- Med = -0.583 (@) Med = -0.735 (b)
£25 sp=o0781 2.5 sp=0.499 < 0.8
" RMSE = 1.103 RMSE = 0.807 :
2 r=0.667 r=0.662 B
220
kv e
I -0.6 -2
515 Ty 9
[} Al E =
L A —
8 1.0 A A 4 A 25 0.4 E
0 « 31-00
o 32-97
n 0.5 A : 32-99 - 0.2
o v 4798
w < 48

0.0 > 49

-0.0
00 05 1.0 1.5 2.0 25 3.0 00 05 1.0 1.5 2.0 25 3.0
sea ice thickness (m) sea ice thickness (m)

Figure 7. Comparative scatter-plots between ERS-2 sea ice thickness estimations and 2 anchored moorings data sets. The x-axis shows sea
ice thickness estimations from (a) IOS Beaufort Sea and (b) AWI moorings sea ice draft. The color bar indicates the respective MY fraction.
N is the number of the couple of values that are compared, Med refers to the Median, SD the Standard deviation, RMSE the Root Mean
Square Error and 7 the correlation coefficient.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R.,
Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine
Learning in Python, Journal of Machine Learning Research, 12, 2825-2830, 2011.

15



Poisson, J.-C., Quartly, G. D., Kurekin, A. A., Thibaut, P., Hoang, D., and Nencioli, F.: Development of an ENVISAT

Altimetry Processor Providing Sea Level Continuity Between Open Ocean and Arctic Leads, IEEE Transactions on Geoscience
430 and Remote Sensing, 56, 5299-5319, https://doi.org/10.1109/TGRS.2018.2813061, 2018.

Raney, R.: A delay/Doppler radar altimeter for ice sheet monitoring, in: 1995 International Geoscience and Remote Sensing
Symposium, IGARSS ’95. Quantitative Remote Sensing for Science and Applications, vol. 2, pp. 862-864, IEEE, Firenze,
Italy, https://doi.org/10.1109/IGARSS.1995.521080, 1995.

Rheinlender, J. W., Davy, R, Olason, E., Rampal, P., Spensberger, C., Williams, T. D., Korosov, A., and Spengler, T.:

435 Driving Mechanisms of an Extreme Winter Sea Ice Breakup Event in the Beaufort Sea, Geophysical Research Letters, 49,
https://doi.org/10.1029/2022GL099024, 2022.

Ricker, R., Hendricks, S., Helm, V., Skourup, H., and Davidson, M.: Sensitivity of CryoSat-2 Arctic sea-ice freeboard and
thickness on radar-waveform interpretation, 8, 1607-1622, https://doi.org/10.5194/tc-8-1607-2014, 2014.

Stammer, D.: Satellite altimetry over oceans and land surfaces, Earth observation of global changes, 2018.

440 Stroeve, J. and Notz, D.: Changing state of Arctic sea ice across all seasons, Environmental Research Letters, 13, 103 001,
https://doi.org/10.1088/1748-9326/aade56, publisher: IOP Publishing, 2018.

Tilling, R., Ridout, A., and Shepherd, A.: Assessing the Impact of Lead and Floe Sampling on Arctic Sea Ice Thickness Esti-
mates from Envisat and CryoSat-2, Journal of Geophysical Research: Oceans, 124, 7473-7485, https://doi.org/https://doi.org/10.1029/2019
2019.

445 Tschudi, M., Meier, W. N., Stewart, J. S., Fowler, C., and Maslanikand, J.: EASE-Grid Sea Ice Age, https://doi.org/10.5067/UTAV7490FE
type: dataset, 2019.

Wingham, D. J., Francis, C. R., Baker, S., Bouzinac, C., Brockley, D., Cullen, R., de Chateau-Thierry, P., Laxon, S. W.,
Mallow, U., Mavrocordatos, C., Phalippou, L., Ratier, G., Rey, L., Rostan, F., Viau, P., and Wallis, D. W.: CryoSat: A mission
to determine the fluctuations in Earth’s land and marine ice fields, 37, 841-871, https://doi.org/10.1016/j.asr.2005.07.027,

450 2006.

16



