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Abstract. A novel method for atmospheric network design is presented, which is based on Information Theory. The method 5 

does not require calculation of the posterior uncertainty (or uncertainty reduction) and, therefore, is computationally more 

efficient than methods that require this. The algorithm is demonstrated in two examples, the first looks at designing a network 

for monitoring CH4 sources using observations of the stable carbon isotope ratio in CH4 (δ13C), and the second looks at 

designing a network for monitoring fossil fuel emissions of CO2 using observations of the radiocarbon isotope ratio in CO2 

(∆14CO2). 10 

1. Introduction 

The optimal design of any observing network is an important problem in order to maximise the information obtained with 

minimal cost. In atmospheric sciences, observing networks include those for weather prediction as well as for air quality and 

the monitoring of greenhouse gases (GHGs). For air quality and GHGs, one essential purpose of the observation network is to 

learn about the underlying sources and, where relevant, the sinks. This application is based on inverse methodology in which 15 

knowledge about some unknown variables, in this case the sources (and sinks), can be determined by indirect observations, 

that is the atmospheric concentrations or mixing ratios, if there is a model or function that relates the unknown variables to the 

observations. Inverse methodology provides a means to relate the observations to the unknown variables and provides an 

optimal estimate of these (Tarantola, 2005).  

 20 

In atmospheric sciences, the methodology is most often derived from Bayes’ Theorem, which describes the conditional 

probability of the state variables, x, given the observations, y: 

𝑃(𝑥|𝑦) =
𝑃(𝑦|𝑥)𝑃(𝑥)

𝑃(𝑦)
     (1)  

Assuming a Gaussian probability density function (pdf), the following cost function can be derived (Rodgers, 2000): 

𝐽(𝐱) =
1

2
(𝐱 − 𝐱𝐛)T𝐁−1(𝐱 − 𝐱𝐛) +

1

2
(𝐻(𝐱) − 𝐲)T𝐑−1(𝐻(𝐱) − 𝐲)  (2) 25 

The x for which J(x) is minimum is the state vector that minimizes the sum of two distances: one in the observation space, 

between the modelled, H(x), and observed, y, variables, and the other in the state space, between x and a prior estimate of state 

variables, xb. These two distances are weighted by the matrices R and B, which are respectively, the observation error 
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covariance and prior error covariance. Expressions for the centre and variance of the posterior pdf of x are given by e.g. 

Tarantola, (2005).  30 

 

The choice of the locations for the observations has important consequences for how well the state variables can be constrained. 

Increasing the number of observations will decrease the dependence of the solution on xb, but where those observations are 

made is also a critical consideration and depends how they relate to the state variables, as described by the transport operator, 

H(x). Here only the linear transport case is considered in which this operator can be defined as the matrix H.  35 

 

In practical applications of network design, there is usually a predefined budget that would allow the establishment of a given 

number of sites, either to create a new network or to add to an existing one. The possible locations of sites is usually a 

predefined set since these need to fulfil certain criteria, e.g., access to the electrical grid, internet connection, road access, an 

existing building on site to house instruments, the agreement of the property owner, and may include having an existing tower 40 

if measurements are to be made above the surface layer. Thus, the question is often: which potential sites should be chosen to 

provide the most information about the sources and sinks? 

 

The founding work on network design was actually in the field of seismology (Hardt and Scherbaum, 1994), but there are 

already a number of examples of network design in the framework of atmospheric monitoring in the scientific literature. An 45 

early example is the optimization of a global network for CO2 observations to improve knowledge of the terrestrial CO2 fluxes 

(Gloor et al 2000; Patra and Maksyutov 2002; Rayner et al 1996). These studies dealt only with small dimensional problems, 

i.e., with few state variables and relatively low frequency observations and, thus, small B and H matrices, and the criteria by 

which the network was chosen was minimizing the posterior uncertainty. Gloor et al. solved the problem using a Monte Carlo 

method (specifically Simulated Annealing) but they found this method took considerable time to converge and up to 5×105 50 

iterations were needed. Patra and Makysutov used a less computationally demanding approach, the Incremental Optimization 

method, which is based on the “divide and conquer” algorithm principle. In this method, the problem to solve is broken down 

into steps, i.e., sequentially choosing the best site from the set of potential sites and correspondingly depleting this set by one 

with each step. In the Incremental Optimization approach only ∑ (𝑝 − 𝑖 + 1)𝑘
𝑖=1  calculations are needed, where k is the number 

of sites to select and p the number of potential sites to choose from. The Incremental Optimization approach, however, may 55 

lead to a different selection of sites compared to testing all possible combinations of sites, which would involve p!/(k!(p – k)!) 

calculations, but this in many cases may be a prohibitively large number.  

 

More recently, the problem of network design has been addressed in the context of regional networks for GHG observations 

(Lucas et al., 2015; Nickless et al., 2015). Again, in both these studies the metric for selecting the network was the posterior 60 

uncertainty, either by using the trace of the posterior error covariance matrix, which is equivalent to minimizing the mean 

square uncertainty for all grid cells (Lucas et al., 2015) or by minimising the sum of the posterior error covariance matrix (or 
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submatrix for a particular region), which accounts also for the covariance of uncertainty between grid cells (Nickless et al., 

2015). These studies both used Monte Carlo approaches (specifically, Genetic Algorithms) to find the network minimizing the 

selected metric. 65 

 

However, for large problems any metric involving the posterior uncertainty becomes a bottleneck, if not unworkable, since the 

calculation of the posterior error covariance matrix, A requires inverting the matrix HTR-1H + B-1 which has dimensions of n 

× n where n is the number of state variables. For this reason, methods were proposed based on criteria considering how well a 

network resolves the atmospheric variability or “signal” or, in other words, how well they sample regions of significant 70 

atmospheric heterogeneity (Shiga et al., 2013). In this approach, the atmospheric signal (e.g. mixing ratio) is modelled using 

an atmospheric transport model and a prior flux estimate and sites are sequentially added to the network so that the distance 

of any grid cell from an observation site is within some pre-determined correlation scale length. For this method, the number 

of calculation steps is equal to the sites to be selected (Shiga et al., 2013). Although computationally very efficient, this method 

does not consider the information gained about the state variables but only the optimal sampling of atmospheric variability. 75 

 

An alternative method, but also based on the consideration of atmospheric variability, is to consider how “similar” the 

atmospheric signal is between potential sites in a network and to reduce the number sites leaving only those with significantly 

different signals (Risch et al., 2014). Risch et al. applied a clustering method to cluster sites with similar signals (i.e., strongly 

correlated sites) and individual sites were removed from each cluster based on the premise that they did not contribute any 80 

significant new information, whereas sites in clusters of one member were all retained. However, as in the method of Shiga et 

al. (2013), this approach does not consider the information gained about the state variables and how atmospheric transport 

alone may influence the variability at each site. 

 

Here a method for network design is proposed based on Information Theory. This method requires precomputed transport 85 

operators for each potential site, so-called site “footprints” or “source receptor relationships (SRRs)”, which can be calculated 

directly using a Lagrangian atmospheric transport model (Seibert and Frank, 2004) or from forward calculations of a Eulerian 

transport model for each source (Rayner et al., 1999; Enting, 2002). The method can be applied to the problem of creating a 

new network or expanding an existing one, and can be applied to observations of mixing ratios, isotopic ratios, column 

measurements, or a combination of these. It provides an alternative criterion to the posterior uncertainty (or uncertainty 90 

reduction) to assess a potential network and can be used with either Incremental Optimization or Monte Carlo approaches. It 

has a number of advantages compared to previous methods: i) it does not require the inversion of any large matrix, except for 

B but this is needed only once, making it computationally efficient, ii) it accounts for spatial correlations in the state variables, 

and iii) it allows for an exact formulation of the problem to be solved, i.e., what is the improvement in knowledge about the 

unknown variables. On the other hand, it requires linearity of the operator from the state space to the observation space, which 95 

is not the case for methods examining only atmospheric variability.  
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Two example applications are presented, which are based on real-life network design problems. The first considers adding 

measurements of the stable isotope ratio of CH4, i.e., δ13C to a subset of existing sites measuring CH4 mixing ratios in order to 

maximise the information about CH4 sources. The second considers designing a network for ∆14CO2 measurements to 100 

maximise the information about fossil fuel emissions of CO2. 

2. Methodology 

In Information Theory, the information content of a measurement can be thought of as the amount by which knowledge of 

some variable is improved by making the measurement, and the entropy is the level of information contained in the 

measurement (Rodgers, 2000). In this case, one can consider the pdf as a measure of knowledge about the state variables and 105 

the information provided by a measurement can be found by comparing the entropy of the pdfs before and after measurement 

was made. Furthermore, the information content of the measurement is equal to the reduction in entropy. In the application of 

network design, all observations within the potential network are considered as one “measurement”.  

 

The entropy, S of the pdf given by P(x) is: 110 

𝑆(𝑃(𝑥)) = − ∫ 𝑃(𝑥)ln(𝑃(𝑥))     (3) 

And the information content, I is the reduction in entropy after a measurement is made: 

𝐼 = 𝑆(𝑃(𝑥)) − 𝑆 (𝑃((𝑥|𝑦)))     (4) 

Where P(x) is the prior pdf (before measurement) and P(x|y) is posterior pdf (after the measurement, y). The entropy is given 

by integrating Eq. 3 over the bounds -∞ to +∞ (Rodgers, 2000) which for a Gaussian pdf of a scalar variable is: 115 

𝑆 = ln (𝜎(2𝜋𝑒)
1
2)     (5) 

where σ is the standard deviation. In the multivariate case with m variables the entropy is given by: 

𝑆 = ∑ ln(2𝜋𝑒𝜆𝑖)
1
2𝑚

𝑖=1      (6) 

where λi is an Eigenvalue of the error covariance matrix. By rearrangement one can write: 

𝑆 = ∑ (ln(2𝜋𝑒)
1
2 + ln𝜆𝑖

1

2)𝑚
𝑖=1      (7) 120 

𝑆 = 𝑚ln(2𝜋𝑒)
1
2 +

1

2
ln(∏ 𝜆𝑖)     (8) 

𝑆 = 𝑚ln(2𝜋𝑒)
1
2 +

1

2
ln|𝐁|      (9) 

In Eq. 9 |B| is the determinant of the prior error covariance matrix using the fact that the determinant of a symmetric matrix is 

equal to the product of its eigenvalues. Similarly, the entropy for the posterior pdf can be derived, giving the information 

content as: 125 
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𝐼 =
1

2
ln|𝐁| −

1

2
ln|𝐀|     (10) 

Where A is the posterior error covariance matrix. In this case the determinant can be thought of defining the volume in state 

space occupied by the pdf, which describes the knowledge about the state, thus I is the change in the log of the volume when 

observation is made. From Eq. 10 one can derive: 

𝐼 =
1

2
ln|𝐁𝐀−1|      (11) 130 

And given that the inverse of A is equal to the Hessian matrix of J(x) (Eq. 2), 

𝐀−1 = 𝐇T𝐑−1𝐇 + 𝐁−1     (12) 

one obtains 

𝐼 =
1

2
ln|𝐁𝐇T𝐑−1𝐇 + 𝐈|     (13) 

where R is the observation error covariance matrix, H is the model operator (for atmospheric observations it is the atmospheric 135 

transport operator) and I is the identity matrix.  

 

The principle of this network design method is to choose the sites that maximise the information, and this criterion can be used 

in either the Incremental Optimization or Monte Carlo approach. The Incremental Optimization approach is computationally 

efficient, requiring only ∑ (𝑝 − 𝑖 + 1)𝑘
𝑖=1  calculations and delivers, if not the same, at least similar results to testing all possible 140 

combinations of sites (Patra and Maksyutov, 2002).  

 

The calculation of the matrix BHTR-1H + I can be quite fast since H and R can be made quite small. H does not need to 

represent all observations for each site, but only the average observation corresponding to different levels of uncertainty or 

“characteristic observations”. In the case that observations at each site have only one characteristic uncertainty, then H will 145 

have dimension k × n where n is the number of state variables, and R will be k × k, and in practice R is most often diagonal. 

In the case that the uncertainty of an observation at a given site varies depending on when it was made, e.g., daytime or 

nighttime, then the dimension of H will be 2k × n. The computationally demanding step is the calculation of the matrix 

determinant. However, this calculation can be made very efficient if the matrix BHTR-1H + I is decomposed into B and  

(HTR-1H + B-1), which are both symmetric positive definite matrices, and using the fact that the log of the determinant of a 150 

symmetric positive definite matrix can be calculated as the trace of the log of the lower triangular matrix of the Cholesky 

decomposition: 

𝐼 =
1

2
ln(|𝐁|) +

1

2
ln(|𝐇T𝐑−1𝐇 + 𝐁−1|)    (14) 

= tr(ln(𝐋)) + tr(ln(𝐌))     (15) 

where B = LLT and HTR-1H + B-1 = MMT where L and M are the lower triangular matrices. Note, that if temporal correlations 155 

in B can be ignored, then B needs only to be formulated for a single time step, i.e., Bt, which is a considerably smaller matrix 
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than B, and HTR-1H + B-1 can be calculated stepwise adding Bt
-1 for each timestep. Furthermore, Bt

-1 (or B-1) only needs to be 

calculated once since it does not change with choice of sites. In this case the information content is simply: 

𝐼 = 𝑞tr(ln(𝐋)) + tr(ln(𝐌))    (16) 

Where q is the number of timesteps and L in this case is the lower triangular matrix of Bt. 160 

The computational complexity of the whole algorithm can be estimated considering that the Cholesky decomposition of a 

symmetric matrix has a complexity of O(n3) /3. The calculation of B-1 from B requires O(n3)/3 operations. The calculation of 

R-1 from R requires O(k3)/3 operations. The calculation of 𝐇T𝐑−1𝐇 requires O(n k2 + n2 k) ~ O(n2) operations if k<<n. Then 

only the calculation of the determinant of the matrix |𝐇T𝐑−1𝐇 + 𝐁−1| remains, which given that it is symmetric and positive 

definite also takes O(n3)/3 operations (Aho et al., 1974). The subsequent logarithm and the trace operations and are linear with 165 

respect to n, i.e. O(n). The total complexity yields: O(n3)/3 + O(k3)/3 + O(n2) + O(n3)/3 + O(n) ≈ 2O(n3) /3 + O(k3) /3 

which is comparable to e.g. one n × n LU factorization if k << n. 

3. Examples 

3.1. Enhancing a network for estimating sources of CH4  

This example considers the enhancement of a network of atmospheric measurements of CH4 mixing ratios by adding 170 

observations of stable isotopic ratios, δ13C at a selected number of sites within the existing network in order to improve 

knowledge of the different CH4 sources. For the example, the case of the Integrated Carbon Observing System (ICOS) network 

(https://www.icos-cp.eu) in Europe is used, which consists of 24 operational sites in geographical Europe measuring CH4 

mixing ratios (Table 1). In this hypothetical case, the budget is available to equip 5 of the 24 sites with in-situ instruments 

measuring δ13C at hourly frequency, as is now possible with modern instrumentation (Menoud et al., 2020). The problem can 175 

thus be formulated as: given the existing information provided by 24 sites measuring CH4 mixing ratio, which sites are the 

best to choose for the additional δ13C observations?  

 

The δ13C value is the ratio of 13C to 12C in a sample relative to a reference value measured in per mil (‰): 

𝛿13𝐶 = (
𝑅𝑠𝑎𝑚

𝑅𝑟𝑒𝑓
− 1) × 1000     (17) 180 

The δ13C value in the atmosphere varies as a result of variations in the δ13C value of the sources, the oxidation of CH4 in the 

atmosphere and in soils, and atmospheric transport. Sources of CH4 can be grouped according to their characteristic δ13C value, 

with microbial sources being the most depleted in 13C, while thermogenic sources such as from oil, gas, and coal, are less 

depleted, and pyrogenic sources, such as biomass burning, are the least depleted (Fisher et al., 2011; Dlugokencky et al., 2011; 

Brownlow et al., 2017). In this example, CH4 sources were grouped into anthropogenic microbial sources, namely, agriculture 185 

and waste (agw), fossil sources, namely fossil fuel and geological emissions (fos), biomass burning sources (bbg), natural 

https://www.icos-cp.eu/
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microbial sources, principally wetlands (wet) and the ocean source (oce). The change in CH4 mixing ratio from all sources can 

thus be written as: 

∆𝑐 = 𝐇𝐱𝑎𝑔𝑤 + 𝐇𝐱𝑤𝑒𝑡 + 𝐇𝐱𝑓𝑜𝑠 + 𝐇𝐱𝑏𝑏𝑔 + 𝐇𝐱𝑜𝑐𝑒   (18) 

Where ∆c is the change in CH4 mixing ratio, x is the vector of fluxes, H is the transport operator. Analogously, the change in 190 

δ13C can be defined as: 

∆𝛿13𝑐 = 𝐇𝛿𝑎𝑔𝑤𝐱𝑎𝑔𝑤 + 𝐇𝛿𝑤𝑒𝑡𝐱𝑤𝑒𝑡 + 𝐇𝛿𝑓𝑜𝑠𝐱𝑓𝑜𝑠 + 𝐇𝛿𝑏𝑏𝑔𝐱𝑏𝑏𝑔 + 𝐇𝛿𝑜𝑐𝑒𝐱𝑜𝑐𝑒  (19) 

Where δx is the isotopic signature for each source type. Therefore, the transport operator for an observation of the change in 

δ13C is the just the transport operator H but scaled by δx for each source. 

 195 

For this example, SRRs were calculated for all 24 sites in the ICOS network using the Lagrangian particle dispersion model, 

FLEXPART (Pisso et al., 2019) driven with ERA Interim reanalysis wind fields. Retro-plumes were calculated for 10 days 

backwards in time from each site at hourly frequency. The SRRs were saved at 0.5°×0.5° resolution over the European domain 

of 12°W to 32°E and 35°N to 72°N and averaged over all observations within a month to give a monthly mean SRR for each 

site. 200 

 

The uncertainty in the δ13C measurements was set to the same value for each site, that is, at 0.07‰ based on experimental 

values (Menoud et al., 2020). Similarly, the uncertainty in CH4 mixing ratio measurements was also set to the same value at 

all sites, at 5 ppb (WMO, 2009). The prior uncertainty, σ for each grid cell was calculated as 0.5 times the prior flux, with a 

lower threshold equal to the 1 percentile value of all grid cells with non-zero flux for the smallest flux source. The spatial 205 

correlation between grid cells was calculated based on exponential decay over distance with a correlation scale length of 250 

km over land. The prior error covariance matrix was then calculated as:  

𝐁 = 𝚺𝐂𝚺     (20) 

Where C is the spatial correlation matrix and Σ is a diagonal matrix with the diagonal terms equal to the prior uncertainties for 

each grid cell. 210 

 

For this example, the optimal network was found for three different scenarios: 1) monitoring all sources in EU27 countries 

plus UK, Norway, and Switzerland (EU27+3), 2) monitoring only anthropogenic sources in EU27+3, and 3) as in scenario 1 

but ignoring the existing information provided by CH4 mixing ratios at all sites.  

 215 

For these scenarios the influence of the fluxes that are not the target of the network needs to be projected into the observation 

space and included in the R matrix. For example, in scenario 1 this is the influence of fluxes outside EU27+3, and in scenario 

2 it is the influence of all non-anthropogenic sources plus the influence of fluxes outside EU27+3. This is calculated as: 

𝐑 = 𝐇𝐁𝑜𝑡ℎ𝑒𝑟𝐇T + 𝐑𝑚𝑒𝑎𝑠     (21) 
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Where Rmeas is simply the prior measurement uncertainty and Bother is the prior error covariance matrix for the other (i.e., non-220 

target) fluxes. 

 

For all scenarios the choice of the first four optimal sites was the same, that is, IPR, SAC, KIT, and LIN, while the last site 

chosen was KRE in scenarios 1 and 2 (Fig. 1), and LUT in scenario 3. All chosen sites are strongly sensitive to anthropogenic 

emissions, and the choice to optimize all sources or only anthropogenic sources made no difference in this example, likely 225 

because the natural sources (predominantly wetlands) are a relatively small contribution to the total CH4 source in Europe 

(only 12%). On the other hand, ignoring existing information provided by CH4 mixing ratios, led to LUT being chosen over 

KRE, likely because LUT provides a stronger constraint on the region with the largest emissions and diverse sources, i.e., 

Benelux (Fig. 2), which is more important in the absence of CH4 mixing ratio data. 

3.2 Network of 14CO2 measurements for fossil fuel emissions 230 

This example concerns the establishment of a network for measurements of radiocarbon dioxide, 14CO2, which can be used as 

a tracer for fossil fuel CO2 emissions, since fossil fuel contains no 14C its combustion depletes the atmospheric background 

value of 14CO2 (Turnbull et al., 2009). Similar to the previous example, the ICOS network is used, which also has CO2 

measurements at 24 sites in Europe. The hypothetical problem can be formulated as follows: if there is budget to equip 10 sites 

in the ICOS network with weekly flask samples for 14CO2 analysis, which sites should be chosen to gain the most knowledge 235 

of fossil fuel emissions? In this case, only weekly measurement frequency is examined as 14CO2 measurements cannot be made 

continuously and the measurement method, either via counting radioactive decay or by accelerator mass spectrometry, is costly 

and time consuming. The optimization problem needs to consider the information already brought by the CO2 measurements 

at all sites (in this example hourly measurements) and, in addition, the influence on the atmospheric signal from other sources, 

which may change the sensitivity of a site to fossil fuel emissions. 240 

 

Measurements of 14CO2 are reported as the ratio of 14CO2 to CO2 relative to a reference ratio and given in units of per mil (‰): 

∆ 𝐶14 = (
𝑅𝑠𝑎𝑚

𝑅𝑟𝑒𝑓
− 1) × 1000     (22) 

Since fossil fuels contain no 14C, its isotopic ratio is -1000‰. Other than fossil fuels, atmospheric values of ∆14CO2 are 

determined by natural production of 14CO2 in the stratosphere, nuclear power and spent fuel processing plants, and from ocean 245 

and land biosphere fluxes, as well atmospheric transport. Ocean fluxes affect 14CO2 since the ocean is not in isotopic 

equilibrium with the atmosphere owing to higher values of atmospheric 14CO2 in the past due to nuclear bomb testing, and 

similarly for plant respiration fluxes of CO2 (Bozhinova et al., 2014).  

 

The change CO2 mixing ratio can be described as follows: 250 
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∆𝑐 = 𝐇𝐱𝑓𝑜𝑠 + 𝐇𝐱𝑝ℎ𝑜 + 𝐇𝐱𝑟𝑒𝑠 + 𝐇𝐱𝑜𝑐𝑒    (23) 

Where xfos is the fossil fuel emission, xpho is the land biosphere photosynthesis flux, xres is the land biosphere respiration flux, 

and xoce the net ocean flux. A similar expression for the change in ∆14CO2 can be derived following (Bozhinova et al., 2014) 

as: 

∆14𝑐 = 𝐇∆𝑓𝑜𝑠𝐱𝑓𝑜𝑠 + 𝐇∆𝑝ℎ𝑜𝐱𝑝ℎ𝑜 + 𝐇∆𝑟𝑒𝑠𝐱𝑟𝑒𝑠 + 𝐇∆𝑜𝑐𝑒𝐱𝑜𝑐𝑒 + 𝐇∆𝑛𝑢𝑐𝐱𝑛𝑢𝑐  (24) 255 

Where ∆14c is the change in ∆14CO2 and ∆x is the isotopic signature of the corresponding source and the term H∆nucxnuc is the 

production of 14CO2 from nuclear facilities. There is a term missing from Eq. 23 and 24, namely the stratospheric production 

of CO2 and 14CO2. This term is ignored as the direct stratospheric contribution is negligible for the time and space domain 

considered by the Lagrangian model since the observations are close to the surface. Equation 24 can be further simplified by 

removing the term H∆phoxpho, since photosynthesis, although affects the 14CO2 mixing ratio does not affect ∆14CO2 (Turnbull 260 

et al., 2009). Furthermore, the ocean and respiration fluxes can be split into a background term and a disequilibrium term, ∆bg 

+ ∆ocedis and ∆bg + ∆resdis, respectively. As for photosynthesis, the background terms for ocean and respiration fluxes do not 

change ∆14CO2, but only the disequilibrium terms. For the domain in consideration, these terms are much smaller than that of 

fossil fuels and are ignored as in (Bozhinova et al., 2014). With these simplifications, Eq. 24 becomes: 

∆14𝑐 = 𝐇∆𝑓𝑜𝑠𝐱𝑓𝑜𝑠 + 𝐇∆𝑛𝑢𝑐𝐱𝑛𝑢𝑐    (25) 265 

Since xnuc is pure 14CO2, ∆nuc would be infinite, therefore, the approach of (Bozhinova et al., 2014) is used and ∆nuc is 

approximated as the ratio of the activity of the sample and the referenced standard giving ∆nuc ≈ 0.7×1015 ‰. 

 

Because, in this example, only the fossil fuel emissions are the unknown variables and the target of the network, the matrix B 

corresponds only to the uncertainty in the fossil fuel emissions and is resolved monthly. The other terms influencing CO2 and 270 

∆14CO2 are projected into the observation space and included in the R matrix using Eq. 21. For the ∆14CO2 observations, Bother 

is only the nuclear source, and for CO2 observations, Bother includes photosynthesis and respiration, the sum of which is Net 

Ecosystem Exchange (NEE) and the ocean flux, for which the effect on the observed CO2 signal is very small and is thus 

ignored here. For both NEE and nuclear emissions, an uncertainty of 0.5 times the value in each grid cell was used to calculate 

Bother with a spatial correlation length of 250 km. Since NEE fluxes have large diurnal and seasonal cycles which co-vary with 275 

atmospheric transport, for the CO2 observations, R was calculated using H and B resolved for day and night, and monthly. 

Note, only one uncertainty value was calculated for each site, which represents the annual mean uncertainty for a daytime 

observation. Each site has a different uncertainty for CO2 mixing ratio and ∆14CO2 depending on the influence of NEE fluxes 

and nuclear emissions, respectively. This can be simply interpreted in terms of a signal to noise ratio. For example, for CO2 

mixing ratios where there is a large influence of NEE the timeseries becomes noisier and similarly for the influence of nuclear 280 

emissions on ∆14CO2 observations. The measurement uncertainty, Rmeas, was set to the same value for each site, that is, at 2‰ 

for ∆14CO2 (Turnbull et al., 2007) and 0.05 ppm for CO2 mixing ratio measurements (WMO, 2018). 
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For this example, SRRs were calculated for all 24 sites in the ICOS network using FLEXPART with retro-plumes calculated 

for 5 days backwards in time from each site at hourly frequency. The SRRs were saved at 0.5°×0.5° and 3-hourly resolution 285 

over the European domain of 15°W to 35°E and 30°N to 75°N and were averaged to give mean day and night SRRs for each 

month for each site. Estimates of NEE fluxes were used from the Simple Biosphere Model - Carnegie Ames Stanford Approach 

(SiBCASA) and were resolved 3-hourly (Schaefer et al., 2008), estimates of nuclear emissions were used from CHE project 

(Potier et al., 2022) and were an annual climatology, and estimates of fossil fuel emissions were from GridFED at monthly 

resolution (Jones et al., 2020). 290 

 

Figure 3 shows the uncertainty in the observation space at each site due to the influence of uncertainties in NEE and nuclear 

emissions on CO2 mixing ratios and ∆14CO2 values, respectively. For CO2, sites in western Europe have the largest 

uncertainties, while sites in northern Scandinavia and southern Europe have smaller uncertainties following the pattern of NEE 

amplitude. For ∆14CO2, most sites have only small uncertainties owing to nuclear emissions, but two notable exceptions are 295 

NOR and KIT, and both are close to large nuclear sources. 

 

The optimal sites in the order selected are: SAC, KIT, LUT, KRE, STE, LIN, GAT, IPR, TRN and TOH (Fig. 4). Two of the 

sites, SAC and TRN, are relatively close to one another (approximately 95 km apart), however, they have somewhat different 

footprints with SAC sampling more of the Paris region and TRN sampling more to the south and east. If the prior error 300 

covariance matrix, B, and the transport operator, H, are not resolved monthly but only annually, the optimal sites differ by 

only one site, namely HPB is chosen instead of TRN. If the existing information provided by CO2 mixing ratios is ignored 

(i.e., the network is designed only considering information from ∆14CO2), then the choice of optimal sites differs slightly and 

TRN and TOH are no longer selected but OPE and LMP. The choice of LMP may seem unexpected at first, but it is close to 

an emission hotspot in Tunis, Tunisia (Fig. 5). The reason this site is not selected when the information from CO2 mixing ratios 305 

is included is presumably because the CO2 mixing ratio already provides a reasonable constraint on the fossil fuel emissions 

with the NEE signal being relatively small. 

4. Discussion 

An obvious question is how does the criterion of information content compare to criteria based on the posterior uncertainty? 

The information content describes the change in probability space from before an observation is made (prior probability) 310 

compared to after an observation is made (posterior probability) and thus is more closely linked to the observations themselves 

than to the exact definition of the posterior uncertainty metric. The performance of the two metrics, i.e., information content 

versus the sum of the posterior error covariance matrix, was examined using the CH4 example scenario 1 (described in Section 

3.1). For this example, a second network was selected using the criterion of the sum of the posterior error covariance matrix 

and consisted of the sites: HPB, HTM, KRE, PUY and TRN (only KRE was also selected using the information criterion). 315 
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Two inversions were performed using pseudo-observations generated by applying the transport operator, H (with rows 

corresponding to daily afternoon means for each site and columns corresponding to the six source types resolved annually) to 

the annual mean fluxes for each source type, x, and adding random noise according to the error characteristics of R: 

𝐲𝑜𝑏𝑠 = 𝐇𝐱 + 𝐑
1
2𝐫          where 𝐫~𝒩(0,1)    (26) 

In these inversions, the prior was generated by randomly perturbing the fluxes according to the error characteristics of B: 320 

𝐱𝐛 = 𝐱 + 𝐁
1
2𝐫          where 𝐫~𝒩(0,1)    (26) 

Both inversions used the same prior fluxes and uncertainties and differed only in the set of sites used. The performance of the 

inversions was tested using the so-called Gain metric, G, based on the ratio of the distance of the posterior from the true fluxes 

to the distance of prior from the true fluxes: 

𝐺 = 1 − √
(𝐱−𝐱𝐚)2

(𝐱−𝐱𝐛)2       (27) 325 

where xa is the posterior flux vector. The larger the value of G the closer the posterior is to the true flux. Using the optimal 

sites according to the information content G = 0.6996, while using the optimal sites according to the posterior error covariance 

G = 0.6988. (A comparison of the prior and posterior compared to the true fluxes is shown in Figure 6). Thus, the information 

content is at least as performant for determining a network as the posterior error covariance metric. 

 330 

Another question that arises, is how does this method compare to methods based on the analysis of the variability in the 

timeseries at the different sites? To answer this question, a clustering method was applied to the example of designing a 

network for fossil fuel CO2 emissions. For this, a timeseries of ∆14CO2 was generated for each of the 24 sites using Eq. 25 (see 

the supplementary material for plots of the timeseries). The values were generated hourly but since generally only daytime 

values are used in inverse modelling, data were selected for the time interval 12:00 to 15:00. A dissimilarity matrix was 335 

calculated for the 24 timeseries’ (using the R function proxy::dist with the Dynamic Time Warp (DTW) method (Giorgino, 

2009)). The Divisive Hierarchical Clustering method (R function cluster::diana) was applied to the dissimilarity matrix 

stopping at 10 clusters. The first cluster contained 13 sites, that is, those with little signal (e.g. JFJ, CMN, and ZEP). Two 

clusters contained two sites, namely, IPR and KRE, and OPE and TRN, while the remaining clusters contained only one site. 

Based on the principle of choosing sites that display different signals, one would choose the sites which are in a cluster of one. 340 

This would lead to the choice of GAT, KIT, LIN, LUT, SAC, STE and TOH. These 7 sites are also chosen by the method 

based on information content. However, the question is how to choose the remaining 3 sites from clusters with more than one 

site? For this there is no single answer. Moreover, the sites that are the most dissimilar are not necessarily those that will 

provide the most information about the target fluxes of the network, since the reasons for dissimilarity are various, e.g., having 

little signal, being sensitive to sources that are not the target of the network, or owing to distinct atmospheric circulation 345 

patterns. While sites with high degrees of similarity may both offer a strong constraint, and both be valuable to a network (in 

this example IPR and KRE were in the same cluster but both sites are chosen in the method based on information content). 
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In the examples presented, the atmospheric transport matrix, H, and the matrix, B, were resolved at 0.5°×0.5° (and considered 

only land grid cells) and monthly. The size of the matrix B (and the matrix HTR-1H + B-1) for the example on a network for 350 

fossil fuel CO2 emissions was ~11 Gb. However, in the case of finer spatial resolution or a larger domain, which means the 

size of the matrices exceeds the available memory, it is still possible to use this method as long as B and  

HTR-1H + B-1 defined for one time step do not exceed the memory. In this case, the problem can be solved by summing the 

information content calculated separately for each time step. Disaggregating the problem in this way does not lead to the same 

value of information content as when all time steps are considered together, however, the choice of sites is nearly the same; 355 

for the example of a network for fossil fuel CO2 emissions the two methods (i.e., disaggregating versus not disaggregating) 

differed by only one site. For the example of a fossil fuel network, the total computation time was ~3 hours using multi-

threaded parallelization on 8 cores. 

 

In addition to the memory requirements, there is the question of the computational cost determined by the complexity of the 360 

algorithm, in particular, compared to the more established method using a metric based on the posterior error covariance. Such 

analysis can be performed putting aside the practical considerations related to particular software and/or hardware. It has been 

established that the algorithmic complexity, and hence the computational cost, of the calculation of the determinant is the same 

as that of matrix multiplication (Strassen, 1969; Aho et al., 1974). Ignoring the particularities of the algorithm used and its 

hardware implementation, the analysis can be simplified by counting the number of matrix multiplications: (O(mnk) for two 365 

generic rectangular matrices), Cholesky decompositions (O(n3)/3), matrix inversions and determinant calculations (both 

obtained e.g. from the Cholesky decomposition). Both the error covariance metric and the information metric require the 

inversion of the matrix B. The covariance metric requires the Hessian matrix 𝐆 = 𝐇T𝐑−1𝐇 + 𝐁−1 that takes one inversion of 

B (~ O(n3) /3), one inversion of R (~ O(k3) /3) and the product of three matrices (O(n k2 + n2 k) ~ O(n2) if k<<n). This yields 

G in O(n3) /3 + O(k3) /3 + O(n k2 + n2 k) operations. The inverse of G yields the posterior covariance in O(k3)/3 operations via 370 

the Cholesky decomposition. Subsequent steps are of lower computational order. Even if some simplifications are possible, its 

complexity is bounded below by 2O(n3)/3. Therefore, the information metric is not computationally more expensive than the 

covariance metric. The algorithm presented here is faster than the naive computation of the information content from its formal 

definition.  

5. Conclusions 375 

A method for designing atmospheric observation networks is presented based on Information Theory. This method can be 

applied to any type of atmospheric data: mixing ratios, aerosols, isotopic ratios, as well as total column measurements. In 

addition, the method allows the network to be designed with or without considering existing information, which may also be 

of a different type, e.g., mixing ratios of a different species or isotopic ratios. Since the method does not require inverting any 

large matrices (e.g., for the calculation of posterior uncertainties) and the calculation of B-1 only needs to be performed once, 380 
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it is very efficient and can be used also on large problems. The only constraint is that the matrices B and HTR-1H + B-1 defined 

for one timestep do not exceed the available memory. The algorithm allows the exact problem to be defined, that is, to target 

specific emission sources or regions. Two examples are presented, the first is to select sites from an existing network of CH4 

mixing ratios for additional measurements of δ13C to constrain emissions in EU countries (plus Norway, Switzerland and the 

UK), and the second to select sites from an existing network of CO2 mixing ratios for additional measurements of ∆14CO2 to 385 

monitor fossil fuel CO2 emissions. These examples demonstrated that the optimal network differs depending on its exact 

purpose, e.g., is the network targeting emissions over the whole domain or for a specific region, and should existing information 

be considered or not, and thus it is important that the method of network design is able to account for these considerations. 
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Table 1. List of sites in the ICOS network (only those in geographical Europe are included). The sampling height that was 

used in this study is shown, which is the highest sampling height at each site. 

Site ID Full name Latitude Longitude 
Site Altitude 

(masl) 

Sampling Height 

(magl) 

CMN Monte Cimone, Italy 44.19 10.70 2165 8 

GAT Gartow, Germany 53.07 11.44 70 341 

HPB Hohenpeissenberg, Germany 47.80 11.02 934 131 

HTM Hyltemossa, Sweden 56.10 13.42 115 150 

IPR Ispra, Italy 45.81 8.64 210 100 

JFJ Jungfraujoch, Switerland 46.55 7.99 3580 5 

KIT Karlsruhe, Germany 49.09 8.42 110 200 

KRE Kresín u Pacova, Czech Republic 49.57 15.08 534 250 

LIN Lindenberg, Germany 52.17 14.12 73 98 

LMP Lampedusa, Italy 35.52 12.63 45 8 

LUT Lutjewad, Netherlands 53.40 6.35 1 60 

NOR Norunda, Sweden 60.09 17.48 46 100 

OPE 
Observatoire Pérenne de 

l’Environnement, France 
48.56 5.50 390 120 

OXK Ochsenkopf, Germany 50.03 11.81 1022 163 

PAL Pallas, Finland 67.97 24.12 565 12 

PUY Puy de Dôme, France 45.77 2.97 1465 10 

SAC Saclay, France 48.72 2.14 160 100 

SMR Hyytiälä, Finland 61.85 24.29 181 125 

STE Steinkimmen, Germany 53.04 8.46 29 252 

SVB Svartberget, Sweden 64.26 19.78 269 150 

TOH Torfhaus, Germany 51.81 10.54 801 147 

TRN Trainou, France 47.96 2.11 131 180 

UTO Utö, Finland 59.78 21.37 8 57 

ZEP Zeppelin, Swalbard, Norway 78.91 11.89 474 15 

 

Table 2. The prior fluxes and δ13C value used for each source where the total and mean δ13C values are given for the European 485 

domain. 

Source Total  Dataset/Reference Mean δ13C Reference 

Agriculture and 

waste 
24.5 EDGAR-v5 -63.0‰ (Schwietzke et al., 2016) 

Fossil fuel  13.5 EDGAR-v5 -44.5‰ (Schwietzke et al., 2016) 

Wetlands and 

termites 
5.0 LPX-Bern -69.0‰ (Fisher et al., 2017) 

Soil sink -1.0 LPX-Bern -22.0‰ (Reeburgh et al., 1997) 

Biomass burning 0.13 GFED-v4.1s -22.0‰ (Schwietzke et al., 2016) 

Ocean 0.17 Weber et al. 2019 -48.6‰ (Yu, 2015) 
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Figure 1. Map of the total mean SRR for optimal sites for scenarios 1 and 2. Since only the EU27+3 emissions are constrained 

the SRR is also only shown for EU27+3. The locations of the optimal sites are indicated by the white points (i.e., IPR, SAC, 490 

KIT, LIN and KRE) and the locations of the unselected sites are indicated by the black points. 

 

Figure 2. Map of annual mean CH4 emissions (units of kg m-2 y-1) plotted with a logarithmic (base of 2) colour scale. 
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Figure 3: Maps showing the uncertainty at each site from the projection of flux uncertainty into the observation space a) CO2 

mixing ratios, and b) ∆14CO2. 
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Figure 4. Map of the total mean SRR for optimal sites for monitoring fossil fuel CO2 emissions with monthly resolution and 500 

including existing information from CO2 mixing ratios. The locations of the optimal sites are indicated by the white points 

(i.e., SAC, KIT, LUT, KRE, STE, LIN, GAT, IPR, TRN and TOH) and the locations of the unselected sites are indicated by 

the black points. 

 

Figure 5. Map of annual mean fossil fuel CO2 emissions (units of kg m-2 y-1) plotted with a logarithmic (base of 2) colour 505 

scale. 
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Figure 6. Comparison of the true-prior flux difference (units g m-2 y-1) (top) versus the true-posterior flux differences for the 510 

inversion using sites chosen with the information content criterion (middle) and the inversion using sites chosen with the 

posterior uncertainty criterion (bottom). Note: only the fluxes for the sources agriculture and waste, fossil, and biomass burning 

sources are shown as the other three sources are very minor. 
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