
This paper presents a metric for the evaluation of observing networks.
Previous studies have used some scalar function of the posterior covariance.
Most commonly this is also the uncertainty in some linear functional of the
posterior estimate (such as the total flux over a given region) but metrics
like the trace of the posterior covariance are also used. The metric proposed
by this paper is the information content defined as the difference in entropy
between prior and posterior. Under the common linear Gaussian assumption
this turns out to be closely related to the log of the generalised variance or
determinant of the posterior covariance.

The authors develop the necessary mathematics for their metric then
present two examples, adding isotope measurements for methane or radiocar-
bon measurements for estimating fossil fuel CO2 emissions. The mathematics
is presented well and the examples are clear and pertinent. Furthermore the
paper clearly lies within scope for the journal.

My concern with the paper is its lack of evaluation of the metric itself.
There is a comparison with the independence metric but not with the covari-
ance metrics. It is not clear to me that the information theory metric does
the same job as the covariance metric or a better or worse job. There are
two related problems:

First the generalised variance is one metric and probably not a very flex-
ible one. It must include all potential sources. Normally this is not what
we want. We have some target quantity like national emissions for which we
are designing the network. Normally our target quantity will be a subset of
pixels (e.g. pixels in one country). I’m not sure we can easily calculate the
determinant of a submatrix of the Hessian.

Next there is the choice of uncertainty quantity to minimise. Rayner
et al. (1996) pointed out that the preferred network depended on details of
this quantity, such as the total ocean flux vs the average uncertainty for each
ocean basin. The determinant is the volume of the hyperellipse described by
the posterior covariance. It might be a good general choice but is likely to
obscure these differences.

Finally I think the computational advantages of the new metric need a
bit more justification. The authors claim that the covariance metric requires
the inversion of a large matrix. Depending on the uncertainty metric we
choose to minimise this might not be true. In general our target quantity is
a linear functional of the posterior sources. Examples include the sum over
some subregion and average over time. From what I learned to call Riesz’s
Representation Theorem (though there seem to be several of these) for any
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linear functional f on Rn there is a vector v such that f(x) = v · x for all
x ∈ Rn. Thus for any target quantity t we can find some vector vt such that
ta = vt ·xa. The superscript a refers to the analysis or posterior. An example
vt contains 1 for every pixel in a region and 0 otherwise. This will sum over
the region of interest. By the Jacobian law of probabilities the uncertainty
in t is given by vt

t ·A · vt where the superscript T denotes transpose and A
is the posterior or analysis covariance. A is the inverse of the Hessian G so
we need to calculate vT

t ·G−1 ·Vt. I believe this calculation can be efficiently
accomplished by the Cholesky decomposition of G. If we write G = LLT

(Cholesky decomposition) then I believe G−1 = L−1,TL−1. Substituting this
we see t = yT · y where y = L−1 · vt. Thus I think the target uncertainty
can be performed with a Cholesky decomposition, a matrix-vector product
and a dot-product. This may even be less costly than the determinant via
the Cholesky decomposition.

I may just as easily be wrong here but think the comparison of the cost
and generality of the new metric cf the existing uncertainty metric does need
more consideration than it gets here.

I only have two specific comments on the paper:

L45 When citing early literature it is probably fair to cite the paper that
gave rise to the field, Hardt and Scherbaum (1994).

L65 Summing over the submatrix does indeed account for the covariance of
uncertainty but that isn’t it’s most important property. This is that it
calculates the uncertainty on the summed regional flux rather than the
individual pixels.
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