
Responses to Reviewer Comments 
 
Reviewer 1 
 
This paper presents a metric for the evaluation of observing networks. Previous studies have 
used some scalar function of the posterior covariance. Most commonly this is also the 
uncertainty in some linear functional of the posterior estimate (such as the total flux over a 
given region) but metrics like the trace of the posterior covariance are also used. The metric 
proposed by this paper is the information content defined as the difference in entropy 
between prior and posterior. Under the common linear Gaussian assumption this turns out 
to be closely related to the log of the generalised variance or determinant of the posterior 
covariance. The authors develop the necessary mathematics for their metric then present 
two examples, adding isotope measurements for methane or radiocarbon measurements for 
estimating fossil fuel CO2 emissions. The mathematics is presented well and the examples 
are clear and pertinent. Furthermore the paper clearly lies within scope for the journal. 
 
My concern with the paper is its lack of evaluation of the metric itself. There is a comparison 
with the independence metric but not with the covariance metrics. It is not clear to me that 
the information theory metric does the same job as the covariance metric or a better or 
worse job. There are two related problems: 
 
First the generalised variance is one metric and probably not a very flexible one. It must 
include all potential sources. Normally this is not what we want. We have some target 
quantity like national emissions for which we are designing the network. Normally our target 
quantity will be a subset of pixels (e.g. pixels in one country). I'm not sure we can easily 
calculate the determinant of a submatrix of the Hessian. 
 
Response: 
We thank the reviewer for his well-thought through comments, especially about the metric 
we use. Concerning the flexibility of our metric (i.e., the information content, calculated as 
the log of the determinant of the ratio of prior to posterior uncertainty), yes it can be used 
to target specific flux types or regions, such as national emissions. In this case, the Hessian 
matrix is calculated specifically for the region/flux of interest. In the manuscript, we also 
give examples of this (see e.g. lines 204 to 221). Here we describe how in our example the 
metric can be set to target only emissions in EU27+3 countries (although the domain is 
larger) or set to target only e.g. anthropogenic emissions. Furthermore, we describe how 
the contribution to changes in the mixing ratios from fluxes that are not the target should 
be accounted for (see Eq. 21). As far as we are aware, our manuscript is the first to formally 
describe how the influence of non-targeted fluxes on the observations can be accounted 
for. 
 
Next there is the choice of uncertainty quantity to minimise. Rayner (1996) pointed out that 
the preferred network depended on details of this quantity, such as the total ocean flux vs 
the average uncertainty for each ocean basin. The determinant is the volume of the 
hyperellipse described by the posterior covariance. It might be a good general choice but is 
likely to obscure these differences.  
 



Response: 
We chose to the information content metric because it describes the change in probability 
space from before an observation is made (prior probability) compared to after an 
observation is made (posterior probability) and thus is more closely linked to the 
observations themselves than to the choice of metric (e.g. minimum of the mean posterior 
uncertainty of the target fluxes). However, we agree with the reviewer that it would be 
interesting to include a comparison to a more standard metric, e.g. minimum of the mean 
posterior uncertainty.  
 
We now include this comparison for the CH4 example in the Discussion section. Using the 
posterior uncertainty metric, the selected network is quite different to that using the 
information content (only one site is common between them). Therefore, to test the 
performance of each network, we ran two pseudo-data inversions each with the same prior 
fluxes. The performance was assessed using the ratio of the distance of the posterior from 
the true fluxes versus the distance of the prior from the true fluxes. We found that the 
inversion using the network based on information content performed slightly better (i.e., 
the posterior fluxes were closer to the true fluxes) than that based on the posterior 
uncertainty. 
 
Finally I think the computational advantages of the new metric need a bit more justification. 
The authors claim that the covariance metric requires the inversion of a large matrix. 
Depending on the uncertainty metric we choose to minimise this might not be true. In 
general our target quantity is a linear functional of the posterior sources. Examples include 
the sum over some subregion and average over time. From what I learned to call Riesz's 
Representation Theorem (though there seem to be several of these) for any linear functional 
f on Rn there is a vector v such that:  
 
f(x) = vx for all x in Rn 
 
Thus for any target quantity t we can find some vector vt such that  
 
ta = vtxa 
 
The superscript “a” refers to the analysis or posterior. An example vt contains “1” for every 
pixel in a region and “0” otherwise. This will sum over the region of interest. By the Jacobian 
law of probabilities the uncertainty in t is given by 
 
vt

TAvt 
 
where A is the posterior or analysis covariance. A is the inverse of the Hessian, G, so we need 
to calculate: 
 
vt

TG-1vt 
 
I believe this calculation can be efficiently accomplished by the Cholesky decomposition of G 
if we write (Cholesky decomposition): 
 



G = LLT 
 
then I believe: 
 
G-1 = L-1TL-1 
 
Substituting this we see: 
 
t = yTy  
 
where  
 
y = L-1vt 
 
Thus I think the target uncertainty can be performed with a Cholesky decomposition, a 
matrix-vector product and a dot-product. This may even be less costly than the determinant 
via the Cholesky decomposition. I may just as easily be wrong here but think the comparison 
of the cost and generality of the new metric compared to the existing uncertainty metric 
does need more consideration than it gets here. 
 
Response: 
 
We have included an analysis of the algorithmic complexity and efficiency of using the 
information content as the metric at the end of the Discussion section and compare it with 
the posterior uncertainty metric.  
 
Obtaining the posterior covariance is one of the specific cases that cannot be done without 
inverting matrices. Even if these are relatively well behaved the cost of the operation (and 
the theoretical complexity) is of the order of O(n3). The matrix multiplication M(n) of two n x 
n matrices is also of asymptotic complexity O(n3). It is true that faster algorithms exist in 
theory starting with the celebrated Strassen (1969) that is O(nlog2(7)); but even for matrix 
larger that 1000x1000 the time reduction can be less than 10% with respect to the naive 
algorithm due to hardware optimization and acceleration. Besides the practical 
considerations related to a particular software/hardware implementation it has been 
established that the algorithmically complexity and hence the computational cost of the 
calculation of the determinant is the same as that of matrix multiplication (Strassen, 1969; 
Aho et al., 1974). Therefore, in comparing the two approaches we can abstract the 
particularities of the algorithm used for matrix multiplication and of its hardware 
implementation and simplify the analysis by comparing the number of matrix multiplications 
(O(n3) or M(n)), matrix inversions (O(n3) or M(n)), LU (2O(n3) /3) or Cholesky (O(n3) /3) 
decompositions and determinant calculations (O(n3) or M(n)). 
 
In the case of synthesis inversion, obtaining the posterior covariance of the maximum a 
posteriori estimate requires two inversions, two matrix multiplications, one addition and 
one additional inversion (e.g. Tarantola (2005)). Subsequently for obtaining the covariance 
metric a Cholesky decomposition, a matrix-vector product and a dot-product will be applied 
as suggested above.  



 
The cost of the covariance metric algorithm can therefore be analised as follows: 
 

1. The calculation of the Hessian 𝐇T𝐑−1𝐇+ 𝐁−1 requires  
1.1 one inversion of B ~ O(n3) /3 
1.2 one inversion of R ~ O(k3) /3 
1.3 product of three matrices requires: O(n k2 + n2 k) ~ O(n2) if k<<n 
This yields G in: O(n3) /3 + O(k3) /3 + O(n k2 + n2 k) 
 
2. The Cholesky decomposition of G to obtain L requires  ~ O(n3) /3 
The subsequent matrix-vector product and a dot-product are of strictly lower order than 3 
 
Therefore, the general algorithm suggested above is of complexity:   
2O(n3) /3 + O(k3) /3.  
The terms in O(n2) and lower order can be neglected. 
 
The metric of information content requires the calculation of the Cholesky decomposition of 
the matrix B and the matrix HTR-1H + B-1 and the trace of their logarithms (both linear).  
The calculation of B-1 from B requires: O(n3)/3 operations  
The calculation of R-1 from R requires: O(k3)/3 operations 
The calculation of: 𝐇T𝐑−1𝐇 requires: O(n k2 + n2 k) ~ O(n2) if k<<n. 
 
Then remains the calculation of the determinant of the Hessian matrix:  

|𝐇T𝐑−1𝐇+ 𝐁−1| 
Which given that it is symmetric and positive definite takes O(n3)/3 operations. The 
subsequent logarithm and the trace operations and are linear i.e. O(n). 
 
Therefore, the total complexity yields:  
O(n3) /3 + O(k3)/3  + O(n2) +  O(n3) /3 + O(n) = 2O(n3)/3 + O(k3) /3 
 
As the computational complexities of both procedures are comparable, we can state that 
the information content procedure is not worse than the posterior uncertainty procedure. 
We would like to underline that in the submitted manuscript we pointed out that the 
calculation done in this way is more computationally efficient than applying naively the 
definition of information content to both the posterior and the prior and then calculating 
separately the determinant for each of those, and to the best knowledge of the authors this 
is a novel remark of the present work.  
 
We could remark that information content procedure is intended to be applied to a reduced 
observation space. In contrast, the general procedure proposed above is intended to be 
applied to the full space of observations first and then form this generic point the space is 
reduced with the linear form vt. Any target quantity as a linear function of the posterior 
sources can be calculated, but the generality of the approach brings the cost of calculating 
the inverse of the full matrix B. In case of a reduced B the information content metric could 
be less costly than a generic uncertainty metric applicable to any linear combination of 
sources. Aggregation of observations would conduce to equivalent reductions in the 
dimension of R for both algorithms and therefore are not analysed here.  



 
Strassen, V.: "Gaussian Elimination is not Optimal". Numer. Math. 13 (4): 354–356, 
1969. doi:10.1007/BF02165411. S2CID 121656251.  
 
Aho, A.V., Hopcroft, J.E. and Ullman, J.D.: “The Design and Analysis of Computer 
Algorithms”. Addison-Wesley, 1974. 
 
I only have two specific comments on the paper: 
 
1) L45: When citing early literature it is probably fair to cite the paper that gave rise to the 
field, Hardt et al. 1994 
 
Response: 
We presume the reviewer is referring to this paper:  
Hardt, M. and Scherbaum, F.: The design of optimum networks for aftershock recordings, 
Geophysical Journal International, 117, (3), 1994. https://doi.org/10.1111/j.1365-
246X.1994.tb02464.x 
In this case, we now refer to this paper in the introduction (L44). 
 
2) L64: Summing over the submatrix does indeed account for the covariance of uncertainty 
but that isn't it's most important property. This is that it calculates the uncertainty on the 
summed regional flux rather than the individual pixels. 
 
Response: 
We thank the reviewer for pointing this out. We now also mention at L63 that summing 
over a submatrix of the posterior uncertainty provides the regional uncertainty. 
 
Reviewer 2: 
 
Overview: 
The manuscript “A Flexible Algorithm for Network Design Based on Information Theory” by 
Thompson and Pisso describes the development of a novel method for optimising the 
distribution of a measurement network, with the aim of maximising the information content 
provided by these measurements for a flux inversion. Previous methods, usually based on 
quantifying the posterior uncertainty of the inversion, were computationally expensive but 
the metric presented here should be more efficient. The new method is applied to improving 
the current European measurement network for CH4 and CO2 through inclusion of isotopic 
measurements at a subset of locations. The paper is well-written and presented, with 
thorough explanation of the methodology and clear figures. The new method appears to 
provide a justifiable technique for network design. 
 
My only significant comment is that the discussion of the results of the new method in the 
context of previous methods is very brief. The results are compared to those using the 
clustering-based selection discussed earlier in the text, which is based on discounting sites 
with similar observed signals. However, there is no comparison of the merits of the new 
method compared to those based on posterior uncertainty. Whilst, for computational 
reasons, I understand that the authors might not want to explicitly perform such an analysis 
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for direct comparison, I do think that there needs to be some further discussion of the 
potential differences, advantages and disadvantages of the new method compared to the 
the full range of alternative methods. If the last sections are expanded to include such 
discussion, I am happy to recommend this manuscript for publication in this journal. 
 
Response: 
We thank the reviewer for his/her thoughtful comments. We have expanded the Discussion 
section to include a comparison of the information content metric with the posterior 
uncertainty metric for the example of CH4 fluxes. This was also included in response to a 
comment by reviewer 1. 
 
Minor/technical comments: 
 
line 30: brackets around reference year 
 
line 70: slightly unclear. heterogeneity in terms of flux? 
 
figure 1: It would be good to also mark the locations of the sites that were not selected by 
the algorithm in Figure 1. I appreciate that they are shown in a later figure, but it is easiest 
for the reader, and would aid comprehension of Fig. 1,  if they are noted earlier than later. 
 
figure 5: Is it possible to say anything in the main text concerning why the two sites located 
very close to each other in France might have been selected using this method? 
 
Responses: 
 
L30: done 
 
L70: Actually it is the heterogeneity of the atmosphere, we now specify this. 
 
Figure 1: We now include both locations of unselected and selected sites in Fig. 1 for CH4 
and Fig. 4, the equivalent figure for CO2. 
 
Figure 5: The two French sites are SAC (Saclay, located just south of Paris) and TRN (Trainou, 
located approximately 95 km south of SAC. The two sites have slightly different footprints 
with SAC sampling more the Paris region and TRN sampling more to the south and east. For 
this reason, and considering the fairly large emissions from these regions of France, both 
sites are selected. However, the choice of TRN is somewhat dependent on the set-up, e.g. if 
the fluxes are only resolved annually, then TRN is no longer selected but rather HPB, which 
also indicates that the information from selecting this site is similar to that of some other 
candidate sites (i.e. HPB). We have now included this explanation in the last paragraph of 
section 3.2. 


