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Abstract.  
The present work proposes a simulation-based Bayesian method for parameter estimation and fragility 10 
model selection for mutually exclusive, and collectively exhaustive (MECE) damage states. This 
method uses adaptive Markov chain Monte Carlo simulation (MCMC) based on likelihood estimation 
using point-wise intensity values. It identifies the simplest model that fits the data best, among the set 
of viable fragility models considered. As a case-study, observed pairs of data for tsunami intensity and 
corresponding damage level from the central South Pacific tsunami on September 29, 2009, are used. 15 
The tsunami was triggered by an unprecedented earthquake doublet (Mw 8.1 and Mw 8.0) and seriously 
impacted numerous locations in the central South Pacific. Damage data related to 120 brick masonry 
residential buildings in American Samoa and Samoa islands were utilized. A six-tier damage scale was 
considered, using tsunami flow depth as the intensity measure. 
 20 
Keywords: probabilistic tsunami risk assessment, tsunami fragility, Bayesian inference, model class 
selection 

1 Introduction 

Fragility models express the probability of exceeding certain damage thresholds for a given level of 
intensity for a specific class of buildings or infrastructure. Empirical fragility curves are models derived 25 
based on observed pairs of damage and intensity data for buildings and infrastructures usually collected, 
acquired, and even partially simulated in the aftermath of disastrous events. Some examples of empirical 
fragility models are: seismic fragility (Rota et al. 2009, Rosti et al. 2021), tsunami fragility (Koshimura 
et al. 2009a, Reese et al. 2011; a comprehensive review can be found in Charvet et al. 2017), flooding 
fragility (Wing et al. 2020), and debris flow fragility curves (Eidsvig et al. 2014). Empirical fragility 30 
modelling is greatly affected by how the damage and intensity parameters are defined. Mutually 
exclusive and collectively exhaustive (MECE, see next section for the definition) damage states are 
quite common in the literature as discrete physical damage states. The MECE condition is necessary 
for damage states in most probabilistic risk formulations leading to the mean rate of exceeding loss 
(e.g., Behrens et al. 2021).  35 
Tsunami fragility curves usually employ the tsunami flow depth as the measure of intensity; although 
different studies use also other measures like current velocity (e.g., De Risi et al. 2017b, Charvet et al. 
2015). Charvet et al. (2015) demonstrate that the flow depth may cease to be an appropriate measure of 
intensity for higher damage states and other parameters such as the current velocity, debris impact, and 
scour can become increasingly more important. De Risi et al. (2017b) developed bivariate tsunami 40 
fragilities, which account for the interaction between the two intensity measures, tsunami flow depth 
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and current velocity.  
Early procedures for empirical tsunami fragility curves used data binning for representing the intensity. 
For example, Koshimura et al. (2009b) binned the observations by the intensity measure, i.e., the flow 
depth, however the latest procedures have mostly used point-wise intensity estimates instead.  45 
Fragility curves for MECE damage states are distinguished by their nicely “laminar” shape; in other 
words, the curves should not intersect. When fitting empirical fragility curves to observed damage data, 
this condition is not satisfied automatically. For example, fragility curves are usually fitted for 
individual damage states separately and they are filtered afterwards to remove the crossing fragility 
curves (e.g., Miano et al. 2020) or ordered (“parallel”) fragility models are used from the start (Charvet 50 
et al. 2014, Lahcene et al. 2021). Charvet et al. (2014) and De Risi (2017a) also used partially ordered 
models to derive fragility curves for MECE damage states. They used the multinomial probability 
distribution to model the probability of being in any of MECE damage states based on binned intensity 
representation. De Risi et al. (2017a) used Bayesian inference to derive the model parameters for an 
ensemble of fragility curves. 55 
Empirical tsunami fragility curves are usually constructed using generalized linear models based on 
probit, logit, or the complementary loglog link functions (Charvet et al. 2014, Lahcene et al. 2021). As 
far as the assessment of the goodness of fit, model comparison and selection are concerned, approaches 
based on the likelihood ratio and Akaike Information Criterion, (e.g., Charvet et al. 2014, Lahcene et 
al. 2021) and on k-fold cross validation have also been used (Chua et al. 2021). For estimating 60 
confidence intervals for empirical tsunami fragility curves, bootstrap resampling has been commonly 
used (Charvet et al. 2014, Lahcene et al. 2021, Chua et al. 2021). 
The present paper presents a simulation-based Bayesian method for inference and model class selection 
for the ensemble modelling of the tsunami fragility curves for MECE damage states for a given class 
of buildings. By fitting the (positive definite) fragility link function to the conditional probability of 65 
being in a certain damage state, given that building is not in any of the preceding states, the method 
ensures that the fragility curves do not cross (i.e., they are “hierarchical” as in De Risi et al. 2017a). 
The method uses adaptive Markov Chain Monte Carlo Simulation (MCMC, Beck and Au 2002), based 
on likelihood estimation using point-wise intensity values, to infer the ensemble of the fragility model 
parameters. Alternative link functions are compared based on log evidence which considers both the 70 
average goodness of fit (based on log likelihood) and the model parsimony (based on relative entropy). 
This way, among the set of viable models considered, it identifies the simplest model that fits the data 
best. The main advantage is that the method provides, within the same set of runs, consistent parameter 
estimations for all the damage states, estimates confidence intervals, and identifies the best fragility 
model class among the pool of models. Although the application is demonstrated for the observed 75 
damage and effects of the South Pacific 2009 Tsunami, the method is quite general and transferable to 
other contexts and hazards. The whole procedure is provided as an open-source software on the site of 
the European Tsunami Risk Service (https://eurotsunamirisk.org/software/) and is also available as a 
standalone docker application. 

 80 

2 Methodology 

2.1 Definitions of intensity and damage parameters 

The intensity measure, IM, (or simply “intensity”; e.g., the tsunami flow depth) refers to a parameter 
used to convey information about an event from the hazard level to the fragility level –it is an 
intermediate variable. The damage parameter, D, is a discrete random variable and the vector of damage 85 
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levels is expressed as {Dj, j=0:NDS}, where Dj as the jth damage level (threshold ) and NDS as the total 
number of damage levels considered (depending on the damage scale being used and on the type of 
hazard, e.g., earthquake, tsunami, debris flow). Normally, D0 denotes the no-damage threshold, while 
 ேವೄ defines the total collapse or being totally washed away. Let us assume that DSj is the jth damageܦ

state defined by the logical statement that the damage D is between the two damage thresholds Dj and 90 
Dj+1; i.e., D is equal to or greater than Dj and smaller than Dj+1 as follows (see also Figure 1 for a 
graphical representation of the above expressions): 

   1 j j jDS D D D D      (1) 

where (·) denotes the logical product and is read as “AND”. Obviously, for the last damage state, we 
have ܵܦேವೄ ≡ ܦ ൒  ேವೄ. 95ܦ
 

 
Figure 1: Graphical representation of damage levels Dj and damage states DSj, where j=0:NDS 

Damage states ൛ܵܦ଴, ܦ ଵܵ, … ,  ேವೄൟ are mutually exclusive and collectively exhaustive (MECE) if anܵܦ

only if ܲ൫ܦ ௜ܵ ∙ ܦ ௝ܵหܯܫ൯ ൌ 0 (if ݅ ് ݆, ݆ ൌ 0: ஽ܰௌ) and ∑ ܲ൫ܦ ௝ܵหܯܫ൯
ேವೄ
௝ୀ଴ ൌ 1; (·) denotes the logical 100 

product and is read as “AND”. In simple words, the damage states are MECE if being in one damage 
state excludes all others and if all the damage states together cover the entire range of possibilities in 
terms of damage. 

2.2 Fragility modelling using generalized regression models 

The term ܲ൫ܦ ௝ܵหܯܫ൯ denotes the probability of being in damage state DSj for a given intensity level 105 

IM. Based on NDS damage thresholds, This conditional probability ܲ ൫ܦ ௝ܵหܯܫ൯ can be read (see Equation 

1) as the probability that ൫ܦ ൒ ܦ௝൯ and ൫ܦ ൏  ௝ାଵ൯, and can be estimated as follows (see Appendix Aܦ

for the derivation):  

     
   
 

1

1 for 0

for

j j j

j j DS

j DS

P DS IM P D D D D IM

P D D IM P D D IM j N

P D D IM j N





     
      

 

 (2) 

where ܲ൫ܦ ൒  ௝. 110ܦ ൯ is the fragility function for damage levelܯܫ௝หܦ

For each damage threshold, fragility can be obtained for a desired building class considering that the 
damage data provides Bernoulli variables (binary values) of whether the considered damage level was 
exceeded or not for given IM levels. For damage threshold ܦ௝, all buildings with an observed damage 

level ܦ ൏ ܦ ௝ will have a probability equal to zero, while those withܦ ൒  ௝ will have an assignedܦ

probability equal to one. In other words, for building i and damage state j, the Bernoulli variable Yij 115 
indicates whether building i is in damage state j: 

 
 

1       if building  exceeds                     with probability |

0      if building  does not exceed        with probability 1- |

j j i

ij

j j i

i D P D D IM
Y

i D P D D IM

  


 (3) 
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where IMi is the intensity evaluated at the location of building i. A Bernoulli variable is defined by one 

parameter which is ܲ൫ܦ௝หܯܫ௜൯ herein. This latter is usually linked to a linear logarithmic predictor in 

the form: 120 

0, 1, lnij j j il IM    (4) 

where ߙ଴,௝ and ߙଵ,௝ are regression constants for damage level j. We have employed generalized linear 

regression (e.g., Agresti 2012) with different link functions “logit”, “probit”, and “cloglog”, to define 
probability function ߨ௜௝ as following: 

 
 
 

 

1
1 exp( ) logit

probit

1 exp exp( ) cloglog

ij

ij j i ij

ij

l

IM l

l

 

  

  

 

 (5) 125 

The logit link function is equivalent to presenting ߨ௝ሺܯܫሻ with a Logistic regression function. The 

probit link function is equivalent to a lognormal cumulative distribution function for ߨ௝ሺܯܫሻ. In the 

cloglog (complementary log-log) transformation, the link function at the location of building i can be 

expressed as ݈௜௝ ൌ lnൣെln൫1 െ  ௜௝൯൧. It is noted that the generalized linear regression based onߨ

maximum likelihood estimation (MLE) is available in many statistical software packages (e.g., 130 
MathWorks, Python, R). In the following, we have referred to the general methodology of fitting 
fragility model to data –one damage state at a time— the “Basic method”. In the Basic method, the 
probability of exceeding damage level j is equal to the probability function defined in Equation 5; that 

is, ߨ௜௝ ൌ ܲ൫ܦ ൒  ௜൯. This method for empirical fragility curve parameter estimation is addressedܯܫ௝หܦ

in detail in the Section “Results”, under “MLE-Basic” method. The fragility curves obtained under the 135 

“MLE-Basic” method could potentially cross, leading to the ill condition that ܲ൫ܦ ௝ܵหܯܫ൯ ൏ 0. To 

overcome this, a hierarchical fragility modeling approach has been adopted like that in De Risi et al. 
(2017a). 

2.3 Hierarchical fragility modelling 

Equation (2) for 0 ൑ ݆ ൏ ஽ܰௌ, and given IMi, can also be written as follows using the product rule in 140 
probability: 

     
   

1

11 ,

j j j ii

j j i j i

P DS IM P D D D D IM

P D D D D IM P D D IM





     
       

 (6) 

The term ܲ൫ܦ ൒ ܦ௝ାଵหܦ ൒ ,௝ܦ  ௜൯ embedded in Equation (6) denotes the conditional probability thatܯܫ

the damage exceeds the damage threshold ܦ௝ାଵ knowing that it has already exceeded the previous 

damage level ܦ௝ given IMi. By making ߨ௜௝ ൌ ܲ൫ܦ ൒ ܦ௝ାଵหܦ ൒ ,௝ܦ  ௜൯ (see Equation 5, which is 145ܯܫ

positive definite), we ensure that the fragility curve of a lower damage level will not fall below the 

fragility curve of the subsequent damage threshold (the ill condition of ܲ൫ܦ ௝ܵหܯܫ൯ ൏ 0 does not take 

place). Hence, Equation (6) can be expanded as follows (see Appendix B for derivation):  

     
1

0

1 1
j

j i ij k i
k

P DS IM P DS IM




 
    

 
  (7) 
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In this way, the fragility curves are constructed in a hierarchical manner by first constructing the 150 

“fragility increments” ܲ൫ܦ ௝ܵ|ܯܫ௜൯ starting from j=0. Note that for the last damage state ܵܦேವೄ, the 

probability ܲ൫ܵܦேವೄหܯܫ൯, which is also equal to the fragility of the ultimate damage threshold ܦேವೄ, 

i.e. ܲ൫ܦ ൒  :ሺsee Equation 2), can be estimated by satisfying the CE condition	൯ܯܫேವೄหܦ

     
1

0

1
DS

DS DS

N

N i N i j i
j

P DS IM P D D IM P DS IM




      (8) 

Accordingly, the fragility for other damage levels ܲ ൫ܦ ൒ ௜൯, where 0ܯܫ௝หܦ ൏ ݆ ൏ ஽ܰௌ, can be obtained 155 

from Equation (2) by starting from the fragility of the higher threshold ܲ൫ܦ ൒  ൯, and addingܯܫ௝ାଵหܦ

successively ܲ൫ܦ ௝ܵหܯܫ൯ (see Equation 7) as follows: 

     1 for 0j i j i j i DSP D D IM P DS IM P D D IM j N       (9) 

As a result, the set of hierarchical fragility models based on Equation (9) has 2 ൈ ஽ܰௌ model parameters 
with the vector ી ൌ ൣ൛ߙ଴,௝, ,ଵ,௝ൟߙ ݆ ൌ 0: ஽ܰௌ െ 1൧. Obviously, with reference to Equation (8), no model 160 
parameter is required for the last damage level which is derived by satisfying the CE condition. The 
vector ી of the proposed hierarchical fragility models can be defined by two different approaches: 

1) MLE method: a generalized linear regression model (as explained in previous section) is used 
for the conditional fragility term ߨ௜௝ ൌ ܲ൫ܦ ൒ ܦ௝ାଵหܦ ൒ ,௝ܦ  ൯ for the jth damage state DSjܯܫ
(see Equation 7, 0 ൑ ݆ ൏ ஽ܰௌ). Herein, we need to work with partial damage data so that all 165 
buildings in DSj (with an observed damage ܦ௝ ൑ ܦ ൏  ௝ାଵ) will be assigned a probability equalܦ
to zero, while those in higher damage states (with ܦ ൒  ௝ାଵ) will be assigned a probabilityܦ
equal to one (i.e., in order to model the conditioning on ܦ ൒  the domain of possible damage	௝,ܦ
levels is reduced to ܦ ൒  .(௝ܦ

2) Bayesian model class selection (BMCS): employing the Bayesian inference for model updating 170 
to obtain the joint distribution of the model parameters.  

Detailed discussion about these two approaches, namely MLE and BMCS, for parameters estimation 
of empirical fragility curves are provided in Section “Results”. 

2.4 Bayesian model class selection (BMCS) and parameter inference using adaptive 
MCMC 175 

We use the Bayesian model class selection (BMCS) herein to identify the best link model to use in the 
generalized linear regression scheme. However, the procedure is general and can be applied to a more 
diverse pool of candidate fragility models. BMCS (or model comparison) is essentially Bayesian 
updating at the model class level to make comparisons among candidate model classes given the 
observed data (e.g., Beck and Yuen 2004, Muto and Beck 2008). Given a set of ܰॸ candidate model 180 
classes ሼॸ௞, ݇ ൌ 1:ܰॸሽ, and in the presence of the data D, the posterior probability of the kth model 
class, denoted as ܲሺॸ௞|۲ሻ can be written as follows: 

     

   
1

D
D

D

k k

k N

k k
k

p P
P

p P







 
 

 (10) 

In lieu of any initial preferences about the prior ܲሺॸ௞ሻ, one can assign equal weights to each model; 
thus, ܲሺॸ௞ሻ ൌ 1 ܰॸ⁄ . Hence, the probability of a model class is dominated by the likelihood ݌ሺ۲|ॸ௞ሻ 185 
(a.k.a. evidence). It is to note that p herein stands for the probability density function (PDF). Here data 
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vector ۲ ൌ ሼሺܵܦ,ܯܫሻ௜, ݅ ൌ 1: ஼ܰ௅ሽ defines the observed intensity and damage data for NCL buildings 
surveyed for class CL. In this paper, we are considering a mono-class portfolio of buildings. Let us 

define the vector of model parameters ી௞ for model class ॸ௞	as ી௞ ൌ ቂ൛ߙ଴,௝, ,ଵ,௝ൟ௞ߙ ݆ ൌ 0: ஽ܰௌ െ 1ቃ. 

We use the Bayes theorem to write the “evidence” ݌ሺ۲|ॸ௞ሻ provided by data D for model ॸ௞ as 190 
follows: 

     
 
,

,
k k k k

k

k k

p p
p

p


D θ θ
D

θ D

    (11) 

It can be shown (see Appendix C, Muto and Beck 2008) that logarithm of the evidence (called log-
evidence) lnሾ݌ሺ۲|ॸ௞ሻሿ can be written as: 

     

 
   
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

      

 
  

  





θ

θ

D D θ θ D θ

θ D
θ D θ

θ





  

 

 (12) 195 

where Ωીೖ  is the domain of ી௞, and ݌ሺ۲|ી௞,ॸ௞ሻ is the likelihood function conditioned on model class 

ॸ௞	. “Term 1” denotes the posterior mean of the log-likelihood, which is a measure of the average data 
fit to model ॸ௞.“Term 2” is the relative entropy (Kullback and Leibler 1959, Cover and Thomas 1991) 
between the prior ݌ሺી௞|ॸ௞ሻ and the posterior ݌ሺી௞|۲,ॸ௞ሻ of ી௞ given model ॸ௞, which is a measure 
of the distance between the two PDFs. The latter Term 2 measures quantitatively the amount of 200 
information (on average) that is “gained” about ી௞ from the observed data D. It is interesting that Term 
2 in the log-evidence expression penalizes for model complexity; i.e., if the model extracts more 
information from data (which is a sign of being a complex model with more model parameters), the 
log-evidence reduces. The exponential of the log-evidence, ݌ሺ۲|ॸ௞ሻ, is going to be implemented 
directly in Equation (10), to provide the probability attributed to the model class ॸ௞. More details on 205 
how to estimate the two terms in Equation (12) are provided in the Section “Results”. 
The likelihood ݌ሺ۲|ી௞,ॸ௞ሻ can be derived, based on point-wise intensity information, as the likelihood 

of ݊஼௅,௝ buildings being in damage state DSj (considering that ∑ ݊஼௅,௝
ேವೄ
௝ୀ଴ ൌ ஼ܰ௅), according to data D 

defined before: 

 
,

0 1

( | , )
CL jDS

nN

k k j i
j i

p P DS IM
 

D θ   (13) 210 

The posterior distribution ݌ሺી௞|۲,ॸ௞ሻ can be found based on Bayesian inference:  

     
   

   1

priorposterior likelihood

, |
, , |

, | d
k

k k k k

k k k k k k

k k k k k

p p
p C p p

p p




 

θ

D θ θ
θ D D θ θ

D θ θ θ  
 

  
   (14) 

where ିܥଵ is a normalizing constant. In lieu of additional information (or preferences), the prior 
distribution, ݌ሺી௞|ॸ௞ሻ, can be estimated as the product of marginal normal/lognormal PDFs for each 
model parameter, i.e., a multivariate normal/lognormal distribution with zero correlation between the 215 
pairs of model parameters ી௞ (see Appendix D). More detail about an efficient prior joint PDF is 
provided in the Section “Results”. To sample from the posterior distribution ݌ሺી௞|۲,ॸ௞ሻ in Equation 
(15), an adaptive MCMC simulation routine is employed. MCMC is particularly useful for drawing 
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samples from the target posterior, while it is known up to a scaling constant ିܥଵ (see Beck and Au 
2002); thus, in Equation (14), we only need un-normalized PDFs to feed the MCMC procedure. The 220 
MCMC routine herein employs the Metropolis-Hastings (MH) algorithm (Metropolis et al. 1953, 
Hasting 1970) to generate samples from the target joint posterior PDF	݌ሺી௞|۲,ॸ௞ሻ. 

2.5 Calculating the hierarchical fragilities and the corresponding confidence intervals 
based on the model parameters ࢑ࣂ 

For each realization of the vector of model parameters ી௞, the corresponding set of hierarchical fragility 225 
curves can be derived based on the procedure described in the previous sections. Since we have Nd 
realizations of the model parameters drawn from the joint PDF ݌ሺી௞|۲,ॸ௞ሻ (where Nd is the number 
of distinct samples from adaptive MCMC procedure, see also Appendix E), we can use the concept of 
Robust Fragility (RF) proposed in Jalayer et al. 2017 (see also Jalayer et al. 2015, and Jalayer and 
Erahimian 2020) to derive confidence intervals for the fragility curves. RF is defined as the expected 230 
value for a prescribed fragility model considering the joint probability distribution for the fragility 
model parameters ી௞. The RF herein can be expressed as: 

       ,, , , , d ,
θ

θ DD θ θ D θ θ
k k

k

j k j k k k j kP D D IM P D D IM p P D D IM


           (15) 

where ܲ൫ܦ ൒ ,ܯܫ௝หܦ ી௞൯ is the fragility given the model parameters ી௞ associated with the model ॸ௞ 

(it has been assumed that once conditioned on fragility model parameters , the fragility becomes 235 
independent of data D); ॱીೖ|۲,ॸೖ

 is the expected value over the vector of fragility parameters ી௞ for 

model ॸ௞. The integral in Equation (15) can be solved numerically by employing Monte Carlo 
simulation with Nd simulations of the vector ી௞ as follows: 

   ,
1

1
, , ,D θ

dN

j k j k l
ld

P D D IM P D D IM
N 

    (16) 

where ܲ൫ܦ ൒ ,ܯܫ௝หܦ ી௞,௟൯ is the fragility given the lth realization of the model parameters ી௞ for model 240 

ॸ௞. Based on the definition represented in Equation (15) and Equation (16), the variance ߪીೖ|۲,ॸೖ
ଶ , 

which can be used to estimate a confidence interval for the fragility considering the uncertainty in the 
estimation of ી௞, is calculated as follows: 

   
 

  
 22

,
1

222
, , ,

, , (Eq.16)1
,

, , ,θ D θ D θ D

D
θ

θ θ θ
k k k k k k

Nd
j k

j k l
d i

j k j k j k

P D D IM
P D D IM

N

P D D IM P D D IM P D D IM



 
 

             




  



   (17) 

The empirical fragilities derived through the hierarchical fragility procedure are not necessarily 245 
attributed to a lognormal distribution. Hence, we have derived equivalent lognormal statistics (i.e., the 
median and dispersion) for the resulting fragility curves. The median intensity, ߟூெ಴

, for a given damage 

level, is calculated as the IM corresponding to 50% probability on the fragility curve. The logarithmic 
standard deviation (dispersion) of the equivalent lognormal fragility curve at the onset of damage 
threshold, ߚூெ಴

, is estimated as half of the logarithmic distance between the IMs corresponding to the 250 

probabilities of 16% (ܯܫ஼
ଵ଺) and the 84% (ܯܫ஼

଼ସ) on the fragility curve; thus, the dispersion can be 

estimated as ߚூெ಴
ൌ 0.50 ൈ ln൫ܯܫ஼

଼ସ ஼ܯܫ
ଵ଺⁄ ൯. The overall effect of epistemic uncertainties (due to the 

uncertainty in the fragility model parameters) on the median of the empirical fragility curve is 
considered through (logarithmic) intensity-based standard deviation denoted as ߚ௎ி  (see Jalayer et al. 
௎ிߚ .(2020  can be estimated as half of the (natural) logarithmic distance (along the IM axis) between 255 
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the RF curves derived with a 16% confidence level (denoted as ଼ܯܫସ) and 84% confidence level (ܯܫଵ଺), 
respectively; i.e., ߚ௎ி ൌ 0.50 ൈ lnሺ଼ܯܫସ ⁄ଵ଺ܯܫ ሻ. The RF and its confidence band, the sample fragilities 
ી௞,௟ (where ݈ ൌ 1: ௗܰ), the equivalent lognormal parameters of the RF ߟூெ಴

 and ߚூெ಴
, the epistemic 

uncertainty ߚ௎ி , and finally the intensities ܯܫଵ଺ and ଼ܯܫସ are shown in Figure 2d to Figure 4d in the 
following Section 3. 260 

3 Results 

3.1 Case Study: The 2009 South Pacific Tsunami 

The central South Pacific region-wide tsunami was triggered by an unprecedented earthquake doublet 
(Mw 8.1 and Mw 8.0) on September 29, 2009, between about 17:48 and 17:50 UTC (Goff and 
Dominey-Howes 2009). The tsunami seriously impacted numerous locations in the central South 265 
Pacific. Herein, the damage data related to the masonry residential buildings associated with the 
reconnaissance survey sites of American Samoa and Samoa islands were utilized as a proof of concept. 
Out of NCL=120 surveyed buildings in the class of masonry residential, 84 were in American Samoa, 
and 36 in Samoa. Based on the observed damage regarding different indicators (see Reese et al. 2011 
for more details on damage observation), each structure was assigned a damage state between (DS0 and 270 
DS5). The original data documented in Reese et al. (2011) reporting the tsunami flow depth and the 
attributed damage state to each surveyed building can be found on the site of the European Tsunami 
Risk Service (https://eurotsunamirisk.org/datasets/, reported as Class 1: brick masonry residential). The 
five damage thresholds ( ஽ܰௌ ൌ 5) and a description of the indicators leading to the classification of the 
damage state are given in Table 1 based on Reese et al. (2011). 275 

Table 1. The classification of damage thresholds used in this study and the observed damage data 
associated with residential masonry buildings (from Reese et al. 2011). 

Damage threshold Damage level description 
Number of masonry 
buildings ݊஼௅,௝ 

Flow depth 
range (m)* 

D0 None no damage 9 [0.01-0.50]
D1 Light non-structural damage 3 [0.30-0.80]

D2 Minor 
significant non-structural damage, minor 
structural damage 

23 [0.40-2.00] 

D3 Moderate 
significant structural and non-structural 
damage 

24 [0.90-2.70] 

D4 Severe 
irreparable structural damage, will require 
demolition 

21 [0.96-3.07] 

D5 Collapse complete structural collapse 40 [1.00-5.35]
   ஼ܰ௅ ൌ 120  

* [min-max] values (in meters) associated with each damage state. 

The fourth column in Table 1 illustrates the distribution of data for masonry residential building class 
surveyed based on the observed damage level (݊஼௅,௝, ݆ ൌ 0: ஽ܰௌ, with the total sum of ஼ܰ௅ ൌ 120 280 

buildings surveyed for this class). The last column shows the range of the flow depth associated with 
each damage state. 

3.2 The different model classes 

We have considered the set of candidate models consisting of the fragility models resulting from the 
three alternative link functions used in the generalized linear regression in Equation 5. That is, ॸଵ refers 285 
to hierarchical fragility modelling based on “probit”; ॸଶ refers to hierarchical fragility modelling based 
on “logit”; ॸଷ refers to hierarchical fragility modelling based on “cloglog”. For each model, both the 
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MLE method using the MATLAB generalized regression toolbox and the Bayesian inference using the 
procedure described in the previous section are implemented. 

3.3 Fragility modelling using MLE 290 

The first step towards calculating the fragilities by employing the MLE method is to define the vector 

of model parameters ી ൌ ൛ߙ଴,௝, ݆ ଵ,௝ൟ, whereߙ ൌ 0: ஽ܰௌ െ 1 ൌ 4. To accomplish this, the jth pair of the 

model parameter ൛ߙ଴,௝,  ଵ,௝ൟ is obtained by fitting the link functions in Equation (5) to conditionalߙ

fragility ܲ൫ܦ ൒ ܦ௝ାଵหܦ ൒ ,௝ܦ ൯ according to Equation (7) where 0ܯܫ ൑ ݆ ൏ 5. Herein, we have used 

MATLAB as a statistical software package (developed by MathWorks) to estimate the maximum 295 

likelihood of the jth pair of model parameter ൛ߙ଴,௝,  :ଵ,௝ൟ by using the following MATLAB commandߙ

glmfitሺlogሺܠ௝ሻ, ,௝ܡ	 ′binomial′, ′link′, ′model′ሻ. The ′model′ will be either ′logit′, ′probit′, or 

′comploglog′. For each damage state Dj+1, 0 ൑ ݆ ൏ 5, the vector ܠ௝ is the IMi’s for which the condition 

ܦ ൒  ௝ is satisfied (e.g., for j=0, all the 120 buildings are considered, for j=1, 111 buildings areܦ

considered, see Table 1); 	ܡ௝ is the column vector containing one-to-one probability assignment to the 300 

IM data in ܠ௝ with zero (=0.0) assigned to those data corresponding to DSj (ܦ௝ ൑ ܦ ൏  ௝ାଵ) and oneܦ

(=1.0) to those related to higher damage states (with ܦ ൒  .(௝ାଵܦ

The vectors defining the MLE of the model parameters, ી୑୐୉, are presented in Table 2 for each of the 
three models ॸଵ, ॸଶ, and ॸଷ defined in Section 3.2. Given the model parameter ી୑୐୉, the damage 

state probability ܲ൫ܦ ௝ܵ|ܯܫ௜൯ can be estimated based on the recursive Equation (7). Then, the fragility 305 

for the ultimate damage level ܦହ, i.e., ܲሺܦ ൒ ,ܯܫ|ହܦ ી୑୐୉ሻ, is calculated first based on Equation (8). 

For the lower damage thresholds ܦ௝, where 0 ൏ ݆ ൏ 5, the empirical fragility ܲ൫ܦ ൒ ,ܯܫ௝หܦ ી୑୐୉൯ is 

derived based on the Equation (9). The resulting hierarchical fragility curves by employing the direct 

fragility assessment given ી୑୐୉, i.e., ܲ൫ܦ ൒ ,ܯܫ௝หܦ ી୑୐୉൯ for 1 ൑ ݆ ൑ 5 are shown later in the next 

section by comparison with those obtained from the BMCS method. 310 

Table 2. The model parameters ી୑୐୉. 

Model 1,1ߙ 0,1ߙ 1,0ߙ 0,0ߙ 0,2ߙ 1,2ߙ 0,3ߙ 1,4ߙ 0,4ߙ 1,3ߙ
ॸ1 5.242 4.190 3.900 4.255 -1.175 4.805 -1.345 2.887 -1.994 2.917
ॸ2 2.742 2.190 2.007 2.221 -0.670 2.804 -0.803 1.745 -1.157 1.733
ॸ3 2.079 2.011 1.322 1.850 -1.268 3.057 -1.366 1.961 -1.981 2.218

3.4 Fragility modelling using BMCS 

In the first step, the model parameters are estimated for each model class separately. For each model 
class ॸ௞, the 2 ஽ܰௌ ൌ 10 model parameters ી௞ are estimated through the adaptive MCMC method 
described in detail in Appendix E which yields the posterior distribution in Equation (14). With 315 
reference to Equation (14), the prior joint PDF ݌ሺી௞|ॸ௞ሻ should be assigned in advance. As noted 
previously, ݌ሺી௞|ॸ௞ሻ can be a multivariate normal PDF with zero correlation between the pairs of 
model parameters ીଵ଴ൈଵ (see Appendix D). The vector of the mean values, ૄ ીଵ଴ൈଵ, is set to be the MLE 

tabulated in Table 2 (ൌ ીெ௅ா related to ॸ௞). We have attributed a high value for the coefficient of 
variation (COV=1.60 herein) for each of the 10 model parameters. Appendix F illustrates the histograms 320 
representing the drawn samples from the joint posterior PDF ݌ሺી௞|۲,ॸ௞ሻ for each of the 10 model 
parameters. The marginal normal prior PDFs are also shown (with statistics defined previously).  
The robust fragility (RF) curves derived from the hierarchical fragility curves (see Section 2.5) and the 
corresponding ± two standard deviation intervals from Equation (16) and Equation (17) are also plotted 
in Figure 2a to Figure 4a corresponding to ॸଵ to ॸଷ, and for the damage thresholds D1 to D5. The 325 
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colors of the RF curves match closely those shown in Figure 1. The corresponding ± two standard 
deviation confidence interval curve, which reflects the uncertainty in the model parameters, is shown 
as a light grey area with different color intensities. Figures 2b to Figure 4b compare the RF and its 
confidence interval, labeled as Dj-BMCS, with the result of the direct fragility assessment (FA, see 
MLE method in Section 2.3), labeled as Dj-MLE, for 1 ൑ ݆ ൑ 5. The MLE-based curves are shown 330 
with similar colors (and darker intensity) and with the same line type (and half of the thickness) of the 
corresponding RF curves. The first observation is that the results of MLE-based fragilities and the 
BMCS-based fragilities are quite close in all damage thresholds (as expected, see Jalayer and Erahimian 
2020). Moreover, the BMCS provides also the confidence bands for the fragility curves, which cannot 
be directly provided by the MLE method. To showcase an individual fragility curve, Figure 2c to Figure 335 
4c illustrate the empirical fragility curves associated with the lth realization of the vector of model 
parameters ી௞,௟ for model class ॸ௞ (where l is defined on each figure separately), i.e., 

ܲ൫ܦ ൒ ,ܯܫ௝หܦ ી௞,௟൯ where 1 ൑ ݆ ൑ 5 (see Section 2.5). Figures 2d to Figure 4d illustrate the RF curve 

associated with the damage threshold D5, together with all the Nd sample fragilities (Nd =903 for ॸଵ, 
Nd =882 for ॸଶ,and Nd =951 for ॸଷ) shown with thin gray lines. Nd is the number of distinct samples 340 
as discussed in Appendix E and Appendix F of this manuscript. The total number of samples generated 

by adaptive MCMC in its last chain is Nseed=1000 (Nd ≤ Nseed). Figure 2d to 4d illustrate ଼ܯܫସ and ܯܫଵ଺ 
as IM values at the median (50% probability) from the RF minus/plus one standard deviation, 
respectively (see Section 2.5). The equivalent lognormal parameters ߟூெ಴

 and ߚூெ಴
, as well as the 

epistemic uncertainty in the empirical fragility assessment ߚ௎ி  are tabulated in Table 3 for damage 345 
thresholds D1 to D5 associated to model classes ॸଵ to ॸଷ. 

Table 3. The equivalent lognormal parameters and the epistemic uncertainty in the RF assessment for 
damage thresholds D1 to D5 and for the model classes ॸ૚ to ॸ૜ 

Damage 
threshold 

Model 1 (ॸଵ)  Model 2 (ॸଶ)  Model 3 (ॸଷ) 
ூெ಴ߟ

ሾmሿ ߚூெ಴
ூெ಴ߟ  ௎ிߚ 

ሾmሿ ߚூெ಴
ூெ಴ߟ  ௎ிߚ 

ሾmሿ ߚூெ಴
 ௎ிߚ 

D1 0.29 0.42 0.21 0.30 0.45 0.21 0.33 0.52 0.21
D2 0.44 0.34 0.14 0.45 0.38 0.15 0.49 0.40 0.15
D3 1.29 0.35 0.07 1.27 0.35 0.07 1.37 0.37 0.07
D4 1.82 0.42 0.06 1.79 0.44 0.06 1.90 0.37 0.06
D5 2.49 0.46 0.07 2.46 0.45 0.07 2.51 0.34 0.06

 
 350 
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Figure 2: Model class ॸ૚ (a) Robust fragility curves (RF) and their ± two standard deviation confidence 
intervals; (b) comparison between RF and its confidence band (based on BMCS method) and FA (based on 
MLE method); (c) the fragility curves ࡼ൫ࡰ ൒ ,ࡹࡵห࢐ࡰ ી૚,૚૙൯ where ૚ ൑ ࢐ ൑ ૞ associated with the 10th 
realization of the model parameters, ી૚,૚૙ (k=1 associated to model ॸ૚, l=10); (d) RF associated with the 355 
damage threshold D5, together with all the Nd=903 sample fragilities, and the equivalent lognormal fragility 
parameters.  
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Figure 3: Model class ॸ૛ (a) Robust fragility curves (RF) and their ± two standard deviation confidence 
intervals; (b) comparison between RF and its confidence band (based on BMCS method) and FA (based on 360 
MLE method); (c) the fragility curves ࡼ൫ࡰ ൒ ,ࡹࡵห࢐ࡰ ી૛,૚૛૙൯ where ૚ ൑ ࢐ ൑ ૞ associated with the 120th 
realization of the model parameters, ી૛,૚૛૙ (k=2 associated to model ॸ૛, l=120); (d) RF associated with the 
damage threshold D5, together with all the Nd=882 sample fragilities, and the equivalent lognormal fragility 
parameters.  
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Figure 4: Model class ॸ૜ (a) Robust fragility curves (RF) and their ± two standard deviation confidence 
intervals; (b) comparison between RF and its confidence band (based on BMCS method) and FA (based on 
MLE method); (c) the fragility curves ࡼ൫ࡰ ൒ ,ࡹࡵห࢐ࡰ ી૜,૞૙૙൯ where ૚ ൑ ࢐ ൑ ૞ associated with the 500th 
realization of the model parameters, ી૜,૞૙૙ (k=3 associated to model ॸ૜, l=500); (d) RF associated with the 
damage threshold D5, together with all the Nd=951 sample fragilities, and the equivalent lognormal fragility 370 
parameters.  

3.5 Model selection 

With reference to Equation (12), the log-evidence lnሾ݌ሺ۲|ॸ௞ሻሿ, can be estimated by subtracting Term 
1 and Term 2. The former denotes the posterior mean of the log-likelihood, and the latter is the relative 
entropy between the prior and the posterior. Within the BMCS method, these two terms are readily 375 
computable. 
Given the samples generated from the joint posterior PDF’s ી௞, Term 1 (=Average Data Fit) can be 

seen as the expected value of the log-likelihood over the vector of fragility parameters  given the model 
ॸ௞, i.e., ॱીೖ|۲,ॸೖ

ሺlnሾ݌ሺ۲|ॸ௞ሻሿሻ. Term 2 (=Information Gain) is calculated as the expected value of 

information gain or entropy between the two PDF’s posterior and prior over the vector  given the 380 
model ॸ௞, i.e., ॱીೖ|۲,ॸೖ

ሺlnሾ݌ሺી|۲,ॸ௞ሻ ⁄ሺી|ॸ௞ሻ݌ ሿሻ. It is noted that based on Jensen’s inequality, the 
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mean information gain of posterior compared to the prior is always non-negative (see e.g., Jalayer et al. 
2012, Ebrahimian and Jalayer 2021). Hence, Term 2 should always be positive. Herein, ݌ሺી|۲,ॸ௞ሻ is 

constructed by an adaptive kernel density function see Equation E5, Appendix E as the weighted sum 
(average) of 10-dimensional Gaussian PDFs centered among the samples ી௞ given model ॸ௞ (k=1:3). 385 
The prior ݌ሺી|ॸ௞ሻ is a multivariate normal PDF, respectively with the mean and covariance described 
previously for each model (see Equation D1 in Appendix D). Table 4 shows the results for model class 
selection. The last column illustrates the posterior probability (weight) of the model ܲሺॸ௞|۲ሻ 

according to Equation (10) assuming that the prior ܲሺॸ௞ሻ ൌ
ଵ

ଷ
 (where k=1:3). 

Table 4. Bayesian model class selection results for empirical fragility models  390 
Model 
Class 

Term 1: Average 
Data Fit 

Term 2: Information 
Gain

Log-Evidence 
Posterior Probability of 
each model 

ॸଵ -124.2898 17.3825 -141.6723 0.058 
ॸଶ -123.1298 17.9314 -141.0612 0.107 
ॸଷ -120.6051 18.4015 -139.0066 0.835 

 
Model class ॸଷ (using a complementary log-log “cloglog” transformation of ߨ௜௝ to the linear 

logarithmic space, see Equation 5) is preferred, since it has a better data fit, which makes the log-
evidence greater. In terms of the information gain, all the three models perform similarly with higher 
value attributed to ॸଷ (and obviously being more penalized for it). After ॸଷ, the model ॸଶ with a 395 
lognormal distribution (“probit”) is preferred compared to ॸଶ with a logistic regression model (“logit”) 
It is noteworthy that as new samples ી௞ become available through the BMCS method by performing 
new MCMC sampling, the posterior model probabilities will change; however, the whole procedure 
seems to be stable; i.e., the evidence that ॸଷ is preferable among the models using the BMCS holds. 
The posterior weights (last column of Table 4, see also Equation 10) of 6%, 11% and 83% is stabilized 400 
through different runs of the BMCS method with around 2% changes. It is noted that based on Jensen’s 
inequality, the mean information gain of posterior compared to the prior is always non-negative (see 
e.g., Jalayer et al. 2012). Hence, Term 2 should always be positive. 

3.6 The “Basic” (MLE-basic) method: fitting data to one damage state at a time 

In the traditional method, the fragility ܲ൫ܦ ൒  ൯ is obtained by using a generalized linear 405ܯܫ௝หܦ

regression model according to Equation (5) with “logit”, “probit” or “cloglog” link function fitted to 
the damage data (ॸ௞ where ݇ ൌ 1: 3). With reference to the MLE method described previously, the 
vector ܠ௝ herein is the IM associated to all damage data (and not partial, as in the hierarchical fragility 

method described in Section 3.3), and 	ܡ௝ is the column vector of one-to-one probability assignment to 

the IM data in ܠ௝ with zero (=0) assigned to those data with an observed damage threshold ܦ ൏  ௝, and 410ܦ

one (=1) to those with ܦ ൒  ௝. Thus, for the empirical fragility associated with the damage thresholdܦ

௝, and based on the model ॸ௞, there are two model parameters to be defined, namely ી୑୐୉ି஻௔௦௜௖ܦ ൌ

ሼ0ߙ,  1ሽ݇. As noted previously, there might be conditions (depending on the quantity of the observedߙ
damage data), where a part of the fragility of damage threshold ܦ௝ lies below the fragility of the higher 

damage level ܦ௝ାଵ, indicating that ܲ൫ܦ ௝ܵหܯܫ൯ ൏ 0. This is due to the fact that in the traditional method, 415 

there is no explicit requirement to satisfy ܲ൫ܦ ௝ܵหܯܫ൯ ൐ 0 as compared to the proposed method. The 

MLE of model parameters ሼߙ଴,  .ଵሽ for damage levels D1 to D5 are presented in Table 5ߙ
Figure 5 compares the fragility assessment obtained based on MLE-based hierarchical fragility 
modeling (see also the MLE-based curves in Figure 2b to Figure 4b) with the result of FA by employing 
the MLE-Basic method for the three considered Model Classes ॸ௞ (k=1:3). It is noted that the fragility 420 
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function is different between the two methods. MLE-based FA given ॸ௞ uses Equation (7) to Equation 
(9) to construct hierarchical fragility curve given that the conditional fragility term ߨ௜௝ ൌ

ܲ൫ܦ ൒ ܦ௝ାଵหܦ ൒ ,௝ܦ  ௜൯ has one of the functional forms in Equation (5). However, the FA usingܯܫ

MLE-Basic method employs directly one of the expressions in Equation (5) (corresponding to ॸ௞, 
k=1:3) to derive the fragility curve (on the whole damage data). This difference manifests itself in the 425 
deviation between the two fragility models in Figure 5, especially for higher damage thresholds D4 and 
D5. The deviations between the fragility curves are particularly noticeable at higher IM values (with 
exceedance probability >50%); however, their medians are quite similar. Strictly speaking, the 
fragilities are closer in the case of ॸଶ and ॸଷ.  

Table 5. The Model parameters ી୑୐୉ି஻௔௦௜௖. 430 

Model 
ܦ ൒ ܦ ଵܦ ൒ ܦ ଶܦ ൒ ଷܦ ܦ ൒ ସܦ ܦ ൒  ହܦ
 ଵߙ ଴ߙ ଵߙ ଴ߙ ଵߙ ଴ߙ ଵߙ ଴ߙ ଵߙ ଴ߙ

ॸଵ 5.242 4.190 3.655 4.556 -1.221 4.884 -2.666 2.213 -4.271 4.651 
ॸଶ 2.742 2.190 1.946 2.486 -0.695 2.846 -1.506 2.425 -2.293 2.515
ॸଷ 2.079 2.011 1.347 2.361 -1.319 3.139 -2.390 3.009 -3.919 3.806
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Figure 5: (a) Comparison between the FA by MLE-based hierarchical fragility modeling and direct FA 

based on MLE-Basic method given (a) ॸ૚, (b) ॸ૛ and (c) ॸ૜ models 

To have a better comparison among the fragility curves in Figure 5, Table 6 reports the FA parameters 
of the MLE and MLE-Basic methods for the damage thresholds D1 to D5 with the equivalent lognormal 435 
parameters ߟூெ಴

 and ߚூெ಴
 (explained in Section 2.5) for ॸଵ to ॸଷ. The medians are almost identical 

among the four models while there are higher dispersion estimates for MLE method derived by 
hierarchical fragility modelling. It is noteworthy that the fragility curves derived based on the MLE-
Basic method do not intersect here; however this condition was not explicitly enforced --as it was in 
the hierarchical method. 440 

Table 6: Comparison between FA based on MLE method (by hierarchical fragility modelling) and the 
MLE-Basic method for damage thresholds D1 to D5. 

D
am

ag
e 

L
ev

el
 Model 1 (ॸଵ)  Model 2 (ॸଶ)  Model 3 (ॸଷ) 

MLE method 
MLE-Basic 

method 
 

MLE method 
MLE-Basic 

method 
 

MLE method 
MLE-Basic 

method 
ூெ಴ߟ

ሾmሿ ߚூெ಴
ூெ಴ߟ 

ሾmሿ ߚூெ಴
ூெ಴ߟ  

ሾmሿ ߚூெ಴
ூெ಴ߟ 

ሾmሿ ߚூெ಴
ூெ಴ߟ  

ሾmሿ ߚூெ಴
ூெ಴ߟ 

ሾmሿ ߚூெ಴
 

D1 0.29 0.40 0.29 0.40  0.29 0.46 0.29 0.46 0.30 0.59 0.30 0.59
D2 0.43 0.35 0.45 0.37  0.45 0.38 0.46 0.40 0.47 0.44 0.48 0.50
D3 1.28 0.34 1.28 0.34  1.27 0.35 1.28 0.35 1.34 0.38 1.35 0.38
D4 1.82 0.43 1.88 0.40  1.82 0.42 1.86 0.41 1.88 0.38 1.96 0.39
D5 2.50 0.46 2.50 0.36  2.47 0.44 2.49 0.40 2.49 0.34 2.54 0.31

 
Conclusion 

An integrated procedure based on Bayesian model class selection (BMCS) for empirical fragility 445 
modeling for a class of buildings or infrastructure is discussed. This procedure relies on efficient 
simulation techniques to: 1) perform hierarchical fragility modeling for mutually exclusive and 
collectively exhaustive damage states; 2) estimate the confidence interval for the resulting fragility 
curves; 3) select the simplest model that fits the data best amongst a suite of candidate fragility models 
(herein, alternative link functions for generalized linear regression are considered). The proposed 450 
procedure is demonstrated for empirical fragility assessment based on observed damage data to masonry 
buildings due to the 2009 South Pacific Tsunami in the American Samoa and Samoa Islands. It is 
observed that: 

 For each model class, the same set of simulation realizations is used to estimate the fragility 
parameters, the confidence band, and the log evidence. The latter, which consists of two terms 455 
depicting the goodness of fit and the information gain resulting from the observed data, is used 
to compare the candidate fragility models to identify the model that maximizes evidence. 

 Hierarchical fragility assessment can be done also based the maximum likelihood estimation 
(MLE) and the available statistical toolboxes (e.g., MATLAB’s generalized linear model). For 
each damage level, the reference domain should be the subset of data that exceeds the 460 
consecutive lower damage level, instead of taking the entire set of data points as reference 
domain. Note that the basic fragility estimation (MLE-Basic) fits the damage data for each 
damage level at a time. In other words, the reference domain is set to all damage data. 

 Although the resulting fragility curves are not lognormal (strictly speaking), equivalent 
statistics are used to show the fragility curves (median and logarithmic dispersion) and the 465 
corresponding epistemic uncertainty (logarithmic dispersion). 
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 The results show that the fragility curves built based on “cloglog” link function lead to the 
highest evidence compared to the fragility curves obtained based on the other two link functions 
“logit” and “probit”. 

 Moreover, the proposed method BMCS and the one based on maximum likelihood estimation 470 
(MLE) lead to essentially the same set of parameters’ estimates for hierarchical fragility 
estimation. However, the latter does not readily lead to the confidence band and log evidence. 

 Using the basic method for fragility estimation (“MLE-Basic”, non-hierarchical fragility 
model) leads to results that are slightly different from the hierarchical fragility curves. The 
difference grows for higher damage levels. It is to note that following the basic method “MLE-475 
Basic” did not lead to ill-conditioned results (i.e., fragility curves crossing) in the case-study 
presented herein. Nevertheless, it is not guaranteed that, through following the basic method, 
the crossing fragility curves are going to be avoided. 

 
The proposed method is quite general with respect for empirical fragility modelling and is transferable 480 
also to other types of hazards. This procedure is based on the assumption that given the intensity values, 
the set of observed damage data are independent. 
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Appendix A: The derivation of Equation (2) 

The probability of being in damage state DSj for a given intensity measure IM can be estimated as 485 
follows: 

         

       
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               

        
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 (A1) 

where the upper-bar sign stands for the logical negation and is read as “NOT”, and (+) defines the 
logical sum and is read as “OR”. The above derivation is based on the rule of sum in probability and 
considering the fact that the two statements ܦ ൏ ܦ ௝ andܦ ൒  ௝ାଵ are mutually exclusive (ME); thus, 490ܦ

the probability of their logical sum is the sum of their probabilities. 

Appendix B: The derivation of Equation (7) 

The probability of being in damage state DSj given the intensity measure evaluated at the location of 
building i, denoted as IMi, based on Equation (6) can be expanded in a recursive format as follows: 

     
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
 (B1) 495 

where (+) defines the logical sum and is read as “OR”. The above derivation is based on the rule of sum 
in probability and considering the fact that the recursive statements in the second term expressed 
generally as ሺܦ ൏ ௞ାଵሻܦ ∙ ሺܦ ൒ ௞ሻ, where 0ܦ ൑ ݇ ൑ ݆ െ 1, are ME; hence, the probability of their 
logical sum is the sum of their probabilities. 

Appendix C: The derivation of log-evidence in Equation (13) 500 

From an information-based point of view, the logarithm of the evidence (log-evidence), denoted as 
lnሾ݌ሺ۲|ॸ௞ሻሿ, can provide a quantitative measure of the amount of information as evidence of model 
ॸ௞. Moreover, the posterior PDF ݌ሺી|۲,ॸ௞ሻ (see Equation 14) over the domain of the model 
parameters Ωી given the kth model is equal to unity. Thus, lnሾ݌ሺ۲|ॸ௞ሻሿ can be written as follows: 

     
1.0

ln ln , d
k

k k kp p p




        
θ

D D θ D θ


    (C1) 505 

Since the log-evidence is independent of ી, we can bring it inside the integral, and do some simple 
manipulation (also using the relation in Equation 11) as follows: 
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 (C2) 

Appendix D: Multivariate normal distribution and generating dependent Gaussian 510 
variables 

A multivariate normal PDF can be expressed as follows: 

 
 

   T 11 1
exp

22
n

p

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 

θ θθ θ μ S θ μ
S

 (D1) 

where n is the number of components (uncertain parameters) of vector ી ൌ ሼߠ௜, ݅ ൌ 1: ݊ሽ;  is the 

vector of the mean value of ; S is the covariance matrix. The positive definite matrix Sn×n can be 515 
factorized based on Cholesky decomposition as S=LLT, where Ln×n is a lower triangular matrix (i.e., 

for all j>i, Lij = 0 where Lij denotes the (i, j)-entry of the matrix L). A Gaussian vector n×1 with mean 

 and covariance S can be generated as follows: 

 θθ μ LZ  (D2) 

where Zn×1 is a vector of standard Gaussian i.i.d. random variables with zero mean 0n×n, and covariance 520 

equal to the identity matrix In×n. To verify the properties of , we know that with reference to Equation 

(D2), it should have a mean equal to  and a covariance matrix equal to S. The expectation of , 

denoted as E(), can be estimated as: 

       
1

E E E E

n
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θ μ LZ μ L Z μ  (D3) 

The covariance matrix of  can be written as: 525 

      E E E

n n

T T T T T T



       θ θ

I

θ μ θ μ LZZ L L ZZ L LL S
  (D4) 

Thus, the vector  can be written according to Equation (D2). 

Appendix E: Adaptive MCMC scheme 

MCMC procedure 

The MCMC simulation scheme has a Markovian nature where the transition from current state to a new 530 
state is done by using a conditional transition function that is conditioned on the current (last) state. To 

generate (i+1)th sample i+1 from the current ith sample i based on MH routine, the following procedure 
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is adopted herein: 

 Simulate a candidate sample * from a proposal distribution q(|i). It is important to note that 
there are no specific restrictions about the choice of q(·) apart from the fact that it should be possible 535 

to calculate both q(i+1|i) and q(i|i+1).  

 Calculate the acceptance probability min(1,r), where r is defined as follows (it is to note that the 
following Equation E1 is written in the general format for brevity compared to Equation 14 of the 

manuscript, and we have used  instead of k, and dropped the conditioning on ॸ௞; hence when 

we write the ith sample i, it is actually the ith sample drawn from k and “k” is dropped for brevity): 540 
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 (E1) 

 Generate u from a Uniform distribution between (0, 1), u	~	Uniform (0, 1). 

 if u ≤ min(1,r) → set i+1=* (accept the candidate state to be taken as the next state of the Markov 

chain); else set i+1=i (the current state is taken as the next state). 

Estimating the likelihood in the arithmetic scale based on Equation (E1) may encounter instability as 545 

p(D|) may become very small; thus, the likelihood ratio becomes indeterminate. To avoid this 
numerical instability, it is desirable to substitute the likelihood ratio in Equation (E1) with 

exp൫ln൫݌ሺ۲|ી∗ሻ൯ െ ln൫݌ሺ۲|ી௜ሻ൯൯ if the ratio becomes indeterminate or zero. 

With reference to Equation (E1), samples from the posterior can be drawn based on MH algorithm 
without any need to define the normalizing ିܥଵ coefficient according to Equation (14). Equation (E1) 550 
always accepts a candidate if the new proposal is more likely under the target posterior distribution than 
the old state. Therefore, the sampler will move towards the regions of the state space where the target 
posterior function has high density. 

The choice of the proposal distribution q is very important. The ratio q(i|*)/q(*|i) corrects for any 

asymmetries in the proposal distribution. Intuitively, if q(*|i)=p(*|D), the candidate state is always 555 
accepted (with r=1); thus the closer q is to the target posterior PDF, the better the acceptance rate and 

the faster the convergence. This is not a trivial task as information about the important region p(|D) is 
not available. If the proposal distribution q is non-adaptive, it means that the information of the current 

sample i is not used to explore the important region of the target posterior distribution p(|D); thus, we 

can say that q(*|i)= q(*). Therefore, it is more desirable to choose an adaptive proposal distribution 560 
which depends on the current sample (Beck and Au 2002). Having the proposal PDF q centered around 
the current sample renders the MH algorithm like a local random walk that adaptively leads to the 
generation of the target PDF. However, if the Markov chain starts from a point that is not close to region 

of the significant probability density of p(|D), the chance of generating a candidate state * will become 
extremely small (and we will face high rejection of candidate samples). Therefore, most of the samples 565 
will be repeated. To solve this problem, Beck and Au (2002) introduce a sequence of PDFs that bridge 
the gap between the prior PDF and the target posterior PDF. This issue will be more explored hereafter 
under the adaptive MCMC. Finally, it can mathematically be shown that (see Beck and Au 2002) if the 

current sample i is distributed as p(·|D), the next sample i+1 is also distributed as p(·|D). 

Adaptive Metropolis-Hastings algorithm (adaptive MCMC) 570 

The adaptive MH algorithm (Beck and Au 2002) introduces a sequence of intermediate candidate 
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evolutionary PDF’s that resemble more and more the target PDF. Let {p1, p2,…, pNchain} be the sequence 

(chain) of PDF’s leading to p(|D)=pNchain, where Nchain is the number of chains and each chain 
contains Nseed samples (as indicated subsequently). The following adaptive simulation-based 
procedure is employed: 575 

Step 1: Simulate Nseed samples {1, 2, …, Nseed}(1), where the superscript (1) denotes the first 
simulation level or the first chain (nc=1 where nc denotes the chain number/simulation level), with the 

target PDF p1 as the first sequence of samples. Instead of accepting or rejecting a proposal for  
involving all its components simultaneously (called block-wise updating scheme), it might be 
computationally simpler and more efficient for the first chain to make proposals for individual 580 

components of , one at a time (called component-wise updating approach). In the block-wise updating, 
the proposal distribution has the same dimension as the target distribution. For instance, if the model 
parameters involve n uncertain parameters (e.g., the vector of model parameters ી௡ൈଵ in this paper has 
݊ ൌ 2ሺ ஽ܰௌ െ 1ሻ ൌ 8 variables for each of the three models ॸଵ, ॸଶ, and ॸଷ), we design an n-
dimensional proposal distribution, and either accept or reject the candidate state (with all n variables) 585 
as a block. The block-wise updating approach can be associated with high rejection rates. This may 
cause problem when we want to generate the first sequence of samples (first chain). Therefore, we have 
utilized the more stable component-wise updating for the first chain. We start from the first variable 
and generate a candidate state based on a proposal distribution for this individual component, and finally 
accept or reject it based on MH algorithm. Note that in this stage, we have varied the current component 590 

and kept the other variables in vector  constant. Then, we move to the next components one by one 
and do the same procedure while taking into account the previous (updated) components. Therefore, 
what happens in the current step is conditional on the updated parameters in the previous steps. 

Step 2: Construct a kernel density function (1) as the weighted sum (average) of n-dimensional 

Gaussian PDFs centered among the samples {1, 2, …, Nseed}(1), with the covariance matrix S(1) of the 595 

samples i
(1) and the weights associated to each sample as wi where i=1:Nseed as follows (see Ang et 

al. 1992, Au and Beck 2002): 

 
 

     T 1(1) (1) (1) (1)
2

(1)1

1 1 1
κ exp

22

Nseed

i inni i
i

Nseed ww 





 
    

 
θ θ θ S θ θ

S
 (E2) 

The kernel density (1) constructed in Equation (E2) approximates p1. The kernel function  can be 

viewed as a PDF consisting of bumps at i, where width wi controls the common size of the bumps. 600 
Therefore, a large value of wi tends to over-smooth the kernel density, while a small value may cause 
noise-shaped bumps. In view of this, wi can be assumed to have a fixed width (= w), or alternatively the 
adaptive kernel estimate can be employed (Ang et al. 1992, Au and Beck 1999) that is defined for each 

sample i, i=1:Nseed. The adaptive kernel has better convergence and smoothing properties over the 
fixed-width kernel estimate. The fixed width w is estimated as follows (Epanechnikov 1969): 605 

 

1

44

2

n

d

w
n N

 
    

 (E3) 

where Nd is the number of distinct samples (Nd ≤ Nseed). For one-dimensional problems (n=1), this 

leads to the well-known fixed-width value of ሾሺ4 3⁄ ሻ ⁄݀݁݁ݏܰ ሿଵ ହ⁄ . The reason for using Nd is due to the 
fact that for the next simulation levels, where we are going to use a block-wise updating approach in 
the MCMC scheme, one may be faced with rejection of candidate states within the Markov chain. Thus, 610 
we need to count the distinct samples. In the adaptive kernel method, the idea is to vary the shape of 
each bump so that a larger width (flatter bump) is used in regions of lower probability density. 
Following the general strategy used in the past (see Ang et al. 1992, Au and Beck 1999), the adaptive 
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band width wi for the ith sample i can be written as ݓ௜ ൌ  ௜, where the local bandwidth factor i canߣݓ
be estimated as follows: 615 

   
1

1

= κ κ
Nseed Nseed

i i j
j









 
  
  
  

 
θ θ  (E4) 

where 0≤  ≤1.0 is the sensitivity factor, and i) is calculated based on Equation (E2) where =i, 
with the choice of fixed-width w in Equation (E3). The denominator in Equation (E4) is a geometric 

mean of the kernel estimator at all Nseed points. The value of  =0.50 is employed herein as also 
suggested by other research endeavors (Abramson 1982, Ang et al. 1992, Au and Beck 1999). It is 620 

numerically more stable to estimate the denominator in Equation (E4) as ∏ ቂκ൫ી௝൯
ଵ ே௦௘௘ௗ⁄

ቃே௦௘௘ௗ
௝ୀଵ . 

Step 3: Simulate Nseed Markov chain samples {1, 2, …, Nseed}(2) with the target PDF p2 as the second 

simulation level (nc=2). We use (1) as the proposal distribution q(·) in Equation (E1) in this stage to 

generate the second chain of samples. To generally simulate sample  from the kernel (nc) (where 
nc=1:Nchain), we generate a discrete random index from the vector [1, 2, …, Nseed] with the 625 
corresponding weights ሾݓଵ, ⋯,ଶݓ  ே௦௘௘ௗሿ using an inverse transformation sampling; if index=j, thenݓ,

generate  from the Gaussian PDF j, where: 
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 (E5) 

where ܁௝
ሺ௡௖ሻ ൌ  .ሺ௡௖ሻ is the covariance matrix of the samples {1, 2, …, Nseed}(nc)܁ ሺ௡௖ሻ, where܁௝ଶݓ

Appendix D shows how a sample  can be drawn from the Gaussian PDF i. From this sequence on, 630 

the MCMC updating is done in a block-wise manner as we generate a candidate  and accept/reject it 

as a block. The second chain of samples {1, 2, …, Nseed}(2) are then used to construct the kernel density 

(2) based on Equation (E2). 

Step 4: In general, (nc) is used as the proposal distribution in order to move from the ncth simulation 
level (which approximates pnc) into (nc+1)th chain (with target PDF pnc+1). This will continue until the 635 
Nchainth simulation level where Markov chain samples are simulated for the target updated 

p(|D)=pNchain. 

Appendix F: MCMC samples for each model 

The adaptive MCMC procedure for drawing samples from the model parameters from the joint posterior 
PDF ݌ሺી௞|۲,ॸ௞ሻ is carried out by considering Nchain=5 chains (simulation levels), and Nseed=1000 640 
samples per each chain (see Appendix E). In the first simulation level (first chain, nc=1), for which a 
component-wise updating approach is employed (see Appendix E, Step 1 for the description of 
component-wise and block-wise updating), the first 20 samples are not considered in order to reduce 
the initial transient effect of the Markov chain. The proposal distribution (see Equation E1) for each 
component is assumed to be a normal distribution with a COV=1.60 herein. In addition, the prior ratio 645 
according to Equation (E1), will become the ratio of two normal distributions, for each component one 
at a time. In the next simulation levels (i.e., nc=2 to 5), the adaptive kernel estimate (Equation E2) is 
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employed, i.e., the MCMC updating is performed in a block-wise manner. Since this updating approach 
can be associated with high rejection rates (i.e., there are similar samples indicating the rejection of the 
candidate states within the Markov chain), there will be Nd distinct (not considering the repeats) Markov 650 

chain samples generated within the each chain, denoted as ൛ી௞,ଵ, ી௞,ଶ,⋯ , ી௞,ே೏ൟ
ሺ௡௖ሻ

, where Nd ≤ Nseed 

and nc=2:Nchain (=5). The samples of the last chain (nc=5) will be used as the fragility model 
parameters, as discussed in Section 3.4. It is to note that the likelihood ݌ሺ۲|ી࢑,ॸ௞ሻ (used in calculating 
the acceptance probability within the MCMC procedure in Equation E1) is estimated according to 
Equation (13). 655 
Figure 2 illustrates the histograms representing the drawn samples from the joint posterior PDF’s 

corresponding to the sampled model parameters ൛ી௞,ଵ, ી௞,ଶ,⋯ , ી௞,ே೏ൟ
ሺହሻ

 related to ॸ௞ (where ݇ ൌ

1: 3). For model ॸଵ, Nd =903< Nseed=1000; for model ॸଶ, Nd =882; finally, for ॸଷ, we have Nd =951. 
The marginal normal prior PDFs are also shown with orange-coloured dashed lines. The statistics of 
the samples (mean and COV of the posterior) of model parameters ી௞ are shown on the figures 660 
associated to each parameter. It is expected to have the mean values of the marginal posterior samples 
close to and comparable with those obtained by the MLE in Table 2 (first row) that are also the mean 
values of prior joint PDF. 
 

ॸ
ଵ
 

ॸ
ଶ
 

ॸ
ଷ
 

Figure F1: Distribution of the fragility model parameters ી࢑ ൌ ቂ൛ࢻ૙,࢐, ,࢑ൟ࢐,૚ࢻ ࢐ ൌ ૙: ૝ቃ based on model class 665 

ॸ࢑ (where ࢑ ൌ ૚: ૜) by employing an adaptive MCMC procedure including samples drawn from the joint 
posterior PDF with their statistics (mean and COV), and the marginal normal priors (subfigures show the 
posterior statistics). 
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