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Abstract.  
The present work proposes a simulation-based Bayesian method for parameter estimation and fragility 10 
model selection for mutually exclusive, and collectively exhaustive (MECE) damage states. This 
method uses adaptive Markov chain Monte Carlo simulation (MCMC) based on likelihood estimation 
using point-wise intensity values. It identifies the simplest model that fits the data best, among the set 
of viable fragility models considered. The proposed methodology is demonstrated for empirical fragility 
assessment for two different tsunami events and different classes of buildings with varying number of 15 
observed damage and flow depth data pairs. As case-studies, observed pairs of data for flow depth and 
corresponding damage level from the central South Pacific tsunami on September 29, 2009, and 
Sulawesi-Palu Tsunami on 28 September, 2018 are used. Damage data related to a total of 5 different 
building classes are analyzed. It is shown that the proposed methodology is stable and efficient for data 
sets with a very low number of damage versus intensity data pairs and cases in which observed data are 20 
missing for some of the damage levels. 
 
Keywords: probabilistic tsunami risk assessment, tsunami fragility, Bayesian inference, model class 
selection 

1 Introduction 25 

Fragility models express the probability of exceeding certain damage thresholds for a given level of 
intensity for a specific class of buildings or infrastructure. Empirical fragility curves are models derived 
based on observed pairs of damage and intensity data for buildings and infrastructures usually collected, 
acquired, and even partially simulated in the aftermath of disastrous events. Some examples of empirical 
fragility models are: seismic fragility (Rota et al. 2009, Rosti et al. 2021), tsunami fragility (Koshimura 30 
et al. 2009a, Reese et al. 2011; a comprehensive review can be found in Charvet et al. 2017), flooding 
fragility (Wing et al. 2020), and debris flow fragility curves (Eidsvig et al. 2014). Empirical fragility 
modelling is greatly affected by how the damage and intensity parameters are defined. Mutually 
exclusive and collectively exhaustive (MECE, see next section for the definition) damage states are 
quite common in the literature as discrete physical damage states. The MECE condition is necessary 35 
for damage states in most probabilistic risk formulations leading to the mean rate of exceeding loss 
(e.g., Behrens et al. 2021).  
Tsunami fragility curves usually employ the tsunami flow depth as the measure of intensity; although 
different studies use also other measures like current velocity (e.g., De Risi et al. 2017b, Charvet et al. 
2015). Charvet et al. (2015) demonstrate that the flow depth may cease to be an appropriate measure of 40 
intensity for higher damage states and other parameters such as the current velocity, debris impact, and 
scour can become increasingly more important. De Risi et al. (2017b) developed bivariate tsunami 
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fragilities, which account for the interaction between the two intensity measures, tsunami flow depth 
and current velocity.  
Early procedures for empirical tsunami fragility curves used data binning for representing the intensity. 45 
For example, Koshimura et al. (2009b) binned the observations by the intensity measure, i.e., the flow 
depth, however the latest procedures have mostly used point-wise intensity estimates instead.  
Fragility curves for MECE damage states are distinguished by their nicely “laminar” shape; in other 
words, the curves should not intersect. When fitting empirical fragility curves to observed damage data, 
this condition is not satisfied automatically. For example, fragility curves are usually fitted for 50 
individual damage states separately and they are filtered afterwards to remove the crossing fragility 
curves (e.g., Miano et al. 2020) or ordered (“parallel”) fragility models are used from the start (Charvet 
et al. 2014, Lahcene et al. 2021). Charvet et al. (2014) and De Risi (2017a) also used partially ordered 
models to derive fragility curves for MECE damage states. They used the multinomial probability 
distribution to model the probability of being in any of MECE damage states based on binned intensity 55 
representation. De Risi et al. (2017a) used Bayesian inference to derive the model parameters for an 
ensemble of fragility curves. 
Empirical tsunami fragility curves are usually constructed using generalized linear models based on 
probit, logit, or the complementary loglog link functions (Charvet et al. 2014, Lahcene et al. 2021). As 
far as the assessment of the goodness of fit, model comparison and selection are concerned, approaches 60 
based on the likelihood ratio and Akaike Information Criterion, (e.g., Charvet et al. 2014, Lahcene et 
al. 2021) and on k-fold cross validation have also been used (Chua et al. 2021). For estimating 
confidence intervals for empirical tsunami fragility curves, bootstrap resampling has been commonly 
used (Charvet et al. 2014, Lahcene et al. 2021, Chua et al. 2021). 

The present paper presents a simulation-based Bayesian method for inference and model class selection 65 
for the ensemble modelling of the tsunami fragility curves for MECE damage states for a given class 
of buildings. By fitting the (positive definite) fragility link function to the conditional probability of 
being in a certain damage state, given that building is not in any of the preceding states, the method 
ensures that the fragility curves do not cross (i.e., they are “hierarchical” as in De Risi et al. 2017a). 
The method uses adaptive Markov Chain Monte Carlo Simulation (MCMC, Beck and Au 2002), based 70 
on likelihood estimation using point-wise intensity values, to infer the ensemble of the fragility model 
parameters. Alternative link functions are compared based on log evidence which considers both the 
average goodness of fit (based on log likelihood) and the model parsimony (based on relative entropy). 
This way, among the set of viable models considered, it identifies the simplest model that fits the data 
best. By “simplest model”, we mean the model having maximum relative entropy (measured using the 75 
Kullback-Leibler (Kullback and Leibler 1951) distance) with respect to the data. This usually means 
the model has a small number of parameters.  

2 Methodology 

2.1 Definitions of intensity and damage parameters 

The intensity measure, IM, (or simply “intensity”; e.g., the tsunami flow depth) refers to a parameter 80 
used to convey information about an event from the hazard level to the fragility level –it is an 
intermediate variable. The damage parameter, D, is a discrete random variable and the vector of damage 
levels is expressed as {Dj, j=0:NDS}, where Dj as the jth damage level (threshold ) and NDS as the total 
number of damage levels considered (depending on the damage scale being used and on the type of 
hazard, e.g., earthquake, tsunami, debris flow). Normally, D0 denotes the no-damage threshold, while 85 
𝐷  defines the total collapse or being totally washed away. Let us assume that DSj is the jth damage 
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state defined by the logical statement that the damage D is between the two damage thresholds Dj and 
Dj+1; i.e., D is equal to or greater than Dj and smaller than Dj+1 as follows (see also Figure 1 for a 
graphical representation of the above expressions): 

   1 j j jDS D D D D      (1) 90 

where (ꞏ) denotes the logical product and is read as “AND”. Obviously, for the last damage state, we 
have 𝐷𝑆 ≡ 𝐷 𝐷 . 

 

 
Figure 1: Graphical representation of damage levels Dj and damage states DSj, where j=0:NDS 95 

Damage states 𝐷𝑆 , 𝐷𝑆 , … , 𝐷𝑆  are mutually exclusive and collectively exhaustive (MECE) if an 

only if 𝑃 𝐷𝑆 ∙ 𝐷𝑆 𝐼𝑀 0 (if 𝑖 𝑗, 𝑗 0: 𝑁 ) and ∑ 𝑃 𝐷𝑆 𝐼𝑀 1; (ꞏ) denotes the logical 

product and is read as “AND”. In simple words, the damage states are MECE if being in one damage 
state excludes all others and if all the damage states together cover the entire range of possibilities in 
terms of damage. The ensemble of MECE damage states DSj, j=0:NDS is usually referred to as the 100 
damage scale (e.g., the EMS98, Grünthal 1998) 

The proposed methodology herein is also applicable to fragility assessment in cases where 
observed damage data is not available for some of damage levels. Let index be the vector of j values 
(j=0: NDS) indicating damage levels Nj for which observed data is available (j values are in ascending 

order). The new damage scale formed as 𝐷𝑆𝐢𝐧𝐝𝐞𝐱 , 𝐷𝑆𝐢𝐧𝐝𝐞𝐱 , … , 𝐷𝑆𝐢𝐧𝐝𝐞𝐱  , where N is the length 105 

of vector index,  is also MECE. It is noteworthy that the number of fragility curves derived in this case 
is going to be equal to N-1. In the following, for simplicity and without loss of generality, we have 
assumed that observed data is available for all damage levels, i.e., index={0:NDS}, that is, NDS=NDS-1. 
However, the proposed methodology is also applicable to the modified damage scale formed by damage 
level indices in vector index(1:N). We will later see examples of such application in the case studies. 110 

2.2 Fragility modelling using generalized regression models 

The generalized regression models (GLM) are more suitable for empirical fragility assessment with 
respect to the standard regression models. This is mainly because the dependent variable in the case of 
the generalized regression models is a Bernoulli binary variable (i.e., only two possible values: 0 or 1). 
Bernoulli variables are particularly useful in order to detect whether a specific damage level is exceeded 115 
or not (only two possibilities). In the following, fragility assessment based on GLM’s is briefly 
described.  
 

The term 𝑃 𝐷𝑆 𝐼𝑀  denotes the probability of being in damage state DSj for a given intensity level 

IM. Based on NDS damage thresholds, this conditional probability 𝑃 𝐷𝑆 𝐼𝑀  can be read (see Equation 120 

1) as the probability that 𝐷 𝐷  and 𝐷 𝐷 , and can be estimated as follows (see Appendix A 

for the derivation):  
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where 𝑃 𝐷 𝐷 𝐼𝑀  is the fragility function for damage level 𝐷 . 

For each damage threshold, fragility can be obtained for a desired building class considering that the 125 
damage data provides Bernoulli variables (binary values) of whether the considered damage level was 
exceeded or not for given IM levels. For damage threshold 𝐷 , all buildings with an observed damage 

level 𝐷 𝐷  will have a probability equal to zero, while those with 𝐷 𝐷  will have an assigned 

probability equal to one. In other words, for building i and damage state j, the Bernoulli variable Yij 
indicates whether building i is in damage state j: 130 

 
 

1       if building  exceeds                     with probability |

0      if building  does not exceed        with probability 1- |
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where IMi is the intensity evaluated at the location of building i. A Bernoulli variable is defined by one 

parameter which is 𝑃 𝐷 𝐷 𝐼𝑀  herein. This latter is usually linked to a linear logarithmic predictor 

in the form: 

0, 1, lnij j j il IM    (4) 135 

where 𝛼 ,  and 𝛼 ,  are regression constants for damage level j. We have employed generalized 

linear regression (e.g., Agresti 2012) with different link functions “logit”, “probit”, and 
“cloglog”, to define probability function 𝜋  as following: 
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The logit link function is equivalent to presenting 𝜋 𝐼𝑀  with a Logistic regression function. The 140 

probit link function is equivalent to a lognormal cumulative distribution function for 𝜋 𝐼𝑀 . In the 

cloglog (complementary log-log) transformation, the link function at the location of building i can be 

expressed as 𝑙 ln ln 1 𝜋 . It is noted that the generalized linear regression based on 

maximum likelihood estimation (MLE) is available in many statistical software packages (e.g., 
MathWorks, Python, R). 145 
In the following, we have referred to the general methodology of fitting fragility model to data –one 
damage state at a time— the “Basic method”. In the Basic method, the probability of exceeding damage 

level j is equal to the probability function defined in Equation (5); that is, 𝜋 𝑃 𝐷 𝐷 𝐼𝑀 . This 

method for empirical fragility curve parameter estimation is addressed in detail in the Section “Results”, 
under “MLE-Basic” method. The fragility curves obtained under the “MLE-Basic” method could 150 

potentially cross, leading to the ill condition that 𝑃 𝐷𝑆 𝐼𝑀 0. To overcome this, a hierarchical 

fragility modeling approach has been adopted like that in De Risi et al. (2017a). 
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2.3 Hierarchical fragility modelling 

Equation (2) for 0 𝑗 𝑁 , and given IMi, can also be written as follows using the product rule in 
probability: 155 
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The term 𝑃 𝐷 𝐷 𝐷 𝐷 , 𝐼𝑀  embedded in Equation (6) denotes the conditional probability that 

the damage exceeds the damage threshold 𝐷  knowing that it has already exceeded the previous 

damage level 𝐷  given IMi. By making 𝜋 𝑃 𝐷 𝐷 𝐷 𝐷 , 𝐼𝑀  (see Equation 5, which is 

positive definite), we ensure that the fragility curve of a lower damage level will not fall below the 160 

fragility curve of the subsequent damage threshold (the ill condition of 𝑃 𝐷𝑆 𝐼𝑀 0 does not take 

place). Hence, Equation (6) can be expanded as follows (see Appendix B for derivation):  
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In this way, the fragility curves are constructed in a hierarchical manner by first constructing the 

“fragility increments” 𝑃 𝐷𝑆 |𝐼𝑀 . Note that for the last damage state 𝐷𝑆 , the probability 165 

𝑃 𝐷𝑆 𝐼𝑀 , which is also equal to the fragility of the ultimate damage threshold 𝐷 , i.e. 

𝑃 𝐷 𝐷 𝐼𝑀  see Equation 2), can be estimated by satisfying the CE condition: 

     
1

0

1
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N
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      (8) 

Accordingly, the fragility for other damage levels 𝑃 𝐷 𝐷 𝐼𝑀 , where 0 𝑗 𝑁 , can be obtained 

from Equation (2) by starting from the fragility of the higher threshold 𝑃 𝐷 𝐷 𝐼𝑀 , and adding 170 

successively 𝑃 𝐷𝑆 𝐼𝑀  (see Equation 7) as follows: 

     1 for 0j i j i j i DSP D D IM P DS IM P D D IM j N       (9) 

As a result, the set of hierarchical fragility models based on Equation (9) has 2 𝑁  model parameters 

with the vector 𝛉 𝛼 , , 𝛼 , , 𝑗 0: 𝑁 1 . Obviously, with reference to Equation (8), no model 

parameter is required for the last damage level which is derived by satisfying the CE condition. The 175 
vector 𝛉 of the proposed hierarchical fragility models can be defined by two different approaches: 

1) MLE method: a generalized linear regression model (as explained in previous section) is used for 

the conditional fragility term 𝜋 𝑃 𝐷 𝐷 𝐷 𝐷 , 𝐼𝑀  for the jth damage state DSj (see 

Equation 7, 0 𝑗 𝑁 ). Herein, we need to work with partial damage data so that all buildings 
in DSj (with an observed damage 𝐷 𝐷 𝐷 ) will be assigned a probability equal to zero, 180 

while those in higher damage states (with 𝐷 𝐷 ) will be assigned a probability equal to one 

(i.e., in order to model the conditioning on 𝐷 𝐷 , the domain of possible damage levels is 

reduced to 𝐷 𝐷 ). 

2) Bayesian model class selection (BMCS): employing the Bayesian inference for model updating to 
obtain the joint distribution of the model parameters.  185 
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Detailed discussion about these two approaches, namely “MLE” and “BMCS”, for parameters 
estimation of empirical fragility curves are provided in Section “Results”. 

2.4 Bayesian model class selection (BMCS) and parameter inference using adaptive 
MCMC 

We use the Bayesian model class selection (BMCS) herein to identify the best link model to use in the 190 
generalized linear regression scheme. However, the procedure is general and can be applied to a more 
diverse pool of candidate fragility models. BMCS (or model comparison) is essentially Bayesian 
updating at the model class level to make comparisons among candidate model classes given the 
observed data (e.g., Beck and Yuen 2004, Muto and Beck 2008). Given a set of 𝑁𝕄 candidate model 
classes 𝕄 , 𝑘 1: 𝑁𝕄 , and in the presence of the data D, the posterior probability of the kth model 195 
class, denoted as 𝑃 𝕄 |𝐃  can be written as follows: 
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In lieu of any initial preferences about the prior 𝑃 𝕄 , one can assign equal weights to each model; 
thus, 𝑃 𝕄 1 𝑁𝕄⁄ . Hence, the probability of a model class is dominated by the likelihood 𝑝 𝐃|𝕄  
(a.k.a. evidence). It is to note that p herein stands for the probability density function (PDF). Here data 200 
vector 𝐃 𝐼𝑀, 𝐷𝑆 , 𝑖 1: 𝑁  defines the observed intensity and damage data for NCL buildings 
surveyed for class CL. Let us define the vector of model parameters 𝛉  for model class 𝕄  as 𝛉

𝛼 , , 𝛼 , , 𝑗 0: 𝑁 1 . We use the Bayes theorem to write the “evidence” 𝑝 𝐃|𝕄  provided 

by data D for model 𝕄  as follows: 
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It can be shown (see Appendix C, Muto and Beck 2008) that logarithm of the evidence (called log-
evidence) ln 𝑝 𝐃|𝕄  can be written as: 
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     (12) 

where Ω𝛉  is the domain of 𝛉 , and 𝑝 𝐃|𝛉 , 𝕄  is the likelihood function conditioned on model class 

𝕄  . “Term 1” denotes the posterior mean of the log-likelihood, which is a measure of the average data 210 
fit to model 𝕄 .“Term 2” is the relative entropy (Kullback and Leibler 1959, Cover and Thomas 1991) 
between the prior 𝑝 𝛉 |𝕄  and the posterior 𝑝 𝛉 |𝐃, 𝕄  of 𝛉  given model 𝕄 , which is a measure 
of the distance between the two PDFs. The latter Term 2 measures quantitatively the amount of 
information (on average) that is “gained” about 𝛉  from the observed data D. It is interesting that Term 
2 in the log-evidence expression penalizes for model complexity; i.e., if the model extracts more 215 
information from data (which is a sign of being a complex model with more model parameters), the 
log-evidence reduces. The exponential of the log-evidence, 𝑝 𝐃|𝕄 , is going to be implemented 
directly in Equation (10), to provide the probability attributed to the model class 𝕄 . More details on 
how to estimate the two terms in Equation (12) are provided in the Section “Results”. 
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The likelihood 𝑝 𝐃|𝛉 , 𝕄  can be derived, based on point-wise intensity information, as the likelihood 220 

of 𝑛 ,  buildings being in damage state DSj (considering that ∑ 𝑛 , 𝑁 ), according to data D 

defined before: 
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The posterior distribution 𝑝 𝛉 |𝐃, 𝕄  can be found based on Bayesian inference:  
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   (14) 225 

where 𝐶  is a normalizing constant. In lieu of additional information (or preferences), the prior 
distribution, 𝑝 𝛉 |𝕄 , can be estimated as the product of marginal normal PDFs for each model 
parameter, i.e., a multivariate normal distribution with zero correlation between the pairs of model 
parameters 𝛉  (see Appendix D). More detail about an efficient prior joint PDF is provided in the 
Section “Results”. To sample from the posterior distribution 𝑝 𝛉 |𝐃, 𝕄  in Equation (14), an adaptive 230 
MCMC simulation routine (see Appendix E) is employed. MCMC is particularly useful for drawing 
samples from the target posterior, while it is known up to a scaling constant 𝐶  (see Beck and Au 
2002); thus, in Equation (14), we only need un-normalized PDFs to feed the MCMC procedure. The 
MCMC routine herein employs the Metropolis-Hastings (MH) algorithm (Metropolis et al. 1953, 
Hasting 1970) to generate samples from the target joint posterior PDF 𝑝 𝛉 |𝐃, 𝕄 . 235 

2.5 Calculating the hierarchical fragilities and the corresponding confidence intervals 
based on the vector of model parameters 𝜽𝒌 

For each realization of the vector of model parameters 𝛉 , the corresponding set of hierarchical fragility 
curves can be derived based on the procedure described in the previous sections. Since we have 
realizations of the model parameters drawn from the joint PDF 𝑝 𝛉 |𝐃, 𝕄  (based on samples drawn 240 
from adaptive MCMC procedure, see also Appendix E), we can use the concept of Robust Fragility 
(RF) proposed in Jalayer et al. 2017 (see also Jalayer et al. 2015, and Jalayer and Erahimian 2020) to 
derive confidence intervals for the fragility curves. RF is defined as the expected value for a prescribed 
fragility model considering the joint probability distribution for the fragility model parameters 𝛉 . The 
RF herein can be expressed as: 245 

       ,, , , , d ,
θ

θ DD θ θ D θ θ
k k

k

j k j k k k k j kP D D IM P D D IM p P D D IM


           (15) 

where 𝑃 𝐷 𝐷 𝐼𝑀, 𝛉  is the fragility given the model parameters 𝛉  associated with the model 𝕄  

(it has been assumed that once conditioned on fragility model parameters 𝛉 , the fragility becomes 
independent of data D); 𝔼𝛉 |𝐃,𝕄  is the expected value over the vector of fragility parameters 𝛉  for 

model 𝕄 . The integral in Equation (15) can be solved numerically by employing Monte Carlo 250 
simulation with Nd generated samples from the vector 𝛉  as follows: 

   ,
1

1
, , ,D θ

dN

j k j k l
ld

P D D IM P D D IM
N 

    (16) 

where 𝑃 𝐷 𝐷 𝐼𝑀, 𝛉 ,  is the fragility given the lth realization (𝑙 1: 𝑁 ) of the model parameters 

𝛉  for model 𝕄 . Based on the definition represented in Equation (15) and Equation (16), the variance 
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𝜎𝛉 |𝐃,𝕄 , which can be used to estimate a confidence interval for the fragility considering the 255 

uncertainty in the estimation of 𝛉 , is calculated as follows: 
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   (17) 

The empirical fragilities derived through the hierarchical fragility procedure are not necessarily 
attributed to a lognormal distribution. Hence, we have derived equivalent lognormal statistics (i.e., the 
median and dispersion) for the resulting fragility curves. The median intensity, 𝜂 , for a given damage 260 

level, is calculated as the IM corresponding to 50% probability on the fragility curve. The logarithmic 
standard deviation (dispersion) of the equivalent lognormal fragility curve at the onset of damage 
threshold, 𝛽 , is estimated as half of the logarithmic distance between the IMs corresponding to the 

probabilities of 16% (𝐼𝑀 ) and the 84% (𝐼𝑀 ) on the fragility curve; thus, the dispersion can be 

estimated as 𝛽 0.50 ln 𝐼𝑀 𝐼𝑀⁄ . The overall effect of epistemic uncertainties (due to the 265 

uncertainty in the fragility model parameters and reflecting the effect of limited sample size) on the 
median of the empirical fragility curve is considered through (logarithmic) intensity-based standard 
deviation denoted as 𝛽  (see Jalayer et al. 2020). 𝛽  can be estimated as half of the (natural) 
logarithmic distance (along the IM axis) between the median intensities (i.e., 50% probability) of the 
RF’s derived with 16% (denoted as 𝐼𝑀 ) and 84% (𝐼𝑀 ) confidence levels, respectively; i.e., 𝛽270 
0.50 ln 𝐼𝑀 𝐼𝑀⁄ . The RF and its confidence band, the sample fragilities 𝛉 ,  (where 𝑙 1: 𝑁 ), 

the equivalent lognormal parameters 𝜂  and 𝛽  of the RF, the epistemic uncertainty 𝛽 , and finally 

the intensities 𝐼𝑀  and 𝐼𝑀  are shown in Figure 2d to Figure 6d in the following Section 3. 

3 Results 

3.1 Case Study 1: The 2009 South Pacific Tsunami 275 

The central South Pacific region-wide tsunami was triggered by an unprecedented earthquake doublet 
(Mw 8.1 and Mw 8.0) on September 29, 2009, between about 17:48 and 17:50 UTC (Goff and 
Dominey-Howes 2009). The tsunami seriously impacted numerous locations in the central South 
Pacific. Herein, the damage data related to the brick masonry residential (1 storey) and Timber 
residential buildings associated with the reconnaissance survey sites of American Samoa and Samoa 280 
islands were utilized. Based on the observed damage regarding different indicators (see Reese et al. 
2011 for more details on damage observation), each structure was assigned a damage state between 
(DS0 and DS5). The original data documented in Reese et al. (2011) reporting the tsunami flow depth 
and the attributed damage state to each surveyed building can be found on the site of the European 
Tsunami Risk Service (https://eurotsunamirisk.org/datasets/). The five damage levels (𝑁 5) and a 285 
description of the indicators leading to the classification of the damage states are given in Table 1 based 
on Reese et al. (2011). 
 
 
 290 
 
 
 
 



9 

Table 1. The classification of damage thresholds (the damage scale) used for 2009 South Pacific Tsunami 295 
(from Reese et al. 2011). 

Damage Level Damage level description 

D0 None no damage 

D1 Light non-structural damage 

D2 Minor significant non-structural damage, minor structural damage 

D3 Moderate significant structural and non-structural damage 

D4 Severe irreparable structural damage, will require demolition 

D5 Collapse complete structural collapse 
 

3.2 Case Study 2: The 2018 Sulawesi-Palu Tsunami 

On Friday 28 September 2018, at 18:02 p.m. local time, a shallow strike-slip earthquake of moment 
magnitude 7.5 occurred near Palu City, Central Sulawesi, Indonesia followed by submarine landslides, 300 
a tsunami, and massive liquefaction caused substantial damage (Muhari et al. 2018, Rafliana et al. 
2022). In Sulawesi, more than 3300 fatalities and missing people, 4400 serious injuries and 170,000 
people were displaced by earthquake, tsunami, landslides, liquefaction or building collapse, or 
combinations of these hazards (Paulik et al. 2019, Mas et al. 2020). Herein, the damage data related to 
the non-engineered unreinforced clay brick masonry (1 & 2 storey) and non-engineered light timber 305 
buildings locaed in Palu City were utilized. Based on the observed damage (see Paulik et al. 2018 for 
more details on damage observation), each structure was assigned a damage state between (DS0 and 
DS3). The original data reporting the tsunami flow depth and the attributed damage state to each 
surveyed building can be found as supplementary material to Paulik et al. (2018). The three damage 
levels (𝑁 3) and a description of the indicators leading to the classification of the damage state are 310 
given in Table 2. 

Table 2. The classification of damage thresholds (the damage scale) used for 2018 Sulawesi Palu Tsunami 
(from Paulik et al. 2018). 

Damage Level Damage level description 

D0 None no damage 

D1 Repairable partial damage, repairable 

D2 Unrepairable partial damage, unrepairable 

D3 Complete complete structural collapse 
 

3.3 The building classes 315 

Table 3 illustrates the building classes, for which fragility curves are obtained based on the proposed 
procedure and based on the databases related to the two Tsunami events described above. The taxonomy 
used for describing the building class matches the original description used in the raw databases. The 
number of data points available for different building classes showcases both classes with large number 
of data available, e.g., brick masonry 1 storey (South Pacific) and non-engineered brick masonry 1 320 
storey (Sulawesi), and classes with few data points available, e.g., timber residential (South Pacific) 
and non-engineered masonry 2 storeys and Timber (Sulawesi). The fifth column in the table shows the 
the proportion of the number of damage levels for which observed data is available N (see Section 2.1) 
to the total number of damage levels in the corresponding damage scales, namely NDS+1=6 for South 
Pacific and NDS+1=4 for Sulawesi tsunami events (to include level 0). If the ratio is equal to unity, it 325 
indicates that data is available for all the damage levels from 0 to NDS. Note that the number of fragility 
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curves derived is going to be equal to N-1, that is, equal to the number of damage levels for which 
observed damage data is available minus one. 

Table 3. The buildings Classes 

Building Class Tsunami event Number of Data N/(NDS+1)  index 
1 Brick masonry residential, 1 storey South Pacific 2009 120 6/6, index = {0,1,2,3,4,5}
2 Timber residential South Pacific 2009 23 4/6, index = {2,3,4,5}
1 Non engineered masonry, unreinforced 

with clay brick, 1 storey 
Sulawesi-Palu 2018 279 3/4, index = {0,1,2} 

2 Non engineered masonry, unreinforced 
with clay brick, 2 storeys 

Sulawesi-Palu 2018 37 3/4, index = {0,1,2} 

3 Non engineered light timber Sulawesi-Palu 2018 14 3/4, index = {1,2,3}
 330 

3.4 The different model classes 

For each building class considered, we have considered the set of candidate models consisting of the 
fragility models resulting from the three alternative link functions used in the generalized linear 
regression in Equation (5). That is, 𝕄  refers to hierarchical fragility modelling based on “logit”; 𝕄  
refers to hierarchical fragility modelling based on “probit”; 𝕄  refers to hierarchical fragility modelling 335 
based on “cloglog”. For each model, both the MLE method using the MATLAB generalized regression 
toolbox and the BMCS using the procedure described in the previous section are implemented. 

3.5 Fragility modelling using MLE 

The first step towards fragility assessment by employing the MLE method (see Section 2.3) is to define 

the vector of model parameters 𝛉 𝛼 , , 𝛼 , , where 𝑗 𝐢𝐧𝐝𝐞𝐱 1: 𝑁 1   where vector index is 340 

defined in Section 2.1 as the vector of damage level indices (in ascending order) for which observed 

damage data is available and N is length of index. To accomplish this, the model parameters 𝛼 , , 𝛼 ,  

are obtained by fitting the link functions in Equation (5) to conditional fragility 𝑃 𝐷

𝐷 𝐷 𝐷 , 𝐼𝑀  according to Equation (6). Herein, we have used MATLAB as a statistical software 

package (developed by MathWorks) to estimate the maximum likelihood of model parameters 345 

𝛼 , , 𝛼 ,  using the following MATLAB command: glmfit log 𝐱 ,  𝐲 , ′binomial′, ′link′, ′model′ . 

The ′model′ will be either ′logit′, ′probit′, or ′comploglog′. For each damage level Dj+1, 𝐢𝐧𝐝𝐞𝐱 1
𝑗 𝐢𝐧𝐝𝐞𝐱 𝑁 , the vector 𝐱  is the IM’s for which the condition 𝐷 𝐷  is satisfied;  𝐲  is the column 

vector containing one-to-one probability assignment to the IM data in 𝐱  with zero (=0.0) assigned to 

those data corresponding to DSj (𝐷 𝐷 𝐷 ) and one (=1.0) to those related to higher damage 350 

states (with 𝐷 𝐷 ). 

The vectors defining the MLE of the model parameters, 𝛉 , are presented in Table 4 for each of the 
building classes listed in Table 3 and for each of the three models 𝕄 , 𝕄 , and 𝕄  defined in Section 

3.4. Given the model parameter 𝛉 , the damage state probability 𝑃 𝐷𝑆 |𝐼𝑀  can be estimated based 

on the recursive Equation (7) and Equation (8). Then, the fragility for the ultimate damage level is 355 
calculated first based on Equation (8). For the lower damage thresholds, the empirical fragility is 
derived based on the Equation (9). The resulting hierarchical fragility curves by employing the direct 

fragility assessment given 𝛉 , i.e., 𝑃 𝐷 𝐷 𝐼𝑀, 𝛉  for 𝑗 𝐢𝐧𝐝𝐞𝐱 2: 𝑁 , are shown later in the 

next section by comparison with those obtained from the BMCS method. 
 360 
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Table 4. The model parameters 𝛉 . 

 Building 
Class 

Model 
Class 

𝛼0,0 𝛼1,0 𝛼0,1 𝛼1,1 𝛼0,2 𝛼1,2 𝛼0,3 𝛼1,3 𝛼0,4 𝛼1,4 

S
ou

th
 P

ac
if

ic
 

T
su

na
m

i 2
00

9 

1 
𝕄  5.242 4.190 3.900 4.255 -1.175 4.805 -1.345 2.887 -1.994 2.917 
𝕄  2.742 2.190 2.007 2.221 -0.670 2.804 -0.803 1.745 -1.157 1.733
𝕄  2.079 2.011 1.322 1.850 -1.268 3.057 -1.366 1.961 -1.981 2.218

2 
𝕄    1.127 1.512 2.484 0.771 -2.846 7.708 
𝕄    0.657 0.909 1.390 0.426 -1.575 4.316 
𝕄    0.251 0.862 0.883 0.355 -2.141 4.648 

S
ul

aw
es

i-
P

al
u 

T
su

na
m

i 
20

18
 

1 
𝕄  6.059 4.355 -0.630 2.909       
𝕄  3.264 2.340 -0.371 1.709   
𝕄  2.498 2.088 -0.907 2.056   

2 
𝕄  3.556 3.672 -2.486 5.126   
𝕄  2.077 2.144 -1.464 3.036   
𝕄  1.664 2.239 -2.451 4.217   

3 
𝕄    0.466 1.375 0.474 1.195     
𝕄    0.295 0.847 0.296 0.774     
𝕄    -0.041 1.068 -0.076 0.835     

 

3.6 Fragility modelling using BMCS 

In the first step, the model parameters are estimated for each model class separately. For each model 365 
class 𝕄 , the model parameters 𝛉  are estimated through the adaptive MCMC method described in 
detail in Appendix E which yields the posterior distribution in Equation (14). With reference to Equation 
(14), the prior joint PDF 𝑝 𝛉 |𝕄  is a multivariate normal PDF with zero correlation between the 
pairs of model parameters (see Appendix D). The vector of the mean values, 𝛍𝛉 is set to be the MLE 
tabulated in Table 2 ( 𝛉  related to 𝕄 ). We have attributed a high value for the coefficient of 370 
variation (more than 3.20 herein) for each of the model parameters. Appendix F illustrates the 
histograms representing the drawn samples from the joint posterior PDF 𝑝 𝛉 |𝐃, 𝕄  for a selected 
building class.  
The RF curves derived from the hierarchical fragility curves (see Section 2.5) and the corresponding 
plus/minus one standard deviation ( 1𝜎) intervals from Equation (16) and Equation (17) are also 375 
plotted in Figure 2a to Figure 6a corresponding to Classes 1-2 South Pacific Tsunami and Classes 1-3 

Sulawesi-Palu, for one of the model classes 𝕄  (k  {1,2,3}) and for the damage thresholds Dj, 𝑗
𝐢𝐧𝐝𝐞𝐱 2: 𝑁 . The colors of the hierarchical robust fragility curves, labled as Dj-BMCS, match closely 
those shown in Tables 1 and 2. The corresponding 1𝜎 confidence interval curve, which reflects the 
uncertainty in the model parameters, is shown as a light grey area with different color intensities. 380 
Figures 2b to Figure 6b compare the hierarchical robust fragility and its confidence interval, with the 
result of hierarchical fragility assessment based on maximum likelihood estimation (see previous 
Section 3.5), labeled as Dj-MLE. The fragility curves are shown with similar colors (and darker 
intensity) and with the same line type (and half of the thickness) of the corresponding robust fargility 
curves. The first observation is that the results of MLE-based fragilities and the BMCS-based fragilities 385 
are quite close in all damage thresholds (as expected, see Jalayer and Erahimian 2020). Moreover, the 
BMCS provides also the confidence bands for the fragility curves, which cannot be directly provided 
by the MLE method. To showcase an individual fragility curve, Figure 2c to Figure 6c illustrate the 
empirical fragility curves associated with the lth realization of the vector of model parameters 𝛉 ,  for 

model class 𝕄  (where l is defined on each figure separately), i.e., 𝑃 𝐷 𝐷 𝐼𝑀, 𝛉 ,  (see Section 390 

2.5). Figures 2d to Figure 6d illustrate the robust fargility curve associated with the ultimate damage 
threshold Dindex(N), together with all the sample fragilities. The intensity values for which the damage 
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level is not exceeded are shown with blue circles having the probability equal to zero. Other IMs that 
lead to the exceedance of the damage level are shown with red circles with a probability equal to one. 
Figure 2d to 6d also illustrate all the fragility parameters described in Section 2.5 including the 395 
equivalent lognormal parameters 𝜂  and 𝛽 , the epistemic uncertainty in the empirical fragility 

assessment 𝛽 , and also the intensities 𝐼𝑀 , 𝐼𝑀 , 𝐼𝑀 , and 𝐼𝑀  (the latter two are IMs at the 
median, i.e. 50% probability, from the RF minus/plus one standard deviation, respectively. For all 5 
buildings classes considered (see Table 3), 𝜂 , 𝛽 , and 𝛽  are tabulated in Table 3 for all damage 

thresholds associated to model classes 𝕄  to 𝕄 . 400 
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Figure 2: Building class 1 (brick masonry residential, 1 storey) of South Pacific 2009 Tsunami considering 
fragility Model class 𝕄𝟑: (a) Hierarchical  robust fragility curves and their ± two standard deviation 
confidence intervals; (b) comparison between hierarchical robust fragility curves and their confidence 405 
band (based on BMCS method) and fragility assessment  based on MLE method; (c) the fragility curves 
𝑷 𝑫 𝑫𝒋 𝑰𝑴, 𝛉𝟑,𝟏𝟎𝟎𝟎  where 𝟏 𝒋 𝟓 associated with the 1000th realization of the model parameters, 
𝛉𝟑,𝟏𝟎𝟎𝟎 (k=3 associated to model 𝕄𝟑, l=1000); (d) RF associated with the damage threshold D5, together 
with all the sample fragilities, and the equivalent lognormal fragility parameters.  
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Figure 3: Building class 2 (Timber residential) of South Pacific 2009 Tsunami considering fragility Model 
class 𝕄𝟑(a) Hierarchical robust fragility curves and their ± two standard deviation confidence intervals; 
(b) comparison between hierarchical robust fragility curves and their confidence band (based on BMCS 
method) and fragility assessment (based on MLE method); (c) the fragility curves 𝑷 𝑫 𝑫𝒋 𝑰𝑴, 𝛉𝟑,𝟖𝟎𝟎  
where 𝟑 𝒋 𝟓 associated with the 800th realization of the model parameters, 𝛉𝟑,𝟖𝟎𝟎 (k=3 associated to 415 
model 𝕄𝟑, l=800); (d) Robust fragility associated with the damage threshold D5, together with all the sample 
fragilities, and the equivalent lognormal fragility parameters.  
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Figure 4: Building class 1 (Non engineered masonry, unreinforced with clay brick, 1 storey) of Sulawesi-
Palu 2018 Tsunami considering fragility Model class 𝕄𝟏 (a) Robust fragility curves (RF) and their ± two 420 
standard deviation confidence intervals; (b) comparison between hierarchical robust fragility and its 
confidence band (based on BMCS method) and fragility assessment based on MLE method; (c) the fragility 
curves 𝑷 𝑫 𝑫𝒋 𝑰𝑴, 𝛉𝟏,𝟏𝟎  where 𝟏 𝒋 𝟐 associated with the 10th realization of the model parameters, 
𝛉𝟏,𝟏𝟎 (k=1 associated to model 𝕄𝟏, l=10); (d) Robust fragility curve associated with the damage threshold 
D2, together with all the sample fragilities, and the equivalent lognormal fragility parameters. 425 
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Figure 5: Building class 2 (Non engineered masonry, unreinforced with clay brick, 2 storey) of Sulawesi-
Palu 2018 Tsunami considering fragility Model class 𝕄𝟑 (a) Hierarchical robust fragility curves and their 
± two standard deviation confidence intervals; (b) comparison between robust fragility and its confidence 
band (based on BMCS method) and fragility assessment based on MLE method; (c) the fragility curves 430 
𝑷 𝑫 𝑫𝒋 𝑰𝑴, 𝛉𝟑,𝟏𝟖𝟓𝟎  where 𝟏 𝒋 𝟐 associated with the 1850th realization of the model parameters, 
𝛉𝟑,𝟏𝟖𝟓𝟎 (k=3 associated to model 𝕄𝟑, l=1850); (d) Robust fragility curve associated with the damage 
threshold D2, together with all the sample fragilities, and the equivalent lognormal fragility parameters. 
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Figure 6: Building class 3 (Non engineered light timber) of Sulawesi-Palu 2018 Tsunami considering 
fragility Model class 𝕄𝟐 (a) Hierarchical robust fragility curves and their ± two standard deviation 
confidence intervals; (b) comparison between robust fragility and its confidence band (based on BMCS 
method) and fragility assessment based on MLE method; (c) the fragility curves 𝑷 𝑫 𝑫𝒋 𝑰𝑴, 𝛉𝟐,𝟏𝟐𝟎  440 
where 𝟐 𝒋 𝟑 associated with the 120th realization of the model parameters, 𝛉𝟐,𝟏𝟐𝟎 (k=2 associated to 
model 𝕄𝟐, l=120); (d) Robust fragility curve associated with the damage threshold D3, together with all the 
sample fragilities, and the equivalent lognormal fragility parameters. 
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Table 3. The equivalent lognormal parameters and the epistemic uncertainty in the RF assessment for all 
the building classes, damage thresholds, and model classes 𝕄𝟏 to 𝕄𝟑 

 
Building 
Class 

Damage 
Level 

Model 1 (𝕄 )  Model 2 (𝕄 )  Model 3 (𝕄 ) 
𝜂 m  𝛽  𝛽   𝜂 m 𝛽  𝛽   𝜂 m  𝛽  𝛽  

S
ou

th
 P

ac
if

ic
 

T
su

na
m

i 2
00

9 

1 

D1 0.29 0.40 0.20 0.30 0.46 0.22  0.33 0.51 0.22
D2 0.43 0.35 0.15 0.46 0.37 0.15  0.50 0.40 0.15
D3 1.28 0.35 0.08 1.28 0.35 0.07  1.37 0.37 0.07
D4 1.80 0.45 0.07 1.81 0.42 0.07  1.89 0.37 0.06
D5 2.49 0.47 0.07 2.48 0.47 0.07  2.50 0.35 0.06

2 
D3 0.64 1.08 0.58 0.63 1.20 0.64  0.63 1.26 0.53
D4 0.73 1.01 0.48 0.75 1.01 0.46  0.84 0.98 0.35
D5 1.52 0.25 0.08 1.54 0.26 0.08  1.61 0.23 0.07

S
ul

aw
es

i-
P

al
u 

T
su

na
m

i 2
01

8 1 
D1 0.25 0.39 0.15 0.26 0.43 0.15  0.27 0.56 0.18
D2 1.24 0.57 0.06 1.24 0.59 0.07  1.31 0.58 0.06

2 
D1 0.39 0.44 0.20 0.38 0.45 0.19  0.43 0.43 0.17
D2 1.60 0.31 0.11 1.59 0.32 0.12  1.65 0.28 0.11

3 
D2 0.74 1.01 0.34 0.71 1.03 0.38  0.81 0.85 0.29
D3 1.16 0.98 0.39 1.20 1.10 0.43  1.29 0.95 0.31

 

3.7 Model selection 

With reference to Equation (12), the log-evidence ln 𝑝 𝐃|𝕄 , can be estimated by subtracting Term 450 
2 from Term 1. Term 1 denotes the posterior mean of the log-likelihood, and the Term 2 is the relative 
entropy between the prior and the posterior. Within the BMCS method, these two terms are readily 
computable. 
Given the samples generated from the joint posterior PDF’s 𝛉 , Term 1 (=Average Data Fit) can be 
seen as the expected value of the log-likelihood over the vector of fragility parameters 𝛉  given the 455 
model 𝕄 , i.e., 𝔼𝛉 |𝐃,𝕄 ln 𝑝 𝐃|𝕄 . Term 2 (=Relative Entropy) is calculated as the expected value 

of information gain or entropy between the two PDF’s posterior and prior over the vector  given the 
model 𝕄 , i.e., 𝔼𝛉 |𝐃,𝕄 ln 𝑝 𝛉 |𝐃, 𝕄 𝑝 𝛉 |𝕄⁄ . It is noted that based on Jensen’s inequality, 

the mean information gain (relative entropy) of posterior compared to the prior is always non-negative 
(see e.g., Jalayer et al. 2012, Ebrahimian and Jalayer 2021). Hence, Term 2 should always be positive. 460 

Herein, 𝑝 𝛉 |𝐃, 𝕄  is constructed by an adaptive kernel density function see Equation E5, Appendix 

E as the weighted sum (average) of Gaussian PDFs centered among the samples 𝛉  given model 𝕄  
(k=1:3). The prior 𝑝 𝛉 |𝕄  is a multivariate normal PDF, respectively with the mean and covariance 
described previously for each model (see Equation D1 in Appendix D). Table 4 shows the results for 
model class selection for all 5 buildings classes considered. The last column illustrates the posterior 465 
probability (weight) of the model 𝑃 𝕄 |𝐃  according to Equation (10) assuming that the prior 

𝑃 𝕄  (where k=1:3). The best model for each building class is shown with a blue color. 

For instance, for Class 1 (masonry residential) for South Pacific Tsunami, Model class 𝕄  (using a 
complementary log-log “cloglog” transformation of 𝜋  to the linear logarithmic space, see Equation 5) 

is preferred, since it has an overall larger difference between data fit and mean information gain, which 470 
leads to a higher the log-evidence. The posterior weights (last column of Table 4, see also Equation 10) 
of 6%, 11% and 83% are stabilized through different runs of the BMCS method with around 2% 
changes. It should be noted that in Figures 2 to 6, we reported directly the fragility results for the “best” 
fragility model class (i.e., the one that maximizes log evidence) identified based on the procedure 
described here. 475 
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Table 4. Bayesian model class selection results for empirical fragility models 

 
Building 
Class 

Model 
Class 

Term 1: Average 
Data Fit 

Term 2: Information 
Gain

Log-Evidence 
Posterior Probability 
of the model

S
ou

th
 P

ac
if

ic
 

T
su

na
m

i 2
00

9 1 

𝕄  -124.4561 23.6853 -148.1414 0.055 

𝕄  -123.4659 23.9566 -147.4224 0.113 

𝕄  -120.6454 24.7810 -145.4264 0.832 

2 

𝕄  -20.4791 9.7549 -30.2340 0.315 

𝕄  -19.9106 10.4660 -30.3766 0.273 

𝕄  -19.7565 10.2117 -29.9682 0.411 

S
ul

aw
es

i-
P

al
u 

T
su

na
m

i 
20
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1 

𝕄  -161.9565 9.5690 -171.5255 0.445 

𝕄  -161.2320 10.5660 -171.7979 0.339 

𝕄  -161.8821 10.3673 -172.2494 0.216 

2 

𝕄  -23.3696 6.8292 -30.1987 0.213 

𝕄  -22.7429 7.2697 -30.0126 0.257 

𝕄  -22.4307 6.8551 -29.2858 0.531 

3 

𝕄  -15.8034 4.2741 -20.0775 0.210 

𝕄  -15.1575 3.9226 -19.0802 0.570 

𝕄  -14.6294 5.4015 -20.0309 0.220 

 

3.8 The “Basic” (MLE-basic) method: fitting data to one damage state at a time 480 

In the Basic method (see Section 2.2), the fragility 𝑃 𝐷 𝐷 𝐼𝑀  is obtained by using a generalized 

linear regression model according to Equation (5) with “logit”, “probit” or “cloglog” link function fitted 
to the damage data (𝕄  where 𝑘 1: 3). With reference to the MLE method described previously, the 
vector 𝐱  herein is the IM associated to all damage data (and not partial, as in the hierarchical fragility 

method described in Section 3.3), and  𝐲  is the column vector of one-to-one probability assignment to 485 

the IM data in 𝐱  with zero (=0) assigned to those data with an observed damage threshold 𝐷 𝐷 , and 

one (=1) to those with 𝐷 𝐷 . Thus, for the empirical fragility associated with the damage threshold 

𝐷 , and based on the model 𝕄 , there are two model parameters to be defined, namely 𝛉

𝛼0, 𝛼1 𝑘. As noted previously, there might be conditions (depending on the quantity of the observed 
damage data), where a part of the fragility of damage threshold 𝐷  lies below the fragility of the higher 490 

damage level 𝐷 , indicating that 𝑃 𝐷𝑆 𝐼𝑀 0. This is due to the fact that in the traditional method, 

there is no explicit requirement to satisfy 𝑃 𝐷𝑆 𝐼𝑀 0 as compared to the proposed method. The 

MLE of model parameters 𝛼 , 𝛼  for the damage levels Dj, 𝑗 𝐢𝐧𝐝𝐞𝐱 2: 𝑁 } associated with the 
building classes in Table 3 are presented in Table 5. 
Figure 7 compares the fragility assessment obtained based on MLE-based hierarchical fragility 495 
modeling (see also the MLE-based curves in Figure 2b to Figure 6b) with the result of fragility 

assessment by employing the MLE-Basic method for the “best” Model Class 𝕄  (k  {1,2,3}) 
identified according to the procedure outlined in the previous section. It is noted that the fragility 
functional form is different between the two methods. MLE-based fragility assessment given 𝕄  uses 
Equation (7) to Equation (9) to construct hierarchical fragility curve given that the conditional fragility 500 

term 𝜋 𝑃 𝐷 𝐷 𝐷 𝐷 , 𝐼𝑀 , j 𝐢𝐧𝐝𝐞𝐱 1: 𝑁 1 } has one of the functional forms in 

Equation (5). However, the fragility assessment using MLE-Basic method employs directly one of the 
expressions in Equation (5) (corresponding to 𝕄 , k=1:3) to derive the fragility curve 𝜋

𝑃 𝐷 𝐷 |𝐼𝑀  (based on the whole damage data) and 𝑗 𝐢𝐧𝐝𝐞𝐱 2: 𝑁 . This difference manifests 

itself in Figure 7a (for brick masonry residential, Class 1, South Pacific Tsunami) the deviation between 505 
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the two fragility models for higher damage thresholds D4 and D5. The deviations between the fragility 
curves are particularly noticeable at higher IM values (with exceedance probability >50%); however, 
their medians are quite similar. In 7b for (Timber residential buildings, Class 2 South Pacific Tsunami) 
and 7e (Light informal timber buildings, Class 3, Sulawesi-Palu tsunami), we can observe that fragility 
curves intersect in the case of MLE-Basic fragility assessment. However, they do not intersect for 510 
hierarchical fragility curves. The intersection points of the consequent damage states 𝐷  with 𝐷  when 

using the MLE-Basic fragility estimation method are shown with color stars on each figure. 

Table 5. The Model parameters 𝛉 . 

 
Building 
Class 

Model 
Class 

𝐷 𝐷  𝐷 𝐷  𝐷 𝐷  𝐷 𝐷  𝐷 𝐷  
𝛼  𝛼  𝛼  𝛼  𝛼  𝛼  𝛼  𝛼  𝛼  𝛼  

S
ou

th
 P

ac
if

ic
 

T
su

na
m

i 2
00

9 

1 
𝕄  5.242 4.190 3.655 4.556 -1.221 4.884 -2.666 4.213 -4.271 4.652 
𝕄  2.742 2.190 1.946 2.486 -0.695 2.846 -1.506 2.425 -2.293 2.515 
𝕄  2.079 2.011 1.347 2.361 -1.319 3.139 -2.389 3.009 -3.919 3.806 

2 
𝕄      1.127 1.512 0.813 1.392 -2.931 6.055 
𝕄      0.657 0.909 0.472 0.873 -1.747 3.597 
𝕄      0.251 0.862 0.051 0.914 -2.416 3.922 

   
𝐷 𝐷  𝐷 𝐷  𝐷 𝐷    
𝛼  𝛼  𝛼  𝛼  𝛼  𝛼      

S
ou

th
 P

ac
if

ic
 T

su
na

m
i 

20
09

 

1 
𝕄  6.059 4.355 -0.638 2.948       
𝕄  3.264 2.340 -0.375 1.728       
𝕄  2.498 2.088 -0.918 2.088       

2 
𝕄  3.556 3.672 -2.500 5.160   
𝕄  2.077 2.144 -1.465 3.039       
𝕄  1.664 2.239 -2.473 4.268       

3 
𝕄    0.466 1.375 -0.501 1.843     
𝕄    0.295 0.847 -0.286 1.141     
𝕄    -0.041 1.068 -0.787 1.565     
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Figure 7: (a) Comparison between the fragility assessment by MLE-based hierarchical fragility modeling 515 
and MLE-Basic fragility assessment given (a) South Pacific 2009 Tsunami , Class 1, 𝕄𝟑; (b) South Pacific 
2009 Tsunami, Class 2, 𝕄𝟑; (c) Palu-Sulawesi 2018 Tsunami, Class 1, 𝕄𝟏; (d) Palu-Sulawesi 2018 Tsunami 
Class 2, 𝕄𝟑;(e) Palu-Sulawesi 2018 Tsunami Class 3, 𝕄𝟐.  

Table 6 reports the fragility assessment parameters of the MLE and MLE-Basic methods for the damage 
thresholds Dindex(2) to Dindex(N) with the equivalent lognormal parameters 𝜂  and 𝛽  (explained in 520 

Section 2.5) for 𝕄  to 𝕄  for all five classes considered. The medians are almost identical among the 
four models while there are higher dispersion estimates for MLE method derived by hierarchical 
fragility modelling.  
 
 525 
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Table 6: Comparison between fragility assessment based on MLE method (by hierarchical fragility 
modelling) and the MLE-Basic method for damage thresholds Dindex(2) to Dindex(N). 

T
su

na
m

i 

C
la

ss
 

D
am

ag
e 

L
ev

el
 

Model 1 (𝕄 )  Model 2 (𝕄 )  Model 3 (𝕄 ) 

MLE method 
MLE-Basic 

method 
 

MLE method 
MLE-Basic 

method 
 

MLE method 
MLE-Basic 

method 
𝜂 m  𝛽  𝜂 m  𝛽   𝜂 m  𝛽  𝜂 m  𝛽   𝜂 m  𝛽  𝜂 m  𝛽  

So
ut

h 
Pa

ci
fi

c 
20

09
 

1 

D1 0.29 0.40 0.29 0.40 0.29 0.46 0.29 0.46 0.30 0.59 0.30 0.59
D2 0.43 0.35 0.45 0.37 0.45 0.38 0.46 0.40 0.47 0.44 0.48 0.50
D3 1.28 0.34 1.28 0.34 1.27 0.35 1.28 0.35 1.34 0.38 1.35 0.38
D4 1.82 0.43 1.88 0.40 1.82 0.42 1.86 0.41 1.88 0.38 1.96 0.39
D5 2.50 0.46 2.50 0.36 2.47 0.44 2.49 0.40 2.49 0.34 2.54 0.31

2 
D3 0.47 1.10 0.47 1.10 0.49 1.10 0.49 1.10 0.49 1.37 0.49 1.37
D4 0.56 1.12 0.56 1.20 0.59 1.11 0.58 1.15 0.62 1.25 0.63 1.29
D5 1.54 0.30 1.62 0.28 1.55 0.30 1.63 0.28 1.58 0.28 1.69 0.30

Su
la

w
es

i-
Pa

lu
 2

01
8 1 

D1 0.25 0.38 0.25 0.38 0.25 0.43 0.25 0.43 0.25 0.57 0.25 0.57
D2 1.24 0.57 1.24 0.57 1.24 0.58 1.24 0.58 1.30 0.57 1.30 0.57

2 
D1 0.38 0.45 0.38 0.45 0.38 0.47 0.38 0.47 0.40 0.53 0.40 0.53
D2 1.63 0.32 1.62 0.32 1.62 0.33 1.62 0.33 1.64 0.28 1.64 0.28

3 
D2 0.71 1.21 0.71 1.21 0.71 1.18 0.71 1.18 0.74 1.11 0.74 1.11
D3 1.38 1.10 1.31 0.91 1.36 1.02 1.29 0.88 1.32 0.84 1.31 0.76

 

Discussion: The results outlined in this section show fragility assessment for two different datasets 535 
corresponding to observed damaged in the aftermath of South Pacific and Sulawesi-Palu tsunami 
events. We have demonstrated the versatility of the proposed workflow and tool for hierarchical 
fragility assessment both for cases in which a large number of data points are available (e.g., Class 1, 
brick masonry residential, South Pacific Tsunami, Class 1, one-storey non-engineered masonry, Palu-
Sulawesi Tsunami) and cases where very few data points are available (e.g., Class 2, timber residential, 540 
South Pacific Tsunami, Class 3, non-engineered light timber, Sulawesi-Palu Tsunami). Moreover, we 
demonstrated how the proposed workflow avoids crossing fragility curves (e.g., Class 2, timber 
residential, South Pacific Tsunami, Class 3, non-engineered light timber, Sulawesi-Palu Tsunami). The 
results illustrated for the five building classes demonstrate that the proposed workflow for hierarchical 
fragility assessment can be applied in cases in which data points are not available for all the damage 545 
levels within the damage scale. 

Conclusion 

An integrated procedure based on Bayesian model class selection (BMCS) for empirical hierarchical 
fragility modeling for a class of buildings or infrastructure is presented. This procedure is applicable to 
fragility modelling for any type of hazard as long as the damage scale consists of mutually exclusive 550 
and collectively exhaustive (MECE) damage states and the observed damage data points are 
independent. This simulation-based procedure can: 1) perform hierarchical fragility modeling for 
MECE damage states; 2) estimate the confidence interval for the resulting fragility curves; 3) select the 
simplest model that fits the data best (i.e., maximizes log evidence) amongst a suite of candidate 
fragility models (herein, alternative link functions for generalized linear regression are considered). The 555 
proposed procedure is demonstrated for empirical fragility assessment based on observed damage data 
to masonry residential (1 storey) and timber residential buildings due to the 2009 South Pacific Tsunami 
in the American Samoa and Samoa Islands and non-engineered masonry buildings (1 and 2 storeys) 
and non-engineered light timber buildings due to the 2018 Sulawesi-Palu Tsunami. It is observed that: 
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 For each model class, the same set of simulation realizations is used to estimate the fragility 560 
parameters, the confidence band, and the log evidence. The latter, which consists of two terms 
depicting the goodness of fit and the information gain between posterior distribution resulting from 
the observed data and the prior distribution, is used to compare the candidate fragility models to 
identify the model that maximizes the evidence. 

 Hierarchical fragility assessment can be done also based the maximum likelihood estimation 565 
(MLE) and the available statistical toolboxes (e.g., MATLAB’s generalized linear model). For 
each damage level, the reference domain should be the subset of data that exceeds the consecutive 
lower damage level, instead of taking the entire set of data points as reference domain. Note that 
the basic fragility estimation (“MLE-Basic”, non-hierarchical fragility model) fits the damage data 
for each damage level at a time. In other words, the reference domain is set to all damage data. 570 

 The procedure is applicable also to cases in which observed data is available only for a subset of 
the damage levels within the damage scale. The number of fragility curves is going to be equal to 
the total number of damage levels for which data is available minus one. This means, in order to 
have at least one fragility curve, one needs to have data available at least for two damage levels. 

 Although the resulting fragility curves are not lognormal (strictly speaking), equivalent statistics 575 
work quite well in showing the fragility curves (median and logarithmic dispersion) and the 
corresponding epistemic uncertainty (logarithmic dispersion). 

 The proposed BMCS method and the one based on MLE lead to essentially the same set of 
parameters’ estimates for hierarchical fragility estimation. However, the latter does not readily lead 
to the confidence band and log evidence. 580 

 Using the basic method for fragility estimation (MLE-Basic) leads to results that are slightly 
different from the hierarchical fragility curves. The difference grows for higher damage levels. It 
is to note that following the basic method “MLE-Basic” led to ill-conditioned results (i.e., fragility 
curves crossing) in some of the cases (Class 2 for South Pacific Tsunami, and Class 3 for Sulawesi-
Palu Tsunami, both Timber constructions) studied in this work.  585 
 

The major improvement offered by this method is in providing a tool that can fit fragility curves to a 
set of hierarchical levels of damage or loss in an ensemble manner. This method, which starts from 
prescribed fragility models and explicitly ensures the hierarchical relation between the damage levels, 
is very robust to cases where few data points are available and/or where data is missing for some of the 590 
damage levels. This tool provides confidence bands for the fragility curves and performs model 
selection among a set of viable link functions for generalized regression. It is to note that the proposed 
method is in general applicable to hierarchical vulnerability modelling for human or economic loss 
levels and to different types of hazards, if (1) the defined levels are mutually exclusive and collectively 
exhaustive; and (2) a suitable intensity measure (IM) can be identified. 595 
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Appendix A: The derivation of Equation (2) 

The probability of being in damage state DSj for a given intensity measure IM can be estimated as 
follows: 
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 (A1) 605 

where the upper-bar sign stands for the logical negation and is read as “NOT”, and (+) defines the 
logical sum and is read as “OR”. The above derivation is based on the rule of sum in probability and 
considering the fact that the two statements 𝐷 𝐷  and 𝐷 𝐷  are mutually exclusive (ME); thus, 

the probability of their logical sum is the sum of their probabilities. 

Appendix B: The derivation of Equation (7) 610 

The probability of being in damage state DSj (where j≥1) given the intensity measure evaluated at the 
location of building i, denoted as IMi, based on Equation (6) can be expanded in a recursive format as 
follows: 
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where (+) defines the logical sum and is read as “OR”. The above derivation is based on the rule of sum 615 
in probability and considering the fact that the recursive statements in the second term expressed 
generally as 𝐷 𝐷 ∙ 𝐷 𝐷 , where 0 𝑘 𝑗 1, are ME; hence, the probability of their 
logical sum is the sum of their probabilities. It is to note that in case where j=0, the above equation can 
be written as: 

     0 0 11i i iP DS IM P D D IM    (B2) 620 

Appendix C: The derivation of log-evidence in Equation (13) 

From an information-based point of view, the logarithm of the evidence (log-evidence), denoted as 
ln 𝑝 𝐃|𝕄 , can provide a quantitative measure of the amount of information as evidence of model 
𝕄 . Moreover, the posterior PDF 𝑝 𝛉 |𝐃, 𝕄  (see Equation 14) over the domain of the model 
parameters Ω𝛉 given the kth model is equal to unity. Thus, ln 𝑝 𝐃|𝕄  can be written as follows: 625 
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Since the log-evidence is independent of 𝛉, we can bring it inside the integral, and do some simple 
manipulation (also using the relation in Equation 11) as follows: 
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Appendix D: Multivariate normal distribution and generating dependent Gaussian 630 
variables 

Let us assume that the vector of parameters for the kth model is set to 𝛉; i.e., 𝛉 𝛉 . A multivariate 
normal PDF can be expressed as follows: 

 
 

   T 11 1
exp

22
n

p


     
 

θ θθ θ μ S θ μ
S

 (D1) 

where n is the number of components (uncertain parameters) of vector 𝛉 𝜃 , 𝑖 1: 𝑛 ;  is the 635 

vector of the mean value of ; S is the covariance matrix. The positive definite matrix Sn×n can be 
factorized based on Cholesky decomposition as S=LLT, where Ln×n is a lower triangular matrix (i.e., 

for all j>i, Lij = 0 where Lij denotes the (i, j)-entry of the matrix L). A Gaussian vector n×1 with mean 

 and covariance S can be generated as follows: 

 θθ μ LZ  (D2) 640 

where Zn×1 is a vector of standard Gaussian i.i.d. random variables with zero mean 0n×n, and covariance 

equal to the identity matrix In×n. To verify the properties of , we know that with reference to Equation 

(D2), it should have a mean equal to  and a covariance matrix equal to S. The expectation of , 

denoted as E(), can be estimated as: 
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The covariance matrix of  can be written as: 
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Thus, the vector  can be written according to Equation (D2). 
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Appendix E: Adaptive MCMC scheme 

MCMC procedure 650 

The MCMC simulation scheme has a Markovian nature where the transition from current state to a new 
state is done by using a conditional transition function that is conditioned on the current (last) state. Let 
us assume that the vector of parameters for the kth model is set to 𝛉; i.e., 𝛉 𝛉 . To generate (i+1)th 

sample i+1 from the current ith sample i based on MH routine, the following procedure is adopted 
herein: 655 

 Simulate a candidate sample * from a proposal distribution q(|i). It is important to note that 
there are no specific restrictions about the choice of q(ꞏ) apart from the fact that it should be possible 

to calculate both q(i+1|i) and q(i|i+1).  

 Calculate the acceptance probability min(1,r), where r is defined as follows (it is to note that the 
following Equation (E1) is written in the general format for brevity compared to Equation (14) of 660 

the manuscript, and we have used  instead of k, and dropped the conditioning on 𝕄 ; hence when 

we write the ith sample i, it is actually the ith sample drawn from k and “k” is dropped for brevity): 
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 Generate u from a Uniform distribution between (0, 1), u ~ Uniform (0, 1). 

 if u ≤ min(1,r) → set i+1=* (accept the candidate state to be taken as the next state of the Markov 665 

chain); else set i+1=i (the current state is taken as the next state). 

Estimating the likelihood in the arithmetic scale based on Equation (E1) may encounter instability as 

p(D|) may become very small; thus, the likelihood ratio becomes indeterminate. To avoid this 
numerical instability, it is desirable to substitute the likelihood ratio in Equation (E1) with 

exp ln 𝑝 𝐃|𝛉∗ ln 𝑝 𝐃|𝛉  if the ratio becomes indeterminate or zero. 670 

With reference to Equation (E1), samples from the posterior can be drawn based on MH algorithm 
without any need to define the normalizing 𝐶  coefficient according to Equation (14). Equation (E1) 
always accepts a candidate if the new proposal is more likely under the target posterior distribution than 
the old state. Therefore, the sampler will move towards the regions of the state space where the target 
posterior function has high density. 675 

The choice of the proposal distribution q is very important. The ratio q(i|*)/q(*|i) corrects for any 

asymmetries in the proposal distribution. Intuitively, if q(*|i)=p(*|D), the candidate state is always 
accepted (with r=1); thus the closer q is to the target posterior PDF, the better the acceptance rate and 

the faster the convergence. This is not a trivial task as information about the important region p(|D) is 
not available. If the proposal distribution q is non-adaptive, it means that the information of the current 680 

sample i is not used to explore the important region of the target posterior distribution p(|D); thus, we 

can say that q(*|i)= q(*). Therefore, it is more desirable to choose an adaptive proposal distribution 
which depends on the current sample (Beck and Au 2002). Having the proposal PDF q centered around 
the current sample renders the MH algorithm like a local random walk that adaptively leads to the 
generation of the target PDF. However, if the Markov chain starts from a point that is not close to region 685 

of the significant probability density of p(|D), the chance of generating a candidate state * will become 
extremely small (and we will face high rejection of candidate samples). Therefore, most of the samples 
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will be repeated. To solve this problem, Beck and Au (2002) introduce a sequence of PDFs that bridge 
the gap between the prior PDF and the target posterior PDF. This issue will be more explored hereafter 
under the adaptive MCMC. Finally, it can mathematically be shown that (see Beck and Au 2002) if the 690 

current sample i is distributed as p(ꞏ|D), the next sample i+1 is also distributed as p(ꞏ|D). 

Adaptive Metropolis-Hastings algorithm (adaptive MCMC) 

The adaptive MH algorithm (Beck and Au 2002) introduces a sequence of intermediate candidate 
evolutionary PDF’s that resemble more and more the target PDF. Let {p1, p2,…, pNchain} be the sequence 

(chain) of PDF’s leading to p(|D)=pNchain, where Nchain is the number of chains and each chain 695 
contains Nd samples (as indicated subsequently). The following adaptive simulation-based procedure is 
employed: 

Step 1: Simulate Nd  samples {1, 2, …, Nd}(1), where the superscript (1) denotes the first simulation 
level or the first chain (nc=1 where nc denotes the chain number/simulation level), with the target PDF 

p1 as the first sequence of samples. Instead of accepting or rejecting a proposal for  involving all its 700 
components simultaneously (called block-wise updating scheme), it might be computationally simpler 

and more efficient for the first chain to make proposals for individual components of , one at a time 
(called component-wise updating approach). In the block-wise updating, the proposal distribution has 
the same dimension as the target distribution. For instance, if the model parameters involve n uncertain 
parameters (e.g., the vector of model parameters 𝛉  in this paper has 𝑛 2𝑁 variables for each of 705 
the three models 𝕄 , 𝕄 , and 𝕄 ), we design an n-dimensional proposal distribution, and either accept 
or reject the candidate state (with all n variables) as a block. The block-wise updating approach can be 
associated with high rejection rates. This may cause problem when we want to generate the first 
sequence of samples (first chain). Therefore, we have utilized the more stable component-wise updating 
for the first chain. We start from the first variable and generate a candidate state based on a proposal 710 
distribution for this individual component, and finally accept or reject it based on MH algorithm. Note 

that in this stage, we have varied the current component and kept the other variables in vector  constant. 
Then, we move to the next components one by one and do the same procedure while taking into account 
the previous (updated) components. Therefore, what happens in the current step is conditional on the 
updated parameters in the previous steps. 715 

Step 2: Construct a kernel density function (1) as the weighted sum (average) of n-dimensional 

Gaussian PDFs centered among the samples {1, 2, …, Nd}(1), with the covariance matrix S(1) of the 

samples i
(1) and the weights associated to each sample as wi where i=1: Nd  as follows (see Ang et al. 

1992, Au and Beck 2002): 
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The kernel density (1) constructed in Equation (E2) approximates p1. The kernel function  can be 

viewed as a PDF consisting of bumps at i, where width wi controls the common size of the bumps. 
Therefore, a large value of wi tends to over-smooth the kernel density, while a small value may cause 
noise-shaped bumps. In view of this, wi can be assumed to have a fixed width (= w), or alternatively the 
adaptive kernel estimate can be employed (Ang et al. 1992, Au and Beck 1999) that is defined for each 725 

sample i, i=1: Nd . The adaptive kernel has better convergence and smoothing properties over the fixed-
width kernel estimate. The fixed width w is estimated as follows (Epanechnikov 1969): 
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where Ndist is the number of distinct samples (Ndist ≤ Nd). For one-dimensional problems (n=1), this leads 

to the well-known fixed-width value of 4 3⁄ 𝑁𝑠𝑒𝑒𝑑⁄ ⁄ . The reason for using Ndist is due to the fact 730 
that for the next simulation levels, where we are going to use a block-wise updating approach in the 
MCMC scheme, one may be faced with rejection of candidate states within the Markov chain. Thus, 
we need to count the distinct samples. In the adaptive kernel method, the idea is to vary the shape of 
each bump so that a larger width (flatter bump) is used in regions of lower probability density. 
Following the general strategy used in the past (see Ang et al. 1992, Au and Beck 1999), the adaptive 735 

band width wi for the ith sample i can be written as 𝑤 𝑤𝜆 , where the local bandwidth factor i can 
be estimated as follows: 
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where 0≤  ≤1.0 is the sensitivity factor, and i) is calculated based on Equation (E2) where =i, 
with the choice of fixed-width w in Equation (E3). The denominator in Equation (E4) is a geometric 740 

mean of the kernel estimator at all Nd points. The value of  =0.50 is employed herein as also suggested 
by other research endeavors (Abramson 1982, Ang et al. 1992, Au and Beck 1999). It is numerically 

more stable to estimate the denominator in Equation (E4) as ∏ κ 𝛉
⁄

. 

Step 3: Simulate Nd Markov chain samples {1, 2, …, Nd}(2) with the target PDF p2 as the second 

simulation level (nc=2). We use (1) as the proposal distribution q(ꞏ) in Equation (E1) in this stage to 745 

generate the second chain of samples. To generally simulate sample  from the kernel (nc) (where 
nc=1:Nchain), we generate a discrete random index from the vector [1, 2, …, Nd] with the corresponding 

weights 𝑤 , 𝑤 , ⋯ , 𝑤  using an inverse transformation sampling; if index=j, then generate  from 

the Gaussian PDF j, where: 
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where 𝐒 𝑤 𝐒 , where 𝐒  is the covariance matrix of the samples {1, 2, …, Nd}(nc). 

Appendix D shows how a sample  can be drawn from the Gaussian PDF i. From this sequence on, 

the MCMC updating is done in a block-wise manner as we generate a candidate  and accept/reject it 

as a block. The second chain of samples {1, 2, …, Nd}(2) are then used to construct the kernel density 

(2) based on Equation (E2). 755 

Step 4: In general, (nc) is used as the proposal distribution in order to move from the ncth simulation 
level (which approximates pnc) into (nc+1)th chain (with target PDF pnc+1). This will continue until the 
Nchainth simulation level where Markov chain samples are simulated for the target updated 

p(|D)=pNchain. 
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Appendix F: MCMC samples for each model 760 

The adaptive MCMC procedure for drawing samples from the model parameters from the joint posterior 
PDF 𝑝 𝛉 |𝐃, 𝕄  is carried out by considering Nchain=6 chains (simulation levels), and Nd=2000 
samples per each chain (see Appendix E). In the first simulation level (first chain, nc=1), for which a 
component-wise updating approach is employed (see Appendix E, Step 1 for the description of 
component-wise and block-wise updating), the first 20 samples are not considered in order to reduce 765 
the initial transient effect of the Markov chain. The proposal distribution (see Equation E1) for each 
component is assumed to be a normal distribution with a coefficient of variation COV=0.30 herein. In 
addition, the prior ratio according to Equation (E1), will become the ratio of two normal distributions, 
for each component one at a time. In the next simulation levels (i.e., nc=2:6), the adaptive kernel 
estimate (Equation E2) is employed, i.e., the MCMC updating is performed in a block-wise manner. 770 
There will be Nd Markov chain samples generated within the each chain, denoted as 

𝛉 , , 𝛉 , , ⋯ , 𝛉 , , where nc=2:Nchain (=6). The Nd samples of the last chain (nc=6) will be used 

as the fragility model parameters, as discussed in Section 3.6. It is to note that the likelihood 
𝑝 𝐃|𝛉𝒌, 𝕄  (used in calculating the acceptance probability within the MCMC procedure in Equation 
E1) is estimated according to Equation (13). 775 
Figure F1 illustrates the histograms representing the drawn samples from the joint posterior PDF’s 

corresponding to the sampled model parameters 𝛉 , , 𝛉 , , ⋯ , 𝛉 ,  corresponding to the brick 

masonry residential, Class 1 South Pacific Tsunami classes 𝕄  (k  {1,2,3}) shown in Figure 2. The 
marginal normal prior PDFs are also shown with orange-coloured dashed lines. The statistics of the 
samples, mean and confidence interval (CI) between 2nd and 98th percentiles for the posterior of model 780 
parameters 𝛉  are shown on the figures associated to each parameter. It is expected to have the mean 
values of the marginal posterior samples close to and comparable with those obtained by the MLE in 
Table 4.  
 

𝕄
 

𝕄
 

𝕄
 

Figure F1: Distribution of the fragility model parameters 𝛉𝒌 𝜶𝟎,𝒋, 𝜶𝟏,𝒋 𝒌
, 𝒋 𝟎: 𝟒  based on model class 785 

𝕄𝒌 (where 𝒌 𝟏: 𝟑) for Class 1, Brick masonry residential, South Pacific Tsunami, by employing an 
adaptive MCMC procedure including samples drawn from the joint posterior PDF with their statistics 
(mean and COV), and the marginal normal priors (subfigures show the posterior statistics). 
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