Empirical tsunami fragility modelling for hierarchical damage levels: An application to damage data of the 2009 South Pacific tsunami

FatemehJalayer^{1,2}HosseinEbrahimian⁴Ebrahimian²5Trevlopoulos⁴Trevlopoulos²Brendon Bradley²Bradley³

Institute for Risk and Disaster Reduction, University College London, Gower Street, London, WC1E 6BT, UK, ²⁴Department of Structures for Engineering and Architecture, University of Naples Federico II, Naples 80125,* Italy

³²Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800,
 10 Christchurch 8140, New Zealand

Correspondence to: Fatemeh Jalayer (fatemeh.jalayer@unina.it)

Abstract.

The present work proposes a simulation-based Bayesian method for parameter estimation and fragility model selection for mutually exclusive, and collectively exhaustive (MECE) damage states. This

- 15 method uses adaptive Markov chain Monte Carlo simulation (MCMC) based on likelihood estimation using point-wise intensity values. It identifies the simplest model that fits the data best, among the set of viable fragility models considered. The proposed methodology is demonstrated for empirical fragility assessment for two different tsunami events and different classes of buildings with varying number of observed damage and flow depth data pairs. As a-case-studjesy, observed pairs of data for tsunami
- 20 intensityflow depth and corresponding damage level from the central South Pacific tsunami on September 29, 2009-, and Sulawesi-Palu Tsunami on 28 September, 2018, are used. The tsunami was triggered by an unprecedented earthquake doublet (Mw 8.1 and Mw 8.0) and seriously impacted numerous locations in the central South Pacific. Damage data related to-<u>a total of 5 different building</u> classes awere analyzed120 brick masonry residential buildings in American Samoa and Samoa islands
- 25 were utilized. It is shown that the proposed methodology is stable and efficient for -data sets with a very low number of damage versus intensity data pairs and cases in which observed data are missing for some of the damage levels.—A six-tier damage seale was considered, using tsunami flow depth as the intensity measure.
- 30 Keywords: probabilistic tsunami risk assessment, tsunami fragility, Bayesian inference, model class selection

1 Introduction

Fragility models express the probability of exceeding certain damage thresholds for a given level of intensity for a specific class of buildings or infrastructure. Empirical fragility curves are models derived
based on observed pairs of damage and intensity data for buildings and infrastructures usually collected, acquired, and even partially simulated in the aftermath of disastrous events. Some examples of empirical fragility models are: seismic fragility (Rota et al. 2009, Rosti et al. 2021), tsunami fragility (Koshimura et al. 2009a, Reese et al. 2011; a comprehensive review can be found in Charvet et al. 2017), flooding fragility (Wing et al. 2020), and debris flow fragility curves (Eidsvig et al. 2014). Empirical fragility

40 modelling is greatly affected by how the damage and intensity parameters are defined. Mutually exclusive and collectively exhaustive (MECE, see next section for the definition) damage states are quite common in the literature as discrete physical damage states. The MECE condition is necessary

ha formattato: Non Apice / Pedice ha formattato: Non Apice / Pedice Formattato: SpazioPrima: 0 pt for damage states in most probabilistic risk formulations leading to the mean rate of exceeding loss (e.g., Behrens et al. 2021).

- 45 Tsunami fragility curves usually employ the tsunami flow depth as the measure of intensity; although different studies use also other measures like current velocity (e.g., De Risi et al. 2017b, Charvet et al. 2015). Charvet et al. (2015) demonstrate that the flow depth may cease to be an appropriate measure of intensity for higher damage states and other parameters such as the current velocity, debris impact, and scour can become increasingly more important. De Risi et al. (2017b) developed bivariate tsunami
- 50 fragilities, which account for the interaction between the two intensity measures, tsunami flow depth and current velocity. Early procedures for empirical tsunami fragility curves used data binning for representing the intensity. For exemple, Kashimura et al. (2000b) binned the charactions by the intensity measures i.e. the flow.

For example, Koshimura et al. (2009b) binned the observations by the intensity measure, i.e., the flow depth, however the latest procedures have mostly used point-wise intensity estimates instead.

- 55 Fragility curves for MECE damage states are distinguished by their nicely "laminar" shape; in other words, the curves should not intersect. When fitting empirical fragility curves to observed damage data, this condition is not satisfied automatically. For example, fragility curves are usually fitted for individual damage states separately and they are filtered afterwards to remove the crossing fragility curves (e.g., Miano et al. 2020) or ordered ("parallel") fragility models are used from the start (Charvet
- 60 et al. 2014, Lahcene et al. 2021). Charvet et al. (2014) and De Risi (2017a) also used partially ordered models to derive fragility curves for MECE damage states. They used the multinomial probability distribution to model the probability of being in any of MECE damage states based on binned intensity representation. De Risi et al. (2017a) used Bayesian inference to derive the model parameters for an ensemble of fragility curves.
- 65 Empirical tsunami fragility curves are usually constructed using generalized linear models based on probit, logit, or the complementary loglog link functions (Charvet et al. 2014, Lahcene et al. 2021). As far as the assessment of the goodness of fit, model comparison and selection are concerned, approaches based on the likelihood ratio and Akaike Information Criterion, (e.g., Charvet et al. 2014, Lahcene et al. 2021) and on k-fold cross validation have also been used (Chua et al. 2021). For estimating 70 confidence intervals for empirical tsunami fragility curves, bootstrap resampling has been commonly
- used (Charvet et al. 2014, Lahcene et al. 2021, Chua et al. 2021).

The present paper presents a simulation-based Bayesian method for inference and model class selection^{4/} for the ensemble modelling of the tsunami fragility curves for MECE damage states for a given class of buildings. By fitting the (positive definite) fragility link function to the conditional probability of

- 75 being in a certain damage state, given that building is not in any of the preceding states, the method ensures that the fragility curves do not cross (i.e., they are "hierarchical" as in De Risi et al. 2017a). The method uses adaptive Markov Chain Monte Carlo Simulation (MCMC, Beck and Au 2002), based on likelihood estimation using point-wise intensity values, to infer the ensemble of the fragility model parameters. Alternative link functions are compared based on log evidence which considers both the
- 80 average goodness of fit (based on log likelihood) and the model parsimony (based on relative entropy). This way, among the set of viable models considered, it identifies the simplest model that fits the data best. By "simplest model", we mean the model having maximum relative entropy (measured using the Kullback-Leibler (Kullback and Leibler 1951) distance) with respect to the data. This usually means the model has a small number of parameters.
- 85

The main advantage is that the method provides, within the same set of runs, consistent parameter estimations for all the damage states, estimates confidence intervals, and identifies the best fragility model class among the pool of models. Although the application is demonstrated for the observed

Formattato: SpazioPrima: 6 pt

ha formattato: Tipo di carattere: (Predefinito) Times New Roman, 11 pt, Colore carattere: Automatico, Inglese (Stati Uniti)

ha formattato: Tipo di carattere: (Predefinito) Times New Roman, 11 pt, Colore carattere: Automatico, Inglese (Stati Uniti)

ha formattato: Tipo di carattere: (Predefinito) Times New Roman, 11 pt, Colore carattere: Automatico, Inglese (Stati Uniti)

ha formattato: Tipo di carattere: (Predefinito) Times New Roman, 11 pt, Colore carattere: Automatico, Inglese (Stati Uniti)

ha formattato: Tipo di carattere: (Predefinito) Times New Roman, 11 pt, Colore carattere: Automatico, Inglese (Stati Uniti)

ha formattato: Tipo di carattere: (Predefinito) Times New Roman, 11 pt, Colore carattere: Automatico, Inglese (Stati Uniti)

ha formattato: Inglese (Regno Unito)

ha formattato: Tipo di carattere: (Predefinito) Times New Roman, 11 pt, Colore carattere: Automatico, Inglese (Stati Uniti)

Formattato: New paragraph, SpazioPrima: 0 pt, Dopo: 0 pt

 damage and effects of the South Pacific 2009<u>and Sulawesi Palu 2018</u> Tsunamis, the method is quite
 general and transferable to other contexts and hazards. The whole procedure is provided as an opensource software on the site of the European Tsunami Risk Service, <u>ETRis</u> (<u>https://eurotsunamirisk.org/tsunamirisktoolkit/eurotsunamirisk.org/software/)</u> and is also available as a standalone docker application.

95 42_Methodology

4.12.1 Definitions of intensity and damage parameters

The intensity measure, IM, (or simply "intensity"; e.g., the tsunami flow depth) refers to a parameter used to convey information about an event from the hazard level to the fragility level –it is an intermediate variable. The damage parameter, D, is a discrete random variable and the vector of damage levels is expressed as $\{D_j, j=0:N_{DS}\}$, where D_j as the jth damage level (threshold) and N_{DS} as the total number of damage levels considered (depending on the damage scale being used and on the type of hazard, e.g., earthquake, tsunami, debris flow). Normally, D_0 denotes the *no-damage* threshold, while $D_{N_{DS}}$ defines the total *collapse* or *being totally washed away*. Let us assume that DS_j is the jth damage state defined by the logical statement that the damage D is between the two damage thresholds D_j and D_{j+1} ; i.e., D is equal to or greater than D_j and smaller than D_{j+1} as follows (see also Figure 1 for a

graphical representation of the above expressions):

$$DS_{j} \equiv \left(D \ge D_{j}\right) \cdot \left(D < D_{j+1}\right) \tag{1}$$

where (·) denotes the logical product and is read as "AND". Obviously, for the last damage state, we have $DS_{N_{DS}} \equiv D \ge D_{N_{DS}}$.

110

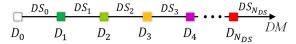


Figure 1: Graphical representation of damage levels D_j and damage states DS_j , where $j=0:N_{DS}$

Damage states $\{DS_0, DS_1, ..., DS_{N_{DS}}\}$ are mutually exclusive and collectively exhaustive (MECE) if an only if $P(DS_i \cdot DS_j | IM) = 0$ (if $i \neq j$, j = 0: N_{DS}) and $\sum_{j=0}^{N_{DS}} P(DS_j | IM) = 1$; (·) denotes the logical product and is read as "AND". In simple words, the damage states are MECE if being in one damage state excludes all others and if all the damage states together cover the entire range of possibilities in terms of damage. The ensemble of MECE damage states DS_i , j=0: N_{DS} is usually referred to as the damage scale (e.g., the EMS98, Grünthal 1998)

The proposed methodology herein is also applicable to fragility assessment in cases where^{4/} 120 observed damage data is not available for some of damage levels. Let **index** be the vector of *j* values *j* (*j*=0: *N_{DS}*) indicating damage levels *N_i* for which observed data is available (*j* values are in ascending *j* order). The new damage scale formed as-{*DS*_{index(1)}, *DS*_{index(2)}, ..., *DS*_{index(N)}}, where *N* is the length of vector **index**, i is also MECE. It is noteworthy that the number of fragility curves derived in this case is going to be equal to *N*-1. In the following, for simplicity and without loss of generality, we have

125 assumed that observed data is available for all damage levels, i.e., **index**={00:N_{DS}}, that is, N_{DS}=N_{PS}-1. However, the proposed methodology is also applicable to the modified damage scale formed by damage level indices in vector **index**(1:N+1). We will later see examples of such application in the case studies.

- - - Codice campo modificato - - - Formattato: Paragraph, Interlinea: multipla 1.15 ri

Formattato: Interlinea: multipla 1.15 ri
ha formattato: Tipo di carattere: Corsivo
ha formattato: Tipo di carattere: Corsivo, Pedice
ha formattato: Tipo di carattere: Corsivo
ha formattato: Tipo di carattere: Corsivo
ha formattato: Tipo di carattere: Corsivo, Pedice
ha formattato: Tipo di carattere: Corsivo
ha formattato: Car. predefinito paragrafo, Inglese (Stati Uniti)
Formattato: Rientro: Prima riga: 0.79 cm
ha formattato: Tipo di carattere: Grassetto
ha formattato: Tipo di carattere: Corsivo
ha formattato: Tipo di carattere: Corsivo
ha formattato: Tipo di carattere: Corsivo
ha formattato: Tipo di carattere: Corsivo, Pedice
ha formattato: Tipo di carattere: Corsivo
ha formattato: Tipo di carattere: Corsivo
ha formattato: Tipo di carattere: Grassetto
ha formattato: Tipo di carattere: Corsivo
ha formattato: Tipo di carattere: Non Corsivo
ha formattato: Tipo di carattere: Grassetto
ha formattato: Tipo di carattere: Corsivo
ha formattato: Pedice
ha formattato: Tipo di carattere: Corsivo
ha formattato: Pedice
ha formattato: Tipo di carattere: Grassetto
ha formattato: Tipo di carattere: Non Grassetto

4.22.2 Fragility modelling using generalized regression models

The generalized regression models (GLM) are more suitable for empirical fragility assessment with
 respect to the standard regression models. This is mainly because the dependent variable in the case of the generalized regression models is a Bernoulli binary variable (i.e., only two possible values: 0 or 1). Bernoulli variables are particularly useful in order to detect whether a specific damage level is exceeded or not (only two possibilities). In the following, fragility assessment based on GLM's is briefly described.

135

140

150

The term $P(DS_j|IM)$ denotes the probability of being in damage state DS_j for a given intensity level *IM*. Based on N_{DS} damage thresholds, <u>t</u>This conditional probability $P(DS_j|IM)$ can be read (see Equation 1) as the probability that $(D \ge D_j)$ and $(D < D_{j+1})$, and can be estimated as follows (see Appendix A for the derivation):

$$P(DS_{j}|IM) = P[(D \ge D_{j}) \cdot (D < D_{j+1})|IM]]$$

$$= \begin{cases} P(D \ge D_{j}|IM) - P(D \ge D_{j+1}|IM) & \text{for } 0 \le j < N_{DS} \\ P(D \ge D_{j}|IM) & \text{for } j = N_{DS} \end{cases}$$

$$(2)$$

where $P(D \ge D_j | IM)$ is the *fragility function* for damage level D_j . For each damage threshold, fragility can be obtained for a desired building class considering that the damage data provides Bernoulli variables (binary values) of whether the considered damage level was exceeded or not for given IM levels. For damage threshold D_j , all buildings with an observed damage

145 level $D < D_j$ will have a probability equal to zero, while those with $D \ge D_j$ will have an assigned probability equal to one. In other words, for building *i* and damage state *j*, the Bernoulli variable Y_{ij} indicates whether building *i* is in damage state *j*:

$$Y_{ij} = \begin{cases} 1 & \text{if building } i \text{ exceeds } D_j & \text{with probability } P(D \ge D_j \mid IM_i) \\ 0 & \text{if building } i \text{ does not exceed } D_j & \text{with probability } 1 - P(D < D_j \mid IM_i) \end{cases}$$
(3)

where IM_i is the intensity evaluated at the location of building *i*. A Bernoulli variable is defined by one parameter which is $P(D \ge D_j | IM_i)$ herein. This latter is usually linked to a linear logarithmic predictor in the form:

 $l_{ij} = \alpha_{0,j} + \alpha_{1,j} \ln IM_i$

 $l_{ii} = \alpha_{0,i} + \alpha_{1,i} \ln IM_{i}$

155 where $\alpha_{0,j}$ and $\alpha_{1,j}$ are regression constants for damage level *j*. We have employed generalized linear regression (e.g., Agresti 2012) with different link functions "logit", "probit", and "cloglog", to define probability function π_{ij} as following:

Codice campo modificato

(4)

Formattato: UDMK Denklem, Giustificato, SpazioPrima:
 6 pt, Dopo: 6 pt, Tabulazioni: 15.87 cm, Allineato al
 centro + 17.59 cm, Allineato a destra

cloglog (complementary log-log) transformation, the link function at the location of building *i* can be 160 expressed as $l_{ij} = \ln[-\ln(1 - \pi_{ij})]$. It is noted that the generalized linear regression based on maximum likelihood estimation (MLE) is available in many statistical software packages (e.g., MathWorks, Python, R).

-In the following, we have referred to the general methodology of fitting fragility model to data –one damage state at a time—the "*Basic method*". In the Basic method, the probability of exceeding damage level *j* is equal to the probability function defined in Equation (5); that is, $\pi_{ij} = P(D \ge D_j | IM_i)$. This method for empirical fragility curve parameter estimation is addressed in detail in the Section "*Results*", under "MLE-*Basic*" method. The fragility curves obtained under the "MLE-*Basic*" method could potentially cross, leading to the ill condition that $P(DS_j | IM) < 0$. To overcome this, a *hierarchical fragility modeling approach* has been adopted like that in De Risi et al. (2017a).

170 4.32.3 Hierarchical fragility modelling

185

Equation (2) for $0 \le j < N_{DS}$, and given IM_i , can also be written as follows using the product rule in probability:

$$P(DS_{j}|IM_{i}) = P[(D < D_{j+1}) \cdot (D \ge D_{j})|IM_{i}]$$

=
$$[1 - P(D \ge D_{j+1}|D \ge D_{j}, IM_{i})] \cdot P(D \ge D_{j}|IM_{i})$$
(6)

The term $P(D \ge D_{j+1}|D \ge D_j, IM_i)$ embedded in Equation (6) denotes the conditional probability that the damage exceeds the damage threshold D_{j+1} knowing that it has already exceeded the previous damage level D_j given IM_i . By making $\pi_{ij} = P(D \ge D_{j+1}|D \ge D_j, IM_i)$ (see Equation 5, which is positive definite), we ensure that the fragility curve of a lower damage level will not fall below the fragility curve of the subsequent damage threshold (the ill condition of $P(DS_j|IM) < 0$ does not take place). Hence, Equation (6) can be expanded as follows (see Appendix B for derivation):

$$\frac{P(DS_{j}|IM_{i}) = (1 - \pi_{ij}) \cdot \left[1 - \sum_{k=0}^{j-1} P(DS_{k}|IM_{i})\right] \quad \text{for } j \ge 1}{P(DS_{0}|IM_{i}) = 1 - \pi_{i0} = P(D < D_{1})} \tag{7}$$

$$P(DS_{j}|IM_{i}) = \begin{cases} (1 - \pi_{ij}) \cdot \left[1 - \sum_{k=0}^{j-1} P(DS_{k}|IM_{i})\right] \quad \text{for } j \ge 1 \\ 1 - \pi_{i0} \triangleq P(D < D_{1}|IM_{i}) \quad \text{for } j = 0 \end{cases} \tag{7}$$

In this way, the fragility curves are constructed in a hierarchical manner by first constructing the "fragility increments" $P(DS_j|IM_i)$.-starting from *j*=0. Note that for the last damage state $DS_{N_{DS}}$, the probability $P(DS_{N_{DS}}|IM_iHM)$, which is also equal to the fragility of the ultimate damage threshold $D_{N_{DS}}$, i.e. $P(D \ge D_{N_{DS}}|IM)$ (see Equation 2), can be estimated by satisfying the CE condition:

$$P(DS_{N_{DS}}|IM_{i}) = P(D \ge D_{N_{DS}}|IM_{i}) = 1 - \sum_{j=0}^{N_{DS}-1} P(DS_{j}|IM_{i})$$
(8)

Accordingly, the fragility for other damage levels $P(D \ge D_j | IM_i)$, where $0 < j < N_{DS}$, can be obtained from Equation (2) by starting from the fragility of the higher threshold $P(D \ge D_{j+1} | IM)$, and adding successively $P(DS_j | IM)$ (see Equation 7) as follows:

ha formattato: Tipo di carattere: Corsivo

Codice campo modificato

190
$$P(D \ge D_j | IM_i) = P(DS_j | IM_i) + P(D \ge D_{j+1} | IM_i) \text{ for } 0 \le j < N_{DS}$$

As a result, the set of hierarchical fragility models based on Equation (9) has $2 \times N_{DS}$ model parameters with the vector $\mathbf{\theta} = [\{\alpha_{0,j}, \alpha_{1,j}\}, j = 0: N_{DS} - 1]$. Obviously, with reference to Equation (8), no model parameter is required for the last damage level which is derived by satisfying the CE condition. The vector $\mathbf{\theta}$ of the proposed hierarchical fragility models can be defined by two different approaches:

195 1) *MLE method*: a generalized linear regression model (as explained in previous section) is used for the conditional fragility term $\pi_{ij} = P(D \ge D_{j+1} | D \ge D_j, IM)$ for the *j*th damage state DS_j (see Equation 7, $0 \le j < N_{DS}$). Herein, we need to work with partial damage data so that all buildings in DS_j (with an observed damage $D_j \le D < D_{j+1}$) will be assigned a probability equal to zero, while those in higher damage states (with $D \ge D_{j+1}$) will be assigned a probability equal to one

- 200 (i.e., in order to model the conditioning on $D \ge D_j$, the domain of possible damage levels is reduced to $D \ge D_j$).
 - Bayesian model class selection (BMCS): employing the Bayesian inference for model updating to obtain the joint distribution of the model parameters.

Detailed discussion about these two approaches, namely <u>"MLE"</u> and <u>"BMCS"</u>, for parameters 205 estimation of empirical fragility curves are provided in Section "*Results*".

4.4<u>2.4</u> Bayesian model class selection (BMCS) and parameter inference using adaptive MCMC

We use the Bayesian model class selection (BMCS) herein to identify the best link model to use in the generalized linear regression scheme. However, the procedure is general and can be applied to a more 210 diverse pool of candidate fragility models. BMCS (or model comparison) is essentially Bayesian updating at the model class level to make comparisons among candidate model classes given the observed data (e.g., Beck and Yuen 2004, Muto and Beck 2008). Given a set of $N_{\rm M}$ candidate model classes $\{\mathbb{M}_k, k = 1: N_{\rm M}\}$, and in the presence of the data **D**, the posterior probability of the $k^{\rm th}$ model class, denoted as $P(\mathbb{M}_k | \mathbf{D})$ can be written as follows:

215
$$P(\mathbf{M}_{k}|\mathbf{D}) = \frac{p(\mathbf{D}|\mathbf{M}_{k})P(\mathbf{M}_{k})}{\sum_{k=1}^{N_{\mathbf{M}}} p(\mathbf{D}|\mathbf{M}_{k})P(\mathbf{M}_{k})}$$
(10)

In lieu of any initial preferences about the prior $P(\mathbb{M}_k)$, one can assign equal weights to each model; thus, $P(\mathbb{M}_k) = 1/N_{\mathbb{M}}$. Hence, the probability of a model class is dominated by the likelihood $p(\mathbf{D}|\mathbb{M}_k)$ (a.k.a. *evidence*). It is to note that *p* herein stands for the probability density function (PDF). Here data vector $\mathbf{D} = \{(IM, DS)_i, i = 1: N_{CL}\}$ defines the observed intensity and damage data for N_{CL} buildings surveyed for class *CL*. In this paper, we are considering a mono class portfolio of buildings. Let us

220 surveyed for class *CL*. In this paper, we are considering a mono class portfolio of buildings. Let us define the vector of model parameters $\boldsymbol{\theta}_k$ for model class \mathbb{M}_k as $\boldsymbol{\theta}_k = [\{\alpha_{0,j}, \alpha_{1,j}\}_k, j = 0; N_{DS} - 1]$. We use the Bayes theorem to write the "evidence" $p(\mathbf{D}|\mathbb{M}_k)$ provided by data **D** for model \mathbb{M}_k as follows:

$$p(\mathbf{D}|\mathbf{M}_{k}) = \frac{p(\mathbf{D}|\boldsymbol{\theta}_{k},\mathbf{M}_{k})p(\boldsymbol{\theta}_{k}|\mathbf{M}_{k})}{p(\boldsymbol{\theta}_{k}|\mathbf{D},\mathbf{M}_{k})}$$
(11)

(9)

Formattato: Interlinea: multipla 1.15 ri

Formattato: Rientro: Sinistro: 0 cm, Sporgente 0.75 cm, SpazioPrima: 6 pt, Dopo: 6 pt, Interlinea: multipla 1.15 ri 225 It can be shown (see Appendix C, Muto and Beck 2008) that logarithm of the evidence (called *log-evidence*) $\ln[p(\mathbf{D}|\mathbb{M}_k)]$ can be written as:

$$\ln\left[p(\mathbf{D}|\mathbf{M}_{k})\right] = \underbrace{\int_{\Omega_{\theta_{k}}} \ln\left[p(\mathbf{D}|\boldsymbol{\theta}_{k},\mathbf{M}_{k})\right]p(\boldsymbol{\theta}_{k}|\mathbf{D},\mathbf{M}_{k})d\boldsymbol{\theta}_{k}}_{Term\,1} - \underbrace{\int_{\Omega_{\theta_{k}}} \ln\left[\frac{p(\boldsymbol{\theta}_{k}|\mathbf{D},\mathbf{M}_{k})}{p(\boldsymbol{\theta}_{k}|\mathbf{M}_{k})}\right]p(\boldsymbol{\theta}_{k}|\mathbf{D},\mathbf{M}_{k})d\boldsymbol{\theta}_{k}}_{Term\,2} \quad (12)$$

where Ω_{θ_k} is the domain of θ_k , and $p(\mathbf{D}|\theta_k, \mathbb{M}_k)$ is the likelihood function conditioned on model class \mathbb{M}_k . "*Term* 1" denotes the posterior mean of the log-likelihood, which is a measure of the average data fit to model \mathbb{M}_k ."*Term* 2" is the relative entropy (Kullback and Leibler 1959, Cover and Thomas 1991)

- between the prior $p(\theta_k | \mathbb{M}_k)$ and the posterior $p(\theta_k | \mathbf{D}, \mathbb{M}_k)$ of θ_k given model \mathbb{M}_k , which is a measure of the distance between the two PDFs. The latter *Term* 2 measures quantitatively the amount of information (on average) that is "gained" about θ_k from the observed data **D**. It is interesting that *Term* 2 in the log-evidence expression penalizes for model complexity; i.e., if the model extracts more
- 235 information from data (which is a sign of being a complex model with more model parameters), the log-evidence reduces. The exponential of the log-evidence, $p(\mathbf{D}|\mathbb{M}_k)$, is going to be implemented directly in Equation (10), to provide the probability attributed to the model class \mathbb{M}_k . More details on how to estimate the two terms in Equation (12) are provided in the Section "*Results*".
- The likelihood $p(\mathbf{D}|\boldsymbol{\theta}_k, \mathbb{M}_k)$ can be derived, based on point-wise intensity information, as the likelihood 240 of $n_{CL,j}$ buildings being in damage state DS_j (considering that $\sum_{j=0}^{N_{DS}} n_{CL,j} = N_{CL}$), according to data **D** defined before:

$$p(\mathbf{D}|\boldsymbol{\theta}_{k}, \mathbb{M}_{k}) = \prod_{j=0}^{N_{DS}} \prod_{i=1}^{n_{CJ}} P(DS_{j}|IM_{i})$$
(13)

The posterior distribution $p(\mathbf{\theta}_k | \mathbf{D}, \mathbb{M}_k)$ can be found based on Bayesian inference:

$$\underbrace{p(\mathbf{\theta}_{k}|\mathbf{D},\mathbb{M}_{k})}_{\text{posterior}} = \frac{p(\mathbf{D}|\mathbf{\theta}_{k},\mathbb{M}_{k})p(\mathbf{\theta}_{k}\mid\mathbb{M}_{k})}{\int_{\Omega_{\mathbf{\theta}_{k}}} p(\mathbf{D}|\mathbf{\theta}_{k},\mathbb{M}_{k})p(\mathbf{\theta}_{k}\mid\mathbb{M}_{k})d\mathbf{\theta}_{k}} = C^{-1}\underbrace{p(\mathbf{D}|\mathbf{\theta}_{k},\mathbb{M}_{k})}_{\text{likelihood}}\underbrace{p(\mathbf{\theta}_{k}\mid\mathbb{M}_{k})}_{\text{prior}} \tag{14}$$

- 245 where C⁻¹ is a normalizing constant. In lieu of additional information (or preferences), the prior distribution, p(θ_k|M_k), can be estimated as the product of marginal normal/<u>dognormal</u> PDFs for each model parameter, i.e., a multivariate normal/<u>dognormal</u> distribution with zero correlation between the pairs of model parameters θ_k (see Appendix D). More detail about an efficient prior joint PDF is provided in the Section "*Results*". To sample from the posterior distribution p(θ_k|D, M_k) in Equation
 250 (45<u>14</u>), an *adaptive* MCMC simulation routine (see Appendix E) is employed. MCMC is particularly useful for drawing samples from the target posterior, while it is known up to a scaling constant C⁻¹ (see Beck and Au 2002); thus, in Equation (14), we only need un-normalized PDFs to feed the MCMC
 - procedure. The MCMC routine herein employs the Metropolis-Hastings (MH) algorithm (Metropolis et al. 1953, Hasting 1970) to generate samples from the target joint posterior PDF $p(\boldsymbol{\theta}_k | \mathbf{D}, \mathbb{M}_k)$.

255 4.52.5 Calculating the hierarchical fragilities and the corresponding confidence intervals based on the vector of model parameters θ_k

260

230

For each realization of the vector of model parameters $\boldsymbol{\theta}_k$, the corresponding set of hierarchical fragility curves can be derived based on the procedure described in the previous sections. Since we have $-N_{d}$ realizations of the model parameters drawn from the joint PDF $p(\boldsymbol{\theta}_k | \mathbf{D}, \mathbb{M}_k)$ (where N_{d} is based on the number of distinct samples drawn from adaptive MCMC procedure, see also Appendix E), we can use the concept of *Robust Fragility* (RF) proposed in Jalayer et al. 2017 (see also Jalayer et al. 2015, and Jalayer and Erahimian 2020) to derive confidence intervals for the fragility curves. RF is defined as the expected value for a prescribed fragility model considering the joint probability distribution for the fragility model parameters $\boldsymbol{\theta}_k$. The RF herein can be expressed as:

265
$$P(D \ge D_j | IM, \mathbf{D}, \mathbb{M}_k) = \int_{\Omega} P(D \ge D_j | IM, \mathbf{\theta}_k) p(\mathbf{\theta}_k | \mathbf{D}, \mathbb{M}_k) d\mathbf{\theta}_k = \mathbb{E}_{\mathbf{\theta}_k | \mathbf{D}, \mathbb{M}_k} \left[P(D \ge D_j | IM, \mathbf{\theta}_k) \right]$$
(15)

$$\underline{P(D \ge D_j | IM, \mathbf{D}, \mathbb{M}_k)} = \int_{\Omega_{\theta_k}} \underline{P(D \ge D_j | IM, \mathbf{\theta}_k)} p(\mathbf{\theta}_k | \mathbf{D}, \mathbb{M}_k) d\mathbf{\theta} = \mathbb{E}_{\mathbf{\theta}_k | \mathbf{D}, \mathbb{M}_k} \Big[\underline{P(D \ge D_j | IM, \mathbf{\theta}_k)} \Big]$$
(15)

where $P(D \ge D_j | IM, \theta_k)$ is the fragility given the model parameters θ_k associated with the model \mathbb{M}_k (it has been assumed that once conditioned on fragility model parameters $\theta_k \theta$, the fragility becomes 270 independent of data **D**); $\mathbb{E}_{\theta_k | \mathbf{D}, \mathbb{M}_k}$ is the expected value over the vector of fragility parameters θ_k for model \mathbb{M}_k . The integral in Equation (15) can be solved numerically by employing Monte Carlo simulation with N_d simulations generated samples of from the vector θ_k as follows:

$$P(D \ge D_j | IM, \mathbf{D}, \mathbb{M}_k) \cong \frac{1}{N_d} \sum_{l=1}^{N_d} P(D \ge D_j | IM, \mathbf{0}_{k,l})$$
(16)

275 where $P(D \ge D_j | IM, \boldsymbol{\theta}_{k,l})$ is the fragility given the l^{th} realization $(l = 1; N_d)$ of the model parameters $\boldsymbol{\theta}_k$ for model \mathbb{M}_k . Based on the definition represented in Equation (15) and Equation (16), the variance $\sigma_{\boldsymbol{\theta}_k | \mathbf{D}, \mathbb{M}_k}^2$, which can be used to estimate a confidence interval for the fragility considering the uncertainty in the estimation of $\boldsymbol{\theta}_k$, is calculated as follows:

$$\sigma_{\boldsymbol{\theta}_{k}|\mathbf{D},\mathbb{M}_{k}}^{2}\left[P\left(D \ge D_{j}\left|IM,\boldsymbol{\theta}_{k}\right.\right)\right] = \underbrace{\mathbb{E}_{\boldsymbol{\theta}_{k}|\mathbf{D},\mathbb{M}_{k}}\left[P\left(D \ge D_{j}\left|IM,\boldsymbol{\theta}_{k}\right.\right)^{2}\right]}_{=\frac{1}{N_{i}}\sum_{k}^{N_{d}}P\left(D \ge D_{j}\left|IM,\boldsymbol{\theta}_{k}\right.\right)^{2}} - \underbrace{\left(\mathbb{E}_{\boldsymbol{\theta}_{k}|\mathbf{D},\mathbb{M}_{k}}\left[P\left(D \ge D_{j}\left|IM,\boldsymbol{\theta}_{k}\right.\right)\right]\right)^{2}}_{=P\left(D \ge D_{j}\left|IM,\mathbf{D},\mathbb{M}_{k}\right.\right)^{2} \text{ (Eq.16)}}$$
(17)

- 280 The empirical fragilities derived through the hierarchical fragility procedure are not necessarily attributed to a lognormal distribution. Hence, we have derived equivalent lognormal statistics (i.e., the median and dispersion) for the resulting fragility curves. The median intensity, η_{IM_c} , for a given damage level, is calculated as the *IM* corresponding to 50% probability on the fragility curve. The logarithmic standard deviation (dispersion) of the equivalent lognormal fragility curve at the onset of damage
- threshold, β_{IM_C}, is estimated as half of the logarithmic distance between the *IMs* corresponding to the probabilities of 16% (*IM*⁶_c) and the 84% (*IM*⁸⁴_c) on the fragility curve; thus, the dispersion can be estimated as β_{IM_C} = 0.50 × ln(*IM*⁸⁴_c/*IM*⁶⁵_c). The overall effect of epistemic uncertainties (due to the uncertainty in the fragility model parameters and reflecting the effect of limited sample size) on the median of the empirical fragility curve is considered through (logarithmic) intensity-based standard deviation denoted as β_{UF} (see Jalayer et al. 2020). β_{UF} can be estimated as half of the (natural) logarithmic distance (along the *IM* axis) between the median intensities (i.e., 50% probability) of the RF^{*}-curvess derived with a-16% confidence level-(denoted as *IM*⁸⁴) and 84% confidence level-(*IM*¹⁶). confidence levels, respectively; i.e., β_{UF} = 0.50 × ln(*IM*⁸⁴/*IM*¹⁶). The RF and its confidence band, the sample fragilities θ_{k,l} (where *l* = 1: *N_d*), the equivalent lognormal parameters of the RF η_{IM_c} and β<sub>IM_c⁵ of the RF, the epistemic uncertainty β_{UF}, and finally the intensities *IM*¹⁶ and *IM*⁸⁴ are shown in
 </sub>

Figure 2d to Figure <u>64</u>d in the following Section 3.

ha formattato: Non Evidenziato

Codice campo modificato

Formattato: New paragraph, Interlinea: singola

53 Results

315

5.13.1 Case Study 1: The 2009 South Pacific Tsunami

given in Table 1 based on Reese et al. (2011).

The central South Pacific region-wide tsunami was triggered by an unprecedented earthquake doublet
(Mw 8.1 and Mw 8.0) on September 29, 2009, between about 17:48 and 17:50 UTC (Goff and Dominey-Howes 2009). The tsunami seriously impacted numerous locations in the central South Pacific. Herein, the damage data related to the <u>brick masonry masonry</u> residential <u>buildings (1 storey)</u> and <u>Timber residential buildings</u> associated with the reconnaissance survey sites of American Samoa and Samoa islands were utilized as a proof of concept. Out of N_{CL}=120 surveyed buildings in the class of masonry residential, 84 were in American Samoa, and 36 in Samoa. Based on the observed damage regarding different indicators (see Reese et al. 2011 for more details on damage observation), each structure was assigned a damage state between (*DS*₀ and *DS*₅). The original data documented in Reese et al. (2011) reporting the tsunami flow depth and the attributed damage state to each surveyed building

can be found on the site of the European Tsunami Risk Service (<u>https://eurotsunamirisk.org/datasets/</u>, 310 reported as Class 1: brick masonry residential). The five damage <u>stateslevelsthresholds</u> ($N_{DS} = 5$ <u>not</u> <u>counting DS₀</u>) and a description of the indicators leading to the classification of the damage states are

 Table 1. The classification of damage thresholds (the damage scale) used in this study and the observed damage data associated with residential masonry buildings for 2009 South Pacific DataTsunami (from

Reese et al. 2011).

,Damage Level			- <u>Damage level description</u>						
D_0 None			no damage						
	<u>D</u> _L								
	<u>D</u> 2	Minor	significant non-structural damage. minor-structural damage						
	<u>D</u> ₃	Moderate	significant structural and non-structural damage						
	<u>,D</u> 4,								
	<u>D</u> 5								
Dama	ge threshold	Damage level	description	Number of masonry buildings n _{cL.j}	Flow depth range (m)[*]				
D_0	None	no damage		9	[0.01-0.50]				
D_{\pm}	Light	non-structura	damage	3	[0.30-0.80]				
D_2	Minor	structural dan		23	[0.40-2.00]				
D_3	Moderate	significant st damage	ructural and non-structural	24	[0.90-2.70]				
D_4	Severe	irreparable str demolition	uctural damage, will require	21	[0.96-3.07]				
D_5	Collapse	complete stru	ctural collapse	40 <u>N = 120</u>	[1.00-5.35]				

* [min-max] values (in meters) associated with each damage state.

3.2 Case Study 2: The 2018 Sulawesi-Palu Tsunami

On Friday 28 September 2018, at 18:02 p.m. local time, a shallow strike-slip earthquake of moment
 magnitude 7.5 occurred near Palu City, Central Sulawesi, Indonesia followed by submarine landslides, a tsunami, and massive liquefaction caused substantial damage (Muhari et al. 2018, Rafliana et al. 2022). In Sulawesi, more than 3300 fatalities and missing people, 4400 serious injuries and 170,000

ha formattato: Tipo di carattere: Corsivo
ha formattato: Tipo di carattere: Corsivo
Formattato: Allineato al centro
ha formattato: Tipo di carattere: 10 pt
Formattato: Interlinea: singola
Tabella formattata
ha formattato: Tipo di carattere: 10 pt
ha formattato: Tipo di carattere: 10 pt, Non Grassetto
ha formattato: Tipo di carattere: 10 pt
ha formattato: Tipo di carattere: 10 pt
Formattato: Interlinea: singola
ha formattato: Tipo di carattere: 10 pt, Non Grassetto
ha formattato: Tipo di carattere: 10 pt
ha formattato: Tipo di carattere: 10 pt
Formattato: Interlinea: singola
Tabella formattata
ha formattato: Tipo di carattere: 10 pt, Non Grassetto
Formattato: Interlinea: singola
ha formattato: Tipo di carattere: 10 pt
ha formattato: Tipo di carattere: 10 pt
ha formattato: Tipo di carattere: 10 pt, Non Grassetto
ha formattato: Tipo di carattere: 10 pt
ha formattato: Tipo di carattere: 10 pt
Formattato: Interlinea: singola
ha formattato: Tipo di carattere: 10 pt, Non Grassetto
ha formattato: Tipo di carattere: 10 pt
ha formattato: Tipo di carattere: 10 pt
Formattato: Interlinea: singola
ha formattato: Tipo di carattere: 10 pt, Non Grassetto
ha formattato: Tipo di carattere: 10 pt
ha formattato: Tipo di carattere: 10 pt
Formattato: Interlinea: singola
ha formattato: Tipo di carattere: 10 pt
Formattato: SpazioDopo: 0 pt, Interlinea: multipla 1.15 ri

	people were displaced by earthquake, tsunami, landslides, liquefaction or building collapse, or		
	combinations of these hazards (Paulik et al. 2019, Mas et al. 2020). Herein, the damage data related to		
325	the non-engineered unreinforced clay brick masonry buildings (1 & 2 storey) and non-engineered light		
	timber buildings locaed in Palu City were utilized. Based on the observed damage (see Paulik -et al.		
	2018 for more details on damage observation), each structure was assigned a damage state between (DS) and DS . The original data reporting the truncami flow donth and the attributed damage state to		
	$(DS_0 \text{ and } DS_3)$. The original data reporting the tsunami flow depth and the attributed damage state to each surveyed building can be found as supplementary material to Paulik et al. (2018). The three	<	ha formattato: Tipo di carattere: Corsivo
330	damage states levels ($N_{DS} = 3$) and a description of the indicators leading to the classification of the		ha formattato: Tipo di carattere: Corsivo
550	damage states revers $(v_{DS}) = 3$ f and a description of the indicators reading to the classification of the damage state are given in Table 2-based.		
	Table 2. The classification of damage thresholds (the damage scale) used for 2018 Sulawesi Palu Tsunami (from Paulik et al. 2018).		
	Damage Level Damage level description		
	D_0 None no damage		
	D ₁ <u>Repairable</u> partial damage, repairable		
	D ₂ <u>Unrepairable</u> partial damage, unrepairable		Tabella formattata
	D ₃ Complete complete structural collapse	į	ha formattato: Tipo di carattere: 11 pt, Non Grassetto
		1	Formattato: Normale, SpazioPrima: 0 pt, Dopo: 0 pt
335	3.3 The building classes	11	ha formattato: Tipo di carattere: (Predefinito) Times New Roman, 10 pt
	<u>۸</u> ۲	" /	Tabella formattata
	Damage Damage level description	1	ha formattato: Tipo di carattere: 10 pt
	Level	11	ha formattato: Tipo di carattere: (Predefinito) Times
	Partial damage Partial damage, repairable	/ 	New Roman, 10 pt ha formattato: Tipo di carattere: 10 pt
		><`	ha formattato: Tipo di carattere: (Predefinito) Times
	Partial damage, unrepairable Complete Complete structural collapse	1	New Roman, 10 pt
			ha formattato: Tipo di carattere: 10 pt
	۸۹		ha formattato: Tipo di carattere: (Predefinito) Times New Roman, 10 pt
	The building classes		ha formattato: Tipo di carattere: 10 pt
	Table 3 illustrates the building classes, for which fragility curves are obtained based on the proposed		ha formattato: Tipo di carattere: (Predefinito) Times New Roman, 10 pt
340	procedure, and based on the two-databases related to the two Tsunami events described above. The taxonomy used for describing the building class matches the original description used in the raw		ha formattato: Tipo di carattere: (Predefinito) Times New Roman, 10 pt, Inglese (Regno Unito)
	databases. The number of data points available for different building classes showcases both classes		ha formattato: Tipo di carattere: Corsivo
	with large number of data available, e.g., (e.g., brick masonry 1 storey/ (South Pacifiec) and non-		Formattato: SpazioPrima: 18 pt
245	engineered brick masonry 1 storey (Sulawesi), and classes with few data points available (, e.g., timber		Formattato: SpazioDopo: 0 pt
345	residential/ (South Pacific) and non-engineered masonry 2 storeys and Timber/ (Sulawesi). The fourthfifth column in the table shows the number of the proportion of the number of damage levels for	1	ha formattato: Tipo di carattere: Corsivo
	calculating the empirical damage levelsfragility curves which observed data is available N for which	1.	ha formattato: Tipo di carattere: Corsivo
	observed damage data are available (see Section 2.1) to the total number of damage levels in the	1	ha formattato: Tipo di carattere: Corsivo, Pedice
	corresponding damage scales, namely N_{DS} +1==65 for South Pacific and N_{DS} +1==43 for Sulawesi	1/	ha formattato: Tipo di carattere: Corsivo
350	tsunami events (to include level 0). If the ratio is equal to unity, it indicates that data is available for all	11	ha formattato: Tipo di carattere: Corsivo, Pedice
	the damage levels from 0 to N _{DS} . Note that the number of fragility curves derived is going to be equal	<u> </u>	ha formattato: Tipo di carattere: Corsivo
			ha formattato: Pedice

to N-1, that is, equal to the number of damage levels for which observed damage data is available minus one.

Class	Building	Tsunami Event	Number of	Number of fragility
Number	Class		Data Points	curves, N/N _{DSDS}
4	Brick masonry residential, 1 storey	South Pacific 2009	<u>120</u>	5/5
2	Timber residential	South Pacific 2009	<u>23</u>	<u>3/5</u>
<u>1</u>	Non engineered masonry, unreinforced	Sulawesi-Palu 2018	279	<u>23/3</u>
	with clay brick, 1 storey			·······
2	Non engineered masonry, unreinforced	Sulawesi-Palu 2018	<u>37</u>	<u>2/3</u>
	with clay brick, 2 storeyesys			, ,
3	Non engineered light timber	Sulawesi-Palu 2018	14	2/3

355

		Table 3. The buildings	Classes		
Bu	ilding Class	<u>Tsunami event</u>	Number of Data	<u>N/(Nps+1)</u> , index.	
1	Brick masonry residential, 1 storey	South Pacific 2009	120	$65/65$, index = $\{0, 0, 1, 2, 3,\}$	4:5}
2	Timber residential	South Pacific 2009	<u>23</u>	$43/65$, index = $\{2,3,4,5\}$	1 miles
1	Non engineered masonry, unreinforced	Sulawesi-Palu 2018	<u>279</u>	$32/43$, index = $\{0,0,1,2\}$	Car
	with clay brick, 1 storey				(Party
<u>2</u>	Non engineered masonry, unreinforced	Sulawesi-Palu 2018	<u>37</u>	$32/43$, index = $\{0, \frac{10}{1}, 1, 2\}$	1.
	with clay brick, 2 storeys				1 111
3	Non engineered light timber	Sulawesi-Palu 2018	<u>14</u>	$32/43$, index = {1,2,3}	11
1					. 11

360 The fourth column in Table 1-illustrates the distribution of data for masonry residential building class surveyed based on the observed damage level ($n_{CL,j}$, j = 0: N_{DS} , with the total sum of $N_{CL} = 120$ buildings surveyed for this class). The last column shows the range of the flow depth associated with each damage state.

5.3<u>3.4</u> The different model classes

365 For each building class considered, wWe have considered the set of candidate models consisting of the fragility models resulting from the three alternative link functions used in the generalized linear regression in Equation (5). That is, M₁ refers to hierarchical fragility modelling based on "probitlogit"; M₂ refers to hierarchical fragility modelling based on "logitprobit"; M₃ refers to hierarchical fragility modelling based on "logitprobit"; M₃ refers to hierarchical fragility modelling based on "logitprobit"; M₃ refers to hierarchical fragility modelling based on "logitprobit"; M₃ refers to hierarchical fragility modelling based on "logitprobit"; M₃ refers to hierarchical fragility modelling based on "logitprobit"; M₃ refers to hierarchical fragility modelling based on "logitprobit"; M₃ refers to hierarchical fragility modelling based on "logitprobit"; M₃ refers to hierarchical fragility modelling based on "logitprobit"; M₃ refers to hierarchical fragility modelling based on "logitprobit"; M₃ refers to hierarchical fragility modelling based on "logitprobit"; M₃ refers to hierarchical fragility modelling based on "logitprobit"; M₃ refers to hierarchical fragility modelling based on "logitprobit"; M₃ refers to hierarchical fragility modelling based on "logitprobit"; M₁ refers to hierarchical fragility modelling based on "logitprobit"; M₁ refers to hierarchical fragility modelling based on "logitprobit"; M₁ refers to hierarchical fragility modelling based on "logitprobit"; M₁ refers to hierarchical fragility modelling based on "logitprobit"; M₁ refers to hierarchical fragility modelling based on "logitprobit"; M₁ refers to hierarchical fragility modelling based on "logitprobit"; M₁ refers to hierarchical fragility modelling based on "logitprobit"; M₁ refers to hierarchical fragility modelling based on "logitprobit"; M₁ refers to hierarchical fragility modelling based on "logitprobit"; M₁ refers to hierarchical fragility modelling based on "logi

5.43.5 Fragility modelling using MLE

375

The first step towards <u>calculating the fragilitiesdirect fragility assessment (FA)</u> by employing the MLE method (see Section 2.3) is to define the vector of model parameters $\boldsymbol{\theta} = \{\alpha_{0,j}, \alpha_{1,j}\}$, where j =**index**(1: (N - 1)) (j^{t}): $N_{DS} - 1 = 4$, where $j^{t} = 1: N - 1$, index is definite vector, index is defined r in Section 2.1 as the vector of damage level indices (in ascending order) for which observed damage r data is available and N is length of **index**. To accomplish this, the j^{th} pair of the model parameters

ha formattato: Tipo di carattere: Corsivo
ha formattato: Tipo di carattere: Non Corsivo
Formattato: Allineato al centro
ha formattato: Tipo di carattere: (Predefinito) Times New Roman, 10 pt
Formattato: Allineato a destra
Tabella formattata
ha formattato: Tipo di carattere: (Predefinito) Times New Roman, 10 pt
ha formattato: Tipo di carattere: (Predefinito) Times New Roman, 10 pt
ha formattato: Tipo di carattere: (Predefinito) Times New Roman, 10 pt
ha formattato: Tipo di carattere: (Predefinito) Times New Roman, 10 pt
ha formattato: Tipo di carattere: (Predefinito) Times New Roman, 10 pt
ha formattato: Tipo di carattere: (Predefinito) Times New Roman, 10 pt
ha formattato: Tipo di carattere: Non Grassetto, Colore carattere: Nero, Crenatura 12 pt
ha formattato: Tipo di carattere: Non Grassetto
ha formattato: Tipo di carattere: Non Grassetto
ha formattato: Pedice
ha formattato: Tipo di carattere: Non Corsivo
ha formattato: Tipo di carattere: Non Grassetto
Tabella formattata
ha formattato: Tipo di carattere: Grassetto
Formattato: Interlinea: multipla 1.15 ri

ha formattato: Tipo di carattere: Non Grassetto
ha formattato: Tipo di carattere: Non Grassetto
ha formattato: Tipo di carattere: Non Grassetto
ha formattato: Tipo di carattere: Non Grassetto
ha formattato: Tipo di carattere: Non Grassetto
ha formattato: Tipo di carattere: Non Grassetto
ha formattato: Tipo di carattere: Corsivo
ha formattato: Tipo di carattere: Grassetto

	· · · · · · · · · · · · · · · · · · ·	
	ha formattato	[1]
	ha formattato	[2]
	Formattato	[3]
- 11	ha formattato	[6]
	ha formattato	[7]
11	ha formattato	[8]
11	ha formattato	[9]
18	ha formattato	[10]
18	ha formattato	[11]
1 8	ha formattato	[12]
- 33	ha formattato	[13]
- M	ha formattato	[14]
	ha formattato	[15]
	ha formattato	[16]
1	Formattato	[4]
	Tabella formattata	[5]
	ha formattato	[17]
	ha formattato	[18]
	ha formattato	[19]
	ha formattato	[20]
	ha formattato	[21]
	ha formattato	[22]
	ha formattato	[23]
$egin{aligned} & & & & & & & & & & & & & & & & & & &$	ha formattato	[24]
$\{ \boldsymbol{y}_{l}^{T_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l_$	ha formattato	[25]
	ha formattato	[26]
	ha formattato	[27]
$\left(\frac{m_{i}}{m_{i}} \right)$	ha formattato	[28]
1.4	ha formattato	[29]
<u>917</u>	ha formattato	[30]
. <u>733</u> .218	ha formattato	[31]
708	ha formattato	[32]
<u>1316</u> 648	ha formattato	[33]
111/1	ha formattato	[34]
	ha formattato	[35]
11.1	ha formattato	[36]
罰	ha formattato	[37]
	ha formattato	[38]
	Formattato	[39]
111	Formattato	[40]
	Formattato	[41]
1	Formattato	[42]
	Formattato	[43]
	Tabella formattata	[44]

P(D ≥ D_{j+1}|D ≥ D_j, IM) according to Equation (76) where 0 ≤ j < 5. Herein, we have used
MATLAB as a statistical software package (developed by MathWorks) to estimate the maximum likelihood of the jth pair of model parameters {a_{0,j}, a_{1,j}} by-using the following MATLAB command: glmfit(log(x_j), y_j, 'binomial', 'link', 'model'). The 'model' will be either 'logit', 'probit', or 'comploglog'. For each damage state level D_{j+1}, index(1)0 ≤ j < index(5N_{DS}N), the vector x_i is the IM'_j-s for which the condition D ≥ D_j is satisfied (e.g., for class 1 of South Pacific tsunami data, for
j=0, all the 120 buildings are considered, for j=1, 111 buildings are considered, see Table 1); y_j is the column vector containing one-to-one probability assignment to the IM data in x_j with zero (=0.0) assigned to those data corresponding to DS_j (D_j ≤ D < D_{j+1}) and one (=1.0) to those related to higher

 $\{\alpha_{0,j}, \alpha_{1,j}\}$ are is obtained by fitting the link functions in Equation (5) to conditional fragility

damage states (with $D \ge D_{j+1}$).

400

The vectors defining the MLE of the model parameters, θ_{MLE} , are presented in Table 42 for each of the building classes listed in Table 3 and for each of the three models \mathbb{M}_1 , \mathbb{M}_2 , and \mathbb{M}_3 defined in Section 3.24. Given the model parameter θ_{MLE} , the damage state probability $P(DS_j|\mathcal{H}_t IM)$ can be estimated based on the recursive Equation (7) and Equation (8). Then, the fragility for the ultimate damage level $DD_{index(N)_5}$, i.e., $P(D \ge D_5|IM, \theta_{MLE})$, is calculated first based on Equation (8). For the lower damage thresholds D_j , where 0 < j < 5, the empirical fragility $P(D \ge D_j | IM, \theta_{MLE})$ -is derived based on the

395 Equation (9). The resulting hierarchical fragility curves by employing the direct fragility assessment given $\boldsymbol{\theta}_{MLE}$, i.e., $P(D \ge D_j | IM, \boldsymbol{\theta}_{MLE})$ for $j = 1 \le j \le 5$ index(22: N + 1), –are shown later in the next section by comparison with those obtained from the BMCS method.

Table 4. The model parameters θ_{MLE}.

	Building Class	Mode Class	$\frac{1}{\alpha_0}$,0 a	2 _{1,0}	α _{0,1}	<i>α</i> _{1,1}	α _{0,2}	<i>α</i> _{1,2}	α _{0,3}	α _{1,3}	α _{0,4}	
0.0		\mathbb{M}_{1}	<u>5.2</u>	42 4	.190	3.900	4.255	-1.175	4.805	-1.345	2.887	-1.994	.9
<u>South Pacific</u> <u>Tsunami 2009</u>	1	M2	2.7	42, 2	.190.	2.007	2.221.	-0.670	2.804	-0.803	1.745	-1.157	1,7
Pac ni 2		Μ3	2.0	79, 2	.011.	.322	1.850	-1.268	3.057	-1.366	1.961	-1.981	2.2
nan		\mathbb{M}_1						1.127	1.512	2.484	0.771		17.7
Sou	<u>2</u>	\mathbb{M}_2						0.657	0.909	1.390	0.426	-1.575	• <u>413</u>
en El		\mathbb{M}_3						0.251	0.862	0.883	0.355		4.6
		\mathbb{M}_1	6.0	<u>59</u> <u>4</u>	.355 -	0.630	2.909						11111
am	<u>1</u>	\mathbb{M}_2	3.2	<u>.64</u> <u>2</u>	.340 -	0.371	1.709						u_{0}
uns		\mathbb{M}_3	2.4	<u>.98 2</u>	.088 -	0.907	2.056						111
É aci		\mathbb{M}_1	<u>3.5</u>	56 3	.672 -	2.486	5.126						11
-Palu 2018	<u>2</u>	\mathbb{M}_2	2.0	<u>77</u> <u>2</u>	.144 -	1.464	3.036					•	< 1 ¹
<u>Sulawesi-Palu Tsunami</u> <u>2018</u>		\mathbb{M}_3	1.6	<u>64</u> 2	.239 -	2.451	4.217						<u> </u>
we		\mathbb{M}_1			<u>(</u>).466	1.375	0.474	<u>1.195</u>				1
ula	<u>3</u>	\mathbb{M}_2).295	0.847	0.296	0.774				Ň
Ś		\mathbb{M}_3				0.041	1.068	<u>-0.076</u>	<u>0.835</u>				1
405	Table <u>4</u>2.	The mo	del para	meters () _{MLE} .								
	M	lodel	&_{0,0}	α_{1,0}	α_{0,1}	4 1,1	α_{0,2}	4 41,2	α_{0,3}	: «_{1,3}	. 40,4	α _{1,4}	•
	M	I ₁	5.242	4.190	3.900								7

₩₂	2.742	2.190	2.007	2.221	-0.670	2.804	-0.803	1.745	-1.157	1.733
M 3	2.079	2.011	1.322	$\frac{1.850}{1.850}$	-1.268	3.057	-1.366	1.961	-1.981	2.218

5.563.6 Fragility modelling using BMCS

In the first step, the model parameters are estimated for each model class separately. For each model class \mathbb{M}_k , the $2NN_{DS} = 10$ model parameters $\mathbf{\theta}_k$ are estimated through the adaptive MCMC method described in detail in Appendix E which yields the posterior distribution in Equation (14). With reference to Equation (14), the prior joint PDF $p(\mathbf{\theta}_k | \mathbb{M}_k)$ should be assigned in advance. As noted previously, $p(\mathbf{\theta}_k | \mathbb{M}_k)$ can be a multivariate normal PDF with zero correlation between the pairs of model parameters $\mathbf{\theta}_{DOST}$ (see Appendix D). The vector of the mean values, $\mu_{\mathbf{\theta}_{-}} \mu_{\mathbf{\theta}_{10\times 1}}$, is set to be the MLE tabulated in Table 2 (= $\mathbf{\theta}_{MLE}$ related to \mathbb{M}_k). We have attributed a high value for the coefficient of variation (COV-more than 1.603.20 herein) for each of the 10-model parameters. Appendix F

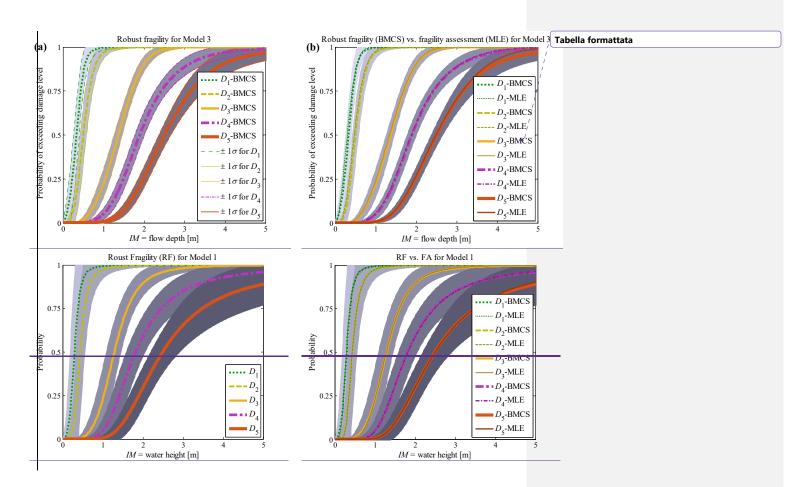
- 415 illustrates the histograms representing the drawn samples from the joint posterior PDF p(θ_k|D, M_k) for <u>a selected each of the 10 model parameters and five building classes in Table 3</u>. The marginal normal prior PDFs are also shown (with statistics defined previously).
 The robust fragility (RF) curves derived from the hierarchical fragility curves (see Section 2.5) and the
- corresponding <u>=-plus/minus</u> two-one_standard deviation_(±1σ) intervals from Equation (16) and
 Equation (17) are also plotted in Figure 2a to Figure <u>64a</u> corresponding to <u>-CClasses 1-2 South Pacific</u> Tsunami and Classes 1-3 Sulawesi-PaluM₁ to M₃, for one of the model classes M_k (k ∈ {1,2,3}) and for the damage thresholds *D*₁-*D*_k, *j* = index(22: N + 1)to *D*_{N5}. The colors of the hierarchical robust fragility RF-curves, labled as *D*_j-BMCS, match closely those shown in Figure 1Tables 1 and 2. The corresponding ±1σ ± two standard deviation-confidence interval curve, which reflects the uncertainty
- 425 in the model parameters, is shown as a light grey area with different color intensities. Figures 2b to Figure 64b compare the hierarchical robust fragilityRF and its confidence interval, labeled as D_f -BMCS, with the result of the direct fragility assessment hierarchical fragility assessment based on maximum likelihood estimation(FA, (see MLE method inprevious Section 2.33.5), labeled as D_f -MLE, for $1 \le j \le N5$. The MLE-basedfragility FA curves are shown with similar colors (and darker intensity)
- 430 and with the same line type (and half of the thickness) of the corresponding <u>robust fargilityRF</u> curves. The first observation is that the results of MLE-based fragilities and the BMCS-based fragilities are quite close in all damage thresholds (as expected, see Jalayer and Erahimian 2020). Moreover, the BMCS provides also the confidence bands for the fragility curves, which cannot be directly provided by the MLE method. To showcase an individual fragility curve, Figure 2c to Figure <u>64</u>c illustrate the
- 435 empirical fragility curves associated with the l^{th} realization of the vector of model parameters $\boldsymbol{\theta}_{k,l}$ for model class \mathbb{M}_k (where l is defined on each figure separately), i.e., $P(D \ge D_j | IM, \boldsymbol{\theta}_{k,l})$ where $1 \le j \le N5$ (see Section 2.5). Figures 2d to Figure 64d illustrate the robust fargility RF curve associated with the <u>ultimate</u> damage threshold $\underline{D}_{index/N} = D_{index}$, together with all the N_d -sample fragilities $(N_d = 903 \text{ for } \mathbb{M}_4)$.
- N_d=882 for M₂, and N_d=951 for M₂) shown with thin gray lines. N_d is the number of distinct samples
 as discussed in Appendix E and Appendix F of this manuscript. The intensity values for which the damage level is not exceeded are shown with blue circles having the probability equal to zero. Other *IMs* that lead to the exceedance of the damage level are shown with red circles with a probability equal to one. The total number of samples generated by adaptive MCMC in its last chain is N_{seed}=1000 (N_d≤ N_{seed})-Figure 2d to 64d also illustrate all the fragility parameters described in Section 2.5 including the
- 445 equivalent lognormal parameters η_{IM_c} and β_{IM_c} the epistemic uncertainty in the empirical fragility assessment β_{UF} , and also the intensities IM_c^{16} , IM_c^{84} , IM^{84} and, and $IM^{16} \oplus q$ (the latter two are $g \cdot IM_c$ values at the median-(, i.e. 50% probability,) from the RF minus/plus one standard deviation, respectively (see Section 2.5). For all 5 buildings classes considered (ie, two classes for South Pacific

ha formattato: Non Evidenziato

1	ha formattato: Tipo di carattere: Corsivo
ſ	ha formattato: Tipo di carattere: Corsivo

ha formattato: Tipo di carattere: Grassetto, Non Corsivo, Pedice

ha formattato: Tipo d	i carattere: Non Corsivo, Pedice
-----------------------	----------------------------------


ha formattato:	Tipo	di	carattere:	Non	Corsivo

ha formattato: Tipo di carattere: Corsivo

ha formattato: Tipo di carattere: Times New Roman

ha formattato: Non Evidenziato

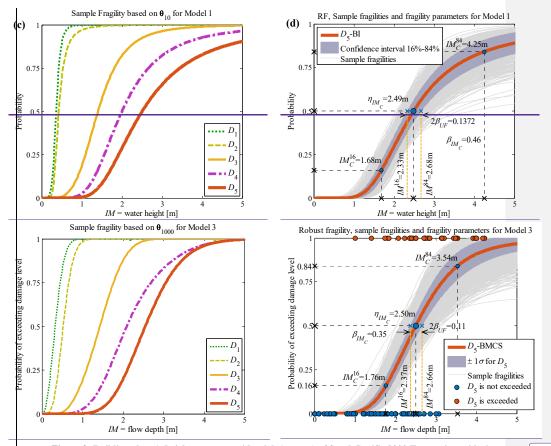
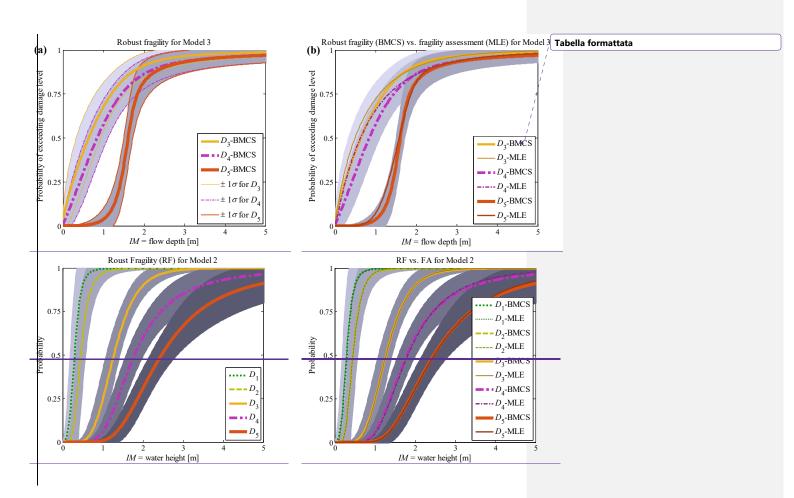
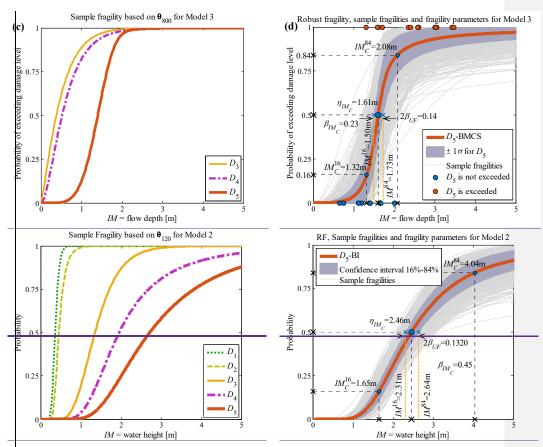
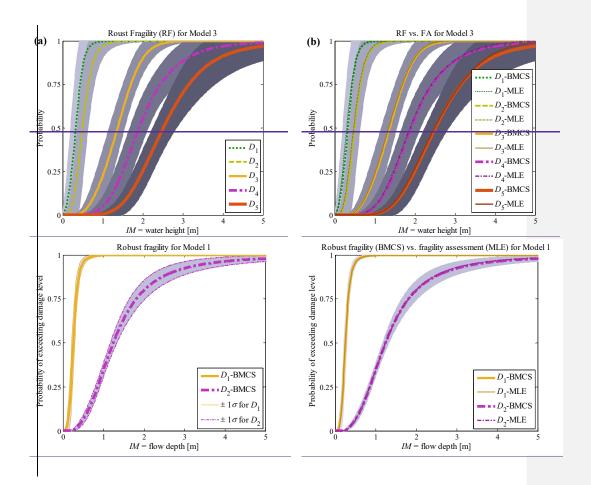




Figure 2: <u>Building class 1 (brick masonry residential, 1 storey) of South Pacific 2009 Tsunami considering</u> <u>fragility</u> Model class M_{13^-} : (a) <u>Hierarchical</u> rRobust fragility curves_(RF) and their ± two standard deviation confidence intervals; (b) comparison between <u>hierarchical</u> -robust fragility curvesRF and <u>theirits</u> confidence band (based on BMCS method) and <u>fragility assessment</u> FA (based on MLE method); (c) the fragility curves $P(D \ge D_j | IM, \theta_{13,1000})$ where $1 \le j \le 5$ associated with the 10<u>00</u>th realization of the model parameters, $\theta_{13,1000}$ (k=1-3 associated to model M_{13} , l=1000); (d) RF associated with the damage threshold D_5 , together with all the $N_d=903$ sample fragilities, and the equivalent lognormal fragility parameters.


ha formattato: Tipo di carattere: Grassetto

ha formattato: Tipo di carattere: Grassetto, Colore carattere: Automatico, Inglese (Stati Uniti)

- 475 Figure 3: Building class 2 (Timber residential) of South Pacific 2009 Tsunami considering fragility Model class M₃Model class M₂ (a) <u>Hierarchical r</u>Robust fragility curves (RF) and their ± two standard deviation confidence intervals; (b) comparison between <u>hierarchical robust fragility curves RF</u> and <u>their its</u> confidence band (based on BMCS method) and <u>fragility assessmentFA</u> (based on MLE method); (c) the fragility curves P(D ≥ D_j | IM, θ_{23,120800}) where 13 ≤ j ≤ 5 associated with the 120th-800th realization of the model parameters, θ_{23,80120} (k=2.3 associated to model M₂₃, l=120800); (d) Robust fragility Fassociated with the damage threshold Ds forgether with all the <u>M=82</u>-sample fragilities and the equivalent lognormal
- with the damage threshold D_5 , together with all the N_{θ} -882 sample fragilities, and the equivalent lognormal fragility parameters.

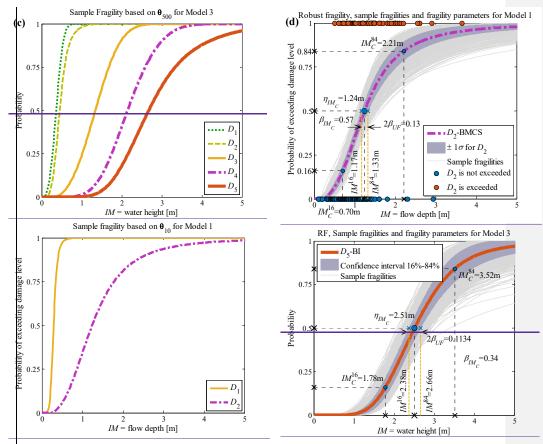
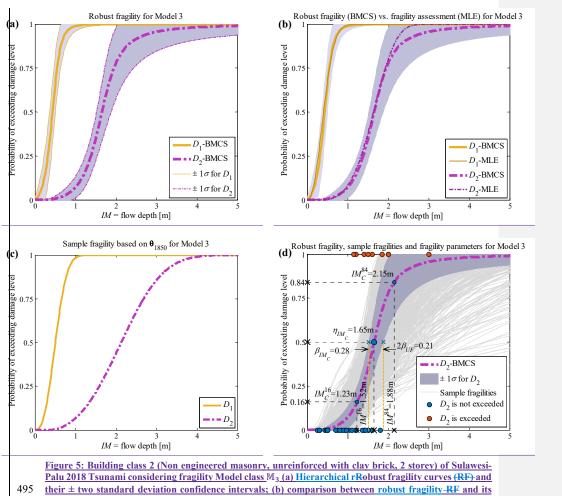
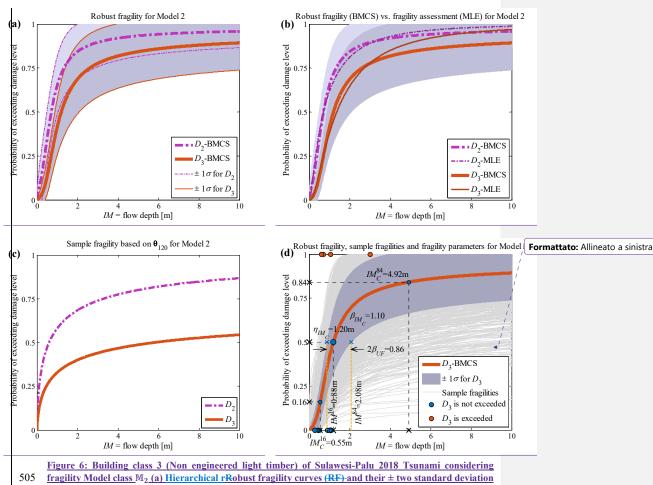




Figure 4: <u>Building class 1 (Non engineered masonry, unreinforced with clay brick, 1 storey) of Sulawesi-</u>
Palu 2018 Tsunami considering fragility Model classModel class M_{g1} (a) Robust fragility curves (RF) and their ± two standard deviation confidence intervals; (b) comparison between <u>hierarchical robust fragility</u>
RF and its confidence band (based on BMCS method) and <u>fragility assessmentFA</u> (based on MLE method); (c) the fragility curves P(D ≥ D_j | IM, θ_{31,5010}) where 1 ≤ j ≤ 52 associated with the 500th-10th realization of the model parameters, θ_{31,5010} (k=3-1 associated to model M₃₁, l=50010); (d) <u>Robust fragility curveF</u>
490 associated with the damage threshold *P*₅<u>D</u>₂, together with all the *N_q*=951-sample fragilities, and the equivalent lognormal fragility parameters.

Palu 2018 Tsunami considering fragility Model class M₃ (a) Hierarchical rRobust fragility curves (RF) and their ± two standard deviation confidence intervals; (b) comparison between robust fragility-RF and its confidence band (based on BMCS method) and fragility assessment FA-(based on MLE method); (c) the fragility curves P(D ≥ D_j |IM, θ_{3,1850}) where 1 ≤ j ≤ 2 associated with the 1850th realization of the model parameters, θ_{3,1850} (k=3 associated to model M₃, l=1850); (d) Robust fragility curveF associated with the damage threshold D₂, together with all the sample fragilities, and the equivalent lognormal fragility parameters.

Formattato: New paragraph, Interlinea: multipla 1.15 ri

505 fragility Model class M_2 (a) Hierarchical rRobust fragility curves (RF) and their ± two standard deviation confidence intervals; (b) comparison between robust fragility RF and its confidence band (based on BMCS method) and fragility assessment FA (based on MLE method); (c) the fragility curves $P(D \ge D_j | IM, \theta_{2,120})$ where $2 \le j \le 3$ associated with the 120th realization of the model parameters, $\theta_{2,120}$ (k=2 associated to model M_2 , l=120); (d) Robust fragility curveF associated with the damage threshold D_3 , together with all 510 the sample fragilities, and the equivalent lognormal fragility parameters.

<u>Building</u> <u>Class</u>	<u>Levelthre</u> shold <u>D</u> 1	$\frac{\eta_{IM_C}[\mathrm{m}]}{0.29}$	β_{IM_C}	β_{UF}	$\eta_{IM_C}[m]$	β_{IM_C}	0	n [m]	P	~
		0.29	0.40		inace a	PIMC	β_{UF}	$\eta_{IM_C}[m]$	β_{IM_C}	β_{UF}
	D		0.40	0.20	0.30	0.46	0.22	0.33	0.51	0.22
	<u>D</u> 2	0.43	0.35	0.15	0.46	0.37	0.15	0.50	0.40	0.15
_	<u>D</u> ₃	1.28	0.35	0.08	1.28	0.35	0.07	1.37	0.37	0.07
	\underline{D}_4	1.80	0.45	0.07	1.81	0.42	0.07	1.89	0.37	0.06
	<u>D</u> 5	<u>2.49</u>	<u>0.47</u>	0.07	2.48	0.47	0.07	2.50	<u>0.35</u>	0.06
	<u>D</u> ₃	0.64	1.08	0.58	0.63	1.20	0.64	0.63	1.26	0.53
<u>.</u>	\underline{D}_4	0.73	1.01	0.48	0.75	1.01	0.46	0.84	0.98	0.35
	<u>D</u> 5	1.52	0.25	0.08	<u>1.54</u>	0.26	0.08	1.61	0.23	0.07
	\underline{D}_1	0.25	0.39	0.15	0.26	0.43	0.15	0.27	0.56	0.18
-	<u>D</u> 2	<u>1.24</u>	<u>0.57</u>	<u>0.06</u>	<u>1.24</u>	<u>0.59</u>	<u>0.07</u>	<u>1.31</u>	<u>0.58</u>	0.06
	\underline{D}_1	0.39	<u>0.44</u>	0.20	0.38	0.45	0.19	0.43	0.43	0.17
-	\underline{D}_2	<u>1.60</u>	<u>0.31</u>	0.11	<u>1.59</u>	0.32	0.12	<u>1.65</u>	0.28	0.11
	<u>D</u> 2	0.74	1.01	0.34	0.71	1.03	0.38	0.81	0.85	0.29
<u>-</u>	<u>D</u> ₃	1.16	<u>0.98</u>	0.39	1.20	1.10	<u>0.43</u>	1.29	<u>0.95</u>	0.31
2		$\begin{array}{c} \underline{D_4}\\ \underline{D_5}\\ \underline{D_3}\\ \underline{D_4}\\ \underline{D_4}\\ \underline{D_2}\\ \underline{D_1}\\ \underline{D_2}\\ \underline{D_1}\\ \underline{D_2}\\ \underline{D_1}\\ \underline{D_2}\\ \underline{D_2}\\$	$\begin{array}{c cccc} \underline{D}_4 & \underline{1.80} \\ \underline{D}_5 & \underline{2.49} \\ \hline \underline{D}_3 & \underline{0.64} \\ \underline{D}_4 & \underline{0.73} \\ \hline \underline{D}_5 & \underline{1.52} \\ \hline \underline{D}_1 & \underline{0.25} \\ \underline{D}_2 & \underline{1.24} \\ \hline \underline{D}_1 & \underline{0.39} \\ \hline \underline{D}_2 & \underline{1.60} \\ \hline \underline{D}_2 & \underline{0.74} \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 3. The equivalent lognormal parameters and the epistemic uncertainty in the RF assessment for all the building classes, damage thresholds, and model classes M1_to

ha formattato: Tipo di carattere: 11 pt, Non Grassetto Formattato: Normale, SpazioPrima: 0 pt, Dopo: 0 pt

5.573.7 Model selection

With reference to Equation (12), the *log-evidence* ln[p(**D**|M_k)], can be estimated by subtracting *Term* <u>2 +from and *Term* <u>12</u>. *Term* <u>17he former</u> denotes the posterior mean of the log-likelihood, and the *Term*<u>2 latter</u> is the relative entropy between the prior and the posterior. Within the BMCS method, these two terms are readily computable.
</u>

Given the samples generated from the joint posterior PDF's $\boldsymbol{\theta}_k$, *Term* 1 (=*Average Data Fit*) can be seen as the expected value of the log-likelihood over the vector of fragility parameters $\boldsymbol{\theta}_k \boldsymbol{\theta}$ given the model \mathbb{M}_k , i.e., $\mathbb{E}_{\boldsymbol{\theta}_k | \mathbf{D}, \mathbb{M}_k}(\ln[p(\mathbf{D} | \mathbb{M}_k)])$. *Term* 2 (=*Relative EntropyInformation Gain*) is calculated as the expected value of information gain or entropy between the two PDF's posterior and prior over the

- vector $\boldsymbol{\theta}$ given the model \mathbb{M}_k , i.e., $\mathbb{E}_{\boldsymbol{\theta}_k | \mathbf{D}, \mathbb{M}_k} (\ln[p(\boldsymbol{\theta}_k \boldsymbol{\theta} | \mathbf{D}, \mathbb{M}_k) / p(\boldsymbol{\theta}_k \boldsymbol{\theta} | \mathbb{M}_k)])$. It is noted that based on Jensen's inequality, the mean information gain (relative entropy) of posterior compared to the prior is always non-negative (see e.g., Jalayer et al. 2012, Ebrahimian and Jalayer 2021). Hence, Term 2 should always be positive. Herein, $p(\boldsymbol{\theta}_k \boldsymbol{\theta} | \mathbf{D}, \mathbb{M}_k)$ is constructed by an adaptive kernel density function (see
- 530 Equation E5, Appendix E) as the weighted sum (average) of <u>Gau102A</u> dimensional Gaussian PDFs centered among the samples θ_k given model \mathbb{M}_k (k=1:3). The prior $p(\theta_k \theta | \mathbb{M}_k)$ is a multivariate normal PDF, respectively with the mean and covariance described previously for each model (see Equation D1 in Appendix D). Table 4 shows the results for model class selection_for all 5 buildings classes considered. The last column illustrates the posterior probability (weight) of the model $P(\mathbb{M}_k | \mathbf{D})$

535 according to Equation (10) assuming that the prior $P(\mathbb{M}_k) = \frac{1}{3}$ (where k=1:3). The best model for each building class is shown with a blue color. For instance, for Class 1 (masonry residential) for South Pacific Tsunami, Model class \mathbb{M}_3 (using a complementary log-log "cloglog" transformation of π_{ij} to the linear logarithmic space, see Equation 5) is preferred, since it has an overall larger difference between data fit and mean information gain, which ha formattato: Tipo di carattere: Corsivo ha formattato: Tipo di carattere: Corsivo

⁵⁴⁰ leads to a higher the log-evidence. The posterior weights (last column of Table 4, see also Equation 10) of 6%, 11% and 83% are stabilized through different runs of the BMCS method with around 2% changes. It should be noted that in Figures 2 to 6, we reported directly the fragility results for the "best"

fragility model class (i.e., the one that maximizes log evidence) identified based on the procedure described here.

		Table 4	. Bayesian model class se	election results for emp	irical fragility mode	ls 🔹
	Building Class	Model Class	<i>Term</i> 1: Average Data Fit	<i>Term</i> 2: Information Gain	Log-Evidence	Posterior Probability of each the model
E.		\mathbb{M}_1	<u>-124.4561</u> - 124.2898	<u>23.6853</u> 17.3825	- <u>141148.67231414</u>	0. <u>058055</u>
Tsunami	<u>1</u>	\mathbb{M}_2	<u>-123.4659</u> -123.1298	<u>23.9566</u> 17.9314	- <u>141147.06124224</u>	0. 107<u>113</u>
South Pacific 2009		M ₃	<u>-120.6454</u> -120.6051	24.781018.4015	- - <u>139145</u> .0066 <u>4264</u>	0.835832
th P		\mathbb{M}_1	-20.4791	<u>9.7549</u>	-30.2340	0.315
Sou	<u>2</u>	\mathbb{M}_2	-19.9106	10.4660	-30.3766	0.273
		Ma	<u>-19.7565</u>	<u>10.2117</u>	<u>-29.9682</u>	0.411
		M	<u>-161.9565</u>	9.5690	-171.5255	0.445
· El	<u>1</u>	\mathbb{M}_2	-161.2320	10.5660	-171.7979	0.339
Tsunami		MR	<u>-161.8821</u>	10.3673	-172.2494	0.216
		M ₁	-23.3696	<u>6.8292</u>	-30.1987.	0.213
Palu 2018	<u>2</u>	M ₂	-22.7429	<u>7.2697</u>	-30.0126	0.257
Sulawesi-Palu 2018		M	-22.4307	6.8551	-29.2858	0.531
awo		\mathbb{M}_1	<u>-15.8034</u>	4.2741	-20.0775	0.210
Sul	<u>3</u>	M.,	<u>-15.1575</u>	<u>3.9226</u>	<u>-19.0802</u>	0.570
		MR	-14.6294	5.4015	-20.0309	0.220

For instance, for Class 1 (masonry residential) for South Pacific Tsunami, Model class M_s (using a complementary log-log "cloglog" transformation of π_{tj} to the linear logarithmic space, see Equation 5) is preferred, since it has an overall larger difference between better data fit and mean information gain, which makes leads to a higher the log evidence greater. In terms of the information gain, all the three models perform similarly with higher value attributed to M_s (and obviously being more penalized for it). After M_s, the model M_s with a lognormal distribution ("probit") is preferred compared to M_s, with

- a logistic regression model ("logit") It is noteworthy that as new samples θ_k become available through the BMCS method by performing new MCMC sampling, the posterior model probabilities will change; however, the whole procedure seems to be stable; i.e., the evidence that M_d is preferable among the models using the BMCS holds. The posterior weights (last column of Table 4, see also Equation 10) of 6%, 11% and 83% are s is stabilized through different runs of the BMCS method with around 2%
 changes. It is noted that based on Jensen's inequality, the mean information gain of posterior compared
- to the prior is always non negative (see e.g., Jalayer et al. 2012). Hence, Term 2 should always be positive. It should be noted that in Figures 2 to 6, we reported directly the fragility results for the "best" fragility model class (i.e., the one that maximizes log evidence) identified based on the procedure described here.

565 5.58<u>3.8</u> The "Basic" (MLE-basic) method: fitting data to one damage state at a time

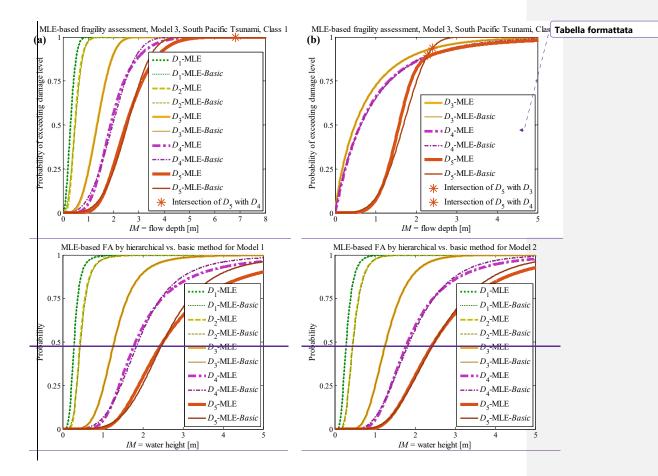
In the traditional-Basic method (see Section 2.2), the fragility $P(D \ge D_j | IM)$ is obtained by using a generalized linear regression model according to Equation (5) with "logit", "probit" or "cloglog" link function fitted to the damage data (\mathbb{M}_k where k = 1:3). With reference to the MLE method described

Formattato: Allineato al centro]
Formattato: Allineato al centro, Rientro: Sinistro cm, Destro 0.2 cm	o: 0.2
Tabella formattata	
ha formattato	[45]
ha formattato	[46]
ha formattato	[47]
ha formattato: Colore carattere: Blu	
ha formattato	[48]
ha formattato: Colore carattere: Automatico	
ha formattato: Colore carattere: Automatico]
ha formattato: Colore carattere: Automatico	
ha formattato: Colore carattere: Automatico]
ha formattato	[49]
ha formattato: Colore carattere: Blu]
ha formattato: Colore carattere: Blu]
ha formattato: Colore carattere: Blu	
ha formattato: Colore carattere: Blu]
ha formattato	[50]
ha formattato	[51]
ha formattato: Colore carattere: Automatico]
ha formattato: Colore carattere: Automatico	
ha formattato: Colore carattere: Automatico	
ha formattato: Colore carattere: Automatico	
Formattato: Normale, SpazioDopo: 8 pt, Interli multipla 1.08 ri	nea:

previously, the vector \mathbf{x}_j herein is the *IM* associated to all damage data (and not partial, as in the 570 hierarchical fragility method described in Section 3.3), and \mathbf{y}_i is the column vector of one-to-one

- 570 hierarchical fragility method described in Section 3.3), and \mathbf{y}_j is the column vector of one-to-one probability assignment to the *IM* data in \mathbf{x}_j with zero (=0) assigned to those data with an observed damage threshold $D < D_j$, and one (=1) to those with $D \ge D_j$. Thus, for the empirical fragility associated with the damage threshold D_j , and based on the model \mathbb{M}_k , there are two model parameters to be defined, namely $\mathbf{\theta}_{\text{MLE-Basic}} = \{\alpha_0, \alpha_1\}_k$. As noted previously, there might be conditions
- 575 (depending on the quantity of the observed damage data), where a part of the fragility of damage threshold D_j lies below the fragility of the higher damage level D_{j+1}, indicating that P(DS_j|IM) < 0. This is due to the fact that in the traditional method, there is no explicit requirement to satisfy P(DS_j|IM) > 0 as compared to the proposed method. The MLE of model parameters {α₀, α₁} for the damage levels D_j, j = j=-index(22: N+1)} associated with the building classes in Table 3 for damage levels D₁ to D_s D_{ac} are presented in Table 5.
- Figure 5–7 compares the fragility assessment obtained based on MLE-based hierarchical fragility modeling (see also the MLE-based curves in Figure 2b to Figure 64b) with the result of fragility assessment FA by employing the MLE-*Basic* method for the the "best" ree considered Model Classes \mathbb{M}_k ($k \in \{1,2,3\}$ /k=1:3) identified according to the procedure outlined in the previous section. It is noted
- that the fragility functional form is different between the two methods. MLE-based fragility assessmentFA given \mathbb{M}_k uses Equation (7) to Equation (9) to construct hierarchical fragility curve given that the conditional fragility term $\pi_{ij} = P(D \ge D_{j+1} | D \ge D_j, IM_i)$ -, j = index(1: N - 1) has one of the functional forms in Equation (5). However, the fragility assessmentFA using MLE-*Basic* method employs directly one of the expressions in Equation (5) (corresponding to \mathbb{M}_k , k=1:3) to derive the
- fragility curve $\pi_{ij} = P(D \ge D_j | IM_i)$ (based on the whole damage data) and j = index(2:N). This difference manifests itself in Figure 7a (for brick masonry residential, Class 1, South Pacific Tsunami) the deviation between the two fragility models in Figure 5, especially for higher damage thresholds D_4 and D_5 . The deviations between the fragility curves are particularly noticeable at higher IM values (with
- exceedance probability >50%); however, their medians are quite similar. In 7b for (Timber residential
 buildings, Class 2 South Pacific Tsunami) and 7e (Light informal timber buildings, Class 3, Sulawesi-Palu tsunami), we can observe that fragility curves intersect in the case of MLE-*Basic* fragility
 assessment. However, they do not intersect for hierarchical fragility curves. Strictly speaking, the fragilities are closer in the case of M₂ and M₃.

<u>The intersection points of the consequent damage states D_{j+1} with D_j due when using the MLE-Basic fragility estimation method are shown with color stars on each figure.</u>


							-						
												• [ha formattato: Tipo di carattere: 11 pt, Non Grassetto
	*												Formattato: New paragraph, SpazioPrima: 0 pt, Dopo: 0 pt, Interlinea: multipla 1.15 ri
605												+	Formattato: Interlinea: multipla 1.15 ri
												1	ha formattato: Tipo di carattere: 11 pt, Non Grassetto
	.											.±4	Formattato: Normale, SpazioPrima: 0 pt, Dopo: 0 pt, Interlinea: multipla 1.15 ri
				Tabla 5	The Med	al naram	ators A						Formattato: Allineato al centro
	Table 5. The Model parameterBuildingModel $D \ge D_1$ $D \ge D_2$ D						$D \ge D_3$				$D \ge D_5$	+	Formattato: Allineato al centro, SpazioDopo: 1 pt
	<u>Class</u>	Class	$\frac{\alpha_0}{\alpha_0}$	α ₁	$\frac{\alpha_0}{\alpha_0}$	α1	$\frac{\alpha_0}{\alpha_0}$	α ₁	$\frac{\alpha_0}{\alpha_0}$	α1	$\frac{\alpha_0}{\alpha_0}$	α1	Tabella formattata
IIT SO	1	\mathbb{M}_1	5.242	4.190	3.655	4.556	-1.221	4.884	-2.666	<u>4</u> 2.213	-4.271	4.6512	Formattato: SpazioDopo: 1 pt
Al	-	\mathbb{M}_2	2.742	2.190	1.946	2.486	-0.695	2.846	-1.506	2.425	-2.293	2.515	Formattato: Allineato al centro, Rientro: Sinistro: 0.2

ha formattato: Non Evidenziato

ha formattato: Tipo di carattere: Corsivo

cm, Destro 0.2 cm

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$M_3 = \frac{1.004}{2.259} = \frac{2.475}{4.208}$
\mathbb{M}_1 <u>0.466 1.375 -0.501 1.843</u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Formattato: Interlinea: singola

ha formattato: Non Evidenziato ha formattato: Non Evidenziato

Tsunami, Class 1, M₁₃₇; (b) South Pacific 2009 Tsunami, Class 2, M₁₃;) M₂ and (c) Palu-Sulawesi 2018

Tsunami, Class 1, M₁: -M₄; (d) Palu-Sulawesi 2018 Tsunami Class 2-M₄; M₃;(e) Palu-Sulawesi 2018 Tsunami Class 3, M2 M1. M3 models

To have a better comparison among the fragility curves in Figure 5, Table 6 reports the fragility assessmentFA parameters of the MLE and MLE-Basic methods for the damage thresholds Dindex(2)+ to 645 $D_{\text{index}(M)}$ with the equivalent lognormal parameters η_{IM_c} and β_{IM_c} (explained in Section 2.5) for \mathbb{M}_1 to M₃ for all five classes considered.- The medians are almost identical among the four models while there are higher dispersion estimates for MLE method derived by hierarchical fragility modelling. It is

noteworthy that the fragility curves derived based on the MLE-Basic method do not intersect here;

however, this condition was not explicitly enforced as it was in the hierarchical method.

ha formattato: Tipo di carattere: Corsivo

650

655

Table 6: Comparison between <u>fragility assessmentFA</u> based on MLE method (by hierarchical fragility

		modelling) and the MLE-Basic method for damage thresholds Dimercial to												ha formattato: Tipo di carattere: Corsivo
		0	. Model 1 (\mathbb{M}_1)				Model	$2(\mathbb{M}_2)$			Model	3 (№3)		
am	8	mage	MIEm	MLE method		Basic	MLE me	athod	MLE-B	asic	MLE m		MLE-	Tabella formattata
Tsunami	Cl ^a	Damage Level	WILE IIK	ettiou	meth	od	IVILE III	emou	metho	od	IVILE III	letilot	met	Formattato: Rientro: Prima riga: 0 cm
E		Д	$\eta_{IMc}[m]$	β_{IM_C}	$\eta_{IM_C}[m]$	β_{IM_C}	η_{IMc} [m]	β_{IM_C}	$\eta_{IM_c}[m]$	β_{IM_C}	$\eta_{IMc}[m]$	β_{IM_C}	$\eta_{IMC}[m]$	
[D_1	0.29	0.40	0.29	0.40	0.29	0.46	0.29	0.46	0.30	0.59	0.30	Formattato: SpazioDopo: 2 pt
		D_2	0.43	0.35	0.45	0.37	0.45	0.38	0.46	0.40	0.47	0.44	0.48	0.50
2009	-	D_3	1.28	0.34	1.28	0.34	1.27	0.35	1.28	0.35	1.34	0.38	1.35	ha formattato: Tipo di carattere: 7 pt
ific		D_4	1.82	0.43	1.88	0.40	1.82	0.42	1.86	0.41	1.88	0.38	1.96	Tabella formattata
1 Pac		D_5	2.50	0.46	2.50	0.36	2.47	0.44	2.49	0.40	2.49	0.34	2.54	
South Pacific		\underline{D}_3	0.47	1.10	0.47	1.10	0.49	1.10	0.49	1.10	0.49	1.37	0.49	ha formattato: Tipo di carattere: Non Corsivo
oai	2	$\underline{D_4}$	0.56	1.12	0.56	1.20	0.59	1.11	0.58	1.15	0.62	1.25	0.63	ha formattato: Tipo di carattere: Non Corsivo
		\underline{D}_{5}	1.54	0.30	1.62	0.28	<u>1.55</u>	0.30	1.63	0.28	<u>1.58</u>	0.28	1.69	
∞		\underline{D}_1	0.25	0.38	0.25	0.38	0.25	0.43	0.25	0.43	0.25	0.57	0.25	0.57
2018	+	<u>D</u> 2	<u>1.24</u>	0.57	<u>1.24</u>	0.57	<u>1.24</u>	<u>0.58</u>	<u>1.24</u>	0.58	<u>1.30</u>	0.57	<u>1.30</u>	ha formattato: Tipo di carattere: 7 pt
Palu	-	\underline{D}_1	0.38	0.45	0.38	0.45	0.38	0.47	0.38	0.47	0.40	0.53	<u>0.40</u>	
/esi-	4	<u>Đ</u>	- <u>1:63</u>	- <u>0.32</u> -	- <u>+.62</u>	<u>- θ.32</u>	<u> 1.62</u>	- <u>0.33</u> -	- <u>1:62</u>	- <u>0-33</u>	<u>- 1.64</u>	- <u>0.</u> 28	<u>1.64</u> - 7	ha formattato: Tipo di carattere: Non Corsivo
Sulawesi-Palu	2	\underline{D}_2	0.71	1.21	0.71	1.21	0.71	1.18	0.71	1.18	0.74	1.11	<u>0.74</u>	<u>1.11</u>
S	2	\underline{D}_3	1.38	<u>1.10</u>	1.31	<u>0.91</u>	<u>1.36</u>	1.02	1.29	0.88	<u>1.32</u>	0.84	<u>1.31</u>	0.76
		660											← (Formattato: New paragraph

Discussion: The results outlined in this section show fragility assessment for two different datasets+ corresponding to observed damaged in the aftermath of South Pacific and Sulawesi-Palu tsunami events. We have demonstrated the versatility of the proposed workflow and tool for hierarchical fragility assessment both for cases in which a large number of data points are available (e.g., Class 1, brick masonry residential, South Pacific Tsunami, Class 1, one-storey non-engineered masonry, Palu-Sulawesi Tsunami) and cases where very few data points are available (e.g., Class 2, timber residential, South Pacific Tsunami, Class 3, non-engineered light timber, Sulawesi-Palu Tsunami). Moreover, we demonstrated how the proposed workflow avoids crossing fragility curves (e.g., Class 2, timber residential, South Pacific Tsunami, Class 3, non-engineered light timber, Sulawesi-Palu Tsunami). The results illustrated for the five building classes demonstrate that the proposed workflow for hierarchical

670

665

ha formattato: Tipo di carattere: Grassetto

Formattato: Paragraph, SpazioPrima: 0 pt, Dopo: 0 pt, Interlinea: multipla 1.15 ri

fragility assessment can be applied in cases in which data points are not available for all the damage levels within the damage scale.

Conclusion

675	An integrated procedure based on Bayesian model class selection (BMCS) for empirical hierarchical	
	fragility modeling for a class of buildings or infrastructure is presented discussed. This procedure is	
	applicable to fragility modelling for any type of hazard as long as This procedure relies on efficient	
	simulation techniques to: the damage scale consists of mutually exclusive and collectively exhaustive	
	(MECE) damage states and the observed damage data points are independent. This simulation-based	
680	procedure can: -1) perform hierarchical fragility modeling for mutually exclusive and collectively	
	exhaustive <u>MECE</u> damage states; 2) estimate the confidence interval for the resulting fragility curves;	
	3) select the simplest model that fits the data best (i.e., maximizes log evidence) amongst a suite of	
	candidate fragility models (herein, alternative link functions for generalized linear regression are	
	considered). The proposed procedure is demonstrated for empirical fragility assessment based on	
685	observed damage data to masonry residential (1 storey) and timber residential buildings due to the 2009	
	South Pacific Tsunami in the American Samoa and Samoa Islands and non-engineered masonry	
	buildings (1 and 2 storeys) and non-engineered light timber buildings due to the 2018 Sulawesi-Palu	
	<u>Tsunami</u> . It is observed that:	
	• For each model class, the same set of simulation realizations is used to estimate the fragility	Formattato: Rientro: Sinistro: 0 cm, Sporgente 0.75 cm
690	parameters, the confidence band, and the log evidence. The latter, which consists of two terms	
	depicting the goodness of fit and the information gain <u>between posterior distribution</u> resulting from	
	the observed data and the prior distribution, is used to compare the candidate fragility models to	
	identify the model that maximizes the evidence.	
I	• Hierarchical fragility assessment can be done also based the maximum likelihood estimation	
695	(MLE) and the available statistical toolboxes (e.g., MATLAB's generalized linear model). For	
075	each damage level, the reference domain should be the subset of data that exceeds the consecutive	
	lower damage level, instead of taking the entire set of data points as reference domain. Note that	
I	the basic fragility estimation ("MLE- <i>Basic</i> ", non-hierarchical fragility model)(MLE- <i>Basic</i>) fits the	
I	damage data for each damage level at a time. In other words, the reference domain is set to all	
700	damage data.	
,	 The procedure is applicable also to cases in which observed data is available only for a subset of 	Formattato: Rientro: Sinistro: 0 cm, Sporgente 0.75 cm
	the damage levels within the damage scale. The number of fragility curves is going to be equal to	Tornattato. Nentro. sinistro. o cin, sporgente 0.75 cin
	the total number of damage levels for which data is available minus one. This means, in order to	
	have at least one fragility curve, one needs to have data available at least for two damage levels.	
705	 Although the resulting fragility curves are not lognormal (strictly speaking), equivalent statistics 	
105	work quite well in are used to showing the fragility curves (median and logarithmic dispersion) and	
	the corresponding epistemic uncertainty (logarithmic dispersion).	
l I	 The results show that the fragility curves built based on "cloglog" link function lead to the highest 	
	evidence compared to the fragility curves obtained based on the other two link functions "logit"	
710	and "probit".	
/10	 Moreover, tThe proposed method BMCS method and the one based on maximum likelihood 	
	• <u>Moreover</u> , the proposed method BMCS <u>method</u> and the one based on maximum method estimation (MLE) lead to essentially the same set of parameters' estimates for hierarchical fragility	
	estimation (MLE) read to essentially the same set of parameters estimates for merarchical raginty estimation. However, the latter does not readily lead to the confidence band and log evidence.	
	estimation. However, the fatter does not reading read to the confidence band and log evidence.	
I	·	Formattato: Rientro: Sinistro: 0 cm, Sporgente 0.75 cm

71	5 ● Using the basic method for fragility estimation ("MLE-Basic", non-hierarchical fragility model) ●		ha formattato: Tipo di carattere: Corsivo
	leads to results that are slightly different from the hierarchical fragility curves. The difference		Formattato: Rientro: Sporgente 0.75 cm
	grows for higher damage levels. It is to note that following the basic method "MLE- <u>Basic</u> " did not		ha formattato: Tipo di carattere: Corsivo
	lead to ill-conditioned results (i.e., fragility curves crossing) in some of the cases (Class 2 for South		
	Pacific Tsunami, and Class 3 for Sulawesi-Palu Tsunami, both Timber constructions) -studied in		
72			
	the basic method, the crossing fragility curves are going to be avoided.		
	• <u>•</u>		Formattato: Rientro: Sinistro: 0 cm, Sporgente 0.75 cm
	•		Formattato: Rientro: Sinistro: 0.75 cm
	The major improvement offered by this method is in providing a tool that can fit fragility curves to a		ha formattato: Tipo di carattere: (Predefinito) Times
72	5 set of hierarchical levels of damage or loss in an ensemble mannerThis method, which starts from	ix.	New Roman, 11 pt, Colore carattere: Automatico,
	prescribed fragility models and explicitly ensures the hierarchical relation between the damage levels,		Inglese (Stati Uniti)
	is very robust to cases where few data points are available and/or where data is missing for some of the		Formattato: Paragraph, Allineato a sinistra
	damage levels. This tool provides confidence bands for the fragility curves and performs model		ha formattato: Tipo di carattere: (Predefinito) Times
	selection among a set of viable link functions for generalized regression. It is to note that the proposed		New Roman, 11 pt, Colore carattere: Automatico,
73	method is in general applicable to hierarchical vulnerability modelling for human or economic loss	1.1	Inglese (Stati Uniti)
	levels and to different types of hazards, if (1) the defined levels are mutually exclusive and collectively	N.	ha formattato: Tipo di carattere: (Predefinito) Times
	exhaustive; and (2) a suitable intensity measure (IM) can be identified. The proposed method is quite	- N	New Roman, 11 pt, Colore carattere: Automatico,
	general with respect for empirical fragility modelling and is transferable also to other types of hazards.	N.	Inglese (Stati Uniti)
	This procedure is based on the assumption that given the intensity values, the set of observed damage		ha formattato: Tipo di carattere: (Predefinito) Times
73	5 data are independent.		New Roman, 11 pt, Colore carattere: Automatico, Inglese (Stati Uniti)
		<u></u>	
			ha formattato: Inglese (Regno Unito)
	A structure to the second structure of the second structure st		
	<u>Acknowledgements</u>		

The authors would like to acknowledge partial support from Horizon Europe Project Geo-INQUIRE. -Geo-INQUIRE is funded by the European Commission under project number 101058518 within the HORIZON-INFRA-2021-SERV-01 call. The authors are grateful to the anonymous reviewer and Perofessor Corresponded for their insightful and constructive comments.

740 Professor Carmine Galasso for their insightful and constructive comments.

ha formattato: Inglese (Stati Uniti)

Formattato: Paragraph

Appendix A: The derivation of Equation (2)

The probability of being in damage state DS_j for a given intensity measure IM can be estimated as follows:

$$P(DS_{j}|IM) = P\left[\left(D \ge D_{j}\right) \cdot \left(D < D_{j+1}\right)|IM\right] = 1 - P\left[\overline{\left(D \ge D_{j}\right)} \cdot \left(D < D_{j+1}\right)|IM\right]$$
$$= 1 - P\left[\overline{\left(D \ge D_{j}\right)} + \overline{\left(D < D_{j+1}\right)}|IM\right] = 1 - \underbrace{P\left[\left(D < D_{j}\right) + \left(D \ge D_{j+1}\right)|IM\right]}_{ME \therefore = P(D < D_{j}|IM) + P(D \ge D_{j+1}|IM)}$$
(A1)
$$= 1 - P\left(D < D_{j}|IM\right) - P\left(D \ge D_{j+1}|IM\right) = P\left(D \ge D_{j}|IM\right) - P\left(D \ge D_{j+1}|IM\right)$$

where the upper-bar sign stands for the logical negation and is read as "NOT", and (+) defines the logical sum and is read as "OR". The above derivation is based on the *rule of sum* in probability and considering the fact that the two statements $D < D_j$ and $D \ge D_{j+1}$ are mutually exclusive (ME); thus, the probability of their logical sum is the sum of their probabilities.

750 Appendix B: The derivation of Equation (7)

The probability of being in damage state DS_i (where $i \ge 1$) given the intensity measure evaluated at the location of building *i*, denoted as IM_i , based on Equation (6) can be expanded in a recursive format as follows:

$$P(DS_{j}|IM_{i}) = \underbrace{\left[1 - P(D \ge D_{j+1}|D \ge D_{j}, IM_{i})\right]}_{1 - \pi_{ij}} \cdot \left[1 - P(D < D_{j}|IM_{i})\right]$$

$$= (1 - \pi_{ij}) \cdot \left[1 - P((D < D_{j}) \cdot (D \ge D_{j-1}) + \dots + (D < D_{1}) \cdot (D \ge D_{0})|IM_{i})\right]$$

$$= (1 - \pi_{ij}) \cdot \left[1 - \sum_{k=0}^{j-1} P((D < D_{k+1}) \cdot (D \ge D_{k})|IM_{i})\right]$$

$$= (1 - \pi_{ij}) \cdot \left[1 - \sum_{k=0}^{j-1} P(DS_{k}|IM)\right]$$
(B1)

755 where (+) defines the logical sum and is read as "OR". The above derivation is based on the rule of sum in probability and considering the fact that the recursive statements in the second term expressed generally as $(D < D_{k+1}) \cdot (D \ge D_k)$, where $0 \le k \le j - 1$, are ME; hence, the probability of their logical sum is the sum of their probabilities. It is to note that in case where j=0, the above equation can be written as:

760
$$P(DS_0|IM_i) = (1 - \pi_{i0}) \triangleq P(D < D_1|IM_i)$$

<u>(B2)</u>

ha formattato: Tipo di carattere: Corsivo

ha formattato: Tipo di carattere: Corsivo

Codice campo modificato

Appendix C: The derivation of log-evidence in Equation (13)

Appendix C: The derivation of log-evidence in Equation (13)

765

From an information-based point of view, the logarithm of the evidence (*log-evidence*), denoted as $\ln[p(\mathbf{D}|\mathbb{M}_k)]$, can provide a quantitative measure of the amount of information as evidence of model \mathbb{M}_k . Moreover, the posterior PDF $p(\theta_k \oplus | \mathbf{D}, \mathbb{M}_k)$ (see Equation 14) over the domain of the model parameters Ω_{θ} given the k^{th} model is equal to unity. Thus, $\ln[p(\mathbf{D}|\mathbb{M}_k)]$ can be written as follows:

$$\ln\left[p(\mathbf{D}|\mathbf{M}_{k})\right] = \ln\left[p(\mathbf{D}|\mathbf{M}_{k})\right] \cdot \underbrace{\int_{\Omega \theta_{k}} p(\mathbf{\theta}_{k}|\mathbf{D},\mathbf{M}_{k}) d\mathbf{\theta}_{k}}_{=1.0}$$
(C1)

Since the log-evidence is independent of θ , we can bring it inside the integral, and do some simple manipulation (also using the relation in Equation 11) as follows:

$$\ln\left[p(\mathbf{D}|\mathbf{M}_{k})\right] = \int_{\Omega_{\theta_{k}}} \ln\left[p(\mathbf{D}|\mathbf{M}_{k})\right] \cdot p(\mathbf{\theta}_{k}|\mathbf{D},\mathbf{M}_{k}) d\mathbf{\theta}_{k}$$

$$= \int_{\Omega_{\theta}} \ln\left[\frac{p(\mathbf{D}|\mathbf{\theta}_{k},\mathbf{M}_{k})p(\mathbf{\theta}_{k}|\mathbf{M}_{k})}{p(\mathbf{\theta}_{k}|\mathbf{D},\mathbf{M}_{k})}\right] \cdot p(\mathbf{\theta}_{k}|\mathbf{D},\mathbf{M}_{k}) d\mathbf{\theta}_{k}$$

$$= \int_{\Omega_{\theta}} \ln\left[\frac{p(\mathbf{D}|\mathbf{\theta}_{k},\mathbf{M}_{k})}{p(\mathbf{\theta}_{k}|\mathbf{D},\mathbf{M}_{k})/p(\mathbf{\theta}_{k}|\mathbf{M}_{k})}\right] \cdot p(\mathbf{\theta}_{k}|\mathbf{D},\mathbf{M}_{k}) d\mathbf{\theta}_{k}$$

$$= \int_{\Omega_{\theta}} \ln\left[p(\mathbf{D}|\mathbf{\theta}_{k},\mathbf{M}_{k})\right] \cdot p(\mathbf{\theta}_{k}|\mathbf{D},\mathbf{M}_{k}) d\mathbf{\theta}_{k} - \int_{\Omega_{\theta}} \ln\left[\frac{p(\mathbf{\theta}_{k}|\mathbf{D},\mathbf{M}_{k})}{p(\mathbf{\theta}_{k}|\mathbf{M}_{k})}\right] \cdot p(\mathbf{\theta}_{k}|\mathbf{D},\mathbf{M}_{k}) d\mathbf{\theta}_{k}$$
(C2)

Appendix D: Multivariate normal distribution and generating dependent Gaussian variables

775 Let us assume that the vector of parameters for the <u>k</u>th model is set to θ ; i.e., $\theta = \theta_k$. A multivariate normal PDF can be expressed as follows:

$$p(\boldsymbol{\theta}) = \frac{1}{\sqrt{(2\pi)^{n} |\mathbf{S}|}} \exp\left(-\frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\mu}_{\boldsymbol{\theta}})^{\mathrm{T}} \mathbf{S}^{-1} (\boldsymbol{\theta} - \boldsymbol{\mu}_{\boldsymbol{\theta}})\right)$$
(D1)

where *n* is the number of components (uncertain parameters) of vector $\mathbf{\theta} = \{\theta_i, i = 1:n\}; \mu_{\mathbf{\theta}}$ is the vector of the mean value of $\mathbf{\theta}$; **S** is the covariance matrix. The positive definite matrix $\mathbf{S}_{n \times n}$ can be factorized based on Cholesky decomposition as $\mathbf{S}=\mathbf{L}\mathbf{L}^T$, where $\mathbf{L}_{n \times n}$ is a lower triangular matrix (i.e., for all $j > i, L_{ij} = 0$ where L_{ij} denotes the (i, j)-entry of the matrix **L**). A Gaussian vector $\mathbf{\theta}_{n \times 1}$ with mean $\mu_{\mathbf{\theta}}$ and covariance **S** can be generated as follows:

$$\boldsymbol{\theta} = \boldsymbol{\mu}_{\boldsymbol{\theta}} + \mathbf{L}\mathbf{Z} \tag{D2}$$

where $\mathbb{Z}_{n \times 1}$ is a vector of standard Gaussian *i.i.d.* random variables with zero mean $\mathbf{0}_{n \times n}$, and covariance equal to the identity matrix $\mathbf{I}_{n \times n}$. To verify the properties of $\mathbf{0}$, we know that with reference to Equation (D2), it should have a mean equal to $\mu_{\mathbf{0}}$ and a covariance matrix equal to S. The expectation of $\mathbf{0}$, denoted as $\mathbf{E}(\mathbf{0})$, can be estimated as:

$$E(\boldsymbol{\theta}) = E(\boldsymbol{\mu}_{\boldsymbol{\theta}} + \mathbf{L}\mathbf{Z}) = E(\boldsymbol{\mu}_{\boldsymbol{\theta}}) + \mathbf{L}\underbrace{E(\mathbf{Z})}_{=\boldsymbol{\theta}_{\text{ext}}} = \boldsymbol{\mu}_{\boldsymbol{\theta}}$$
(D3)

The covariance matrix of $\boldsymbol{\theta}$ can be written as:

770

790
$$\operatorname{E}\left[\left(\boldsymbol{\theta}-\boldsymbol{\mu}_{\boldsymbol{\theta}}\right)\left(\boldsymbol{\theta}-\boldsymbol{\mu}_{\boldsymbol{\theta}}\right)^{T}\right] = \operatorname{E}\left(\mathbf{L}\mathbf{Z}\mathbf{Z}^{T}\mathbf{L}^{T}\right) = \mathbf{L}\underbrace{\operatorname{E}\left(\mathbf{Z}\mathbf{Z}^{T}\right)}_{=\mathbf{I}_{son}}\mathbf{L}^{T} = \mathbf{L}\mathbf{L}^{T} = \mathbf{S}$$
 (D4)

33

ha formattato: Tipo di carattere: Corsivo

Thus, the vector $\boldsymbol{\theta}$ can be written according to Equation (D2).

Appendix E: Adaptive MCMC scheme

MCMC procedure

805

The MCMC simulation scheme has a Markovian nature where the transition from current state to a new state is done by using a conditional transition function that is conditioned on the current (last) state. Let us assume that the vector of parameters for the *k*th model is set to θ ; i.e., $\theta = \theta_{k.}$. To generate (*i*+1)th sample θ_{i+1} from the current *i*th sample θ_i based on MH routine, the following procedure is adopted herein:

- Simulate a *candidate* sample θ^{*} from a *proposal* distribution q(θ|θ_i). It is important to note that there are no specific restrictions about the choice of q(·) apart from the fact that it should be possible to calculate both q(θ_{i+1}|θ_i) and q(θ_i|θ_{i+1}).
 - Calculate the acceptance probability min(1,r), where r is defined as follows (it is to note that the following Equation (E1) is written in the general format for brevity compared to Equation (14) of the manuscript, and we have used θ instead of θ_k, and dropped the conditioning on M_k; hence when we write the ith sample θ_i, it is actually the ith sample drawn from θ_k and "k" is dropped for brevity):

$$r = \frac{p(\boldsymbol{\theta}^*|\mathbf{D})}{p(\boldsymbol{\theta}_i|\mathbf{D})} \cdot \frac{q(\boldsymbol{\theta}_i|\boldsymbol{\theta}^*)}{q(\boldsymbol{\theta}^*|\boldsymbol{\theta}_i)} = \left(\frac{p(\mathbf{D}|\boldsymbol{\theta}^*)}{p(\mathbf{D}|\boldsymbol{\theta}_i)} \cdot \frac{p(\boldsymbol{\theta}^*)}{p(\mathbf{\theta}_i)}\right) \frac{q(\boldsymbol{\theta}_i|\boldsymbol{\theta}^*)}{p(\mathbf{\theta}_i)} \cdot \frac{q(\boldsymbol{\theta}_i|\boldsymbol{\theta}^*)}{q(\boldsymbol{\theta}^*|\boldsymbol{\theta}_i)}$$
(E1)

- Generate u from a Uniform distribution between (0, 1), $u \sim$ Uniform (0, 1).
- if u ≤ min(1,r) → set θ_{i+1}=θ^{*} (accept the candidate state to be taken as the next state of the Markov chain); else set θ_{i+1}=θ_i (the current state is taken as the next state).
- Estimating the likelihood in the arithmetic scale based on Equation (E1) may encounter instability as $p(\mathbf{D}|\mathbf{\theta})$ may become very small; thus, the likelihood ratio becomes indeterminate. To avoid this numerical instability, it is desirable to substitute the likelihood ratio in Equation (E1) with $\exp(\ln(p(\mathbf{D}|\mathbf{\theta}^*)) \ln(p(\mathbf{D}|\mathbf{\theta}_i)))$ if the ratio becomes indeterminate or zero.
- With reference to Equation (E1), samples from the posterior can be drawn based on MH algorithm 815 without any need to define the normalizing C^{-1} coefficient according to Equation (14). Equation (E1) always accepts a candidate if the new proposal is more likely under the target posterior distribution than the old state. Therefore, the sampler will move towards the regions of the state space where the target posterior function has high density.
- The choice of the proposal distribution q is very important. The ratio $q(\mathbf{\theta}_i|\mathbf{\theta}^*)/q(\mathbf{\theta}^*|\mathbf{\theta}_i)$ corrects for any asymmetries in the proposal distribution. Intuitively, if $q(\mathbf{\theta}^*|\mathbf{\theta}_i)=p(\mathbf{\theta}^*|\mathbf{D})$, the candidate state is always accepted (with r=1); thus the closer q is to the target posterior PDF, the better the acceptance rate and the faster the convergence. This is not a trivial task as information about the important region $p(\mathbf{\theta}|\mathbf{D})$ is not available. If the proposal distribution q is *non-adaptive*, it means that the information of the current sample $\mathbf{\theta}_i$ is not used to explore the important region of the target posterior distribution $p(\mathbf{\theta}|\mathbf{D})$; thus, we
- 825 can say that $q(\theta^*|\theta_i) = q(\theta^*)$. Therefore, it is more desirable to choose an *adaptive* proposal distribution which depends on the current sample (Beck and Au 2002). Having the proposal PDF q centered around the current sample renders the MH algorithm like a local random walk that adaptively leads to the generation of the target PDF. However, if the Markov chain starts from a point that is not close to region

of the significant probability density of $p(\boldsymbol{\theta}|\mathbf{D})$, the chance of generating a candidate state $\boldsymbol{\theta}^*$ will become 830 extremely small (and we will face high rejection of candidate samples). Therefore, most of the samples will be repeated. To solve this problem, Beck and Au (2002) introduce a sequence of PDFs that bridge the gap between the prior PDF and the target posterior PDF. This issue will be more explored hereafter under the adaptive MCMC. Finally, it can mathematically be shown that (see Beck and Au 2002) if the current sample θ_i is distributed as $p(\cdot | \mathbf{D})$, the next sample θ_{i+1} is also distributed as $p(\cdot | \mathbf{D})$.

835 Adaptive Metropolis-Hastings algorithm (adaptive MCMC)

The adaptive MH algorithm (Beck and Au 2002) introduces a sequence of intermediate candidate evolutionary PDF's that resemble more and more the target PDF. Let $\{p_1, p_2, ..., p_{Nchain}\}$ be the sequence (*chain*) of PDF's leading to $p(\boldsymbol{\theta}|\mathbf{D})=p_{Nchain}$, where Nchain is the number of chains and each chain contains N_{seed} samples (as indicated subsequently). The following adaptive simulation-based procedure is employed:

- Step 1: Simulate <u>N_d_Nseed</u> samples $\{\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \dots, \boldsymbol{\theta}_{Nseed}\}^{(1)}$, where the superscript (1) denotes the first simulation level or the first chain (nc=1 where nc denotes the chain number/simulation level), with the target PDF p_1 as the first sequence of samples. Instead of accepting or rejecting a proposal for $\boldsymbol{\theta}$ involving all its components simultaneously (called block-wise updating scheme), it might be computationally simpler and more efficient for the first chain to make proposals for individual 845 components of θ , one at a time (called *component-wise* updating approach). In the *block-wise* updating, the proposal distribution has the same dimension as the target distribution. For instance, if the model parameters involve n uncertain parameters (e.g., the vector of model parameters $\theta_{n \times 1}$ in this paper has
- $n = 2(\frac{N_{HS}}{1} 1) = 8N$ variables for each of the three models M_1 , M_2 , and M_3), we design an *n*-850 dimensional proposal distribution, and either accept or reject the candidate state (with all n variables) as a block. The block-wise updating approach can be associated with high rejection rates. This may cause problem when we want to generate the first sequence of samples (first chain). Therefore, we have utilized the more stable component-wise updating for the first chain. We start from the first variable and generate a candidate state based on a proposal distribution for this individual component, and finally
- 855 accept or reject it based on MH algorithm. Note that in this stage, we have varied the current component and kept the other variables in vector $\boldsymbol{\theta}$ constant. Then, we move to the next components one by one and do the same procedure while taking into account the previous (updated) components. Therefore, what happens in the current step is conditional on the updated parameters in the previous steps.
- Step 2: Construct a kernel density function $\kappa^{(1)}$ as the weighted sum (average) of *n*-dimensional Gaussian PDFs centered among the samples $\{\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, ..., \boldsymbol{\theta}_{Nseed}\}^{(1)}$, with the covariance matrix $\mathbf{S}^{(1)}$ of the 860 samples $\mathbf{\Theta}_{i}^{(1)}$ and the weights associated to each sample as w_i where $i=1: N_d$ Associated as follows (see Ang et al. 1992, Au and Beck 2002):

$$\kappa^{(1)}(\boldsymbol{\theta}) = \frac{1}{Nseed} \sum_{i=1}^{Nseed} \frac{1}{w_i^n \sqrt{(2\pi)^n |\mathbf{S}^{(1)}|}} \exp\left(-\frac{1}{2w_i^2} \left(\boldsymbol{\theta} - \boldsymbol{\theta}_i^{(1)}\right)^T \left(\mathbf{S}^{(1)}\right)^{-1} \left(\boldsymbol{\theta} - \boldsymbol{\theta}_i^{(1)}\right)\right)$$
(E2)

The kernel density $\kappa^{(1)}$ constructed in Equation (E2) approximates p_1 . The kernel function κ can be viewed as a PDF consisting of bumps at θ_i , where width w_i controls the common size of the bumps. 865 Therefore, a large value of w_i tends to over-smooth the kernel density, while a small value may cause noise-shaped bumps. In view of this, w_i can be assumed to have a fixed width (= w), or alternatively the adaptive kernel estimate can be employed (Ang et al. 1992, Au and Beck 1999) that is defined for each sample $\mathbf{\theta}_{i, i}$ i=1: <u>Na</u> <u>Nseed</u>. The adaptive kernel has better convergence and smoothing properties over 870 the fixed-width kernel estimate. The fixed width w is estimated as follows (Epanechnikov 1969):

$$w = \left(\frac{4}{(n+2)N_{dist}}\right)^{\frac{1}{n+4}}$$
(E3)
where N_{dist} is the number of distinct samples ($N_{dist} \le N_d N_{sced}$). For one-dimensional problems ($n=1$),

875

this leads to the well-known fixed-width value of $[(4/3)/Nseed]^{1/5}$. The reason for using N_{dist} is due to the fact that for the next simulation levels, where we are going to use a block-wise updating approach in the MCMC scheme, one may be faced with rejection of candidate states within the Markov chain. Thus, we need to count the distinct samples. In the adaptive kernel method, the idea is to vary the shape of each bump so that a larger width (flatter bump) is used in regions of lower probability density. Following the general strategy used in the past (see Ang et al. 1992, Au and Beck 1999), the adaptive band width w_i for the i^{th} sample $\boldsymbol{\theta}_i$ can be written as $w_i = w\lambda_i$, where the local bandwidth factor λ_i can be estimated as follows:

880

885

$$\lambda_{i} = \left(\kappa(\boldsymbol{\theta}_{i}) \middle/ \left(\prod_{j=1}^{Nseed} \kappa(\boldsymbol{\theta}_{j}) \right)^{\frac{1}{Nseed}} \right)^{-\omega}$$
(E4)

where $0 \le \omega \le 1.0$ is the sensitivity factor, and $\kappa(\theta_i)$ is calculated based on Equation (E2) where $\theta = \theta_i$, with the choice of fixed-width w in Equation (E3). The denominator in Equation (E4) is a geometric mean of the kernel estimator at all <u>NaNseed</u> points. The value of $\omega = 0.50$ is employed herein as also suggested by other research endeavors (Abramson 1982, Ang et al. 1992, Au and Beck 1999). It is numerically more stable to estimate the denominator in Equation (E4) as $\prod_{j=1}^{Nseed} \left[\kappa(\mathbf{\theta}_j)^{1/Nseed} \right]$.

Step 3: Simulate *N*_{seed} Markov chain samples $\{\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, ..., \boldsymbol{\theta}_{N_{seed}}\}^{(2)}$ with the target PDF p_2 as the second simulation level (*nc*=2). We use $\kappa^{(1)}$ as the proposal distribution $q(\cdot)$ in Equation (E1) in this stage to generate the second chain of samples. To generally simulate sample θ from the kernel $\kappa^{(nc)}$ (where 890 nc=1:Nchain), we generate a discrete random index from the vector [1, 2, ..., NaNseed] with the corresponding weights $[w_1, w_2, \dots, w_{Nseed}]$ using an inverse transformation sampling; if index=*j*, then generate $\boldsymbol{\theta}$ from the Gaussian PDF κ_j , where:

$$\kappa_{j}(\boldsymbol{\theta}) = \frac{1}{\left(w\lambda_{j}\right)^{n}\sqrt{\left(2\pi\right)^{n}\left|\mathbf{S}^{(nc)}\right|}} \cdot \exp\left(-\frac{1}{2\left(w\lambda_{j}\right)^{2}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{j}\right)^{\mathrm{T}}\left(\mathbf{S}^{(nc)}\right)^{-1}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{j}\right)\right)$$

$$= \frac{1}{\sqrt{\left(2\pi\right)^{n}\left|\mathbf{S}^{(nc)}_{i}\right|}} \cdot \exp\left(-\frac{1}{2}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{j}\right)^{\mathrm{T}}\left(\mathbf{S}^{(nc)}_{j}\right)^{-1}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{j}\right)\right)$$
(E5)

895

where $\mathbf{S}_{i}^{(nc)} = w_{j}^{2} \mathbf{S}^{(nc)}$, where $\mathbf{S}^{(nc)}$ is the covariance matrix of the samples $\{\mathbf{\theta}_{1}, \mathbf{\theta}_{2}, ..., \mathbf{\theta}_{Nseed}\}^{(nc)}$. Appendix D shows how a sample $\boldsymbol{\theta}$ can be drawn from the Gaussian PDF κ_i . From this sequence on, the MCMC updating is done in a block-wise manner as we generate a candidate θ and accept/reject it as a block. The second chain of samples $\{\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \dots, \boldsymbol{\theta}_{Nseed}\}^{(2)}$ are then used to construct the kernel density $\kappa^{(2)}$ based on Equation (E2).

Step 4: In general, $\kappa^{(nc)}$ is used as the proposal distribution in order to move from the nc^{th} simulation level (which approximates p_{nc}) into $(nc+1)^{\text{th}}$ chain (with target PDF p_{nc+1}). This will continue until the 900 Nchainth simulation level where Markov chain samples are simulated for the target updated $p(\boldsymbol{\theta}|\mathbf{D})=p_{Nchain}$.

ha formattato: Pedice

ha formattato: Pedice

Appendix F: MCMC samples for each model

The adaptive MCMC procedure for drawing samples from the model parameters from the joint posterior 905 PDF $p(\theta_k | \mathbf{D}, \mathbf{M}_k)$ is carried out by considering *Nchain*=5-6 chains (simulation levels), and <u>NaNseed=1000-2000</u> samples per each chain (see Appendix E). In the first simulation level (first chain, nc=1), for which a component-wise updating approach is employed (see Appendix E, Step 1 for the description of component-wise and block-wise updating), the first 20 samples are not considered in order to reduce the initial transient effect of the Markov chain. The proposal distribution (see Equation 910 E1) for each component is assumed to be a normal distribution with a coefficient of variation COV=1.600.30 herein. In addition, the prior ratio according to Equation (E1), will become the ratio of two normal distributions, for each component one at a time. In the next simulation levels (i.e., nc=2 to:56), the adaptive kernel estimate (Equation E2) is employed, i.e., the MCMC updating is performed in a block-wise manner. Since tThis updating approach can be associated with high rejection rates (i.e., 915 there are similar samples indicating the rejection of the candidate states within the Markov chain), there will be Na-Nd-distinct (not considering the repeats) Markov chain samples generated within the each

chain, denoted as $\{\mathbf{\theta}_{k,1}, \mathbf{\theta}_{k,2}, \dots, \mathbf{\theta}_{k,N_d \mathcal{H}_d}\}^{(nc)}$, where $N_d \leq Nseed$ and nc=2:Nchain (=56). The N_d samples of the last chain (nc=65) will be used as the fragility model parameters, as discussed in Section 3.46. It is to note that the likelihood $p(\mathbf{D}|\mathbf{\theta}_k, \mathbf{M}_k)$ (used in calculating the acceptance probability within the MCMC procedure in Equation E1) is estimated according to Equation (13).

Figure 2–<u>F1</u> illustrates the histograms representing the drawn samples from the joint posterior PDF's corresponding to the sampled model parameters $\{\theta_{k,1}, \theta_{k,2}, \dots, \theta_{k,N_d}\}^{(56)}$ corresponding to the brick masonry residential, Classes 1–2 South Pacific Tsunami and Classes 1–3 Sulawesi Palu, for the model classes M_k ($k \in \{1,2,3\}$) shown in Figure 2-to Figure 6, related to M_k (where k = 1:3). For model M_k ,

925 N_d=903< Nseed=1000; for model M₂, N_d=882; finally, for M_g, we have N_d=951. The marginal normal prior PDFs are also shown with orange-coloured dashed lines. The statistics of the samples (, mean and COV confidence interval (CI) between 2nd and 98th percentiles of for the posterior) of model parameters.
 θ_k are shown on the figures associated to each parameter. It is expected to have the mean values of the marginal posterior samples close to and comparable with those obtained by the MLE in Table 2-4(first row) that are also the mean values of prior joint PDF.

ha formattato: Non Evidenziato

ha formattato: Non Evidenziato

ha formattato: Apice

ha formattato: Apice

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
M1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
2	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
M ₂	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

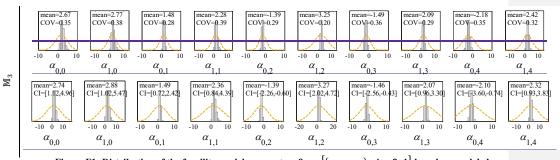


Figure F1: Distribution of the fragility model parameters $\theta_k = [\{\alpha_{0j}, \alpha_{1j}\}_{k'} j = 0; 4]$ based on model class \mathbb{M}_k (where k = 1; 3) for Class 1, Brick masonry residential, South Pacific Tsunami, by employing an adaptive MCMC procedure including samples drawn from the joint posterior PDF with their statistics

935 (mean and COV), and the marginal normal priors (subfigures show the posterior statistics).

Code availability

The code implementing the methodology in this article is available at the following URL: https://github.com/eurotsunamirisk/computeFrag/tree/main/Code_ver2

940 https://github.com/eurotsunamirisk/computeFrag

Data availability

The data used to produce the results in this article are available at the following URL: https://github.com/eurotsunamirisk/computeFrag/tree/main/Code_ver2

https://github.com/curotsunamirisk/computeFrag

945 Author contribution

FJ designed and coordinated this research. HE performed the simulations and developed the fragility functions. KT cured the availability of codes and software on the European Tsunami Risk Service (ETRiS). BB provided precious insights on the damage data gathered for American Samoa and Samoa Islands in the aftermath of the 2009 South Pacific Tsunami (documented in Reese et al 2011). All authors have contributed to the drafting of the manuscript. The first two authors contributed in an equal manner to the drafting of the manuscript.

950

Competing interests:

The authors declare that they have no conflict of interest.

References

Abramson, I. S.: On bandwidth variation in kernel estimates-a square root law, Ann. Stat., 10(4), 1217-955 1223, 1982.

Agresti, A.: Categorical Data Analysis, 3rd ed., Wiley, New York, 2012.

Ang, G. L., Ang, A. H.-S., and Tang, W. H.: Optimal importance sampling density estimator, J. Eng. Mech., 118(6), 1146-1163, 1992.

960 Au, S. K., and Beck, J. L.: A new adaptive importance sampling scheme, Struct. Saf., 21, 135-158, 1999.

Beck, J. L., and Yuen K.-V.: Model selection using response measurements: Bayesian probabilistic approach, J. Eng. Mech., 130,192-203, 2004.

Behrens, J., Løvholt, F., Jalayer, F., Lorito, S., Salgado-Gálvez, M. A., Sørensen, M., ..., and 965 Vyhmeister, E.: Probabilistic Tsunami Hazard and Risk Analysis: A Review of Research Gaps, Front. Earth Sci., 9, 114, 2021.

Cover, T. M., Thomas J. A.: Elements of information theory, Wiley, New York, 1991.

Charvet, I., Ioannou, I., Rossetto, T., Suppasri, A., and Imamura, F.: Empirical fragility assessment of buildings affected by the 2011 Great East Japan tsunami using improved statistical models, Nat. Hazards, 73, 951-973, 2014.

Charvet, I., Suppasri, A., Kimura, H., Sugawara, D., and Imamura, F.: A multivariate generalized linear tsunami fragility model for Kesennuma City based on maximum flow depths, velocities and debris impact, with evaluation of predictive accuracy, *Nat Hazards*, 79(3), 2073-2099, 2015.

Charvet, I., Macabuag, J., and Rossetto, T.: Estimating tsunami-induced building damage through fragility functions: critical review and research needs, *Front. Built Environment*, 3, 36, 2017.

Chua, C. T., Switzer, A. D., Suppasri, A., Li, L., Pakoksung, K., Lallemant, D., ..., and Winspear, N.: Tsunami damage to ports: Cataloguing damage to create fragility functions from the 2011 Tohoku event, *Nat Hazards Earth Sys*, 21(6), 1887-1908, 2021.

De Risi, R., Goda, K., Mori, N., and Yasuda T.: Bayesian tsunami fragility modelling considering input data uncertainty, *Stoch. Env. Res. Risk A.*, 31, 1253–1269, 2017a.

De Risi, R., Goda, K., Yasuda, T., and Mori, N.: Is flow velocity important in tsunami empirical fragility modeling?, *Earth-Sci. Rev.*, 166, 64-82, 2017b.

Ebrahimian, H., and Jalayer, F: Selection of seismic intensity measures for prescribed limit states using alternative nonlinear dynamic analysis methods, *Earthq. Eng. Struct. D.*, 50(5), 1235-1250, 2021.

985 Eidsvig, U. M. K., Papathoma-Köhle, M., Du, J., Glade, T., and Vangelsten, B. V.: Quantification of model uncertainty in debris flow vulnerability assessment, *Eng. Geol.*, 181, 15-26, 2014.

Epanechnikov, V.A.: Nonparametric estimation of a multidimensional probability density. *Theor. Probab. Appl.*, 14, 153-1588, 1969.

Goff, J., and Dominey-Howes, D.: The 2009 South Pacific Tsunami, *Earth-Sci. Rev.*, 107(1–2), v-vii, 990 2011.

Grünthal, G. (1998), European macroseismic scale 1998. European Seismological Commission (ESC), +

Hastings, W. K.: Monte-Carlo sampling methods using Markov chains and their applications, *Biometrika*, 57(1), 97-109, 1970.

995 Jalayer, F., Beck, J., and Zareian, F.: Analyzing the sufficiency of alternative scalar and vector intensity measures of ground shaking based on information theory, *J Eng Mech*, 138(3), 307-316, 2012.

Jalayer, F., De Risi, R., and Manfredi, G. Bayesian Cloud Analysis: efficient structural fragility assessment using linear regression, *B. Earthq. Eng.*, 13(4), 1183-1203, 2015.

Jalayer, F., Ebrahimian, H., Miano, A., Manfredi, G., and Sezen, H.: Analytical fragility assessment using unscaled ground motion records, *Earthq. Eng. Struct. D.*, 46(15), 2639-2663, 2017.

Jalayer, F., and Ebrahimian H.: Seismic reliability assessment and the non-ergodicity in the modelling parameter uncertainties, *Earthq. Eng. Struct. D.*, 49(5),434-457, 2020.

Jalayer, F., Ebrahimian, H., and Miano, A.: Intensity-based demand and capacity factor design: a visual format for safety-checking, *Earthq. Spectra*, 36(4):1952-1975. 2020

1005 Koshimura, S., Namegaya, Y., and Yanagisawa, H.: Tsunami Fragility—A New Measure to Identify Tsunami Damage, J. Disaster Research, 4(6), 479-488, 2009a

Koshimura, S., Oie, T., Yanagisawa, H., and Imamura, F. (2009b). Developing fragility functions for tsunami damage estimation using numerical model and post-tsunami data from Banda Aceh, Indonesia, *Coas. Eng. J.*, 51(3), 243-273, 2009b.

1010 Kullback, S., Leibler, R.A. (1951). On information and sufficiency. Ann., Math., Stat. 22(1), 79-86.

Lahcene, E., Ioannou, I., Suppasri, A., Pakoksung, K., Paulik, R., Syamsidik, S., ..., and Imamura, F.: Characteristics of building fragility curves for seismic and non-seismic tsunamis: case studies of the 2018 Sunda Strait, 2018 Sulawesi–Palu, and 2004 Indian Ocean tsunamis, *Nat. Hazards Earth Sys.*, 21(8), 2313-2344, 2021.

-[ha formattato: Tipo di carattere: (Predefinito) Times New Roman, 11 pt, Colore carattere: Automatico
Ì,	ha formattato: Inglese (Regno Unito)
Ì	ha formattato: Tipo di carattere: (Predefinito) Times New Roman, 11 pt, Colore carattere: Automatico
'ı(ha formattato: Inglese (Regno Unito)
	ha formattato: Tipo di carattere: (Predefinito) Times New Roman, 11 pt, Colore carattere: Automatico
i (ha formattato: Inglese (Regno Unito)
	ha formattato: Tipo di carattere: (Predefinito) Times New Roman, 11 pt, Colore carattere: Automatico
6 6 6 6 7	ha formattato: Tipo di carattere: (Predefinito) Times New Roman, 11 pt, Colore carattere: Automatico, Italiano (Italia)
	ha formattato: Tipo di carattere: (Predefinito) Times New Roman, 11 pt, Italiano (Italia)
1	Formattato: Paragraph, SpazioPrima: 0 pt, Dopo: 0 pt
i	ha formattato: Italiano (Italia)
	Formattato: New paragraph
- [ha formattato: Tipo di carattere: Corsivo
	ha formattato: Tipo di carattere: Corsivo

ha formattato: Tipo di carattere: Corsivo

1015	Mas, E., Paulik, R., Pakoksung, K. et al. (2020). Characteristics of tsunami fragility functions developed using different sources of damage data from the 2018 Sulawesi earthquake and tsunami. <i>Pure Appl.</i> – – <i>Geophys.</i> , 177, 2437-2455.	(ha formattato: Tipo di carattere: Corsivo
1020	Miano, A., Jalayer, F., Forte, G., and Santo, A.: Empirical fragility assessment using conditional GMPE-based ground shaking fields: Application to damage data for 2016 Amatrice Earthquake, <i>B. Earthq. Eng.</i> , 18(15), 6629-6659, 2020.		
1	Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller E.: Equations of state calculations by fast computing machines, <i>J. Chem. Phys.</i> 21(6), 1087-1092, 1953.		
1025	Muhari, A., Imamura, F., Arikawa, T., Hakim, A. R., & Afriyanto, B. (2018). Solving the puzzle of the September 2018 Palu, Indonesia, tsunami mystery: clues from the tsunami waveform and the initial field survey data. <i>J. Disaster Res.</i> , 13(Scientific Communication), sc20181108.	{ {	ha formattato: Inglese (Regno Unito) ha formattato: Tipo di carattere: Corsivo
	Muto, M., and Beck, J. L.: Bayesian updating and model class selection for hysteretic structural models using stochastic simulation, <i>J. Vib. Control</i> , 14(1-2),7-34, 2008.	`` (ha formattato: Tipo di carattere: Corsivo
1030	Paulik, R., Gusman, A., Williams, J. H. et al. (2019). Tsunami hazard and built environment damage observations from Palu city after the September 28 2018 Sulawesi earthquake and tsunami. <u>Pure Appl.</u> <u>Geophys.</u> 176, 3305-3321.	{	ha formattato: Tipo di carattere: Corsivo
	Rafliana, I., Jalayer, F., Cerase, A., et al. (2022). Tsunami risk communication and management: Contemporary gaps and challenges. <i>Int J Disaster Risk Reduction</i> , 70(15), 102771.	{	ha formattato: Tipo di carattere: Corsivo
	Reese, S., Bradley, B. A., Bind, J., Smart, G., Power, W., and Sturman, J.: Empirical building fragilities from observed damage in the 2009 South Pacific tsunami, <i>Earth-Sci. Rev.</i> , 107(1-2), 156-173, 2011.		

1035 Rosti, A., Del Gaudio, C., Rota, M., Ricci, P., Di Ludovico, M., Penna, A., and Verderame, G. M. Empirical fragility curves for Italian residential RC buildings. *B. Earthq. Eng.*, 19(8), 3165-3183, 2021.

Wing, O. E., Pinter, N., Bates, P. D., and Kousky, C.: New insights into US flood vulnerability revealed from flood insurance big data, Nat. Commun., 11(1), 1-10, 2020.

Pagina 12: [1] ha formattato	Hossein	09/11/2022 14:33:00	
Fipo di carattere: Non Corsivo			
Pagina 12: [2] ha formattato	Jalayer, Fatem	eh 23/11/2022 11:52:00	0
Fipo di carattere: Grassetto			
Pagina 12: [3] Formattato	Hossein	09/11/2022 14:50:00	
Allineato al centro			
Pagina 12: [4] Formattato	Hossein	13/11/2022 10:03:00	
Allineato al centro, Rientro: Si	nistro: 0.2 cm,	Prima riga: 0 cm, Destro 0.2 c	cm
Pagina 12: [5] Tabella formattata	a Hosse	in 11/11/2022 17:49:00	0
Fabella formattata			
Pagina 12: [6] ha formattato	Hossein	11/11/2022 12:17:00	
Гіро di carattere: 10 pt			
Pagina 12: [7] ha formattato	Hossein	11/11/2022 12:17:00	
Гіро di carattere: 10 pt			
Pagina 12: [8] ha formattato	Hossein	11/11/2022 12:17:00	
Гіро di carattere: 10 pt			
Pagina 12: [9] ha formattato	Hossein	11/11/2022 12:17:00	
Гіро di carattere: 10 pt			
Pagina 12: [10] ha formattato	Hossein	11/11/2022 12:17:00	
Tipo di carattere: 10 pt			
- 1			
Pagina 12: [11] ha formattato	Hossein	11/11/2022 12:17:00	
Γipo di carattere: 10 pt			
. 1			
Pagina 12: [12] ha formattato	Hossein	11/11/2022 12:17:00	
Fipo di carattere: 10 pt	10556111	11/11/2022 12:17:00	
npo ai ourationo. 10 pt			
		44 /44 /2022 42 42 42	
Pagina 12: [13] ha formattato	Hossein	11/11/2022 12:17:00	
Гіро di carattere: 10 pt			
Pagina 12: [14] ha formattato	Hossein	11/11/2022 12:17:00	

I

I

I

1

I

I

Tipo di carattere: 10 pt

Pagina 12: [15] ha formattato	Hossein	11/11/2022 12:17:00	
Tipo di carattere: 10 pt			
L			
Pagina 12: [16] ha formattato	Hossein	11/11/2022 12:17:00	
Tipo di carattere: 10 pt			
Pagina 12: [17] ha formattato	Hossein	11/11/2022 12:17:00	
Tipo di carattere: 10 pt			
. 1			
Pagina 12: [18] ha formattato	Hossein	11/11/2022 12:17:00	
Tipo di carattere: 10 pt	10330111	,, LULL 12.17.00	
		11/11/2022 12:17:00	
Pagina 12: [19] ha formattatoTipo di carattere: 10 pt	Hossein	11/11/2022 12:17:00	
ripo di carallere: 10 pl			
Pagina 12: [20] ha formattato	Hossein	11/11/2022 12:17:00	
Tipo di carattere: 10 pt			
<u> </u>			
Pagina 12: [21] ha formattato	Hossein	11/11/2022 12:17:00	
Tipo di carattere: 10 pt			
L			
Pagina 12: [22] ha formattato	Hossein	11/11/2022 12:17:00	
Tipo di carattere: 10 pt			
L			
Pagina 12: [23] ha formattato	Hossein	11/11/2022 12:17:00	
Tipo di carattere: 10 pt			
L			
Pagina 12: [24] ha formattato	Hossein	11/11/2022 12:17:00	
Tipo di carattere: 10 pt			
-			
Pagina 12: [25] ha formattato	Hossein	11/11/2022 12:17:00	
Tipo di carattere: 10 pt			
. 1			
Dagina 12: [26] ha formattata	Hossein	11/11/2022 12:17:00	
Pagina 12: [26] ha formattato Tipo di carattere: 10 pt	nossein	11/11/2022 12:17:00	
Tipo ui caranore. To pi			
Pagina 12: [27] ha formattato			
	Hossein	11/11/2022 12:17:00	

Pagina 12: [28] ha formattato	Hossein	11/11/2022 12:17:00
Tipo di carattere: 10 pt		
Pagina 12: [29] ha formattato	Hossein	11/11/2022 12:17:00
Tipo di carattere: 10 pt		
Pagina 12: [30] ha formattato	Hossein	11/11/2022 12:17:00
Tipo di carattere: 10 pt	110356111	11/11/2022 12.17.00
ripo di culuitore i lo pe		
Pagina 12: [31] ha formattato	Hossein	11/11/2022 12:17:00
Tipo di carattere: 10 pt		
Pagina 12: [32] ha formattato	Hossein	11/11/2022 12:17:00
Tipo di carattere: 10 pt		
Pagina 12: [33] ha formattato	Hossein	11/11/2022 12:17:00
Tipo di carattere: 10 pt		
Pagina 12: [34] ha formattato	Hossein	11/11/2022 12:17:00
Tipo di carattere: 10 pt		
Pagina 12: [35] ha formattato	Hossein	11/11/2022 12:17:00
Tipo di carattere: 10 pt		
Pagina 12: [36] ha formattato	Hossein	11/11/2022 12:17:00
Tipo di carattere: 10 pt	HUSSEIII	11/11/2022 12.17.00
		11/11/2022 12:17:22
Pagina 12: [37] ha formattatoTipo di carattere: 10 pt	Hossein	11/11/2022 12:17:00
ripo ul calallele. 10 pl		
Pagina 12: [38] ha formattato	Hossein	11/11/2022 12:17:00
Tipo di carattere: 10 pt		
Pagina 12: [39] Formattato	Hossein	11/11/2022 12:13:00
Allineato a sinistra		
Pagina 12: [40] Formattato	Hossein	11/11/2022 12:13:00
Allineato a sinistra		
Pagina 12: [41] Formattato	Hossein	11/11/2022 12:13:00
	nossem	

1

I

1

I

I

I

Allineato a sinistra

Pagina 12: [42] Formattato		11/11/2022 17:42:00	
Allineato al centro, Rientro: F	Prima riga: 0 ci	n	
Pagina 12: [43] Formattato	Hossein	11/11/2022 17:29:00	
Allineato a sinistra			
Pagina 12: [44] Tabella formati	ata Hos	sein 09/11/2022 14:46:00	
Tabella formattata			
Pagina 24: [45] ha formattato	Hossein	11/11/2022 13:18:00	
Colore carattere: Blu	nossem	11/11/2022 15:10:00	
Soloie culutione. Dia			
Pagina 24: [45] ha formattato	Hossein	11/11/2022 13:18:00	
Colore carattere: Blu			
Pagina 24: [45] ha formattato	Hossein	11/11/2022 13:18:00	
Colore carattere: Blu			
Pagina 24: [46] ha formattato	Hossein	11/11/2022 13:18:00	
Colore carattere: Blu			
Pagina 24: [46] ha formattato	Hossein	11/11/2022 13:18:00	
Colore carattere: Blu			
)	Uerein	11/11/2022 12.10.00	
Pagina 24: [46] ha formattatoColore carattere: Blu	Hossein	11/11/2022 13:18:00	
Joiore carattere. Diu			
Pagina 24: [47] ha formattato	Hossein	13/11/2022 09:44:00	
Colore carattere: Blu			
Pagina 24: [47] ha formattato	Hossein	13/11/2022 09:44:00	
Colore carattere: Blu			
Pagina 24: [47] ha formattato	Hossein	13/11/2022 09:44:00	
Colore carattere: Blu			
Pagina 24: [48] ha formattato	Hossein	13/11/2022 09:41:00	
ayına 24. [40] ild ivrillattato	nossein	13/11/2022 03.41.00	

Pagina 24: [48] ha formattato	Hossein	13/11/2022 09:41:00
Colore carattere: Automatico		
L		
Pagina 24: [48] ha formattato	Hossein	13/11/2022 09:41:00
Colore carattere: Automatico		
L		
Pagina 24: [49] ha formattato	Hossein	14/11/2022 11:10:00
Colore carattere: Blu		
·		
Pagina 24: [49] ha formattato	Hossein	14/11/2022 11:10:00
Colore carattere: Blu		
L		
Pagina 24: [50] ha formattato	Hossein	14/11/2022 13:46:00
Colore carattere: Blu		
Pagina 24: [50] ha formattato	Hossein	14/11/2022 13:46:00
Colore carattere: Blu		
colore curatione. Dia		
Pagina 24: [50] ha formattato	Hossein	14/11/2022 13:46:00
·	Hossein	14/11/2022 13:46:00
Pagina 24: [50] ha formattato	Hossein	14/11/2022 13:46:00
Pagina 24: [50] ha formattato Colore carattere: Blu Pagina 24: [51] ha formattato	Hossein Hossein	14/11/2022 13:46:00 13/11/2022 09:41:00
Pagina 24: [50] ha formattato Colore carattere: Blu		
Pagina 24: [50] ha formattato Colore carattere: Blu Pagina 24: [51] ha formattato		
Pagina 24: [50] ha formattato Colore carattere: Blu Pagina 24: [51] ha formattato		
Pagina 24: [50] ha formattato Colore carattere: Blu Pagina 24: [51] ha formattato Colore carattere: Automatico	Hossein	13/11/2022 09:41:00
Pagina 24: [50] ha formattato Colore carattere: Blu Pagina 24: [51] ha formattato Colore carattere: Automatico Pagina 24: [51] ha formattato	Hossein	13/11/2022 09:41:00

I