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Abstract. Low-cost sensors are often co-located with reference instruments to assess their 

performance and establish calibration equations, but limited discussion has focused on whether the 

duration of this calibration period can be optimized. We placed a multipollutant monitor that contained 

sensors that measure particulate matter smaller than 2.5 µm (PM2.5), carbon monoxide (CO), nitrogen 15 

dioxide (NO2), ozone (O3), and nitric oxide (NO) at a reference field site for one year. We developed 

calibration equations using randomly selected co-location subsets spanning 1 to 180 consecutive days 

out of the 1-year period and compared the potential root mean square errors (RMSE) and Pearson 

correlation coefficients (r). The co-located calibration period required to obtain consistent results 

varied by sensor type, and several factors increased the co-location duration required for accurate 20 

calibration, including the response of a sensor to environmental factors, such as temperature or relative 

humidity (RH), or cross-sensitivities to other pollutants. Using measurements from Baltimore, MD, 

where a broad range of environmental conditions may be observed over a given year, we found 

diminishing improvements in the median RMSE for calibration periods longer than about six weeks 

for all the sensors. The best performing calibration periods were the ones that contained a range of 25 

environmental conditions similar to those encountered during the evaluation period (i.e., all other days 

of the year not used in the calibration). With optimal, varying conditions it was possible to obtain an 

accurate calibration in as little as one week for all sensors, suggesting that co-location can be 
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minimized if the period is strategically selected and monitored so that the calibration period is 

representative of the desired measurement setting.  30 

1. Introduction 

Instrument calibration is one of the main processes used to ensure instrument accuracy. In one 

method of calibration, measurements are compared between an uncalibrated instrument and a reference 

instrument, which can then be used to adjust the output of the uncalibrated instrument to see whether 

the data can meet performance standards (often in terms of accuracy and precision). In the case of low-35 

cost air-pollution sensors, the raw output is often a voltage or resistance instead of a concentration, so 

a calibration curve is needed to convert the raw output into practical units. Cross-sensitivities to 

environmental conditions or other pollutants, non-linear responses, and variability between sensor 

units are common difficulties that must be considered when working with low-cost sensor data (Van 

Zoest et al., 2019; Levy Zamora, 2022; Li et al., 2021; Spinelle et al., 2015; Ripoll et al., 2019). Several 40 

methodologies have been used to derive the calibration equations needed to convert the raw data into 

useable concentrations, such as exposing the sensors to known concentrations in a laboratory setting 

and co-locating the sensors with a reference instrument, often in a similar setting to which the sensor 

is to be used (Taylor, 2016; Zimmerman et al., 2018; Mead et al., 2013; Ikram et al., 2012; Hagler et 

al., 2018; Cross et al., 2017; Holstius et al., 2014; Mukherjee et al., 2019; Gao et al., 2015; Heimann 45 

et al., 2015; (Scaqmd), 2016a, 2017, 2016b; Levy Zamora et al., 2018a). Field co-location is a widely 

used calibration method, but a tradeoff must be made between the time dedicated to collecting 

calibration data and the data collected at the final measurement location. There is currently no 

standardized co-location duration, and the reported co-location durations for low-cost sensors with 

reference instruments in recent work have varied from several days to several months (Mukherjee et 50 

al., 2019; Gao et al., 2015; Topalović et al., 2019; Kim et al., 2018; (Aq-Spec), 2018; Spinelle et al., 

2017; Pinto et al., 2014; Datta et al., 2020). To date, little discussion has focused on whether the 



3 
 

selected periods were adequate for the deployment period or whether the calibration period can be 

optimized in future studies (Topalović et al., 2019; Okorn and Hannigan, 2021). In one study that 

assessed the impacts of co-location duration for a low-cost sensor, Okorn et al (Okorn and Hannigan, 55 

2021) randomly selected calibration periods up to six weeks in duration from six weeks of methane 

data in Los Angeles. The calibration equations were then applied to data from an earlier month in the 

same location. They reported that longer calibration periods (i.e., six weeks) produced fits with lower 

bias than fits from shorter calibration periods (i.e., 1 week). In that study, the one-week calibrations 

yielded the best R2 values. 60 

The central goal of this specific work was to identify the key factors that influence the duration of 

a co-location required to obtain sufficient data to achieve consistent calibrate curves for five low-cost 

sensors (particulate matter smaller than 2.5 microns (PM2.5), carbon monoxide (CO), ozone (O3), 

nitrogen dioxide (NO2), and nitrogen monoxide (NO)) (Buehler et al., 2021). In addition, we aim to 

identify how this necessary calibration period can be optimized. 65 

2. Methods   

2.1. Data Collection 

Data collected at two sites were used in the co-location analyses based on the availability of 

reference instrumentation. The CO (Alphasense CO-A4 sensor), NO2 (Alphasense NO2-A43F), NO 

(Alphasense NO-A4), and O3 (MiCS-2614) sensors were co-located with reference instruments at the 70 

Maryland Department of the Environment’s (MDE) Essex site (ID = 240053001) in Baltimore County, 

Maryland. The PM2.5 sensor (Plantower PMS A003) was concurrently co-located with a reference 

instrument at the MDE Oldtown site (ID = 245100040) in Baltimore City, Maryland. The Essex site 

(39.310833, -76.474444) is about 11 km east of the Oldtown site (39.298056, −76.604722). Additional 

details about the sensors in the multipollutant monitor have been described in detail by Buehler et al. 75 

(Buehler et al., 2021) and Levy Zamora et al. (Levy Zamora, 2022). Co-location data from February 
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1, 2019, to February 1, 2020, were used in the PM2.5 analysis, and co-location data from February 1 to 

December 20, 2019, were used in the CO, NO, NO2, and O3 sensors analyses. Due to an issue affecting 

the gas sensor inlet on the Essex monitor, the O3, NO2, and NO sensor data were unavailable after 

December 20, 2019. Hourly average data were used in all analyses. Both reference sites also measured 80 

hourly averaged temperature and relative humidity (RH). The ambient temperature and RH ranged 

between -11 and 36oC and 14 and 95% over the full year, respectively. The temperatures and RHs 

measured inside the multipollutant pollutant monitors were slightly different from the ambient values 

due to direct sunlight warming the monitors and the small amount of heat produced by the sensors 

themselves within the box. The box temperatures and RHs ranged between -8 and 45 oC and 14 and 85 

80%, respectively.  

2.2. Assessing the Role of Co-location Duration 

We use different subsets of the full co-location period to create a suite of hypothetical co-location 

durations based on which the calibration models will be trained. For each hypothetical calibration co-

location scenario (i.e., ranging from 1 to 180 consecutive days in 1 day increments), 250 sample 90 

calibration test periods were randomly selected of that duration. These test periods were used in the 

sensitivity analysis at each test condition to assess the range of potential resulting root mean squared 

error (RMSE) values and Pearson correlation coefficients (r). For example, a calibration duration of 1 

day indicates that a 24-hour period was randomly selected out of the available data, referred to as the 

“calibration period”, and the data from those 24 hours was used to develop the calibration equations 95 

(see below) relating the raw sensor data to ambient conditions. This was then evaluated against all 

days not included in the calibration period, referred to as the “evaluation period”. The randomly chosen 

calibration periods could overlap, but no two periods were exactly the same. In Supplemental Figure 

1, the start times of 250 randomly selected PM2.5 calibrations are shown as an example. Each tested 

co-location duration produced 250 RMSE and r values, and only calibration periods with at least 70% 100 

valid sensor and reference data were used in the analyses (e.g., a 24 hr calibration period needed to 
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have more than 16 hours of valid data for both instruments). No laboratory or information from the 

manufacturer was used to additionally calibrate the sensors in this work. All data analysis was 

conducted using Matlab 2020a. 

Sensor data from the calibration period was used to determine the coefficients for multiple linear 105 

regression (MLR) models based on previously identified known environmental factors influencing 

concentration for each sensor (Levy Zamora, 2022). A generic MLR model is given by: 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) = 𝛽𝛽𝑜𝑜 + 𝛽𝛽1 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) + ∑  𝑛𝑛
1 𝛽𝛽𝑛𝑛 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛(𝑡𝑡) (1) 

where Referencepollutant is the reference concentration at time t for a given pollutant, β0 is the constant 110 

intercept, β1 is the coefficient applied to the uncalibrated Sensorpollutant value for a given pollutant at 

time t, and βn is the coefficient applied to Predictorn. Levy Zamora et al. (Levy Zamora, 2022) have 

reported the predictors needed to calibrate these five low-cost sensors in detail. Briefly, the PM2.5 

sensor model incorporated temperature and RH as predictors. The CO sensor model included 

temperature, RH, and time, where time refers to the current date and time that the data were collected. 115 

The NO2 sensor model included temperature, RH, NO, O3, and time. The O3 model included 

temperature, RH, NO2, and time, and the NO model included temperature and CO as predictors. The 

CO, O3, and NO2 sensors may exhibit baseline drift over the year, which is why the time predictors 

were included. The data used as the predictors came from the other sensors in the multipollutant 

monitor (e.g., the NO sensor model used the co-located low-cost CO sensor for the CO predictor). 120 

Once the regression coefficients were determined for a calibration period, this equation was applied to 

all data in the corresponding evaluation period. 

For each calibration period tested, the RMSE and correlation coefficients were determined by 

comparing the 1-hour averaged reference and corrected sensor data from all hours during the 

evaluation period. The RMSE was calculated using Equation 2 where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅i  and 125 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃i are the corresponding i-th 1-hour averaged concentrations from the evaluation period with 

N data points. 
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RMSE  = �∑ (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 (2)  

 An RMSE value of 0 would indicate a perfect agreement between the reference and the sensor. The 

correlation coefficient is a measure of the linear correlation between two data sets. It is a value between 130 

−1 and 1, where 1 indicates a strong positive relationship, -1 indicates a strong negative relationship, 

and 0 has no discernible relationship. The median RMSE and median r referenced in this manuscript 

refer to the median value from all the 250 calibration scenarios for each duration. Outliers are defined 

as a value that is more than three scaled median absolute deviations (MAD) away from the median. 

We hypothesize that a user could strategically choose a co-location period to minimize the 135 

calibration period and that co-location duration is not the only factor to consider when optimizing co-

locating an instrument for calibration. In these analyses, we use the term “coverage” to indicate the 

representativeness of environmental conditions during a calibration period compared to that observed 

across the full data set (calibration and evaluation periods). In order to visualize how the environmental 

conditions during the calibration period compared to the evaluation period, we compared the range of 140 

temperature, RH, and other key pollutants from each period. For example, if the full RH ranged 

between 10 and 90% and the calibration period ranged between 20 and 60%, the RH coverage of that 

calibration period would be 50% (40/80). Descriptive statistics of the reference data used in the 

calibration models from the full year are displayed in Supplementary Table 1.  

 145 

Coverage = 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑉𝑉𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 −  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 −  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌
 X 100 (3) 

3. Results and Discussion 

3.1. Impact of colocation duration on calibration performance  

The range of RMSE values from 250 calibration periods in the sensitivity analysis of six co-

location durations (i.e., 1 day, 1 week, 1 month, 6 weeks, 3 months, and 6 months) for all five low-150 
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cost sensors are shown in Table 1, and the box plots of the RMSEs from co-location durations ranging 

1-180 days are shown in Figures 1 (PM2.5 and CO) and 2 (NO2, O3, and NO). Overall, longer 

calibrations resulted in lower median RMSE values. The greatest improvements in median RMSE 

values were observed when increasing the co-location duration from 1 day to about two weeks. After 

about six weeks, diminishing improvements were observed in the median RMSEs for all the sensors 155 

except ozone. The median RMSE for ozone decreased by about 5 ppb when increasing the duration 

from 6 weeks to 6 months. There were also a limited number of high outlier RMSEs for any of the 

sensors after about two months indicating that most of the 250 calibrations were generally yielding 

similar RMSEs. In addition, the lowest RMSE values (e.g., 1st percentile) were similar for all co-

location durations longer than about one week for many of the sensors. This suggests that optimized 160 

calibration periods can yield high-performance calibrations. For example, the RMSEs from the 1-week 

calibration periods for the PM2.5 sensor ranged between 3.1 and 18.3 µg/m3, and the 6-month 

calibrations ranged between 3.2 and 3.7 µg/m3. The 1st percentile RMSEs for the 1 week and 6 months 

were also similar for CO (61 and 51 ppb, respectively), NO2 (4.1 and 3.6 ppb, respectively), O3 (9.1 

and 8.1 ppb, respectively), and NO (3.3 and 2.9 ppb, respectively). The 10th percentile RMSEs were 165 

similar after about 1 month for most sensors. For example, the 10th percentile for PM was 3.4 at 1 

month and 3.5 µg/m3 at 6 months (CO: 66 and 69 ppb, respectively; NO2: 4.3 and 4.1 ppb, respectively; 

O3: 11.0 and 8.4 ppb, respectively; NO: 3.5 and 2.9 ppb, respectively). The differences between the 1st 

and 99th percentile RMSE for the 6-month scenarios were comparatively small for all sensors 

compared to the overall concentrations and ranges (e.g., the RMSE range at 6 months for PM2.5 was 170 

0.5 µg/m3 compared to the annual average concentration of 8.3 µg/m3). 

 The ranges of correlation coefficients for the five low-cost sensors are shown in Table 2, and the 

box plots of the r values from co-location durations between 1-180 days are shown in Figure 1 (PM2.5 

and CO) and Supplemental Figure 2 (NO2, O3, and NO). Overall, longer calibrations also resulted in 

higher r values, though in some individual test periods it was possible to produce correlation 175 

coefficients at or above 0.6 in as little as 1 day for all five sensors. After about six weeks, only 
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incremental improvements were observed in the median correlations for all the sensors. For example, 

the greatest improvement in the median correlation after 6 weeks was observed for ozone which 

increased from 0.71 at 6 weeks to 0.84 at 6 months. All of the sensors were able to achieve reliably 

high correlations without poorly-performing outlier cases (e.g., all 250 calibrations produced r > 0.6), 180 

but the co-location durations required to reduce this risk of outliers ranged between 18 days for the 

NO sensor and about 120 days for the CO sensor (Figure 1, Supplemental Figure 2). 
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 190 
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Table 1. The median and range (1st to 99th percentile) of RMSE from 250 calibration runs from six co-location lengths (1 day, 
1 week, 6 weeks, 1 month, 3 months, and 6 months) for five low-cost sensors. The median and range (min to max) of PM2.5, CO, 
NO2, O3, and NO reference concentrations were 7 (1-53) µg/m3, 199 (100 -2950) ppb, 5.5 (1-58) ppb, 32 (1-110) ppb, and 0.5 (0.1-
136.5) ppb, respectively. 

 200 

 1 Day 1 Week 1 Month 6 Weeks 3 Months 6 Months 
PM2.5 

(µg/m3) 
44.9 

(5.2 – 400) 
6.6 

(3.1 – 18.3) 
3.4 

(3.1 – 9.1) 
3.4 

(3.2 – 7.9) 
3.5 

(3.2 – 5.6) 
3.6 

(3.2 – 3.7) 

CO 
(ppb) 

4870 
(196 – 28,580) 

437 
(61 – 1,630) 

125 
(57 – 231) 

98 
(59 – 219) 

77 
(57 – 135) 

76 
(51 – 105) 

NO2 
(ppb) 

22.4 
(7.8 – 1830) 

8.6 
(4.1 – 21.8) 

6.1 
(4.1 – 10.5) 

6.1 
(3.9 – 8.7) 

6.0 
(3.7 – 7.8) 

4.9 
(3.6 – 7.6) 

O3 
(ppb) 

721.2 
(15.2 – 
10,100) 

50.8 
(9.1 – 267.8) 

15.7 
(8.9 – 27.1) 

15.8 
(8.2 – 22.8) 

15.0 
(8.4 – 23.0) 

10.3 
(8.1 – 12.6) 

NO 
(ppb) 

16.3 
(4.2 – 624) 

7.5 
(3.5 – 72.4) 

4.3 
(3.3 – 6.2) 

3.5 
(3.1 – 4.7)  

3.6 
(2.4 – 4.1) 

3.2 
(2.9 – 3.6) 
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Table 2. The median and range (1st to 99th percentile) of correlation coefficients (r) from 250 calibration runs from six co-location 
lengths (1 day, 1 week, 1 month, 6 weeks, 3 months, and 6 months) for five low-cost sensors.  

  

 1 Day 1 Week 1 Month 6 Weeks 3 Months 6 Months 
PM2.5 0.11 

(-0.78 – 0.70) 
0.66 

(-0.61 – 0.80) 
0.77 

(0.57 – 0.82) 
0.79 

(0.66 – 0.82) 
0.80 

(0.69 – 0.83) 
0.84 

(0.78 – 0.87) 

CO 0.18 
(-0.48 – 0.73) 

0.41 
(-0.40 – 0.90) 

0.76 
(-0.21 – 0.92) 

0.86 
(-0.17 – 0.92) 

0.88 
(0.54 -0.92) 

0.92 
(0.88 – 0.95) 

NO2 0.49 
(-0.58 – 0.82) 

0.70 
(0.39 – 0.88) 

0.75 
(0.63 – 0.89) 

0.77 
(0.69 – 0.88) 

0.78 
(0.74 – 0.88) 

0.85 
(0.76 – 0.88) 

O3 0.07 
(-0.47 – 0.63) 

0.30 
(-0.18 – 0.88) 

0.70 
(0.17 – 0.90) 

0.71 
(0.36 – 0.91) 

0.74 
(0.61 – 0.92) 

0.84 
(0.81 – 0.90) 

NO 0.27 
(-0.89 – 0.95) 

0.88 
(-0.23 – 0.95) 

0.94 
(0.73 – 0.96) 

0.94 
(0.86 – 0.96) 

0.95 
(0.94 – 0.97) 

0.97 
(0.97 – 0.98) 
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Figure 1. The potential range of A-B) RMSE and C-D) correlation coefficients (r) for a given co-location length for the low-cost 205 
PM2.5 and CO sensors. A calibration length of 1 day indicates that a random, continuous 24-hour period was selected out of all 
available days. The RMSE for a given sample calibration was determined by comparing the 1-hour averaged reference and 
corrected sensor data from the days during the evaluation period (i.e., all other days of the year not used in the calibration). For 
each calibration length tested, 250 sample calibration periods were used to assess the range of potential RMSE and correlation 
coefficients. All sensors were calibrated using previously identified predictors in a multiple linear regression using data from the 210 
calibration period only. Reference PM2.5 concentrations ranged between 1 and 53 µg/m3, with a median concentration of 7 
µg/m3, and reference CO concentrations ranged between 100 and 2947 ppb, with a median concentration of 199 ppb. 
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Figure 2. The potential range of RMSE values for a given co-location length for three low-cost sensors (NO2, O3, and NO). A 
calibration length of 1 day indicates that a random 24-hour period was selected out of all available days between February 2019 215 
and February 2020. The RMSE for a given test calibration period was determined by comparing the 1-hour averaged reference 
and the corrected sensor data associated with that calibration across the evaluation period (all days not included in the 
calibration period). For each calibration length, 250 randomly selected calibration periods were used to assess the potential 
RMSE range. All sensors were calibrated using previously identified predictors in a multiple linear regression using data from 
the calibration period only. The reference NO2 concentrations ranged between 1 and 58 ppb over the full year, with a median 220 
concentration of 5 ppb. The reference O3 concentrations ranged between 1 and 110 ppb, with a median concentration of 31 ppb. 
The reference NO concentrations ranged between 0.1 and 137 ppb, with a median concentration of 0.5 ppb.  
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3.2. Selecting Optimal Calibration Conditions for Co-location Periods 

The results show that the calibration performance from shorter-term co-locations varies considerably 

depending on the chosen co-location period. If a user wanted all 250 potential co-location periods for 225 

the PM2.5 sensor to have an RMSE below 4 µg/m3 and an r > 0.6, the minimum co-location duration 

that would ensure all calibration periods satisfied these two requirements would be 108 days at this 

site. However, 22% of the 7-day co-locations also produced calibrations that satisfied these two 

requirements, so we analyzed the environmental factors during one-week calibrations that led to low 

and high RMSEs. In Figure 3 and Supplemental Figure 3, results from two one-week calibration 230 

periods are shown to demonstrate the range of potential RMSE values for the PM2.5 sensor with 

differences in calibration conditions. The corresponding raw sensor, temperature, and RH data are also 

shown in the lower panels of Figure 3. In this comparative example, “Calibration Period 1” produced 

more accurate concentrations during the evaluation periods (RMSE = 3.1 µg/m3), whereas “Calibration 

Period 2” performed poorly (RMSE = 19.5 µg/m3). Calibration Period 1 included a wider range of 235 

concentrations (1-45 µg/m3), temperatures (-2 - 12oC), and RHs (17-93%) and was able to yield similar 

concentrations as the reference data for the full year, whereas Calibration Period 2 was more limited 

in its range of conditions (6-37 µg/m3, 21-30 oC, and 42-88%, respectively) and performed reasonably 

only during the summer months. In addition, the largest 6-month RMSE (e.g., 3.7 µg/m3 for PM2.5 and 

12.6 ppb for Ozone; Table 1) were generally comprised of more months when ambient concentrations 240 

were low and less variable (summer and winter, respectively), and the scenarios with the lowest RMSE 

included the months with the greatest concentrations observed in the data set. An analysis of the PM 

data where the 250 randomly selected calibration periods were from between 02/2019 and 11/2019 

and the evaluation period was held to 11/2019-02/2020 (only one season) is shown in Supplemental 

Figure 4. The results are consistent with the original method. 245 

Based on these results, we hypothesized that a key element governing good calibration outcomes 

is if the calibration co-location period is representative of the evaluation period in terms of the required 

predictors in Equation 1. Note, the required predictors are distinct for each sensor type, so optimal 
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periods may differ by sensor. To evaluate this hypothesis, the median RMSEs for three sensors (PM2.5, 

NO2, and CO) were plotted as a function of the coverage of key predictors in the calibration period 250 

(Figure 4). The gases NO2 and CO are shown because the NO2 sensor responds to numerous factors 

including other pollutants (i.e., cross-sensitivity) and the CO sensor exhibits a non-linear response to 

temperature (Levy Zamora, 2022). The median RMSE of the corrected PM2.5 sensor is plotted as a  
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Figure 3. Example comparison of two potential one-week calibration periods. These were selected to illustrate the range of 
potential RMSE values that can result from using different periods of the same co-location duration. In the example here, 
“Calibration Period 1” yielded more accurate concentrations (shown in green; RMSE = 3.1 µg/m3), while “Calibration 
Period 2” performed poorly when considered across the whole evaluation period (shown in red; RMSE = 19.5 µg/m3). A) 
The calibrated PM2.5 (µg/m3) time series are shown using the two test calibration periods and the reference data (black) from 
February to August 2019. B) Scatterplot of PM2.5 data from the two calibration periods compared to reference data in 
comparison to the full data set. C) Comparison of RH and ambient temperature for the two calibration periods compared 
to data from the full year. 
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function of RH and temperature coverage since they have been shown to drive biases in the PM2.5 

sensor data (Sayahi et al., 2019; Levy Zamora, 2022; Levy Zamora et al., 2018a). If the coverage of 

key predictors is high, this indicates that the conditions during the calibration period are representative  285 

of the evaluation period (i.e., they cover a similar range of values). In general, the calibrations for 

PM2.5 become more accurate (lower RMSEs) as the RH coverage increases (i.e., moving to the right 

in Figure 4A), and there is a slight improvement with increasing temperature coverage (i.e., Figure 4A 

moving upwards). The lowest RMSEs were observed when the coverage was high for both temperature 

and RH. To further clarify the influence of coverage on calibration outcomes, the median RMSEs as a 290 

Figure 4. Median RMSE values for PM2.5, CO, and NO2 sensors are shown as a function of data coverage (i.e., 
representation) of observed ambient conditions for key predictors within 1-week calibration periods. Bluer colors indicate 
better calibration results with lower RMSE. The + markers indicate where there were at least 25 calibration runs that fell 
within that box. The “coverage” values indicate the representativeness of the one-week calibration period compared to the 
full data set across all seasons. For example, if the temperature ranged from 0 to 40 oC over the full year and a given 
calibration period ranged from 0 to 12oC, the temperature coverage of that calibration period would be 30% (i.e., 
Δ12oC/40oC). The ambient temperature and RH ranged between -11 and 36 oC and 14 and 95% over the full year, 
respectively.  
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function of temperature and RH coverages when the PM2.5 concentration coverage was greater than 

50% are shown in Table 3. RH strongly influences the sensor’s raw output, particularly compared to 

temperature (Levy Zamora et al., 2018b; Levy Zamora, 2022; Sayahi et al., 2019). To yield the best 

performing calibration outcomes, highly influential cross-sensitives or environmental factors (i.e., RH) 

should have a minimum coverage of about 70% and secondary factors (i.e., temperature) should have 295 

a minimum coverage of about 50%. 

The NO2 sensor exhibits cross-sensitivities to O3 and NO in addition to responding to temperature 

and RH (Li et al., 2021; Levy Zamora, 2022), so an adequate calibration period should cover an 

adequate range for all four parameters. The reference NO2 concentrations ranged between 1 and 58 

ppb, with a median concentration of 5 ppb. In general, the RMSEs in the NO2 plots decrease as the RH 300 

(Figure 4C x-axis), temperature (Figure 4C y-axis), and O3 coverage increase (Figure 4D x-axis), but 

the gradient is more clearly seen in the NO coverage (i.e., moving upwards on the y-axis in Figure 

4D). The O3 sensor is an example of another sensor that exhibits a cross-sensitivity to another common 

pollutant (NO2; not shown in the main text), which has been demonstrated in a previous work (Levy 

Zamora, 2022). Additional examples of coverage of key variables for all the sensors are shown in 305 

Supplemental Figure 5.  

For all three sensors in Figure 4, the RMSEs decreased as the concentration coverage increased, 

but it was particularly notable for the CO sensor, likely due to the significant differences in seasonal 

concentrations (e.g., the peak reference CO concentration from December and July were 2950 ppb and 

773 ppb, respectively). The reference CO concentrations ranged between 100 and 2950 ppb during the 310 

full year, with a median concentration of 199 ppb. This indicates that a period with only low 

concentrations may not be able to yield as accurate calibration curves if the evaluation period has a 

much broader concentration range than observed during the calibration period. In the CO sensor panel 

(Figure 4B), greater temperature coverage generally resulted in lower RMSEs, but a key factor for the 

CO sensor is that the calibration must cover warm temperatures if the calibration is going to be applied 315 

to warm seasons. This is due to the notably different responses to high and low temperatures. This CO 
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sensor exhibits minimal temperature effects below about 15oC but strongly responds to warmer 

temperatures (i.e. the sensor will overestimate concentrations at higher temperatures if not properly 

calibrated) (Levy Zamora, 2022). More specifically, if a calibration period only included temperatures 

below 15oC, that data could not reasonably be extrapolated to a warmer period because it would not 320 

be able to correct for this overestimation at high temperatures. Sensors with more linear responses are 

less sensitive to this issue because a smaller range may be more accurately extrapolated. We note that 

the NO and O3 sensors also exhibit non-linear responses to temperature.  

It is important to mention that Baltimore, MD is a region that experiences a broad range of 

meteorological conditions each year, so the co-location duration must be long enough to capture an 325 

adequate range of conditions to fully characterize the calibration curves. The pollutants also exhibit 

significant seasonal variation at this location. In other regions where the weather conditions are less 

variable, shorter co-location durations may be more likely to produce accurate results. This is the 
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(3.3 – 11.5; 2%) 

RH range > Δ48% 
(Coverage >~60%) 4.7 4.7 4.7 4.4 3.7 

RH range > Δ56% 
(Coverage >~70%) 4.3 4.3 4.4 4.3 3.7 

RH range > Δ64% 
(Coverage >~80%) 4.3 4.3 4.3 4.1 3.7 

RH range > Δ72% 
(Coverage >~90%) 

4.2 
(3.2 – 6.8; 7%) 4.2 4.3 3.9 3.6 

(3.2 – 3.7; 1%) 

Table 3. Comparison of the median RMSE (µg/m3) for PM2.5 from 1-week calibration periods with different coverages of 
temperature and RH conditions. Only calibration periods with more than 50% coverage of the PM2.5 concentration range 
were included in the table (>50% corresponds to 26 µg/m3 or more in this dataset). For four scenarios (e.g., PM2.5 coverage 
> 50%, RH Coverage > 50%, T Coverage > 20%), the 1st percentile RMSE, 99th percentile RMSE, and the percentage of 
calibrations that exhibited all required conditions (e.g., RH > X % and T > X%) are shown (1st - 99th percentile; %).  For 
comparison, the median (1st - 99th percentile) of the PM2.5 1-week calibration periods from the full data set (i.e., no coverage 
requirements) was 6.6 µg/m3 (3.1 – 18.3 µg/m3). 
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primary reason why employing a “coverage” approach might be a more useful approach for identifying 

appropriate co-location durations. Also, we were applying the calibration equations on data from a full 330 

year, but shorter co-location durations would likely be satisfactory if the calibration and measurement 

period were going to be completed under similar conditions (e.g., within one season). For example, if 

we limited the calibration and evaluation periods to within June 1 - August 31, 2019 (peak PM2.5 = 25 

µg/m3), 70% of one-week co-locations would have an RMSE below 4 µg/m3 and an r > 0.6. Similarly, 

if we limited the calibration and evaluation periods to between November 1, 2019, and February 1, 335 

2020 (peak PM2.5 = 53 µg/m3), 40% of one-week co-locations would have fulfilled these two 

requirements. Another benefit of strategically identifying co-location needs is that it may permit users 

of sensor networks to co-locate each device in the network for shorter periods to get device-specific 

calibration equations. By ensuring a minimum coverage of key factors for each device co-location 

period, calibration data between units would likely be more consistent even if the data were collected 340 

from different periods. This would be particularly advantageous for sensor types that exhibit notable 

variability between units.  

If little information is known about key predictors at the measurement sites, which is likely at 

remote locations, it may be possible to use historical meteorological data and general information about 

pollutant patterns (e.g., emissions and seasonal concentration patterns) to determine a representative 345 

range of conditions. Future work should explore whether a combination of multiple, shorter calibration 

periods in different seasons may produce reasonable calibrations for year-round data sets. However, 

in all cases, it is advisable to increase the estimated co-location periods in case of data loss or unusual 

air quality events to increase the probability of well-performing calibrations. 

4. Conclusions 350 

In this study, we assessed five pairs of co-located reference and low-cost sensor data sets (PM2.5, 

O3, NO2, NO, and CO) to identify key factors that influence the duration of a co-location required to 
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calibrate low-cost sensors via co-location. We compared the RMSE and correlation coefficients from 

co-location periods spanning between 1 and 180 days. While longer co-location periods of up to several 

months generally improved the performance of the sensor, optimal calibration could be produced from 355 

shorter co-location lengths if the calibration period covered the span of conditions likely to be 

encountered during the evaluation period. We determined that many factors could increase the duration 

of co-location required, including if a sensor responds to environmental factors such as temperature or 

RH; if the sensor exhibits a cross-sensitivity to another pollutant; if a response is non-linear to any of 

these factors; and duration of the full deployment (i.e., within a season or spanning multiple seasons). 360 

Particular attention must be given to sensors that exhibit a non-linear response if the actual 

measurement period (e.g., the evaluation period) is going to extend into another season. These results 

suggest that co-location time can be minimized if selected strategically based on the typical 

characteristics of a region. The factors that strongly influence the sensor response should have a 

minimum coverage of about 70% and secondary factors should have a minimum coverage of about 365 

50%. Future work should evaluate if employing methods that account for the non-linear responses of 

key predictors can further optimize the calibration of low-cost sensors as well as if more sophisticated 

comparisons of the statistical distributions of predictors across calibration periods are beneficial. 

Supplemental Materials 

Additional figures shown in the supplemental materials include: 1) the start times of 250 randomly 370 

selected PM2.5 calibration scenarios, 2) the potential range of Pearson correlation coefficients (r) for 

three low-cost sensors (NO2, O3, and NO) by co-location length, 3) a zoomed-in comparison of the 

two potential one-week calibration periods corresponding to Figure 3, 4) an analysis of the PM data 

where the 250 randomly selected calibration periods were from between 02/2019 and 11/2019 and the 

evaluation period was 11/2019-02/2020 for all of the considered calibrations, and 5) additional 375 

examples of coverage of key variables for all the sensors. Descriptive statistics of the reference data 
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are shown in Supplemental Table 1, and the median and range (1st to 99th percentile) of the normalized 

RMSE for six co-location lengths are shown in Supplemental Table 2. This material is available free 

of charge via the internet at https://egusphere.copernicus.org/preprints/2022/egusphere-2022-

200/egusphere-2022-200-supplement.pdf. 380 
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