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Abstract. Low-cost sensors are often co-located with reference instruments to assess their
performance and establish calibration equations, but limited discussion has focused on whether the
duration of this calibration period can be optimized. We placed a multipollutant monitor that contained
sensors that measure particulate matter smaller than 2.5 um (PMa5), carbon monoxide (CO), nitrogen
dioxide (NO2), ozone (O3), and nitric oxide (NO) at a reference field site for one year. We developed
calibration equations using randomly selected co-location subsets spanning 1 to 180 consecutive days
out of the 1-year period and compared the potential root mean square errors (RMSE) and Pearson
correlation coefficients (r). The co-located calibration period required to obtain consistent results
varied by sensor type, and several factors increased the co-location duration required for accurate
calibration, including the response of a sensor to environmental factors, such as temperature or relative
humidity (RH), or cross-sensitivities to other pollutants. Using measurements from Baltimore, MD,
where a broad range of environmental conditions may be observed over a given year, we found
diminishing improvements in the median RMSE for calibration periods longer than about six weeks
for all the sensors. The best performing calibration periods were the ones that contained a range of
environmental conditions similar to those encountered during the evaluation period (i.e., all other days
of the year not used in the calibration). With optimal, varying conditions it was possible to obtain an

accurate calibration in as little as one week for all sensors, suggesting that co-location can be
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minimized if the period is strategically selected and monitored so that the calibration period is

representative of the desired measurement setting.

1. Introduction

Instrument calibration is one of the main processes used to ensure instrument accuracy. In one
method of calibration, measurements are compared between an uncalibrated instrument and a reference
instrument, which can then be used to adjust the output of the uncalibrated instrument to see whether
the data can meet performance standards (often in terms of accuracy and precision). In the case of low-
cost air-pollution sensors, the raw output is often a voltage or resistance instead of a concentration, so
a calibration curve is needed to convert the raw output into practical units. Cross-sensitivities to
environmental conditions or other pollutants, non-linear responses, and variability between sensor
units are common difficulties that must be considered when working with low-cost sensor data (Van
Zoestetal., 2019; Levy Zamora, 2022; Li et al., 2021; Spinelle et al., 2015; Ripoll et al., 2019). Several
methodologies have been used to derive the calibration equations needed to convert the raw data into
useable concentrations, such as exposing the sensors to known concentrations in a laboratory setting
and co-locating the sensors with a reference instrument, often in a similar setting to which the sensor
is to be used (Taylor, 2016; Zimmerman et al., 2018; Mead et al., 2013; Ikram et al., 2012; Hagler et
al., 2018; Cross et al., 2017; Holstius et al., 2014; Mukherjee et al., 2019; Gao et al., 2015; Heimann
et al., 2015; (Scagmd), 2016a, 2017, 2016b; Levy Zamora et al., 2018a). Field co-location is a widely
used calibration method, but a tradeoff must be made between the time dedicated to collecting
calibration data and the data collected at the final measurement location. There is currently no
standardized co-location duration, and the reported co-location durations for low-cost sensors with
reference instruments in recent work have varied from several days to several months (Mukherjee et
al., 2019; Gao et al., 2015; Topalovi¢ et al., 2019; Kim et al., 2018; (Ag-Spec), 2018; Spinelle et al.,
2017; Pinto et al., 2014; Datta et al., 2020). To date, little discussion has focused on whether the
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selected periods were adequate for the deployment period or whether the calibration period can be
optimized in future studies (Topalovi¢ et al., 2019; Okorn and Hannigan, 2021). In one study that
assessed the impacts of co-location duration for a low-cost sensor, Okorn et al (Okorn and Hannigan,
2021) randomly selected calibration periods up to six weeks in duration from six weeks of methane
data in Los Angeles. The calibration equations were then applied to data from an earlier month in the
same location. They reported that longer calibration periods (i.e., six weeks) produced fits with lower
bias than fits from shorter calibration periods (i.e., 1 week). In that study, the one-week calibrations
yielded the best R? values.

The central goal of this specific work was to identify the key factors that influence the duration of
a co-location required to obtain sufficient data to achieve consistent calibrate curves for five low-cost
sensors (particulate matter smaller than 2.5 microns (PMzs), carbon monoxide (CO), ozone (O3),
nitrogen dioxide (NO2), and nitrogen monoxide (NO)) (Buehler et al., 2021). In addition, we aim to

identify how this necessary calibration period can be optimized.

2. Methods
2.1. Data Collection

Data collected at two sites were used in the co-location analyses based on the availability of
reference instrumentation. The CO (Alphasense CO-A4 sensor), NO> (Alphasense NO2-A43F), NO
(Alphasense NO-A4), and O3 (MiCS-2614) sensors were co-located with reference instruments at the
Maryland Department of the Environment’s (MDE) Essex site (ID =240053001) in Baltimore County,
Maryland. The PM; s sensor (Plantower PMS A003) was concurrently co-located with a reference
instrument at the MDE Oldtown site (ID = 245100040) in Baltimore City, Maryland. The Essex site
(39.310833, -76.474444) is about 11 km east of the Oldtown site (39.298056, —76.604722). Additional
details about the sensors in the multipollutant monitor have been described in detail by Buehler et al.

(Buehler et al., 2021) and Levy Zamora et al. (Levy Zamora, 2022). Co-location data from February
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1, 2019, to February 1, 2020, were used in the PM; 5 analysis, and co-location data from February 1 to
December 20, 2019, were used in the CO, NO, NO», and O3 sensors analyses. Due to an issue affecting
the gas sensor inlet on the Essex monitor, the O3, NO2, and NO sensor data were unavailable after
December 20, 2019. Hourly average data were used in all analyses. Both reference sites also measured
hourly averaged temperature and relative humidity (RH). The ambient temperature and RH ranged
between -11 and 36°C and 14 and 95% over the full year, respectively. The temperatures and RHs
measured inside the multipollutant pollutant monitors were slightly different from the ambient values
due to direct sunlight warming the monitors and the small amount of heat produced by the sensors
themselves within the box. The box temperatures and RHs ranged between -8 and 45 °C and 14 and

80%, respectively.

2.2. Assessing the Role of Co-location Duration

We use different subsets of the full co-location period to create a suite of hypothetical co-location
durations based on which the calibration models will be trained. For each hypothetical calibration co-
location scenario (i.e., ranging from 1 to 180 consecutive days in | day increments), 250 sample
calibration test periods were randomly selected of that duration. These test periods were used in the
sensitivity analysis at each test condition to assess the range of potential resulting root mean squared
error (RMSE) values and Pearson correlation coefficients (r). For example, a calibration duration of 1
day indicates that a 24-hour period was randomly selected out of the available data, referred to as the
“calibration period”, and the data from those 24 hours was used to develop the calibration equations
(see below) relating the raw sensor data to ambient conditions. This was then evaluated against all
days not included in the calibration period, referred to as the “evaluation period”. The randomly chosen
calibration periods could overlap, but no two periods were exactly the same. In Supplemental Figure
1, the start times of 250 randomly selected PMz s calibrations are shown as an example. Each tested
co-location duration produced 250 RMSE and r values, and only calibration periods with at least 70%

valid sensor and reference data were used in the analyses (e.g., a 24 hr calibration period needed to
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have more than 16 hours of valid data for both instruments). No laboratory or information from the
manufacturer was used to additionally calibrate the sensors in this work. All data analysis was
conducted using Matlab 2020a.

Sensor data from the calibration period was used to determine the coefficients for multiple linear
regression (MLR) models based on previously identified known environmental factors influencing

concentration for each sensor (Levy Zamora, 2022). A generic MLR model is given by:

ReferencePollutant(t) = ,80 + ﬂl * SensorPollutant(t) + Zrll ﬂn * PrediCtOTn(t) (1)

where Referencepoiutant 18 the reference concentration at time t for a given pollutant, o is the constant
intercept, P 1s the coefficient applied to the uncalibrated Sensorpoiutant Value for a given pollutant at
time t, and Bn is the coefficient applied to Predictor,. Levy Zamora et al. (Levy Zamora, 2022) have
reported the predictors needed to calibrate these five low-cost sensors in detail. Briefly, the PMy s
sensor model incorporated temperature and RH as predictors. The CO sensor model included
temperature, RH, and time, where time refers to the current date and time that the data were collected.
The NO> sensor model included temperature, RH, NO, O3, and time. The O3 model included
temperature, RH, NO>, and time, and the NO model included temperature and CO as predictors. The
CO, 03, and NO> sensors may exhibit baseline drift over the year, which is why the time predictors
were included. The data used as the predictors came from the other sensors in the multipollutant
monitor (e.g., the NO sensor model used the co-located low-cost CO sensor for the CO predictor).
Once the regression coefficients were determined for a calibration period, this equation was applied to
all data in the corresponding evaluation period.

For each calibration period tested, the RMSE and correlation coefficients were determined by
comparing the 1-hour averaged reference and corrected sensor data from all hours during the
evaluation period. The RMSE was calculated using Equation 2 where Reference; and
Predicted; are the corresponding i-th 1-hour averaged concentrations from the evaluation period with

N data points.
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An RMSE value of 0 would indicate a perfect agreement between the reference and the sensor. The

RMSE = J

correlation coefficient is a measure of the linear correlation between two data sets. It is a value between
—1 and 1, where 1 indicates a strong positive relationship, -1 indicates a strong negative relationship,
and 0 has no discernible relationship. The median RMSE and median r referenced in this manuscript
refer to the median value from all the 250 calibration scenarios for each duration. Outliers are defined
as a value that is more than three scaled median absolute deviations (MAD) away from the median.
We hypothesize that a user could strategically choose a co-location period to minimize the
calibration period and that co-location duration is not the only factor to consider when optimizing co-
locating an instrument for calibration. In these analyses, we use the term “coverage” to indicate the
representativeness of environmental conditions during a calibration period compared to that observed
across the full data set (calibration and evaluation periods). In order to visualize how the environmental
conditions during the calibration period compared to the evaluation period, we compared the range of
temperature, RH, and other key pollutants from each period. For example, if the full RH ranged
between 10 and 90% and the calibration period ranged between 20 and 60%, the RH coverage of that
calibration period would be 50% (40/80). Descriptive statistics of the reference data used in the

calibration models from the full year are displayed in Supplementary Table 1.

Maximum Valuecqiipration perioa — Minimum Valuecqiipration period

Coverage _ X100 (3)

Maximum Valuegy yeqr — Minimum Value gy year
3. Results and Discussion
3.1. Impact of colocation duration on calibration performance

The range of RMSE values from 250 calibration periods in the sensitivity analysis of six co-

location durations (i.e., 1 day, 1 week, 1 month, 6 weeks, 3 months, and 6 months) for all five low-
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cost sensors are shown in Table 1, and the box plots of the RMSEs from co-location durations ranging
1-180 days are shown in Figures 1 (PMa2s and CO) and 2 (NO2, O3, and NO). Overall, longer
calibrations resulted in lower median RMSE values. The greatest improvements in median RMSE
values were observed when increasing the co-location duration from 1 day to about two weeks. After
about six weeks, diminishing improvements were observed in the median RMSEs for all the sensors
except ozone. The median RMSE for ozone decreased by about 5 ppb when increasing the duration
from 6 weeks to 6 months. There were also a limited number of high outlier RMSEs for any of the
sensors after about two months indicating that most of the 250 calibrations were generally yielding
similar RMSEs. In addition, the lowest RMSE values (e.g., 1% percentile) were similar for all co-
location durations longer than about one week for many of the sensors. This suggests that optimized
calibration periods can yield high-performance calibrations. For example, the RMSEs from the 1-week
calibration periods for the PM>s sensor ranged between 3.1 and 18.3 pg/m®, and the 6-month
calibrations ranged between 3.2 and 3.7 pg/m>. The 1% percentile RMSEs for the 1 week and 6 months
were also similar for CO (61 and 51 ppb, respectively), NO2 (4.1 and 3.6 ppb, respectively), O3z (9.1
and 8.1 ppb, respectively), and NO (3.3 and 2.9 ppb, respectively). The 10™ percentile RMSEs were
similar after about 1 month for most sensors. For example, the 10" percentile for PM was 3.4 at 1
month and 3.5 pg/m? at 6 months (CO: 66 and 69 ppb, respectively; NOa: 4.3 and 4.1 ppb, respectively;
O3: 11.0 and 8.4 ppb, respectively; NO: 3.5 and 2.9 ppb, respectively). The differences between the 1%
and 99" percentile RMSE for the 6-month scenarios were comparatively small for all sensors
compared to the overall concentrations and ranges (e.g., the RMSE range at 6 months for PMa.s was
0.5 pg/m® compared to the annual average concentration of 8.3 pg/m?).

The ranges of correlation coefficients for the five low-cost sensors are shown in Table 2, and the
box plots of the r values from co-location durations between 1-180 days are shown in Figure 1 (PM2s
and CO) and Supplemental Figure 2 (NO, O3, and NO). Overall, longer calibrations also resulted in
higher r values, though in some individual test periods it was possible to produce correlation

coefficients at or above 0.6 in as little as 1 day for all five sensors. After about six weeks, only

7
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incremental improvements were observed in the median correlations for all the sensors. For example,

the greatest improvement in the median correlation after 6 weeks was observed for ozone which

increased from 0.71 at 6 weeks to 0.84 at 6 months. All of the sensors were able to achieve reliably

high correlations without poorly-performing outlier cases (e.g., all 250 calibrations produced r > 0.6),

but the co-location durations required to reduce this risk of outliers ranged between 18 days for the

NO sensor and about 120 days for the CO sensor (Figure 1, Supplemental Figure 2).

1 Day 1 Week 1 Month 6 Weeks 3 Months 6 Months

PM, s 44.9 6.6 3.4 3.4 35 3.6
(ng/m®)  (52-400)  (3.1-183) (3.1-91) (32-79) (32-56) (32-3.7)

CcoO 4870 437 125 98 77 76
(ppb) (196 —28,580) (61-1,630) (57-231) (59-219) (57-135) (51-105)

NO; 224 8.6 6.1 6.1 6.0 4.9
(ppb) (7.8—1830) (4.1-218) 4.1-105 ((39-87 (3.7-78) ((3.6-17.6)

(023 721.2 50.8 15.7 15.8 15.0 10.3
(ppb) (15.2 - (9.1-267.8) (8.9-27.1) (8.2-22.8) (8.4-23.0) (8.1-12.6)

10,100)

NO 16.3 7.5 43 3.5 3.6 3.2

(ppb) (4.2 -624) (3.5-724)  (33-62) (3.1-47) (24-41) (29-3.0)

Table 1. The median and range (1st to 99th percentile) of RMSE from 250 calibration runs from six co-location lengths (1 day,
1 week, 6 weeks, 1 month, 3 months, and 6 months) for five low-cost sensors. The median and range (min to max) of PM2.5, CO,
NO2, 03, and NO reference concentrations were 7 (1-53) ng/m?, 199 (100 -2950) ppb, 5.5 (1-58) ppb, 32 (1-110) ppb, and 0.5 (0.1-

136.5) ppb, respectively.
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Table 2. The median and range (1* to 99 percentile) of correlation coefficients (r) from 250 calibration runs from six co-location

1 Day
0.11
(-0.78 — 0.70)

0.18
(-0.48 - 0.73)

0.49
(-0.58 — 0.82)

0.07
(-0.47 - 0.63)

0.27
(-0.89 — 0.95)

1 Week
0.66
(-0.61 — 0.80)

0.41
(-0.40 — 0.90)

0.70
(0.39 - 0.88)

0.30
(-0.18 - 0.88)

0.88
(-0.23 — 0.95)

1 Month
0.77
(0.57-0.82)

0.76
(-0.21-0.92)

0.75
(0.63 - 0.89)

0.70
(0.17 - 0.90)

0.94
(0.73 - 0.96)

6 Weeks
0.79
(0.66 — 0.82)

0.86
(-0.17-0.92)

0.77
(0.69 — 0.88)

0.71
(0.36-0.91)

0.94
(0.86 — 0.96)

3 Months
0.80
(0.69 — 0.83)

0.88
(0.54-0.92)

0.78
(0.74 — 0.88)

0.74
(0.61-0.92)

0.95
(0.94-0.97)

lengths (1 day, 1 week, 1 month, 6 weeks, 3 months, and 6 months) for five low-cost sensors.

6 Months
0.84
(0.78 — 0.87)

0.92
(0.88 - 0.95)

0.85
(0.76 — 0.88)

0.84
(0.81 - 0.90)

0.97
(0.97 - 0.98)
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Figure 1. The potential range of A-B) RMSE and C-D) correlation coefficients (r) for a given co-location length for the low-cost
PM2.5 and CO sensors. A calibration length of 1 day indicates that a random, continuous 24-hour period was selected out of all
available days. The RMSE for a given sample calibration was determined by comparing the 1-hour averaged reference and
corrected sensor data from the days during the evaluation period (i.e., all other days of the year not used in the calibration). For
each calibration length tested, 250 sample calibration periods were used to assess the range of potential RMSE and correlation
coefficients. All sensors were calibrated using previously identified predictors in a multiple linear regression using data from the
calibration period only. Reference PM2.5 concentrations ranged between 1 and 53 pg/m3, with a median concentration of 7
pg/m3, and reference CO concentrations ranged between 100 and 2947 ppb, with a median concentration of 199 ppb.
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Figure 2. The potential range of RMSE values for a given co-location length for three low-cost sensors (NOz, O3, and NO). A

215  calibration length of 1 day indicates that a random 24-hour period was selected out of all available days between February 2019
and February 2020. The RMSE for a given test calibration period was determined by comparing the 1-hour averaged reference
and the corrected sensor data associated with that calibration across the evaluation period (all days not included in the
calibration period). For each calibration length, 250 randomly selected calibration periods were used to assess the potential
RMSE range. All sensors were calibrated using previously identified predictors in a multiple linear regression using data from

220 the calibration period only. The reference NO:2 concentrations ranged between 1 and 58 ppb over the full year, with a median
concentration of 5 ppb. The reference O3 concentrations ranged between 1 and 110 ppb, with a median concentration of 31 ppb.
The reference NO concentrations ranged between 0.1 and 137 ppb, with a median concentration of 0.5 ppb.
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3.2. Selecting Optimal Calibration Conditions for Co-location Periods

The results show that the calibration performance from shorter-term co-locations varies considerably
depending on the chosen co-location period. If a user wanted all 250 potential co-location periods for
the PMz s sensor to have an RMSE below 4 pg/m? and an r > 0.6, the minimum co-location duration
that would ensure all calibration periods satisfied these two requirements would be 108 days at this
site. However, 22% of the 7-day co-locations also produced calibrations that satisfied these two
requirements, so we analyzed the environmental factors during one-week calibrations that led to low
and high RMSEs. In Figure 3 and Supplemental Figure 3, results from two one-week calibration
periods are shown to demonstrate the range of potential RMSE values for the PM» s sensor with
differences in calibration conditions. The corresponding raw sensor, temperature, and RH data are also
shown in the lower panels of Figure 3. In this comparative example, “Calibration Period 1"’ produced
more accurate concentrations during the evaluation periods (RMSE = 3.1 pg/m?), whereas “Calibration
Period 2” performed poorly (RMSE = 19.5 pg/m?). Calibration Period 1 included a wider range of
concentrations (1-45 pg/m?), temperatures (-2 - 12°C), and RHs (17-93%) and was able to yield similar
concentrations as the reference data for the full year, whereas Calibration Period 2 was more limited
in its range of conditions (6-37 pg/m?, 21-30 °C, and 42-88%, respectively) and performed reasonably
only during the summer months. In addition, the largest 6-month RMSE (e.g., 3.7 pg/m? for PMa s and
12.6 ppb for Ozone; Table 1) were generally comprised of more months when ambient concentrations
were low and less variable (summer and winter, respectively), and the scenarios with the lowest RMSE
included the months with the greatest concentrations observed in the data set. An analysis of the PM
data where the 250 randomly selected calibration periods were from between 02/2019 and 11/2019
and the evaluation period was held to 11/2019-02/2020 (only one season) is shown in Supplemental
Figure 4. The results are consistent with the original method.

Based on these results, we hypothesized that a key element governing good calibration outcomes
is if the calibration co-location period is representative of the evaluation period in terms of the required

predictors in Equation 1. Note, the required predictors are distinct for each sensor type, so optimal

12
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periods may differ by sensor. To evaluate this hypothesis, the median RMSEs for three sensors (PMa s,
NO,, and CO) were plotted as a function of the coverage of key predictors in the calibration period
(Figure 4). The gases NO; and CO are shown because the NO» sensor responds to numerous factors

including other pollutants (i.e., cross-sensitivity) and the CO sensor exhibits a non-linear response to

temperature (Levy Zamora, 2022). The median RMSE of the corrected PM> 5 sensor is plotted as a
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Figure 3. Example comparison of two potential one-week calibration periods. These were selected to illustrate the range of
potential RMSE values that can result from using different periods of the same co-location duration. In the example here,
“Calibration Period 1” yielded more accurate concentrations (shown in green; RMSE = 3.1 pg/m®), while “Calibration
Period 2” performed poorly when considered across the whole evaluation period (shown in red; RMSE = 19.5 ng/m?). A)
The calibrated PM2.5s (ng/m?) time series are shown using the two test calibration periods and the reference data (black) from
February to August 2019. B) Scatterplot of PM2s data from the two calibration periods compared to reference data in
comparison to the full data set. C) Comparison of RH and ambient temperature for the two calibration periods compared

to data from the full year.

15

100



275

280

285

290 and RH. To further clarify the influence of coverage on calibration outcomes, the median RMSEs as a
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Figure 4. Median RMSE values for PMzs, CO, and NO: sensors are shown as a function of data coverage (i.e.,
representation) of observed ambient conditions for key predictors within 1-week calibration periods. Bluer colors indicate
better calibration results with lower RMSE. The + markers indicate where there were at least 25 calibration runs that fell
within that box. The “coverage” values indicate the representativeness of the one-week calibration period compared to the
full data set across all seasons. For example, if the temperature ranged from 0 to 40 °C over the full year and a given
calibration period ranged from 0 to 12°C, the temperature coverage of that calibration period would be 30% (i.e.,
A12°C/40°C). The ambient temperature and RH ranged between -11 and 36 °C and 14 and 95% over the full year,

respectively.

14

function of RH and temperature coverage since they have been shown to drive biases in the PMa s
sensor data (Sayahi et al., 2019; Levy Zamora, 2022; Levy Zamora et al., 2018a). If the coverage of
key predictors is high, this indicates that the conditions during the calibration period are representative
of the evaluation period (i.e., they cover a similar range of values). In general, the calibrations for
PMb> s become more accurate (lower RMSEs) as the RH coverage increases (i.e., moving to the right
in Figure 4A), and there is a slight improvement with increasing temperature coverage (i.e., Figure 4A

moving upwards). The lowest RMSEs were observed when the coverage was high for both temperature
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function of temperature and RH coverages when the PMb» 5 concentration coverage was greater than
50% are shown in Table 3. RH strongly influences the sensor’s raw output, particularly compared to
temperature (Levy Zamora et al., 2018b; Levy Zamora, 2022; Sayahi et al., 2019). To yield the best
performing calibration outcomes, highly influential cross-sensitives or environmental factors (i.e., RH)
should have a minimum coverage of about 70% and secondary factors (i.e., temperature) should have
a minimum coverage of about 50%.

The NO; sensor exhibits cross-sensitivities to Oz and NO in addition to responding to temperature
and RH (Li et al., 2021; Levy Zamora, 2022), so an adequate calibration period should cover an
adequate range for all four parameters. The reference NO; concentrations ranged between 1 and 58
ppb, with a median concentration of 5 ppb. In general, the RMSEs in the NO» plots decrease as the RH
(Figure 4C x-axis), temperature (Figure 4C y-axis), and O3 coverage increase (Figure 4D x-axis), but
the gradient is more clearly seen in the NO coverage (i.e., moving upwards on the y-axis in Figure
4D). The Os sensor is an example of another sensor that exhibits a cross-sensitivity to another common
pollutant (NO2; not shown in the main text), which has been demonstrated in a previous work (Levy
Zamora, 2022). Additional examples of coverage of key variables for all the sensors are shown in
Supplemental Figure 5.

For all three sensors in Figure 4, the RMSEs decreased as the concentration coverage increased,
but it was particularly notable for the CO sensor, likely due to the significant differences in seasonal
concentrations (e.g., the peak reference CO concentration from December and July were 2950 ppb and
773 ppb, respectively). The reference CO concentrations ranged between 100 and 2950 ppb during the
full year, with a median concentration of 199 ppb. This indicates that a period with only low
concentrations may not be able to yield as accurate calibration curves if the evaluation period has a
much broader concentration range than observed during the calibration period. In the CO sensor panel
(Figure 4B), greater temperature coverage generally resulted in lower RMSEs, but a key factor for the
CO sensor is that the calibration must cover warm temperatures if the calibration is going to be applied

to warm seasons. This is due to the notably different responses to high and low temperatures. This CO

15
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sensor exhibits minimal temperature effects below about 15°C but strongly responds to warmer
temperatures (i.e. the sensor will overestimate concentrations at higher temperatures if not properly
calibrated) (Levy Zamora, 2022). More specifically, if a calibration period only included temperatures
below 15°C, that data could not reasonably be extrapolated to a warmer period because it would not
be able to correct for this overestimation at high temperatures. Sensors with more linear responses are
less sensitive to this issue because a smaller range may be more accurately extrapolated. We note that
the NO and Os sensors also exhibit non-linear responses to temperature.

It is important to mention that Baltimore, MD is a region that experiences a broad range of
meteorological conditions each year, so the co-location duration must be long enough to capture an
adequate range of conditions to fully characterize the calibration curves. The pollutants also exhibit
significant seasonal variation at this location. In other regions where the weather conditions are less

variable, shorter co-location durations may be more likely to produce accurate results. This is the

PMs.5 RMSE from 1- Increasing Temperature Data Coverage ---->
week calibrations with > | T range > A10°C T range > A15°C T range > A20°C T range > A25°C T range > A30°C
50% concentration (Coverage (Coverage (Coverage (Coverage (Coverage
coverage >~20%) >~30%) >~40%) >~50%) >~60%)
o| RHrange > A40% 4.7 47 47 44 3.8
£| (Coverage>~50%) | (3.2-17.2;21%) ’ ’ ’ (3.3-11.5;2%)
>
]
©O| RHrange > A48%
s| (Coverage >~60%) 4.7 4.7 4.7 4.4 3.7
g
= | RHrange> A56%
Q:D (Coverage >~70%) 43 43 4.4 43 3.7
g
& | RH range > A64%
& (Coverage >~80%) 43 43 43 4.1 3.7
A=
{ | RHrange > A72% 4.2 42 43 39 3.6
V| (Coverage >~90%) (3.2-6.8;7%) ’ ’ ’ (3.2-3.7;1%)

Table 3. Comparison of the median RMSE (ug/m?) for PMa2.s from 1-week calibration periods with different coverages of
temperature and RH conditions. Only calibration periods with more than 50% coverage of the PM:.s concentration range
were included in the table (>50% corresponds to 26 pg/m? or more in this dataset). For four scenarios (e.g., PMzs coverage
> 50%, RH Coverage > 50%, T Coverage > 20%), the 1° percentile RMSE, 99" percentile RMSE, and the percentage of
calibrations that exhibited all required conditions (e.g., RH > X % and T > X%) are shown (1 - 99" percentile; %). For
comparison, the median (1 - 99'" percentile) of the PM2.s 1-week calibration periods from the full data set (i.e., no coverage
requirements) was 6.6 pg/m? (3.1 — 18.3 pg/m?3).

16
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350

primary reason why employing a “coverage” approach might be a more useful approach for identifying
appropriate co-location durations. Also, we were applying the calibration equations on data from a full
year, but shorter co-location durations would likely be satisfactory if the calibration and measurement
period were going to be completed under similar conditions (e.g., within one season). For example, if
we limited the calibration and evaluation periods to within June 1 - August 31, 2019 (peak PM» .5 =25
ng/m?), 70% of one-week co-locations would have an RMSE below 4 pg/m?® and an r > 0.6. Similarly,
if we limited the calibration and evaluation periods to between November 1, 2019, and February 1,
2020 (peak PMas = 53 pg/m®), 40% of one-week co-locations would have fulfilled these two
requirements. Another benefit of strategically identifying co-location needs is that it may permit users
of sensor networks to co-locate each device in the network for shorter periods to get device-specific
calibration equations. By ensuring a minimum coverage of key factors for each device co-location
period, calibration data between units would likely be more consistent even if the data were collected
from different periods. This would be particularly advantageous for sensor types that exhibit notable
variability between units.

If little information is known about key predictors at the measurement sites, which is likely at
remote locations, it may be possible to use historical meteorological data and general information about
pollutant patterns (e.g., emissions and seasonal concentration patterns) to determine a representative
range of conditions. Future work should explore whether a combination of multiple, shorter calibration
periods in different seasons may produce reasonable calibrations for year-round data sets. However,
in all cases, it is advisable to increase the estimated co-location periods in case of data loss or unusual

air quality events to increase the probability of well-performing calibrations.

4. Conclusions

In this study, we assessed five pairs of co-located reference and low-cost sensor data sets (PMo s,

03, NO2, NO, and CO) to identify key factors that influence the duration of a co-location required to
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375

calibrate low-cost sensors via co-location. We compared the RMSE and correlation coefficients from
co-location periods spanning between 1 and 180 days. While longer co-location periods of up to several
months generally improved the performance of the sensor, optimal calibration could be produced from
shorter co-location lengths if the calibration period covered the span of conditions likely to be
encountered during the evaluation period. We determined that many factors could increase the duration
of co-location required, including if a sensor responds to environmental factors such as temperature or
RH; if the sensor exhibits a cross-sensitivity to another pollutant; if a response is non-linear to any of
these factors; and duration of the full deployment (i.e., within a season or spanning multiple seasons).
Particular attention must be given to sensors that exhibit a non-linear response if the actual
measurement period (e.g., the evaluation period) is going to extend into another season. These results
suggest that co-location time can be minimized if selected strategically based on the typical
characteristics of a region. The factors that strongly influence the sensor response should have a
minimum coverage of about 70% and secondary factors should have a minimum coverage of about
50%. Future work should evaluate if employing methods that account for the non-linear responses of
key predictors can further optimize the calibration of low-cost sensors as well as if more sophisticated

comparisons of the statistical distributions of predictors across calibration periods are beneficial.

Supplemental Materials

Additional figures shown in the supplemental materials include: 1) the start times of 250 randomly
selected PM> 5 calibration scenarios, 2) the potential range of Pearson correlation coefficients (r) for
three low-cost sensors (NO2, O3z, and NO) by co-location length, 3) a zoomed-in comparison of the
two potential one-week calibration periods corresponding to Figure 3, 4) an analysis of the PM data
where the 250 randomly selected calibration periods were from between 02/2019 and 11/2019 and the
evaluation period was 11/2019-02/2020 for all of the considered calibrations, and 5) additional

examples of coverage of key variables for all the sensors. Descriptive statistics of the reference data

18



380

385

390

395

are shown in Supplemental Table 1, and the median and range (1st to 99th percentile) of the normalized
RMSE for six co-location lengths are shown in Supplemental Table 2. This material is available free
of charge via the internet at https://egusphere.copernicus.org/preprints/2022/egusphere-2022-
200/egusphere-2022-200-supplement.pdf.
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