Review of REVISED Cipolla et al EGUsphere-2022-196

by Ingrid Smet (ingrid.smet@fieldcode.com)

General comments

The authors carefully considered each and every one of my (many) review comments, thereby accepting nearly all suggested changes, answering my scientific questions whilst also clarifying these topics in the new manuscript where appropriate, and providing sound reasons for those suggested changes they did not implement.

Whereas the first manuscript was already an interesting and important publication, the revised manuscript is better structured, more easily understandable and more complete, with extra information and better readable figures.

As I have no background in computational modelling, I greatly appreciate the extra information the authors provided me in their responses and which allowed me to better understand the model, especially the mineralogy part (both in soil and EW material) which is my field of expertise.

In particular I had not quite grasped that the background weathering flux for the 4 locations was not just based on the main mineral of their bedrock (quartz or calcite) but that actual values of soil CEC were also considered as well as a calibration with soil pH. Therefore, my previous worry that the background weathering fluxes might be a lot less realistic than the other model input data of climate and vegetation, turned out to be misplaced.

I am excited to read that the authors appreciate my suggestion for further development of their model to implement multi-mineral EW materials, which are more realistic. Although I understand that modelling EW with a rock dust consisting of 100% Mg-endmember olivine allows for other parameters to vary – and their influence on EW efficiency to be assessed – in the real world there is no 100% olivine rock consisting exclusively of Mg$_2$SiO$_4$ to be found. Some thoughts:

- Only in case of rather pristine mantle rocks (dunite, peridotite) there might be up to 90-95% olivine with minor pyroxene, Fe-Ti-oxides, ... as other mineral phases. For these rock types one could indeed just take into account the olivine fraction of the rock for calculations.

- In case of altered mantle material, that is more commonly found, olivine percentages can be 30-70% and in this case it becomes interesting to also take into account the other main mineral phases that dissolve within relevant time frames.

- Finally, a rock such as basalt contains up to ca. 10% of olivine, so the other main mineral phases now really need to be taken into account. It furthermore also consists of volcanic glass, another quickly weathering material (no mineral as no crystal structure) which would be interesting to include in the calculations.
Specific comments

I did not have the time to read through the revised manuscript document in as much detail as I did with the authors’ responses document, but when I read through it I observed the following potential typos/missing words (bold is suggested change):

- line 20: …such as Ca-Mg silicates…

- line 27: …can be found in igneous rocks… and mostly in… (extracting olivine from rocks is not done except for large, high quality olivine crystals then used as gemstone ‘peridote’)

- line 44: … conditions whilst still being a closed and controlled system… (this paragraph I wrote in my initial review was a comment to explain these different EW experiments, not a grammarly complety correct text to include as is in the manuscript)

- line 61: … in laboratory experiments, such…

- line 92: … when required based on crop…

- line 128: … to be mixed throughout the…

- line 162: … phenology and despite the modest MAP differences… (I think this is what is meant here?)

- Figure 3: In the main text and in the figure caption the ‘average rainfall depth (α) and frequency (λ)’ are mentioned, but the Y-axis in the figure itselfs mentions ‘average storm depth (α) and average storm frequency (λ)’

- lines 252-253: … the periods related to… and late season, respectively)…

- line 257: … derived from plant metabolic…

- lines 260-270: two different ways of writing the dates, with and without a comma (for July, 6th for corn - for July 6th for corn) are used intermittently within this paragraph

- line 312: … of multiple irrigation events are…

- lines 360-362: … Apart from some spikes, occurring on some specific days, averaging the grain scale weathering rate ratio, we achieved that the clay loam soil results in a weathering rate about twice as high as what obtained with the silty clay loam soil, at all four locations…. This sentence is very strange to me, perhaps the word ‘achieved’ is not correct here, in any case I do not understand the structure of the first part of the sentence. Please rephrase to make more clear.

- line 368: … acidifying effect resulting from the displacement of…

- line 414: … two Italian sites, Sicily and Padan plain, which…

- line 444: … that has the slowest background weathering flux…
- lines 451-452: …more than double the olivine we added in our study (i.e., 22 kgm−2 of dunite corresponding to about 18 kg m−2 of olivine)

Although should it not be ‘almost double’ the olivine, since this study added 10kg/m² and you calculate that given its olivine contents the dunite represented about 18kg/m²?

- line 455: … the leached concentrations of the…

- lines 461-462: … A great amount of rainfall, contextually occurring to low transpiration losses, leads… Not sure what is meant here? Contextually occurring together with low transpiration losses? Contextually leading to low transpiration losses? Please rephrase to clarify.

- lines 485-488: “Taking into account the case of Iowa, which resulted in the highest carbon sequestration rate and is characterized by a cropland area covered by the corn of about 56,000 km², the annual average sequestered CO2 could reach the value of about 0.023 Mt y−1, if the whole cropland area were amended with olivine. Sicily, instead, may sequester on average a mass of 0.0002 Mt y−1, if amending the total cropland area cultivated with wheat of about 265,000 ha."

Maybe it is good to repeat here that these annual sequestration rates are calculated based on a once in 10 year 100ton/ha application of 100% pure Mg2SiO4 – for those readers that did not go through the entire paper but from abstract to final discussion and conclusions.

Since there are so many 0s in the sequestered CO2 when expressing it as Mton/year, it might be easier on the eye (and to understand the amount) when expressed in kilo tons? Or even as 23,000 tons and 200 tons?

- line 498: … In effect, even in this our previous work we obtained about…

- line 512: … products (e.g., NO₃⁻), … (superscript for ‘-‘)

- lines 524-525: Haque et al. (2020) carried out a wollastonite EW experiment on three farms with different plants, located in three separate sites in Canada.

- line 527: Kelland et al. (2020) (i.e., 2-4 \(\text{t CO}_2\text{ ha}^{-1}\)) … please also mention in what time frame, I presume per year? Then it can become

‘greater annual carbon sequestration rates (…) compared to…’

- line 537: Another relevant aspect to consider when planning an EW intervention is the economic feasibility on itself

- line 544: … biochar, leading to consideration of EW as a reasonable…

- line 547: … sequestration potential and minimal related costs…

Regarding these lasts comments of the need to combine EW potential with minimizing costs for each location specifically, this can be addressed in model calculations by using multi-mineral compositions reflecting real rocks potentially suitable for EW that are found near those locations. For Europe there is a paper of Kremer et al, 2019 (https://www.mdpi.com/2075-163X/9/8/485) identifying natural rocks suitable for EW.