A comprehensive study about the in-cloud processing of nitrate through coupled measurements of individual cloud residuals and cloud water

Guohua Zhang1,2,3, Xiaodong Hu1,2,4, Wei Sun1,2,4, Yuxiang Yang1,2, Ziyong Guo1,2,4, Yuzhen Fu1,2, Haichao Wang5, Shengzhen Zhou5, Lei Li6, Mingjin Tang1,2,3, Zongbo Shi7, Duohong Chen8, Xinhui Bi1,2,3,*, Xinming Wang1,2,3

1 State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, PR China
2 CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
3 Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, CAS, Guangzhou 510640, PR China
4 University of Chinese Academy of Sciences, Beijing 100049, PR China
5 School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 519082, PR China
6 Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, PR China
7 School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
8 State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Monitoring Center, Guangzhou 510308, PR China

Correspondence to: Xinhui Bi (bixh@gig.ac.cn)
Abstract

While the formation and evolution of nitrate in airborne particles are extensively investigated, little is known about the processing of nitrate in clouds. Here we present a detailed investigation on the in-cloud formation of nitrate, based on the size-resolved mixing state of nitrate in the individual cloud residual and cloud-free particles obtained by single particle mass spectrometry, and also the mass concentrations of nitrate in the cloud water and PM$_{2.5}$ at a mountain site (1690 m a.s.l.) in southern China. The results show a significant enhancement of nitrate mass fraction and relative intensity of nitrate in cloud water and the cloud residual particles, respectively, reflecting a critical role of in-cloud processing in the formation of nitrate. We first exclude the gas phase scavenging of HNO$_3$ and the facilitated activation of nitrate-containing particles as the major contribution for the enhanced nitrate, according to the size distribution of nitrate in individual particles. Based on regression analysis and theoretical calculations, we then highlight the N$_2$O$_5$ hydrolysis for the in-cloud formation of nitrate, even during the daytime, attributed to the diminished light in clouds. Nitrate is highly related ($R^2 = \sim 0.6$) to the variation of [NO$_x$][O$_3$], temperature and droplet surface area in clouds. Accounting for droplet surface area greatly enhances the predictability of the observed nitrate, compared with using [NO$_x$][O$_3$] and temperature. The substantial contribution of N$_2$O$_5$ hydrolysis to nitrate in clouds during the daytime was reproduced by a multiphase chemical box model. Assuming a photolysis rate at 30% of the default setting, the overall contribution of N$_2$O$_5$ hydrolysis pathway to nitrate formation increases by $\sim 20\%$ in clouds. Given that N$_2$O$_5$ hydrolysis acts as a major sink of NO$_x$ in the
atmosphere, further model updates would improve our understanding about the processes contributing to nitrate production in cloud and the cycling of odd nitrogen.
1. Introduction

Aerosol nitrate is an increasingly important component of PM$_{2.5}$, in particular, contributing to haze formation in China (Liu et al., 2020b; Xu et al., 2019; Zheng et al., 2020; Fu et al., 2020; Guo et al., 2014; Tian et al., 2019; Wen et al., 2018; Lu et al., 2019). As a key inorganic component in cloud water, nitrate can also modify microphysical properties of cloud, influence aqueous-phase processes in droplets and affect ecosystem after wet deposition (Schneider et al., 2017). Notably, aerosol nitrate is an important product in the cycling of odd nitrogen (Chang et al., 2011; Zheng et al., 2020; Zhang et al., 2021; Huang et al., 2018), playing significant roles in tropospheric ozone and OH production (Scharko et al., 2014; Kaur and Anastasio, 2017; Ye et al., 2017a; Ye et al., 2017b), and contributing to net aerosol composition and radiative forcing (Bauer et al., 2007; Hauglustaine et al., 2014; Xu and Penner, 2012).

Aerosol nitrate originates from the oxidation of NOx, which refers to gas phase oxidation of NO$_2$ by the hydroxyl radical (OH) followed by condensation (daytime chemistry) and the hydrolysis of N$_2$O$_5$ (nighttime chemistry) to nitrate in aqueous particles, initiated by the oxidation of NO$_2$ by ozone (O$_3$) to produce the NO$_3$ radical (Seinfeld and Pandis, 2006). In contrary to aerosol sulfate formation, which is dominated by aqueous phase reactions, both gas phase oxidation and the hydrolysis of N$_2$O$_5$ represent the major processes forming aerosol nitrate (Hayden et al., 2008; Sellegri et al., 2003; Fahey et al., 2005; Chen et al., 2020; Xiao et al., 2020). Extensive studies have shown that the formation and evolution of nitrate depend on various factors, such as the availability of ammonia (NH$_3$), temperature
(T), relative humidity (RH), and the presence of other ionic species in particulate phase (Chen et al., 2018; Shi et al., 2019; Chen et al., 2020; Lin et al., 2021; Fan et al., 2021).

Comparatively, detailed observational investigations and the possible mechanisms governing nitrate behavior upon in-cloud processes are scarce and poorly understood, although it is well-known that clouds play an important role in the transport and transformation of tropospheric pollutants (Li et al., 2020b; Ervens, 2015; McNeill, 2017). Global model studies still disagree on the relative importance of in-cloud process contributing to the production of HNO₃. While most have neglected N₂O₅ and NO₃ uptake in clouds (Alexander et al., 2009; Hauglustaine et al., 2014; Xu and Penner, 2012), there is also research suggesting the significance of in-cloud process (Holmes et al., 2019). Likewise, despite limited research, the role of clouds in nitrate formation from field observations remains controversial. Drewnick et al. (2007) and Prabhakar et al. (2014) reported that the relatively enhanced nitrate in clouds was associated with the composition of the activating cloud condensation nuclei (CCN), rather than preferential scavenging of nitric acid (HNO₃) in clouds. Differently, there are also studies highlighting the predominant role of nitric acid partitioning in nitrate formation in clouds, in contrary to nucleation scavenging of sulfate (Schneider et al., 2017; Hayden et al., 2008; Leaitch et al., 1988). Hayden et al. (2008) also noted that potential contributions from gas-phase N₂O₅ cannot be ruled out. Therefore, more detailed information on the pathways of nitrate and controlling factors in cloud are still required for models to further integrate the role of cloud in the formation of nitrate in the troposphere (Zhu et al., 2020; Wu et al., 2021).
The aim of this study is to illustrate the in-cloud formation mechanisms of nitrate and evaluate the relative contribution of each pathway to nitrate in cloud water for daytime and nighttime. To this aim, the mixing state of individual cloud residual, interstitial and cloud-free particles were measured in high-time resolution with a single particle aerosol mass spectrometer (SPAMS). The combination of a counter flow virtual impactor (CVI) and aerosol mass spectrometry (including SPAMS) allows for the high-time resolved observations of size and chemical compositions of submicron cloud residual particles (Boone et al., 2015; Hao et al., 2013; Zhang et al., 2017; Lin et al., 2017). In addition, cloud water and PM$_{2.5}$ samples were collected, and the chemical compositions were measured to provide additional quantitative evidence.

2. Experimental section

2.1 Aerosol and cloud measurements

Aerosol and cloud measurements were performed at the Mt. Tianjing site (24°41′56″N, 112°53′56″E, 1690 m a.s.l.) in southern China, as described in detail by Lin et al. (2017), during 9 May – 4 June 2018 and 13 November – 9 December 2020. Cloud events can be distinguished by a sudden drop of visibility (to < 1 km) and a sharp increase of RH to $> 95\%$, as recorded by sensors equipped with a ground-based counterflow virtual impactor (GCVI) (Model 1205, Brechtel Mfg. Inc., USA) (Lin et al., 2017). Overall, nineteen cloud events (lasting more than six hours) were identified for 2018 spring and ten for 2020 winter, as also marked in Fig. S1. The visibility was generally lower than 0.1 km during the cloud
events, versus as high as 80 km during the cloud-free periods. Besides a relatively long cloud event throughout 9 – 12 May, the cloud events were typically observed during nighttime for 2018 spring, associated with a prominently diurnal variation of RH and visibility. The RH during the daytime ranged between 70-80%, and raised to > 95% during nighttime. The duration of cloud events was in a range of 6-24 hours for 2020 winter. Air masses from the southern continental and marine areas dominated over the 2018 spring and 2020 winter periods, with air masses from western continental areas unique for the 2020 winter (Fig. S2), obtained by HYSPLIT 4.9 (http://ready.arl.noaa.gov/HYSPLIT.php) (Draxler and Rolph, 2012).

An incorporation of counterflow virtual impactor (CVI) or GCVI allows the separation of interstitial gases and aerosols from cloud droplets that are evaporated to obtain the cloud residual particles (Bi et al., 2016; Roth et al., 2016; Pratt et al., 2009). Briefly, the GCVI was applied to collect the cloud droplets with predefined size (7.5-8.5 μm in the present study), with the cloud residual particles as output after dried in the evaporation chamber (with an air flow temperature at 40 °C) (Shingler et al., 2012). The influence of cloud-free air can be negligible as the number concentration of GCVI output particles was measured to be ~1 cm$^{-3}$, but at a magnitude of ~103 cm$^{-3}$ in the cloud-free air. In the present study, the average number concentration of the cloud residual particles sampled during the cloud events was at a level of ~100 cm$^{-3}$. In addition, a PM$_{2.5}$ inlet was used to deliver cloud interstitial particles during cloud events or cloud-free particles.
2.2 SPAMS measurements and data processing

A SPAMS (Hexin Analytical Instrument Co., Ltd., Guangzhou, China), an Aethalometer (AE-33, Magee Scientific Inc.), and a scanning mobility particle sizer (SMPS; MSP Cooperation) were deployed to characterize the physical and chemical properties of the sampled particles. The instruments were connected downstream the GCVI or PM$_{2.5}$ inlets. Cloud residual and cloud interstitial particles were alternately sampled with an interval of ~1 h during some randomly selected cloud events. During the cloud free period, these instruments were connected to the PM$_{2.5}$ inlet in order to measure the cloud-free particles.

In the present study, aerosol surface area (SA) for the cloud-free particles were directly calculated from the size distribution data obtained from the SMPS, whereas it can only be estimated based on the same data for the cloud residues assuming a mean droplet size at 8 μm. We recognize the possible uncertainty, but the estimated SA should linearly correlate with real values and thus would not lead to ambiguous conclusions.

The vacuum aerodynamic diameter (d_{va}) and mass spectral information for individual particles were measured by the SPAMS (Li et al., 2011). A brief description on the performance of the SPAMS can also be found in the Supplement. Over the sampling period for the 2018 spring and 2020 winter periods, a respective ~20,000,000 particles with mass spectral information were analyzed, using the FATEs toolkit based on Matlab (The MathWorks, Inc.) (Sultana et al., 2017). The particles were classified by an adaptive resonance theory-based neural network algorithm (Song et al., 1999), with the inputs of ion peak intensities. Seven types with distinct mass spectral characteristics (Fig. S3), accounting
for > 95% of all the detected particles, were obtained for further analysis. The presence of nitrate can be identified with ion peaks (defined as five times the noise signal) at m/z -62 [NO$_3^-$] or m/z -46 [NO$_2^-$]. Approximate 70-80% of all the detected particles in the size range of 100-2000 nm contained nitrate ion signals for our measurements. Defined as fractional peak area of each m/z relative to the sum of peak areas in a mass spectrum, relative peak area (RPA) is applied to represent the relative amount of a species within a particle (Jeong et al., 2011; Healy et al., 2013).

2.3 Cloud water/PM$_{2.5}$ collection and chemical analysis

A Caltech Active Strand Cloud Water Collector (CASCC2) was applied to collect cloud water (with droplet size > 3.5 μm). The average cloud liquid water content (LWC) for each sampling period can be derived from $\text{LWC} = \frac{\Delta m}{\Delta t \times \eta \times Q}$, based on each sample mass (Δm), duration time (Δt), flow rate ($Q = 5.8 \text{ m}^3 \text{ min}^{-1}$), and collection efficiency ($\eta = 86\%$). A total of 58 / 53 cloud water samples were collected over the nineteen / ten cloud events for 2018 spring and 2020 winter periods, respectively, with the durations ranging between 2 and 10 hours. The pH for collected samples were immediately measured using a pH meter (Mettler Toledo, Switzerland) after filtered through a 0.22 μm filter, followed by kept at -20 ºC until the analysis.

PM$_{2.5}$ samples were collected on quartz filters using a PM$_{2.5}$ sampler (PM-PUF-300, Mingye Instruments, China) at a flow rate of 300 L min$^{-1}$. The filter were pre-conditioned in 450 ºC for 6 hours to eliminate the potential influence of organics. A total of 20 / 36 PM$_{2.5}$
samples were collected for the 2018 spring and 2020 winter periods, respectively. The samples were kept at -20 °C immediately until further analysis. These samples are representative for the cloud-free particles or cloud interstitial particles during cloud events.

Cloud water and PM$_{2.5}$ samples were analyzed with ion chromatograph (Metrohm 883 IC plus, Switzerland) for water soluble inorganic ions (Na$^+$, NH$_4^+$, K$^+$, Ca$^{2+}$, Mg$^{2+}$, Cl$^-$, NO$_3^-$, and SO$_4^{2-}$) and total organic carbon analyzer (Vario, Elementar, Gemany for 2018 samples and TOC-V, Shimadzu, Japan for 2020 samples) for water soluble organic carbon (WSOC).

The overall uncertainty for the concentration of each species is calculated to be < 15% based on parallel analyses. The nitrate mass fractions in cloud water and PM$_{2.5}$ were calculated by dividing the nitrate concentration by the sum of the measured water-soluble inorganic ions and water-soluble organic matter (estimated by 1.6*WSOC).

2.4 Box modeling of nitrate formation in cloud

A multiphase chemical box model (RACM-CAPRAM) was used to simulate the production of nitrate in wet aerosols and cloud droplets. It couples the regional atmospheric chemistry mechanism version 2 (RACM2; including 363 chemical reactions) and the chemical aqueous-phase radical mechanism version 2.4 (CAPRAM2.4; including 438 chemical reactions) to account for gas- and aqueous-phase atmospheric chemistry (Ervens et al., 2003). As similarly performed in previous studies (Pathak et al., 2009; Wen et al., 2018), three major pathways for nitrate formation are considered: (1) The oxidation of NO$_2$ by the OH radical produces HNO$_3$ and partitioning of gaseous HNO$_3$ into the aqueous phase;
The hydrolysis reactions of N$_2$O$_5$; and (3) The aqueous-phase reactions of NO$_3$ radicals.

The average concentration of NO$_2$ (~25 ppb) and O$_3$ (~100 ppb) for gas-phase precursors and LWC (0.1 g m$^{-3}$) for cloud droplets, obtained from the in-situ measurements, were taken as representative parameters for the atmosphere condition at Mt. Tianjing, and used as initial conditions for model simulation. The detailed initial conditions for the model are listed in the SI Table S1. Several comparisons through varying the LWC and photolysis rate were considered in order to investigate the role of LWC and photolysis on the formation of nitrate in the cloud. It is also noted that only LWC and photolysis rate were reset in our scenario, with other factors (e.g., initial droplet composition, SO$_2$) kept as default setting in the model setup.

3. Results and discussion

3.1. Enhanced in-cloud production of nitrate

Figure 1 shows the statistical results of the nitrate mass fractions in cloud water and PM$_{2.5}$ and the hourly average relative intensity of nitrate (represented by the RPA) in the cloud-free, cloud residual, and cloud interstitial particles. The results clearly indicate the enhancement of nitrate in clouds. It can be seen that the mass fraction of nitrate in cloud water (~20% on average) is obviously higher than those in PM$_{2.5}$ (< 15% on average) during the cloud-free periods and cloud events, for both the 2018 spring and 2020 winter periods. Consistently, the relative intensity of nitrate was substantially enhanced in the cloud interstitial particles and particularly cloud residues, relative to the cloud-free particles. The
influence of air mass on the enhanced nitrate can be ruled out for the 2018 spring period, as they similarly originated from southern areas over the whole campaign period (Fig. S2). While the air masses originated from different regions during the 2020 winter period, they did not show the difference between the cloud-free periods and cloud events, with the shifting of air masses and/or wind direction after 27 Nov (Figs. S1 and S2). Thus, the influence of air mass on the enhanced nitrate in 2020 winter should also be limited.

There are several pathways that might contribute to the enhanced nitrate in cloud droplets, including (1) the scavenging of gas-phase HNO₃, (2) the preferential activation of nitrate-rich particles, and (3) in-cloud aqueous production of nitrate via reaction of NO₃ radicals or hydrolysis of N₂O₅. The mechanism via the dissolution of NO₂ and its aqueous phase oxidation is relatively slow and unlikely to be a significant source of cloud water nitrate (Seinfeld and Pandis, 2006).

We first exclude the scavenging of gas-phase HNO₃ as a major pathway through the analysis of size distribution of nitrate RPA and RPA ratio (nitrate / sulfate), although all the gas phase HNO₃ could be efficiently scavenged and present in the aqueous phase in a typical cloud with LWC > 0.1 g m⁻³ (Seinfeld and Pandis, 2006). As can be seen in Fig. 2, the RPA of nitrate and RPA ratios of nitrate to sulfate distributes relatively stable over the measured size range, which suggests that the gas phase scavenging of HNO₃ is not the dominant pathway in the present conditions. This is because gas-phase mass transfer would lead to enhanced nitrate in the smaller droplets with higher total surface area (Drewnick et al., 2007). Comparatively, the limited size dependence of nitrate for the cloud RES particles differs
markedly from that observed by Hayden et al. (2008), showing a favorable presence of nitrate in smaller size, rather than sulfate in larger size. And their pattern could be well explained by the model calculation assuming that all of the cloud nitrate comes from the uptake of HNO₃. Therefore, our pattern at least indicates a limited contribution of gas-phase scavenging of HNO₃ to the observed nitrate in the cloud RES particles. As also discussed in the following section, the formation of HNO₃ would be certainly suppressed by the presence of cloud.

We also indicate that the contribution of preferential activation of the nitrate-rich particles should be limited since such a process would lead to the depletion of nitrate in the cloud interstitial particles relative to the cloud-free particles. But this is not the case, as the RPA of nitrate and RPA ratios of nitrate to sulfate in the cloud interstitial particles are considerably higher than those in the cloud-free particles (Fig. 2). Both the enhanced nitrate in the cloud residual and interstitial particles suggest the in-cloud formation of nitrate, although the variation of nitrate RPA cannot provide a quantitative view. The enhancement of nitrate in the cloud interstitial particles may also indicate that the significant role of RH in the formation of nitrate, even in the inactivated particles. Similar results have also been observed in our previous study for oxalate (Zhang et al., 2017). Consistently, the formation of nitrate in the cloud interstitial particles also grows their size towards the larger mode, compared with the cloud-free particles (Fig. S4).

3.2. In-cloud nitrate formation
A theoretical estimation of nitrate production for 2020 winter is performed based on the well-established kinetic characteristic of reactions between NO$_2$ and O$_3$ and uptake of N$_2$O$_5$ onto aerosol/droplet surfaces that formed HNO$_3$ (SI text S1), corresponding to the nighttime chemistry. It is reasonable since the heterogeneous hydrolysis of N$_2$O$_5$ within aerosol particles, fog, or cloud droplets has been shown to be much faster than homogeneous hydrolysis under typical tropospheric conditions (Chang et al., 2011; Wang et al., 2017).

Through integrating the rate equations, as listed in SI text S1, the solution for aqueous phase production of HNO$_3$ can be obtained (Seinfeld and Pandis, 2006):

$$[\text{HNO}_3] = \frac{[\text{NO}_x]}{2} \left\{ 1 + \frac{1}{\tau_{\text{NO}_x} - \tau_{N_2O_5}} \left[\frac{\tau_{N_2O_5} \exp\left(-\frac{t}{\tau_{N_2O_5}}\right) - \tau_{\text{NO}_x} \exp\left(-\frac{t}{\tau_{\text{NO}_x}}\right)}{\tau_{N_2O_5} - \tau_{\text{NO}_x}} \right] \right\}$$

Thus, the conversion of NO$_x$ to HNO$_3$ through the hydrolysis of N$_2$O$_5$ depends on the two lifetimes τ_{NO_x} and $\tau_{N_2O_5}$, as defined by the reaction kinetics (SI text S1). The key reaction that formed aqueous phase nitrate is related to the effective reaction of N$_2$O$_5$ on the surface of wet aerosol or droplets (Holmes et al., 2019), and therefore, depends on the concentration of NO$_2$ and O$_3$ ([NO$_2$][O$_3$]), the available aerosol and droplet SA, and temperature. Besides the reaction kinetics, temperature could also have influence on the hydrolysis of N$_2$O$_5$ (Chen et al., 2018; Chang et al., 2011).

As shown in Fig. 3, the theoretically calculated in-cloud nitrate production assuming a typical uptake coefficient of N$_2$O$_5$ $\gamma = 0.06$ (Seinfeld and Pandis, 2006) could well match the measured nitrate concentrations well (with $R^2 = 0.38$ and 0.60 at $p < 0.01$ for daytime and nighttime, respectively), varying in a wide range of ~1 mg L$^{-1}$ to ~60 mg L$^{-1}$ for 2020 winter. The correlation coefficients are obviously higher than those predicted using only [NO$_x$][O$_3$]
(with $R^2 = 0$ and 0.54 for daytime and nighttime, respectively). This is consistent with previous results that the nighttime production of N$_2$O$_5$ and HNO$_3$ would be proportional to the concentration of NO$_2$ and O$_3$ ([NO$_2$][O$_3$]) when assuming N$_2$O$_5$ and the NO$_3$ radical are both in steady state considering their short lifetimes (Li et al., 2018; Wang et al., 2017). The result also highlights the significance of SA in the in-cloud N$_2$O$_5$ hydrolysis in the build-up of nitrate through in-cloud processing, even during the daytime. A further comparison of [NOx][O$_3$] and SA for the cloud events and cloud free periods, as shown in Fig. S5, also supports the above discussion that the higher fraction of nitrate cannot be well explained by the variations of [NOx][O$_3$], but rather by the enhanced SA due to the presence of droplets (Fig. S5b), which is > 5 times on average that for aerosol particles during cloud-free periods.

In the present study, the average LWC of cloud droplets is at a level of ~10^5 μg m$^{-3}$, 3-4 magnitude higher than those for urban haze conditions. As previously reported, high aerosol LWC (campaign average at ~50 μg m$^{-3}$) induced fast heterogeneous uptake of N$_2$O$_5$ ($\gamma = 0.048$ on average) is prevalent in urban haze (Wang et al., 2017), compared with $\gamma < 0.03$ for normal periods, and thus results in enhanced nitrate in highly humid condition (Neuman et al., 2003; Wang et al., 2009; Pathak et al., 2009)."

The theoretical estimate indicates that the hydrolysis of N$_2$O$_5$ may substantially contribute to the in-cloud production of nitrate even during the daytime, consistent with the observation results as discussed in Section 3.1. The theoretically predicted nitrate (NO$_3$) production from the hydrolysis of N$_2$O$_5$ represents ~5-15% of the measured nitrate (Fig. 3) based on our assumption. It could roughly explain ~10% increase of the nitrate mass fraction...
in clouds (Fig. 1). There are some factors that may contribute to the uncertainties in the estimation. One is that the assumed $\gamma = 0.06$ might not be representative for N$_2$O$_5$ uptake in cloud droplets, since the previously reported γ varies in a wide range, depending on various factors (e.g., droplet compositions, pH, temperature) (Bertram and Thornton, 2009; Holmes et al., 2019; Burkholder et al., 2015). Some higher γ (0.2-0.4) was also observed for deliquescent sodium sulfate particles (Burkholder et al., 2015). Another is that the SA estimated by the size distribution data of cloud residues obtained by the GCVI-SMPS only represents part (< 50%) of the cloud droplets, as GCVI was set to collect droplets larger than 7.5 μm in the present study. In addition, the scavenging of HNO$_3$ may still contribute to the in-cloud nitrate production, as estimated in section 3.3, although N$_2$O$_5$ hydrolysis still represents the dominant pathway.

Furthermore, a simplified regression and a random forest analysis are also performed for the high-time resolved RPAs of nitrate obtained by the SPAMS, with [NOx][O$_3$], SA, and temperature as inputs, separated for the cloud RES and cloud-free particles, as detailed in SI text S2. Note that the concentration of NOx is used here to represent that of NO$_2$, since most of NO data were not available for the 2018 spring. The effect should be limited since NO could be negligible when the air masses are dominantly attributed to long range transport, which could also be supported by the data (NO, \sim0.1 μg m$^{-3}$, < 2% of NO$_2$ concentration) in 2020 winter. As expected, the nitrate RPA in the cloud residual particles is highly correlated to the predicted ones ($R^2 = 0.75$ and 0.71 with $p < 0.01$ for the daytime and nighttime, respectively), even during the daytime (Fig. 4). An inclusion of temperature and SA in the
model substantially improves the correlation coefficient R^2, which is originally 0.16 and 0.31 between the nitrate RPA and $[\text{NO}_x][\text{O}_3]$ for the daytime and nighttime, respectively. Similarly, the correlation coefficients ($R^2 = 0.45$ and 0.66 for daytime and nighttime, respectively) are lower for 2018 spring than 2020 winter, without the availability of SA data. The results are generally consistent with those obtained from random forest analysis, as shown in Fig. S6. Without the input of SA, $[\text{NO}_x][\text{O}_3]$ and temperature only explains 52-61% of the observed nitrate RPA for cloud residual particles in 2018 spring, compared with 72-80% in 2020 winter. Compared with the cloud residual particles, the predictions for the nitrate RPA in the cloud-free particles are of lower coefficients. Such difference between the cloud residual and cloud-free particles also reflects the critical role of SA in the hydrolysis of N$_2$O$_5$ in cloud droplets.

3.3. Relative importance of N$_2$O$_5$ hydrolysis pathway to nitrate in clouds

The relative contribution of nitrate formation in the cloud droplets and cloud-free particles is also assessed using the CAPRAM model, as shown in Fig. 5. The relative contribution difference between the cloud droplets and cloud-free particles is primarily attributed to the different LWC setting, which is tightly linked to the cloud droplets’ SA. Furthermore, the comparison between cloud scenarios with different LWC setting (0.05 g m$^{-3}$ versus 0.15 g m$^{-3}$) also shows an enhanced contribution of N$_2$O$_5$ hydrolysis to nitrate with increasing LWC.

Nitrate is known to form predominantly by the hydrolysis of N$_2$O$_5$ (> 80%) for both the
cloud droplets and cloud-free particles for the nighttime. However, both Fig. 3 and Fig. 4 indicate the potential importance of the heterogeneous N₂O₅ hydrolysis to nitrate formation during the daytime. This is likely attributed to the substantial attenuation of the incident solar radiation by clouds, in which the visibility was as low as < 0.1 km over this study. Previous studies have also indicated the effect of clouds in the vertical redistribution of the photochemical activity (Liu et al., 2006; Hall et al., 2018). Most comparatively, Brown et al. (2016) observed a discrepancy between the modelled and observed N₂O₅ during a daytime fog episode in Hong Kong, and attributed to the uptake of N₂O₅ to fog droplets. Their calculation infers that daytime production of soluble nitrate via N₂O₅ can be substantially faster than photochemical conversion through OH + NO₂ in the polluted fog episodes (Brown et al., 2016). One may expect that the substantial attenuation of the incident solar radiation by clouds may inhibit the formation of O₃, thereby affecting the formation of N₂O₅. However, the concentration of O₃ showed relatively stable and limited variations throughout the cloud events (Fig. S1). Together with the similar [NOx][O₃] observed during the cloud events and cloud-free periods (Fig. S5), we indicate that the cloud events did not have much effect on the variation of O₃ during our observation.

The model results in Fig. 5 with the consideration of photolysis rate are, to some extent, consistent with our observations. The overall contribution of N₂O₅ hydrolysis pathways increases by ~20% (from ~50-60% to ~70-80%) when the photolysis rate is reduced to 30% of the default setting. For daytime only, the contribution of this pathway also increases from nearly 0 to ~20% during the noon hours and ~40% for the morning hours. A similar model
study also indicates that N$_2$O$_5$ hydrolysis contributed to 30% of daytime nitrate formation at Mt. Tai (Zhu et al., 2020). Attributed to the substantial attenuation of incident solar radiation by clouds and high loading of PM$_{2.5}$, the daytime N$_2$O$_5$ hydrolysis has also been observed to be an important formation pathway for nitrate in the haze episodes in Xi’an (China), and the contribution increases from 8.2% to 20.5% of the total nitrate over 14:00–16:00 by model simulation (Wu et al., 2021). Similarly, Liu et al. (2020a) showed that the daytime N$_2$O$_5$ hydrolysis contributed to ~10% of nitrate in the north China plain in winter. Note that biogenic volatile organic compounds could also have a potentially important impact on nitrate formation through reacting with NO$_3$ radical, which may lead to up to 35% decrease of particulate nitrate (Fry et al., 2014; Aksoyoglu et al., 2017). However, the modelling results could still indicate the role of cloud in the hydrolysis of N$_2$O$_5$, which contributes to the enhanced nitrate.

4. Conclusions and atmospheric implications

The presented results provide direct evidence that in-cloud aqueous processing, in particular, the hydrolysis of N$_2$O$_5$ significantly contributes to the enhanced nitrate in cloud residues. We highlight that the hydrolysis of N$_2$O$_5$ serves as the critical route for the in-cloud formation of nitrate, even during the daytime. The dependence of in-cloud nitrate formation on the cloud droplets’ SA extends the observation fact that higher RH facilities the formation of nitrate in wet aerosols (Neuman et al., 2003; Wang et al., 2009; Pathak et al., 2009). Given that N$_2$O$_5$ hydrolysis acts as a major sink of NOx in the atmosphere (Yan et al., 2019), further
model updates may improve our understanding of the relative importance of nitrate-
production pathways (Chan et al., 2021; Alexander et al., 2020). In addition, significant
hydrolysis of N2O5 in cloud may also pose substantial effect on the tropospheric ozone
budget (Riemer et al., 2003; Voulgarakis et al., 2009; Strode et al., 2017).

As sulfate is reduced in the future through emission controls (Li et al., 2020a; Chu et al.,
2020), higher nitrate fraction is expected in cloud (Herckes et al., 2007; Herckes et al., 2015).
However, the limited dependence of nitrate formation on the [NOx][O3] in the cloud suggest
a possibility that controlling NOx and O3 might be offset in the cloudy regions. Given the
significance of both emission and deposition on the variations of nitrate (Zhai et al., 2021)
and the contribution of the transported NOx and O3 to the notable effect and complex process
of cross-regional nitrate formation (Qu et al., 2021), knowledge of the in-cloud formation of
nitrate would also benefit PM2.5 pollution control target over a larger scale.

Furthermore, our results indicate that in-cloud formed nitrate remains in particulate
phase after cloud evaporation (Fig. S7), changing the mixing state of individual particles.
Enhanced aerosol nitrate is expected to have higher hygroscopicity after cloud evaporation
(Sun et al., 2018; Hodas et al., 2014), and therefore, an increase of the particles' ability to act
as cloud condensation nuclei after their cloud passage (Roth et al., 2016). This is different
from that observed in California coast that the nitrate-to-sulfate mass ratio decreases rapidly
with cloud height, due to the volatilization during drop evaporation pushes NO3 to the gas
phase (Prabhakar et al., 2014). In addition, vertical turbulent mixing of the residual aerosols
from evaporating cloud droplets may contribute to the nitrate aerosol loading during the
daytime at the ground level (Tao et al., 2018).
Competing interests

The authors declare that they have no conflict of interest.

Data availability

All the data can be obtained by contacting the corresponding author.

Author contribution

GHZ and XHB designed the research (with input from LL, MT, and XW), analyzed the data (with input from XDH and WS), and wrote the paper. YXY, ZYG, and YZF performed the field measurements and analyzed the collected samples. DHC, HCW, SZZ, and ZBS provided constructive comments. All authors contributed to the refinement of the manuscript.

Acknowledgement

Thanks to Prof. Likun Xue (Shandong University) and Dr. Liang Wen (Leibniz Institute for Tropospheric Research) for their support of the box modeling of nitrate formation in cloud.

Financial support

This work was funded by the Natural Science Foundation of Guangdong Province (2019B151502022), National Natural Science Foundation of China (42077322, 41775124, and 41877307), Youth Innovation Promotion Association CAS (2021354), and Guangdong Foundation for Program of Science and Technology Research (2020B1212060053).
References

Drewnick, F., Schneider, J., Hings, S. S., Hock, N., Noone, K., Targino, A., Weimer, S., and

Tao, J., Zhang, Z., Tan, H., Zhang, L., Wu, Y., Sun, J., Che, H., Cao, J., Cheng, P., Chen, L., and

Figure captions:

Figure 1. Box-and-whisker plots of (a) the mass fraction of nitrate in PM$_{2.5}$ and cloud water and (b) the RPA of nitrate separated for the cloud-free, cloud residual (RES), and cloud interstitial (INT) particles, in 2018 spring and 2020 winter, respectively. In a box and whisker plot, the lower, median and upper line of the box denotes the 25, 50, and 75 percentiles, respectively; the lower and upper edges of the whisker denote the 10 and 90 percentiles, respectively.

Figure 2. Size dependent RPA of nitrate and RPA ratio of nitrate/sulfate, separated for all the detected cloud-free, cloud residual (RES), and cloud interstitial (INT) particles, in (a) 2018 spring (May) and (b) 2020 winter (Nov-Dec), respectively.

Figure 3. Theoretical calculation of the trend of in-cloud produced nitrate from the hydrolysis of N$_2$O$_5$ versus the temporal variations of NO$_3^-$ concentration in cloud water in 2020 winter (Nov-Dec).

Figure 4. Correlation analysis between the observed RPAs of nitrate and the predicted RPAs of nitrate, with inputs of NO$_2$, O$_3$ and LWC, for the (a) cloud-free and (b) cloud RES particles, respectively.

Figure 5. Relative contribution of each pathway to the nitrate production in wet aerosols (WA, 0.5 μm) and cloud droplets (CD, 8 μm), respectively, simulated by the RACM-CAPRAM. The atmospheric conditions considered for comparison are LWC
(10^{-5}-10^{-4} \text{ g cm}^{-3} \text{ for wet aerosols and 0.05-0.15 g cm}^{-3}) \text{ and photolysis rates (30\%,}

50\%, \text{ 100\%).}
Fig. 1.
Fig. 2.
Fig. 3.

Measured NO$_3^-$ in cloudwater (mg L$^{-1}$) vs. Theoretically predicted NO$_3^-$ production (mg L$^{-1}$).

- Daytime: $R^2 = 0.38$
- Nighttime: $R^2 = 0.60$
Fig. 4.

(a) Cloud-free

(b) Cloud RES

Observed RPA of nitrate vs. Predicted RPA of nitrate

- Daytime
- Nighttime

2020 Winter 2018 Spring

R² values:
- Daytime:
 - Cloud-free: 0.37 (red), 0.65 (green)
 - Cloud RES: 0.45 (green), 0.75 (green)
- Nighttime:
 - Cloud-free: 0.64 (green), 0.61 (green)
 - Cloud RES: 0.66 (green), 0.71 (green)
Fig. 5.