
Dear Editor Prof. Huthnance,

Thank you for sending me the manuscript: ”Quantifying the impacts of
the Three Gorges Dam on the spatial-temporal water level dynamics in the
Yangtze River estuary” by Huayang Cai for review, which I read with great
interest.

The authors apply a linear regression model to the tidally averaged water
level in the Yangtze estuary to investigate the effects of the Three Gorges
dam. The authors find that their regression model predicts the water level
in the Yangtze reasonably well. They find that since construction of the
dam, low flows have increased while flows during transition from the high
to the low flow season have decreased.

The topic is very relevant and the manuscript was interesting to read. The
applicability of a regression model to predict water levels in tidal rivers
agrees with my own experience in this field. The text and figures are of high
quality.

However, the regression model applied here is relatively simple, at least
much simpler than previously applied models. This certainly makes it easy
to grasp the results, especially for readers who are not experts on the topic.
However, this also makes it difficult to identify the physical drivers behind
changes in the water levels, and might introduce systematic errors. Below,
I provide suggestions on how these issues can be verified and mitigated, if
necessary.

Kind regards,

Methods

• The regression model includes both discharge and water level at the
upstream station. As they depend on each other, the model is not
parsimonious. As a consequence, the columns for Q and zup of the re-
gression matrix will be close to collinear so that small changes (errors)
in the data can result in large changes in the coefficients α and γ even
if the fit is good. Possible changes of the coefficients over time might
thus be regression artefacts. This should be ruled out by verifying that
Qup and zup are not strongly correlated.

– If the correlation is weak, then the model is robust, but then
it would be insightful to elaborate on why the upstream water
level and discharge are unrelated. The comment ”influenced by
the dynamics of [] tributaries” (l. 119) is unclear. The water
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level is uniquely determined by the backwater curve as long as
the daily averaged water level does not change rapidly in time.
Therefore, tributaries upstream of the inflow boundary influence
downstream levels only through their discharge. Do the authors
refer to tributaries downstream of the upstream station?

– If the correlation is strong, then it is better to replace the terms
αQ + γ zup with the non-linear term aQb. This model is less
ambiguous. In my personal experience, the coefficients a and
b of the non-linear model also give much more insight into the
influence of the river discharge on the mean water level along
tidal rivers.

• The regression model does not include the effect of the tides on the
mean water level. However, this effect is not negligible during periods
of low river flow (LeBlond , 1978). This introduces a systematic error.
As the Three Gorges dam increased river discharge during the low flow
season, this can bias the results. It is, therefore, reasonable to include
the influence of tides on the mean water level in the regression model.
For example, Kukulka and Jay (2003) suggest the regression model
linear in h3:

h3 ≈ aQ2
river + b |ztide|2 + c,

while (Kästner et al., 2019) suggested linearizing the backwater equa-
tion, which can be readily approximated in a regression model linear
in h (or z).

• The independent variables are not normalized in the regression model
so that the coefficients have very different magnitudes (O(α) = 10−5

while O(β) = 1). It is thus not obvious which predictor (downstream
or upstream level) has the largest influence at a particular location.
This can be revealed by normalizing the independent variables by their
standard deviation before the regression:

z = z0 + αQ/std (Q) + β zdown/std (zdown) + γ zup/std (zup) .

This is preferable to the order in the study, where variance is normal-
ized after the regression.

• Interpolation of slopes and uncertainty estimates (Figure 4 and 5, lines
190ff)

– There is a mistake in the slope calculation. The values should be
in the order 10−5, not 10−8. The distance between the stations
was probably not converted from km to m.

– Determining the slope from by higher-order (Hermite) interpo-
lation is not meaningful here. This is because the error (of the
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slope) is amplified at the interpolated values between the sta-
tions. As a consequence, the interpolated slope has unrealistic
local extrema at the midpoints between stations (Figure 5). The
error of the cubically (Hermite) interpolated slope at the mid-
point between stations is about 1.8 times as large as the errors
of the levels at the stations. Since the error of the levels is about
10%, the error of the slope is about 20%. The local maxima of the
slope, as well as the difference between the pre- and post-TGD
period as indicated in Figure 5 are therefore insignificant. The
interpolation error (of the slopes) can be considerably reduced
by calculating the slopes at the midpoint between two stations
and then linearly interpolating the slopes between the midpoints.
In this case the error of the slope is only 0.7 times that of the
error in levels. If the authors want to retain cubic interpolation,
then the spurious extrema can be suppressed by fitting the 4 co-
efficients of the cubic polynomial with all 5 stations in a least
squares manner.

– As the model is not parsimonious, it might fit well even if the
regression coefficient are uncertain, as multiple parameter com-
binations can result in similar good model performance. A good
way to assess the uncertainty is bootstrapping (Efron and Tibshi-
rani , 1994). Simply split the time series into blocks comprising
of one month, this reduces the effect of serial correlation. When
there are n blocks, randomly choose

√
n blocks and fit the model.

Repeat this a few hundred times. The standard error is simply
the standard deviation of the estimated parameters. The stan-
dard error of the coefficient, predicted levels and slopes can then
be indicated indicated with error bars in Figure 3 and 5. The
cubic interpolation results in larger errors at midpoints between
sections, so errors bars are best placed there.

Minor

Title estuary → upper estuary

35 The term ”analytical solution” is misleading, as the water level is still
determined by (numerically) integrating an initial value problem (eq.
22 in Cai et al. (2016)).

44 Kukulka and Jay (2003) should be referenced here, as an important
regression model for the mean water level of tidal rivers.

45 ”these methods suggest that water level dynamics in estuaries are highly
nonlinear and nonstationary” This sounds as if water levels in tidal are
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difficult to analyse and predict, and that looking at tidal cycle/average
is a novel idea. However, there is a large amount of publications how
water levels can be approximated well on a cycle-by-cycle basis, see the
works of the groups of Savenije, Godin, Jay, Hoitink, and Friedrichs.

49 The reference to Darcy is dubious. Even if the surface level can be pre-
dicted by a linear regression model, it is still turbulent flow (quadratic
flow resistance), which is very different from groundwater flow (linear
flow resistance).

89 Mark Gaoqiaoju on the map in Figure 1

93 ”we mainly concentrate on the tide-river dynamics” This is not the
case, since, as commented by me before, the tidally induced water
level offset is not included in the regression model.

110 Mention here, which of the stations where chosen as the upstream and
the downstream end (Datong and Gaoqiaoju?).

169 ”linear” is misleading here. The water depth in the upstream estuary
most likely scale like h ≈ Q2/3. The non-linearity is just hidden by
including zup in the regression model.

248 The conclusion ”[at the downstream stations] tide dominates [the tidally
averaged water leve]” sounds odd, as the regression model applied in
this study does not explicitly account for the tidally induced water
level offset. It only includes the tidally averaged water level at the
seaward station. However, at the river mouth the tidally induced
water level offset is negligible as it integrates along the estuary, c.f.
Kästner et al. (2019) and Cai et al. (2016). So, no meaningful con-
clusion about the tidal influence can be drawn. The model probably
indicates that fluctuations of the sea level unrelated to tides, such as
wind, ocean-temperature and ocean-salinity, dominate the mean water
level dynamics near the sea. It would be insightful to actually deter-
mine the tidal influence by including it explicitly in the regression
model.

248 The river discharge influences the salinity gradient, and with it the
variation of the water level at the reference station at the sea (Savenije,
2012). The influence on river discharge on the downstream stations
might thus be larger than indicated by the model.

257 This paper has → We have

263 It was shown → We show

271 How relevant are (seasonal) changes of roughness and bedforms, due
to changes in water and sediment supply by the dam?
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Figure 2 It would be more meaningful to plot (zpred − zobs) vs zobs and to use
smaller dots which do not overlap that much. This would reveal better
any systematic variation.

Figure 3 Add subplots titles, like Discharge, Downstream level, Upstream level
so that the figure can be interpreted without looking up the meaning
of the coefficients α, β, γ.

Figure 3 begins from Jiangyin → upstream of Jiangyin

Figure 7 The average annual average hydrograph of the post-TGD period is
corrupted by high-frequent fluctuations of the hydrograph. The graph
would be clearer if the fluctuation is removed it through by smoothing
with a sliding window. A triangular window with a width of 30 days
seems appropriate. Smooth the data for the pre-TGD period as well,
for better comparison.
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