

### Comments by the editor

As the reviewers have commented the authors have responded to the comments from the reviewers. The quality of the paper has improved a lot and the authors have also addressed most of the comments of the editor. However, there are still some issues that need further clarification, as it seems that the authors didn't fully answer the previous comments by the editor. These are:

1. The authors have mentioned that they have used the result of the seismic survey, surface geology and published density values of lithologic units to constraints the gravity modeling. This, being accepted for the upper part of the gravity model, the constraint for the deeper part of the model is not yet clear. The seismic model is only to 500 meters depth and the gravity is more than 1300m. How have you managed to constraint the rest 800m.
2. Apart from this, the seismic model shows a single layer at the right-hand side of the fault (Figure 7). In contrary, the gravity model (Figure 10) shows multiple layers. As gravity method is blind for vertical variations, how have the authors managed to model the different layers in the gravity survey or what constraint do they have?
3. In the right-hand side of the model after the fault, there is a layer having a green color M. Permian (anhydrite) with a density of 2700 kg/m<sup>3</sup>, sandwiched in between the L. Permian and U. Permian layer. This layer is not observable in the left side. In the left side the layer is sandwiched in between the L. Permian and U. Permian layer is the M. Permian salt. Is the salt derived from the anhydrite? In that case it will be good to discuss about possible cause for the conversion from one form to the other.