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Short summary. Wolverine denning habitat inferred using a snow threshold differed for three different spatial 1 
representations of snow. These differences were based on the annual volume of snow and the elevation of the snow 2 
line. While denning habitat was most influenced by winter meteorological conditions, our results show that studies 3 
applying thresholds to environmental datasets should report uncertainties stemming from different spatial 4 
resolutions and uncertainties introduced by the thresholds themselves. 5 
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Abstract. Thresholds can be used to interpret environmental data in a way that is easily communicated and useful 20 
for decision making purposes. However, thresholds are often developed for specific data products and time periods, 21 
changing findings when the same threshold is applied to datasets or periods with different characteristics. Here, we 22 
test the impact of different spatial discretizations of snow on annual estimates of wolverine denning opportunities in 23 
the Colorado Rocky Mountains, defined using a snow water equivalent (SWE) threshold (0.20 m) and threshold date 24 
(15 May) from previous habitat assessments. Annual potential wolverine denning area (PWDA) was thresholded 25 
from a 36-year (1985 – 2020) snow reanalysis model with three different spatial discretizations: 1) 480 m grid cells 26 
(D480), 2) 90 m grid cells (D90), and 3) 480 m grid cells with implicit representations of subgrid snow spatial 27 
heterogeneity (S480). Relative to the D480 and S480 discretizations, D90 resolved shallower snow deposits on 28 
slopes between 3050 and 3350 m elevation, decreasing PWDA by 10%, on average. In years with warmer and/or 29 
drier winters, S480 discretizations with subgrid representations of snow heterogeneity increased PWDA, even within 30 
grid cells where mean 15 May SWE was less than the SWE threshold. These simulations increased PWDA by 31 
upwards of 30% in low snow years, as compared to the D480 and D90 simulations without subgrid snow 32 
heterogeneity. Despite PWDA sensitivity to different snow spatial discretizations, PWDA was controlled more by 33 
annual variations in winter precipitation and temperature. However, small changes to the SWE threshold (±	0.07 m) 34 
and threshold date (± 2 weeks) also affected PWDA by as much as 82%. Across these threshold ranges, PWDA was 35 
approximately 18% more sensitive to the SWE threshold than the threshold date. However, the sensitivity to the 36 
threshold date was larger in years with late spring snowfall, when PWDA  depended on whether modeled SWE was 37 
thresholded before, during, or after spring snow accumulation. Our results demonstrate that snow thresholds are 38 
useful but may not always provide a complete picture of the annual variability in snow-adapted wildlife denning 39 
opportunities. Studies thresholding spatiotemporal datasets could be improved by including 1) information about the 40 
fidelity of thresholds across multiple spatial discretizations, and 2) uncertainties related to ranges of realistic 41 
thresholds. 42 
1. Introduction 43 
Generalizing environmental data using thresholds can present information in a way that is more easily understood, 44 
communicated, and applied for decision-making purposes. Conceptually, thresholds are static constraints intended to 45 
partition the areas, timing, and/or prevalence of data greater or less than some scientifically or managerially relevant 46 
limit. In the field of snow science, thresholds are used to classify snow cover and snow absence from remotely-47 
sensed observations (Dozier, 1989; Hall and Riggs, 2007; Sankey et al., 2015), partition snow accumulation and 48 
snowmelt seasons (Cayan, 1996; Hamlet et al., 2005; Mote et al., 2005; Serreze et al., 1999), and parameterize 49 
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modeled processes like snow-layer formation and merging (e.g., Clark et al., 2015; Liston and Elder, 2006; 50 
Wigmosta et al., 2002), rain and snow precipitation partitions (Auer, 1974; Harder and Pomeroy, 2013), and snow 51 
holding capacity on steep slopes (Bernhardt and Schulz, 2010). Thresholds are also used to identify drought 52 
conditions in snow-dominated watersheds (Dierauer et al., 2019; Harpold et al., 2017; Heldmyer et al., 2023) , and 53 
the associated “decision trigger” and “tipping point” thresholds that determine water use and allocation in regulated 54 
basins (Herman and Giuliani, 2018; Kwadijk et al., 2010; Shih and ReVelle, 1995). However, despite widespread 55 
use, thresholds are often developed for specific applications, and over short time intervals, decreasing the likelihood 56 
that a threshold developed for one purpose could be applied in an identical manner to different periods of time, or to 57 
environmental products with different characteristics (Härer et al., 2018; Jennings et al., 2018; Maher et al., 2012; 58 
Pflug et al., 2019). 59 
Here, we focus on snow thresholds that have been used increasingly over the past decade to identify regions with 60 
conditions suitable for the survival of snow-adapted wildlife. Many studies use thresholds that focus on snow 61 
characteristics like snow depth, snow cover, snow density, snow water equivalent (SWE), and snowmelt season 62 
snow persistence, which can be important for denning, migration, and food-availability for species like wolverines 63 
(Gulo gulo), polar bears (Ursus maritimus), and Dall sheep (Ovis dalli dalli) (Barsugli et al., 2020; Durner et al., 64 
2013; Liston et al., 2016; Mahoney et al., 2018; McKelvey et al., 2011; Sivy et al., 2018). However, relatively few 65 
studies simulate snow at spatial resolutions that correspond to the features that drive snow habitat (e.g., Glass et al., 66 
2021; Liston et al., 2016; Mahoney et al., 2018). For instance, wolverines rely on snow drifts for maternal and natal 67 
denning. These drifts often form alee of obstructions near the forest edge and in talus fields (e.g., Fig. 1, star). Yet, 68 
few models simulate snow at den-scale spatial-resolutions (< 10 m), and represent the physical processes that 69 
control the formation of dens, like wind-redistribution, preferential deposition, avalanching, and microtopographic 70 
shading. This is particularly the case for species status assessments which often attempt to quantify wildlife habitat 71 
at large regional extents where high-resolution snow simulations with complex physical processes would be 72 
computationally prohibitive. Thresholds are therefore used to facilitate the relationship between a coarser-resolution 73 
representation of snow, and the finer-scale feasibility of wildlife habitat. The validity of this approach is debated 74 
(e.g., Araújo and Peterson, 2012; Barsugli et al., 2020; Boelman et al., 2019; Bokhorst et al., 2016; Copeland et al., 75 
2010; Magoun et al., 2017). For example, coarser-scale representations of snow may resolve the larger-scale 76 
meteorological influences on habitat availability, but coarser-scale representations of snow likely overlook the 77 
smaller-scale refugia that could continue to support habitat, even with future changes to climate. 78 
This study builds on work from Barsugli et al. (2020), who used physically-based simulations to identify regions 79 
that could support wolverine denning using a SWE threshold (0.20 m) on a static date (15 May) corresponding to the 80 
tail end of the maternal denning period(Copeland et al., 2010; McKelvey et al., 2011; USFWS, 2018). This 0.20 m 81 
SWE threshold was chosen based on 15 May SWE that corresponded to known wolverine denning sites from a 250 82 
m snow simulation (Barsugli et al., 2020; Ray et al., 2017; USFWS, 2018). Barsugli et al. (2020) found that, relative 83 
to previous studies that used ~10 km products (Laliberte and Ripple, 2004; McKelvey et al., 2011), snow 84 
simulations at 250 m resolution were able to better resolve SWE persistence, and increased habitat, on shaded north-85 
facing slopes. 250 m simulations also increased the overall prevalence of snow that could support wolverine dens, 86 
both in current and future climates, over Colorado and Montana Rocky Mountain domains. 87 
Here, we extend the findings from Barsugli et al. (2020), testing the difference in wolverine denning support defined 88 
using thresholds (0.20 m SWE on 15 May) and a historic snow reanalysis with different spatial discretizations (Fig. 89 
1). These discretizations include: 1) discrete 480 m grid cells (D480), 2) discrete 90 m grid cells (D90), and 3) 480 90 
m grid cells with implicit representations of subgrid SWE spatial heterogeneity (S480). These discretizations 91 
straddle the 250 m resolution used by Barsugli et al. (2020) and include both discrete (D480 and D90) and implicit 92 
(S480) representations of snow distribution. These reanalyses, which combine snow modeling and remotely-sensed 93 
observations of snow cover (more in Sect. 2.2), also resolve snow volume and distribution in mountain terrain 94 
significantly better than more common modeling approaches (Pflug et al., 2022; Yang et al., 2021). We focus on the 95 
same Colorado Rocky Mountain domain used by Barsugli et al. (2020) over a longer period of 36 years, spanning 96 
1985 to 2020. We address the following research questions: 1) how does the spatial discretization of snow 97 
influence estimates of potential wolverine denning area (PWDA)? and 2) is the sensitivity of PWDA to 98 
different snow spatial discretizations greater or smaller than the sensitivity to annual changes in winter 99 
climatic conditions? We also identify the spatial locations and causes of the greatest differences PWDA, and 100 
evaluate sensitivities to small uncertainties in both SWE thresholds (±	0.07 m) and threshold dates (±	2 weeks). 101 
More generally, this study highlights shortcomings, opportunities, and tradeoffs to thresholding spatial snow 102 
products, and serves as a roadmap for future wildlife habitat assessments. 103 



 3 

 104 
Figure 1. SWE spatial heterogeneity inferred from airborne lidar at 1 m resolution, compared to 480 and 90 m grid 105 
cells, and a point (star) with a snow drift suitably deep for wolverine denning (a). SWE is simulated in this study 106 
using three different spatial discretizations: 480 m discrete grid cells (D480, column b), 480 m grid cells with 107 
subgrid SWE heterogeneity (S480, column c), and 90 m discrete grid cells (D90, column d).  The fraction of the area 108 
that could support wolverine denning is estimated for each discretization using a 0.20 m SWE threshold on 15 May. 109 
The fraction of the area exceeding the SWE threshold is binary (fully greater than or less than the threshold) for 110 
discrete grid cells (b and d), while the area exceeding the SWE threshold for the S480 discretization (c) is defined by 111 
the fraction of the grid cell SWE distribution exceeding the threshold (white hatching) 112 
2. Domain and Data 113 
2.1. Domain 114 
We focused this work over Rocky Mountain National Park in Colorado state (Fig. 2). This domain is home to 115 
several snow-adapted wildlife species, and has been included in wolverine habitat assessments (Barsugli et al., 2020; 116 
McKelvey et al., 2011; USFWS, 2018). Barsugli et al. (2020) estimated most of the terrain supportive of wolverine 117 
habitat in this region to be between 2700 and 3600 m of elevation. Although this area does not currently support a 118 
reproductive population of wolverines, this region is of potential interest for wolverine reintroduction. More 119 
information about wolverine habitat can be found in the U.S. Fish and Wildlife Service species status assessment 120 
(USFWS, 2018).  121 
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The Rocky Mountain National Park domain contained several snow observations (Fig. 2). These observations 122 
include 28 snow telemetry (SNOTEL) stations, deployed and managed by the National Resources and Conservation 123 
Service. These stations use snow pillows to measure the weight of snowpack and resulting SWE. A distributed lidar 124 
observation of snow depth in southernmost portion of the domain was also collected by the National Center for 125 
Airborne Laser Mapping in May 2010. These observations were used to assess the accuracy of the SWE reanalysis 126 
discussed in Sect. 2.2. 127 
2.2. SWE Reanalyses 128 
SWE was calculated over the Rocky Mountain domain (Figure 2) from a popular satellite-era (water years 1985 – 129 
2020) probabilistic snow reanalysis (Margulis et al., 2019, 2016, 2015) performed at 3 arcseconds (~90 m) and 16 130 
arcseconds (~480 m). This reanalysis was generated at each individual grid cell using an ensemble of simulations 131 
forced by the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2; Gelaro et 132 
al., 2017), and simulated using the simplified Simple Biosphere Model, Version 3 (Xue et al., 1991) coupled with 133 
the Liston (2004) snow depletion curve. The forcing dataset was downscaled to the simulation grid (Girotto et al., 134 
2014; Margulis et al., 2015) before running the land surface model. Model ensemble members were provided 135 
different 1) precipitation multipliers (influencing total snow mass), 2) snow albedo decay functions (influencing the 136 
rate of snow ablation), and 3) parameterizations of subgrid snow spatial variability (influencing subgrid snow cover 137 
during snowmelt), among other parameters. The reanalysis then reweighted the ensemble members to most-heavily 138 
favor those that matched the snowmelt season evolution of fractional snow covered area from 30 m Landsat 139 
observations. We expect uncertainties and errors in the snow reanalysis owing to both errors in meteorological 140 
forcing data (e.g., Daloz et al., 2020; Liu and Margulis, 2019) and errors with the snow model (e.g., Feng et al., 141 
2008; Xiao et al., 2021)However, the ensemble approach used by this reanalysis adjusted modeled snow 142 
accumulation and depletion to track remote sensing observations of snow cover depletion, which has shown the 143 
capability to bias-correct SWE and implicitly account for difficult-to-simulate processes like precipitation lapse 144 
rates, wind-loading/scour, avalanching, and forest-snow processes (e.g., Pflug et al., 2022; Yang et al., 2021). 145 
Relative to SNOTEL observations, which are not used by the snow reanalysis, the reanalysis exhibited a SWE 146 
coefficient of correlation of 0.82  between 1985 and 2020 in the Rocky Mountain domain (Fig. S1). On average, the 147 
reanalysis was biased low relative to the snow pillow observations by approximately 23%. However, this could be 148 
attributed to the location of SNOTEL observations in forested clearings (Fig. 2a) which typically have SWE deeper 149 
than the terrain covered by the 480 and 90 m pixels(e.g., Livneh et al., 2014; Pflug et al., 2022).While the snow 150 
reanalysis used in this study is ultimately a model product and subject to a number of modeling uncertainties, the 151 
SWE simulated by the 90 m and 480 m discretizations agreed closely with each other and with ground observations. 152 
Therefore, spatial differences in 15 May SWE, and the resulting distribution of snow that exceeded the SWE 153 
threshold (e.g., Fig. 1) was attributable to differences in the interactions between the static SWE threshold and 154 
different spatial discretizations of snow. 155 
For the 480 m grid cells with subgrid snow variability (Fig. 1c, S480), the heterogeneity of SWE was estimated 156 
using a method developed by Liston (2004). This method assumes that the subgrid heterogeneity of SWE 157 
accumulation is lognormally distributed, and is dictated by a time-constant coefficient of variation (CoV), 158 

𝐶𝑜𝑉 =
𝜎
𝜇, 159 

(1) 160 

where 𝜇 is the grid cell mean SWE and 𝜎 is the standard deviation of the SWE within that grid cell. The CoV of 161 
subgrid SWE accumulation (Fig. 2b and 2c) was determined for each 480 m grid cell using the most common 162 
pattern of SWE accumulation from the overlapping 90 m reanalysis grid cells (Fig. 1d) between 1985 and 2020 163 
(detailed further in Text S1). In Sect. 3.1, we discuss how CoV was used to estimate the temporal evolution of 164 
subgrid SWE heterogeneity.  165 
 166 
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 167 
Figure 2. Rocky Mountain National Park study domain. The location of SNOTEL observations and lidar snow depth 168 
observations are superimposed in the terrain map (a). The 480 m coefficient of variation of subgrid SWE 169 
accumulation is shown both spatially (b) and across 100 m elevation bands (c). 170 
3. Methods 171 
The methods evaluate the impacts of snow spatial discretizations and winter climatic conditions on assessments of 172 
total area suitable for denning wolverines. We investigated three different spatial discretizations; two discretizations 173 
using more common discrete representations of snow, and one with an implicit representation of subgrid snow 174 
heterogeneity (see Sect. 3.1). For each,  potential wolverine denning area (PWDA) was calculated using a static 175 
SWE threshold (0.20 m) on a static spring date (15 May) (Sect. 3.2). Finally, we partitioned years with winter 176 
precipitation magnitude and precipitation phase climate categories (wet, dry, cold, and warm) (see Sect. 3.3). These 177 
categories were used to examine whether winter climatic conditions or model representations of snow spatial 178 
distribution most-influenced estimates of PWDA. 179 
3.1. Subgrid SWE evolution 180 
The temporal evolution of subgrid SWE heterogeneity was estimated for 480 m grid cells (Fig. 1, S480) using 181 
methods developed by Liston (2004) (Fig. 3). Provided the reanalysis grid cell mean SWE (𝜇) from a D480grid cell 182 
(Fig. 1b), and a CoV of subgrid SWE accumulation (Fig. 2b), the probability distribution of subgrid SWE for that 183 
grid cell (𝑓(𝑆𝑊𝐸)) was calculated using a lognormal distribution,  184 
 185 

𝑓(𝑆𝑊𝐸) = 3
1

𝑆𝑊𝐸𝜁√2𝜋
9𝑒𝑥𝑝 =−

1
2 ?
ln(𝑆𝑊𝐸) − 𝜆

𝜁 C
!

D, 186 

( 2 ) 187 

𝜆 = ln(𝜇) −
1
2 𝜁

!, 188 

( 3 ) 189 
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𝜁! = ln(1 + 𝐶𝑜𝑉!). 190 
( 4 ) 191 

Figure 3b demonstrates the subgrid distribution of SWE in two winter periods (𝑡"# and 𝑡"!) assuming the mean SWE 192 
evolution from Fig. 3a, a CoV of 0.50, and Eq. 2 – 4.  193 
In the snowmelt season, the Liston (2004) methodology assumes spatially-uniform snowmelt, causing snow 194 
disappearance first in locations with thinner SWE, and last in locations with deeper SWE. This can be 195 
conceptualized as taking the subgrid distribution of snow at peak SWE (Fig. 3b, 𝑡!"), and adjusting it downwards by 196 
a constant amount to reflect spatially-uniform melt (𝑆𝑊𝐸$) (Fig. 3c). In doing so, snow only exists for portions of 197 
the gridcell where	𝑓(𝑆𝑊𝐸) at peak SWE was greater than 𝑆𝑊𝐸$. Therefore, the fractional snow-covered area 198 
(fSCA) of the grid cell could be calculated from the fraction of the distribution (𝑓(𝑆𝑊𝐸)) with SWE greater than 199 
𝑆𝑊𝐸$, 200 

𝑓𝑆𝐶𝐴 =	H 𝑓(𝑆𝑊𝐸)𝑑𝑆𝑊𝐸
%

&'(!
. 201 

( 5 ) 202 
Since 𝑆𝑊𝐸$ can exceed the amount of SWE that exists in some locations at peak SWE timing, and since SWE 203 
cannot be less than 0 m (snow-absent), the change in gridcell mean SWE (𝜇) throughout snowmelt will not 204 
necessarily equal 𝑆𝑊𝐸$. Rather, 𝜇 throughout the snowmelt season can be calculated from the expected value of 205 
the melt-shifted distribution (Fig. 3c), 206 

𝜇 = H [𝑆𝑊𝐸 − 𝑆𝑊𝐸$]𝑓(𝑆𝑊𝐸)𝑑𝑆𝑊𝐸
%

&'(!
. 207 

( 6 ) 208 
In this study, we were provided 𝜇 from the reanalysis at each 480 m grid cell and daily timestep. Using the CoV 209 
calculated from the overlapping D90 data (Fig. 2b), and maximum annual 𝜇 at each grid cell, we calculated the SWE 210 
distribution (Eq. 2) for each grid cell at peak SWE timing. Then, using a Newton-Raphson solver, we solved the 211 
𝑆𝑊𝐸$ for each grid cell that caused 𝜇 from Eq. 6 to match D480 𝜇 at each grid cell on 15 May. 212 
The Liston (2004) subgrid SWE parameterization discussed above operates under several assumptions. Like many 213 
other studies (e.g., Donald et al., 1995; Helbig et al., 2021; Jonas et al., 2009), Eq. 2 assumes that the distribution of 214 
snow accumulation at scales finer than the grid cell resolution can be represented by a lognormal distribution. We 215 
tested this assumption by evaluating the distribution of 1 m lidar snow depth observations (Fig. 2a) that fell within 216 
480 m grid cells. The Kolmogorov-Smirnov (KS) statistic, or maximum difference between cumulative distribution 217 
functions, was used to test how well different theoretical distributions (e.g., normal, lognormal, gamma, Rayleigh, chi, 218 
etc.) used by a variety of snow studies (e.g., He et al., 2019; Helbig et al., 2015; Mendoza et al., 2020; Pflug and 219 
Lundquist, 2020; Skaugen and Melvold, 2019) matched the lidar-observed snow depth distributions. The KS statistic 220 
for the lognormal distribution (Eq. 2) was 0.12 ± 0.05, and was significantly worse (greater than 0.22) when 221 
comparing the observed lidar distributions versus other common distributions, like normal and gamma distributions. 222 
While not perfect, these results showed that subgrid snow heterogeneity was approximated best by lognormal 223 
distributions. The Liston (2004) subgrid methodology also assumed that the CoV of subgrid SWE accumulation was 224 
constant, resulting in a linear increase in SWE variability (standard deviation) with mean SWE throughout the snow 225 
accumulation season (Fig. 3b). While we lacked validation data to test this, this assumption is the basis for other 226 
modeling approaches, which scale snow input using information from historic snow accumulation patterns (Liston, 227 
2004; Luce et al., 1998; Pflug et al., 2021; Vögeli et al., 2016). Finally, although subgrid snowmelt is not spatially-228 
uniform, melt-season snow heterogeneity is often modeled well by assuming uniform snowmelt. This is due to the 229 
outsized influence of snow accumulation spatial heterogeneity on snowmelt onset timing and snowmelt rates (Egli et 230 
al., 2012; Luce et al., 1998; Lundquist and Dettinger, 2005; Pflug and Lundquist, 2020). Here, we acknowledge that 231 
this approach operates on multiple assumptions (discussed above), all of which could vary in accuracy on grid cell 232 
level. However, this approach may also provide the opportunity to implicitly represent the heterogeneity of snow in 233 
complex terrain and the fraction of the area that could be more supportive for denning habitat (e.g., Fig. 1). We discuss 234 
this more in Section 3.2. Readers should refer to Liston (2004) for more information about the subgrid snow 235 
methodology described in this section. 236 
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 237 
Figure 3. An example of the Liston (2004) subgrid SWE parameterization assuming CoV = 0.5, and SWE evolution 238 
for a 480 m grid cell in a random year (panel a). Subgrid SWE distributions are shown for two times (t, subscripts 1 239 
and 2) in the accumulation (superscript a) and melt (superscript m) seasons (panels b and c, respectively). The 240 
timing of each date corresponds to the matching vertical bar in panel a.  241 
3.2. Thresholding wolverine habitable area 242 
The area that could support denning wolverines was calculated for each of the discretizations in each year using a 243 
SWE threshold of 0.20 m on 15 May, in accordance with previous studies (e.g., Barsugli et al., 2020; Copeland et 244 
al., 2010; McKelvey et al., 2011). For the D480 and D90 discretizations, each cell’s denning fraction (DF) was 245 
classified as fully-suitable for denning (DF = 1.0) or unsuitable (DF = 0.0) if the 15 May grid cell SWE was greater 246 
than or less than 0.20 m, respectively. For the S480 discretization, DF was calculated for each grid cell using: 247 

𝐷𝐹 =	H 𝑓(𝑆𝑊𝐸)𝑑𝑆𝑊𝐸
%

&'(!)*
, 248 

( 5 ) 249 
which represented the portion of the cell’s SWE distribution greater than the SWE threshold (𝛽 = 	0.20	m). PWDA 250 
was calculated for each discretization as the sum of DF (in space), multiplied by grid cell area. 251 
Relative to DF calculated from a discrete 480 m grid cell (D480), DF calculated over the same area from the finer-252 
scale discretizations (S480 and D90) could have one of four possible relationships. First, the mean SWE of the D480 253 
grid cell, and the finer-scale distribution of SWE (S480 and D90), could both be entirely greater than the 0.20 SWE 254 
threshold. This results in a fully-suitable denning fraction (DF = 1.0) for all discretizations (Fig. 4a). DF would also 255 
agree in regions where all discretizations have SWE below 0.20 m (Fig. 4d), resulting in no denning opportunities 256 
(DF = 0.0). The scenarios shown in Fig. 4b and Fig. 4c are where DF is sensitive to the discretization. Figure 4b 257 
shows a scenario where the coarse-scale mean SWE is sufficiently deep enough to be classified as fully-suitable for 258 
denning (SWE > 0.20 m), even though some portion of that grid cell contains SWE that is shallower than the SWE 259 
threshold. Therefore, using a finer-scale discretization would result in a net loss in DF, the magnitude of which is 260 
shown by the red hatching in Fig. 4b. The opposite could be true for instances where coarse-scale mean SWE falls 261 
below the 0.20 m SWE threshold, thereby underestimating denning opportunities relative to finer-scale 262 
representations that resolve some deeper snow deposits (Fig. 4c, blue hatching). Here, the three reanalysis 263 
discretizations (D480, D90, and S480) were provided identical meteorological forcing, and when coarsened to 480m 264 
resolution, had SWE that agreed to within 1%, on average on 15 May. Therefore, the degree to which the scenarios 265 
shown in Fig. 4b and 4c occur were the drivers of differences to wolverine denning opportunities.  266 
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 267 
Figure 4. Conceptual portrayal of the similarities (a and d) and differences (b and c) in DF for a 480 m discrete grid 268 
cell (vertical solid line) and a finer-scale representation (distribution) of SWE over the same area. The vertical 269 
dashed lines represent the 0.20 m SWE threshold. Shaded areas show the portion of the distribution with SWE 270 
greater than the threshold. Hatched areas demonstrate differences in DF between the coarser and finer-scale 271 
discretizations of SWE. 272 
3.3. Categorizing winter climate categories 273 
To determine PWDA sensitivity to different climatic conditions, we identified years from the reanalysis with 274 
different winter precipitation magnitude and phase (rain versus snow). Here, winter is defined by periods between 275 
October 1st and the date of domain peak SWE volume. Following work from Heldmyer et al. (2023), we used 276 
domain average cumulative winter precipitation and the fraction of the winter precipitation that fell as snow (both 277 
from the reanalysis) as indices for winter precipitation magnitude and the temperature at which precipitation fell. 278 
Using a percentile, we separated years that fell at least that far from the 1985 – 2020 median precipitation magnitude 279 
and fraction of snow precipitation. In doing so, we partitioned years with wet, dry, cold, and warm winter climate 280 
categories. We did this separation using a range of percentiles until the statistical difference (measured using the 281 
Mann-Whitney u-test) in D480 PWDA was maximized between the years with different climatic conditions (warm, 282 
cold, wet, dry, and typical). To avoid spurious results, this percentile was also adjusted to ensure that each climate 283 
category included at least 6 years. This approach maximized the difference in interannual PWDA as a function of 284 
different winter climatic conditions. This was then used as the baseline to compare how much more or less sensitive 285 
PWDA was to the different SWE spatial discretizations.  286 
4. Results 287 
Over low-elevation forested grid cells (< 2800 m), SWE accumulation variability was large relative to the smaller 288 
amounts of snow, resulting in large CoV (typically between 0.50 and 0.80) (Fig. 2b and 2c). On mid-elevation 289 
slopes (2800 – 3300 m), CoV tended to be smaller (approximately 0.30, on average). However, CoV increased again 290 
at higher elevations (> 3300 m), and particularly on the leeward side of peaks. This was expected given the more 291 
extreme terrain and increased spatial variability of snow from wind-drifting, preferential deposition, cornice 292 
formation, and avalanching. 293 
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The difference in PWDA was maximized between 1) warm and cold years, and 2) wet and dry years, that had winter 294 
precipitation magnitude (Fig. 5a, x-axis) and precipitation phase (Fig. 5a, y-axis) that fell above the 77th and below 295 
the 23rd percentiles (±27th percentile from the median). These climate conditions had impacts on the evolution of 296 
SWE and snow-covered area (Fig. 5b and Fig. 5c). On average, as compared to years with normal winter 297 
precipitation magnitude and phase (Fig. 5a, white region), cold years and wet years had peak SWE volume that was 298 
23% and 28% greater, respectively. This was opposed to warm years and dry years, with peak SWE volume that was 299 
21% and 31% smaller, on average, than typical water years. The timing of peak-SWE was driven most by the 300 
magnitude of winter precipitation. In fact, average peak-SWE timing was 28 days later for wet years than dry years. 301 
Snow disappearance timing (snow-covered area < 200 𝑘𝑚!) was also 21 days later for wet years than dry years. 302 
Statistically, the timing of snow disappearance, crucial for wolverine denning habitat, was explained well by the 303 
peak-SWE volume (r = 0.82) and the date of peak-SWE (r = 0.63), both of which were influenced more by winter 304 
precipitation magnitude than temperature. 305 

 306 
Figure 5. Annual climatic conditions grouped into categories based on winter precipitation magnitude (a, horizontal-307 
axis) and precipitation phase (a, vertical-axis) outside the 23rd and 77th percentiles (a, dashed lines). The evolution of 308 
SWE volume and snow cover are compared for warm versus cold (column b) and wet versus dry years (column c). 309 
Vertical dashed lines in columns c and d indicate 15 May.  310 
In all years except dry 2002, PWDA was smaller for the D90 discretization than the D480 discretization (Fig. 6). 311 
This resulted in a 10% reduction to the 36-year median PWDA (Fig. 6b). The PWDA differences between the D480 312 
and S480 discretizations varied more on an annual basis. For years with D480 PWDA less than 1000	𝑘𝑚!, S480 313 
discretizations increased PWDA by up to 30%, 11% on average. However, in years with PWDA greater than 314 
1000	𝑘𝑚!, S480 PWDA was approximately 3% smaller, on average, than D480 PWDA. In short, the S480 315 
discretization tended to have smaller annual swings in PWDA than the D480 discretization. The causes of these 316 
PWDA disagreements are discussed in Sect. 5.1. Despite the annual differences in D480 and S480 PWDA, the 36-317 
year median PWDA for these discretizations agreed to within 1% (Fig. 6b).  318 
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 319 
Figure 6. 15 May PWDA compared annually for three different spatial discretizations (a). Lower panels show the 320 
kernel distributions for the data in panel a, separated based on the spatial discretization (b), temperature categories 321 
(c), and precipitation categories (d). The medians of each distribution are shown by the vertical dashed lines (b – d). 322 
The data in panels c and d include data from all three spatial discretizations. The data from WY1992 (a, faded bars) 323 
exhibited artifacts, and was excluded from the kernel distributions (b-d). 324 
Even though PWDA was sensitive to different spatial discretizations (Fig. 6b), PWDA across the 36-year period was 325 
not statistically different between any of the three discretizations (p > 0.48). Conversely, the difference in 15 May 326 
PWDA was significantly larger between the years with different winter climate categories (Fig. 6c and 327 
6d).Differences in PWDA between years with warm and cold conditions were statistically significant (p = 328 
1 × 10+,). Given that 15 May snow covered area were similar between warm and cold years (Fig. 5b), this 329 
difference between warm and cold years in Fig. 6c show that changes to PWDA were driven by changes to SWE 330 
magnitude and the area with SWE exceeding the SWE threshold. Dry and wet years exhibited larger differences to 331 
both 15 May SWE and snow cover (Fig. 5c), resulting in PWDA (Fig. 6d) that was even more different between the 332 
years with these climate conditions (p = 1 × 10+-). The impact of these warm, dry, cold, and wet climate conditions 333 
resulted in the bimodal distributions in PWDA shown for the different discretizations across the full time period 334 
(Fig. 6a). While PWDA was not statistically different between cold and wet years (p = 0.34), the distribution of 335 
PWDA in dry years was significantly smaller than the distribution of PWDA in warm years (p = 0.001), showing 336 
that PWDA was more sensitive to conditions that reduced snow habitat, like warm and dry conditions. 337 
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The results from Fig. 6 suggested that changes in PWDA across annual periods of differing climatic conditions, or 338 
across future periods with expected changes in climate (e.g., Barsugli et al., 2020) should be informative from a 339 
species status assessment perspective, regardless of the snow spatial discretizations that we tested here. However, as 340 
noted above, the S480 discretization increased PWDA by 11% on average in low snow years, with increases as large 341 
as 30% for individual years. These low snow years often corresponded with drier and/or warmer winter conditions, 342 
the latter of which are expected in the future. For example, the average air temperature during December, January, 343 
and February precipitation events during warm years in the reanalysis record was approximately 0.8° higher than 344 
winter precipitation events in typical years. These conditions are consistent with what is projected for this region by 345 
2055 (Eyring et al., 2016; Scott et al., 2016). This suggests that the disparity between habitat inferred from discrete 346 
grid cells, and grid cells with subgrid snow heterogeneity, could be of greater importance for future snow habitat 347 
assessments. Additionally, using PWDA as the sole metric for evaluating differences in annual opportunities for 348 
wolverine denning may oversimplify the degree to which static thresholds and different spatial discretizations 349 
interact. For instance, PWDA inferred on a static date (15 May) compares very different regimes of the snow season 350 
as wet years had peak SWE timing, and snowmelt season onset, that was 21 days later than typical snow seasons 351 
(Fig. 5). Since shallower snow melts more readily than deeper snow (provided the same energy), comparing SWE 352 
on a static date in years with very different conditions neglects the different rates of habitat depletion for a few days 353 
on either side of the date threshold. These issues are investigated more in Sect. 5. 354 
5. Discussion 355 
In this section we diagnose the causes for disagreements in the frequency and locations at which 15 May SWE 356 
exceeded the 0.20m SWE threshold between the three spatial discretizations of snow (Sect. 5.1). We also investigate 357 
how the use of a static SWE threshold and threshold date, may obscure the picture of interannual changes to 358 
wolverine denning habitat availability (Sect. 5.2). Using these findings, we discuss how information provided from 359 
multiple spatial discretizations could provide information about the fidelity and uncertainty of thresholds, as well as 360 
the interactions and tradeoffs between spatial discretizations and thresholds, both in context for assessing snow-361 
adapted wildlife habitat, and more broadly for other environmental studies (Sect. 5.3). 362 
5.1. Spatial differences in DF 363 
The spatial difference in DF between the three discretizations had annually similar patterns, with the largest 364 
differences at locations where the domain had SWE that was near the 0.20 m SWE threshold. This is shown in 365 
Fig.7d and Fig. 7e where the spatial DF disagreements that spiked on 15 May 2008 were focused between 366 
approximately 2800 and 3200 m of elevation. Relative to the D480 discretization, the S480 discretization tended to 367 
increase DF in grid cells at lower elevations where mean SWE was less than the SWE threshold, but some portion of 368 
the grid cell had SWE deep enough to exceed the threshold (e.g., Fig. 4c). The opposite effect occurred at higher 369 
elevations where mean SWE exceeded the SWE threshold, but the lower-tails of the S480 SWE distributions were 370 
below the threshold (e.g., Fig. 4b). As a result, the S480 discretization had a more-gradual increase in thresholded 371 
denning availability with elevation, and a downward shift in the elevations that could support denning wolverines 372 
(Fig. 7f). In fact, relative to the D480 discretization, the S480 discretization had 23% less interannual variability in 373 
the elevation at which equal PWDA existed at higher and lower elevations (Fig. S2a). This was a result of the 374 
subgrid representations of SWE heterogeneity which allowed for gradual and fractional (0.0 ≤ DF ≤ 1.0) increases 375 
in DF with increases in SWE. This was opposed to the D480 discretization, which could only resolve binary DF (0 376 
or 1 for SWE less than and greater than 0.20 m), resulting in larger elevational shifts in the annual locations that 377 
could support wolverine denning. 378 
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 379 
Figure 7. Spatial comparisons of DF for the three discretizations on 15 May 2008. Panel f compares the cumulative 380 
PWDA (y-axis) calculated for grid cells sorted in order of increasing elevation (x-axis). Vertical dashed lines show 381 
the elevation of median PWDA, or elevation at which PWDA is equal for higher and lower elevations.  382 
Relative to the D480 discretization, the D90 discretization also tended to increase DF at lower elevations. However, 383 
all years had reduced D90 DF in elevations higher than  approximately 3120m. This was the cause of the 10% 384 
reduction in D90 PWDA, relative to the other discretizations (Fig. 6b). These decreases were typically located on 385 
unvegetated, exposed, and steep slopes, where it was likely that winter snow retention was decreased, snow 386 
sublimation was increased, and sloughing to lower-elevations was more common (Bernhardt and Schulz, 2010; 387 
Grünewald et al., 2014; Machguth et al., 2006). This demonstrates the utility of the observation-based reanalysis 388 
used in this study, which may have resolved thinner snow deposits on slopes with decreased snow retention and/or 389 
enhanced snow removal by processes like sloughing, both of which are among the most-difficult processes to 390 
represent with models. The D480 discretization averaged snow from surrounding areas, smoothing out thinner snow 391 
deposits resolved by the D90 discretization. Although attempting to resolve subgrid snow heterogeneity, the 392 
evolution of SWE assumed by the S480 simulation, which assumed lognormal snow accumulation and spatially-393 
uniform subgrid snowmelt (Fig. 3), may have been less-appropriate for the areas containing these isolated thinner-394 
snow 90 m grid cells. While the D90 discretization decreased total PWDA, D90 snow cover was also patchier (Fig. 395 
7c), which could also influence the movement and connectivity for wolverines (USFWS, 2018) and other snow-396 
adapted species. 397 
Winter precipitation magnitude and temperature influenced the volume of snow and the elevation of the snow line 398 
that existed on 15 May in each year. Since the differences in DF between the discretizations were largest at grid cells 399 
near the 0.20 m SWE threshold, often located just above the snow line, the spatial pattern of DF differences (e.g., 400 
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Fig. 7) exhibited an interannually-repeatable relationship with the dry, warm, cold, and wet winter climate categories 401 
(Fig. 5). To show this, we calculated the differences in DF between all three discretizations (D480 versus S480, 402 
D480 versus D90, and S480 versus D90) in all 36 years. Then, for each 480 m grid cell, we identified the climate 403 
category that resulted in the greatest mean absolute differences in DF across the three discretizations. The climate 404 
categories that had the greatest influence on DF uncertainties covered similar portions of the domain, with 33.7%, 405 
20.9%, 25.2%, and 20.2% being most attributed to dry, warm, cold, and wet conditions, respectively (Fig. 8). At low 406 
elevations (2650 – 3050 m), 15 May snow typically existed only in wet years. In those years and elevations, mean 407 
SWE for the D480 and D90 discretizations often fell below the 0.20 m SWE threshold. However, the large CoVs of 408 
subgrid SWE accumulation in these elevations (Fig. 2) resulted in S480 subgrid SWE distributions with upper-tails 409 
that sometimes exceeded 0.20 m (e.g., Fig. 4c) (Fig. 8c). This was in-line with findings from Magoun et al. (2017), 410 
who noted suitable denning conditions at lower-elevations, even in instances when the surrounding terrain was 411 
predominantly snow-free. 412 
The average differences in DF between the three discretizations were largest in cold years for elevations spanning 413 
3050 – 3150 m, and in warm years for elevations spanning 3150 – 3350 m (Fig. 8). Across this elevation range 414 
(3050 – 3350 m), both of the 480 m discretizations (D480 and S480) estimated more denning opportunities than the 415 
D90 discretization (Fig. 8c). However, at higher elevations (> 3350 m), DF calculated from the S480 discretization 416 
approached DF calculated from the D90 thinner snow deposits (Fig. 8c).  417 

 418 
Figure 8. Winter climate categories that most-influenced DF disagreements between the three discretizations (a). 419 
Panel b shows the most-prevalent influence from panel a, for 100 m elevation bands. Using DF from the D90 420 
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discretization as a reference, the 36-year average difference in DF for the D480 and S480 simulations are shown by 421 
distributions for each 100 m elevation band (c). Lines inside the distributions show the median and interquartile 422 
range. 423 
5.2. Threshold sensitivities 424 
To this point, we assumed confidence in the SWE (0.20 m) and date (15 May) thresholds. However, small changes 425 
to either threshold could influence annual estimates of PWDA (e.g., Copeland et al., 2010; Magoun et al., 2017). In 426 
Fig. 9, we show PWDA calculated from a range of realistic SWE thresholds and threshold dates. The range of SWE 427 
thresholds (0.20 ± 0.07 m) were determined using a snow depth of 0.50 m, corresponding to observed wolverine 428 
dens (USFWS, 2018), and the 90th percentile range of 15 May snow densities from SNOTEL observations (Fig. 2a) 429 
between 1985 and 2020 (260 – 540 𝑘𝑔/𝑚.). The range of threshold dates spanned a period of ± 2 weeks, 430 
corresponding to the difference in peak-SWE timing between dry and wet years (Fig. 5). This month-long time span 431 
is also consistent with the observed range of wolverine birth dates (Inman et al., 2012). PWDA sensitivity was 432 
calculated using all combinations of SWE and date thresholds, both of which were discretized at 14 equally-spaced 433 
increments (Fig. 9, left). Then, the gradients (direction and magnitude of greatest change in PWDA) were calculated 434 
from each unique combination of SWE and date thresholds. The gradients were summed using vector addition (Fig. 435 
9, right column) to determine 1) the total rate of change in PWDA with changing thresholds (arrow length), and 2) 436 
the degree to which PWDA was sensitive to one threshold versus the other (arrow angle). This process was repeated 437 
for each discretization and year.  438 

 439 
Figure 9. PWDA calculated using different SWE (y-axes) and date thresholds (x-axes), for the different 440 
discretizations (columns), in three different years (rows) with very different sensitivities. PWDA calculated from the 441 
default thresholds (0.20 m SWE on 15 May) is shown by the black circle. Combinations of thresholds that could 442 
reproduce the default PWDA are approximated by the dashed contour. The rightmost arrows show the total direction 443 
and magnitude of PWDA changes with changes in the thresholds. 444 
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PWDA in warm 1990 was 18% more-sensitive to the SWE thresholds than the threshold dates (Fig. 9, top row). To 445 
put this another way, the change in PWDA across a period of ± 3 days from 15 May was approximately equal to the 446 
change in PWDA from adjusting the SWE threshold by ± 2.5 centimeters. This sensitivity was similar to the 447 
average threshold sensitivity from the 36-year reanalysis record (Fig. S2b). However, multiple years exhibited 448 
unique sensitivities. For example, spring snowfall between 1 May and 6 May 2001 (Fig. 9, middle row) caused 449 
PWDA to both increase and decrease over the range of date thresholds (assuming a constant SWE threshold). 450 
Therefore, PWDA changed based on whether the threshold date was before, during, or after the May snowfall event, 451 
buffering the degree to which thresholded denning habitat estimates were influenced by the specific winter 452 
meteorological conditions that occurred in that year. This effect also occurred in 2015, when 15 May fell between 453 
two spring snowfall events (Fig. 9, bottom row). As a result, PWDA tended to increase, on average, over the range 454 
of threshold dates, resulting in heightened sensitivities to the date on which denning opportunities were evaluated. 455 
These spring snowfall events had large impacts on 15 May PWDA, but are unlikely to accurately represent the 456 
habitat opportunities and stresses that wolverine were subject to in that year. This demonstrates the dangers of 457 
thresholds applied on static dates, and suggest that metrics over multiple dates (e.g., number of May days exceeding 458 
a SWE threshold) and across sequences of years could be more accurate representations of snow refugia.  459 
PWDA varied by as much 82% between the realistic thresholds shown in Fig. 9. This was similar in magnitude to 460 
the differences in PWDA between years with opposing winter climate anomalies (Fig. 6c and 6d). Across the years 461 
evaluated in this study, the sensitivities to the thresholds were largest for the D480 simulation, and smallest for the 462 
S480 simulation (Fig. 9 and Fig. S2b). As discussed in Sect. 5.1, the S480 discretization, which represented subgrid 463 
snow distribution and fractional changes to DF with changes to the SWE threshold and threshold date, had less 464 
sensitivity to annual changes in meteorological conditions. Similarly, small changes in the SWE threshold and 465 
threshold date changed the prevalence of snow that exceeded the static threshold for discrete grid cells by larger 466 
amounts than the S480 discretization. This suggests that studies with subgrid representations of snow heterogeneity 467 
may decrease the overall sensitivity to SWE and date thresholds. 468 
5.3. Threshold caveats and future suggestions 469 
The D90 and S480 discretizations provided unique, but different advantages for estimating PWDA. We believe that 470 
the upper-elevation decreases in D90 SWE and denning habitat on steep and unvegetated surfaces were realistic. 471 
These results were contrary to the findings from Barsugli et al. (2020), who in the same domain, found that finer-472 
scale physically-based simulations resulted in net increases in wolverine denning opportunities. However, this 473 
analysis used a joint model and observation-based approach (Sect. 2) that may have implicitly represented decreased 474 
snow retention and/or snow sloughing better than the physically based models used by Barsugli et al. (2020). The 475 
discretization with subgrid snow heterogeneity (S480), which is not as commonly used, had less-dramatic swings in 476 
PWDA with changes in annual winter climatic conditions (Fig. 6) and thresholds (Fig. 9). We therefore think that 477 
subgrid representations of snow may be important for habitat assessments, especially given that snow deposits 478 
suitable for denning at scales of 10 m or less sometimes occur in regions with otherwise little snow (Magoun et al., 479 
2017).  480 
The results of this study suggest that uncertainties provided from combinations of multiple discretizations, applied 481 
across a range of realistic thresholds, would be more informative than a single discretization and set of thresholds. 482 
For instance, SWE volume on 15 May 2015 was 10% less than the 36-year median 15 May SWE volume. However, 483 
due to spring snowfall (Fig. 9), SWE volume on 30 May 2015 was 31% greater than the 36-year median on the same 484 
date. Multiple discretizations could also be used to identify the locations of most (e.g., Fig. 4a and 4d) and least-485 
certain (Fig. 4b and 4c) opportunities for denning habitat. This information could be used as the basis for identifying 486 
the locations where remote sensing or field campaigns could hone annual estimates of refugium, given that year’s 487 
meteorological conditions. Altogether, differences across discretizations (e.g., Fig. 6) and threshold sensitivities 488 
(e.g., Fig. 9) could also be used to provide uncertainty bounds for PWDA calculated in any given year. 489 
Our results show that caution is warranted when combining gridded data and static thresholds. While we focus on 490 
the impact that thresholds and different snow spatial discretizations have on approximations of wolverine denning 491 
opportunities, we expect these results to be applicable to other environmental applications. For instance, while 492 
temperature thresholds are widely used to partition rain and snow precipitation in models, temperature discretized at 493 
different spatial scales could influence the spatial variability of temperature and resulting snowfall volume 494 
thresholded across one or many snowfall events (e.g., Jennings et al., 2018; Nolin and Daly, 2006; Wayand et al., 495 
2017). Snow cover thresholded using visible and infrared satellite observations may also require changes based on 496 
the size of the satellite pixels and the underlying topographic and vegetative characteristics (Härer et al., 2018; 497 
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Pestana et al., 2019). Future studies should report the extent to which different spatial discretizations and ranges of 498 
realistic thresholds influence results. This information could be used to report the 1) uncertainty of thresholded 499 
outputs, 2) fidelity of different gridded products, and 3) the degree to which multiple spatial discretizations could be 500 
combined to improve the fidelity and transferability of results. 501 
6. Conclusions 502 
Potential wolverine denning area (PWDA) was thresholded using a published SWE threshold (0.20 m) on a 503 
threshold date (15 May) in a Colorado Rocky Mountain domain between 1985 and 2020. Results showed that 504 
PWDA was statistically different (p < 0.01) between years with different winter precipitation magnitude (wet versus 505 
dry) and precipitation temperature (cold versus warm) conditions. In fact, climate-driven differences in annual 506 
PWDA were substantially larger than differences in PWDA between snow discretized using 1) discrete 480 m grid 507 
cells, 2) 480 m grid cells with subgrid representations of SWE heterogeneity, and 3) discrete 90 m grid cells. 508 
Therefore, studies that assess changes in habitat health for species like wolverines with past and future changes in 509 
climate could be informative, regardless of the spatial discretizations tested.  510 
Despite the sensitivity to winter climatic conditions, annual differences in denning patterns and parameter 511 
sensitivities emerged for the different discretizations. For instance, 90 m grid cells resolved thinner snow deposits in 512 
mid-to-upper elevations (approximately 3050 – 3350 m) that were not resolved by either of the 480 m 513 
discretizations, decreasing PWDA by 10%, on average. Snow discretized with subgrid representations of SWE 514 
spatial heterogeneity also had less-dramatic swings in annual PWDA. The simulations with subgrid SWE 515 
heterogeneity increased PWDA by 10 – 30% in low-snow years, many of which were representative of future 516 
changes in average temperature expected over the next 50 years. Spatially, the differences in the prevalence of SWE 517 
that exceeded the threshold between the three different snow discretizations were heightened at the grid cells that 518 
had SWE values close to the SWE threshold (0.20 m) on 15 May, the elevation of which was driven in large part by 519 
the winter climatic conditions. On average, PWDA was more sensitive to the SWE threshold than the date threshold, 520 
but had the smallest amount of sensitivity to the 480 m simulation with subgrid snow heterogeneity, which had more 521 
gradual changes to the fraction of a region exceeding the SWE threshold with small changes in SWE. This 522 
discretization also had the least amount of sensitivity to interannual changes in winter climatic conditions. However, 523 
some years had late-spring snowfall events, altering the amount of PWDA by up to 82% depending on whether the 524 
threshold date was before, during, or after the snowfall event. 525 
Our results show that differences in how snow is spatially discretized can influence information generalized using 526 
thresholds. Therefore, future studies thresholding spatiotemporal environmental data should include multiple spatial 527 
discretizations and ranges of realistic thresholds to provide a more comprehensive picture of uncertainties associated 528 
with chosen thresholds and datasets. Although we used wolverine habitat as an example, we expect these results to 529 
be applicable to any study thresholding environmental data, especially for studies generalizing information at spatial 530 
scales finer than those of modeled or observed resolutions.  531 
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