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Short summary. Wolverine denning habitat inferred using a snow threshold differed for three different spatial
representations of snow. These differences were annuallyrepeatable-and-based on the annual volume of snow and
the elevation of the snow line. While denning habitat was most influenced by winter meteorological conditions, our
results show that studies applying thresholds to environmental datasets should report uncertainties stemming from
different spatial resolutions and uncertainties introduced by the thresholds themselves.
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Abstract. Thresholds can be used to interpret environmental data in a way that is easily communicated and useful
for decision making purposes. However, thresholds are often developed for specific data products and time periods,
changing findings when the same threshold is applied to datasets or periods with different characteristics. Here, we
test the impact of different- spatial discretizations of snow on annual estimates of wolverine denning
opportunitieshabitat in the Colorado Rocky Mountains, defined using a snow water equivalent (SWE) threshold
(0.20 m) and threshold date (15 May) from previous habitat assessments. Annual potential wolverine
denninghabitable area (PWDA )AWHA) was thresholded from a 36-year (1985 — 2020) snow reanalysis_model withat
three different spatial discretizations: 1) 480 m grid cells (D480), 2) 90 m grid cells (D90), and 3) 480 m grid cells
with implicit representations of subgrid snow spatial heterogeneity (S480). Relative to the D480 and S480
discretizations486-m-grid-eeltls, D9090-mgrid-eells resolved shallower snow deposits on slopes between 3050 and
3350 m elevation, decreasing PWDAWHA: by 10%, on average.- In years with warmer and/or drier winters, S480
discretizations with subgrid repre%entatlone of SNOW heterogeneltv gﬂd—eeﬁs—wﬁh—%}bgﬂd—fepfe%e%&ﬂem—ei—%ew

heteregeneity-increased
even within grid cells where mean 15 May SWE was less than the SWE threshold These s1mulat10ns 1ncreased

PWDAWHA: by upwards of 30% in low snow years, as compared to the D480 and D90 simulations without subgrid
snow heterogeneity. Despite PWDAWHA: sensitivity to different snow spatial discretizations, PWDAWHA was
controlled more by annual variations in winter precipitation and temperature. However, small changes to the SWE
threshold (£ 0.07 m) and threshold date (+ 2 weeks) also affected PWDAWHA by as much as 82%. Across these
threshold ranges, PWDAWHA was approximately 18% more sensitive to the SWE threshold than the threshold date.
However, the sensitivity to the threshold date was larger in years with late spring snowfall, when PWDAWHA
depended-greatly-en depended on whether modeledthe-date SWE was thresholded-was before, during, or after spring
snow accumulation. Our results demonstrate that snow thresholds are useful but may not always provide a complete
picture of the annual variability in snow-adapted wildlife denning opportunitieshabitat. Studies thresholding
spatiotemporal datasets could be improved by including 1) information about the fidelity of thresholds across
multiple spatial discretizations, and 2) uncertainties related to ranges of realistic thresholds.

1. Introduction

Generalizing environmental data using thresholds can present information in a way that is more easily understood,
communicated, and applied for decision-making purposes. Conceptually, thresholds are static constraints intended to
partition the areas, timing, and/or prevalence of data greater or less than some scientifically or managerially relevant
limit. In the field of snow science, thresholds are used to classify snow cover and snow absence from remotely-



sensed observations (Dozier, 1989; Hall and Riggs, 2007; Sankey et al., 2015), partition snow accumulation and
snowmelt seasons (Cayan, 1996; Hamlet et al., 2005; Mote et al., 2005; Serreze et al., 1999), and parameterize
modeled processes like snow-layer formation and merging (e.g., Clark et al., 2015; Liston and Elder, 2006;
Wigmosta et al., 2002), rain and snow precipitation partitions (Auer, 1974; Harder and Pomeroy, 2013), and snow
holding capacity on steep slopes (Bernhardt and Schulz, 2010). Thresholds are also used to identify drought
condltlons in snow—domlnated watersheds (Dlerauer etal., 2019; Harpold et al., 2017; Heldmyer et al., 2023)
- -, and the associated “decision trigger” and
“tipping point” thresholds that determme water use and allocation in regulated basins (Herman and Giuliani, 2018;
Kwadijk et al., 2010; Shih and ReVelle, 1995). However, despite widespread use, thresholds are often developed for
specific applications, and over short time intervals, decreasing the likelihood that a threshold developed for one
purpose could be applied in an identical manner to different periods of time, or to environmental products with
different characteristics (Harer et al., 2018; Jennings et al., 2018; Maher et al., 2012; Pflug et al., 2019).

Here, we focus on snow thresholds that have been used increasingly over the past decade to identify regions with
conditions suitable for the survival of snow-adapted wildlife. Many studies use thresholds that focus on snow
characteristics like snow depth, snow cover, snow density, snow water equivalent (SWE), and snowmelt season
snow persistence, which can be important for denning, migration, and food-availability for species like Nerth
Amaeriean-wolverines (Geulo gulo-t#seus), polar bears (Ursus maritimus), and Dall sheep (Ovis dalli dalli) (Barsugli
et al., 2020; Durner et al., 2013; Liston et al., 2016; Mahoney et al., 2018; McKelvey et al., 2011; Sivy et al., 2018).
However, relatively few studies simulate snow at spatial resolutions that correspond to the features that drive snow
habitat (c.g., Glass et al., 2021; Liston et al., 2016; Mahoney et al., 2018). For instance, wolverines rely on snow
drifts for maternal and natal denning. These drifts often form alee of obstructions near the forest edge and in talus
fields (e.g., Fig. 1, star). Yet, few models simulate snow at den-scale spatial-resolutions (< 10 m), and represent the
physical processes that control the formation of dens, like wind-redistribution, preferential deposition, avalanching,
and microtopographic shading. This is particularly the case for species status assessments which often attempt to
quantify wildlife habitat at large regional extents where high-resolution snow simulations with complex physical
processes would be computationally prohibitive. Thresholds are therefore used to facilitate the relationship between
a coarser-resolution representation of snow, and the finer-scale feasibility of wildlife habitat. The validity of this
approach is debated (e.g., Araujo and Peterson, 2012; Barsugli et al., 2020; Boelman et al., 2019; Bokhorst et al.,
2016; Copeland et al., 2010; Magoun et al., 2017). For example, coarser-scale representations of snow may resolve
the larger-scale meteorological influences on habitat availability, but coarser-scale representations of snow likely
overlook the smaller-scale refugia that could continue to support habitat, even with future changes to climate.

This manuseript-study builds on work astady-from Barsugli et al. (2020), whoiek used physically-based simulations
to identify regions that could support wolverine denninghabitable-areas using S\WE-threshelds—inelidinga SWE

threshold (0.20 m) frem-knewn-denningloecations-on a static date (15 May) corresponding to the tail end of the
maternal denning period-(Copeland et al., 2010; McKelvey et al., 2011; USFWS, 2018)Cepeland-etal2010: Heim

et—aJ%@MeKel—v&et—al—Z@J—l—USF%@—’%@%—S} This 0.20 m SWE threshold was chosen based on 15 May SWE
that corresponded to known wolverine denning sites from a 250 m snow simulation (Barsugli et al., 2020; Ray et al.,
2017; USFWS, 2018). Barsugli et al. (2020) found that, relative to previous studies that used ~10 km products
(Laliberte and Ripple, 2004; McKelvey et al., 2011), snow simulations at 250 m resolution were able to better
resolve SWE persistence, and increased habitat, on shaded north-facing slopes. 250 m simulations also increased the
overall prevalence of snow that could support w¥olverine denshabitat, both in current and future climates, over
Colorado and Montana Rocky Mountain domains.

Here, we extend the findings from Barsugli et al. (2020), testing the difference in wolverine denning supporthabitat
defined using thresholds (0.20 m SWE on 15 May) and a historic snow reanalysis with different spatial
discretizations (Fig. 1). These discretizations include: 1) discrete 480 m grid cells (D480), 2) discrete 90 m grid cells
(D90), and 3) 480 m grid cells with implicit representations of subgrid SWE spatial heterogeneity (S480). These
discretizations straddle the 250 m resolution used by Barsugli et al. (2020) and include both discrete (D480 and
D90) and implicit (S480) representations of snow distribution. These reanalyses, which combine snow modeling and
remotely-sensed observations of snow cover (more in Sect. 2.2), also resolve snow volume and distribution in
mountain terrain significantly better than more common modeling approaches (Pflug et al., 2022; Yang et al.,

202 1)) PHne—et-al—AtnReviewYangetal2021. We focus onever the same Colorado Rocky Mountain domaln used
by Barsugli et al. (2020) over a longer period of 36 years, spanning 1985 to 2020. We address the following research
questionsask: 1) how does the spatial discretization of snow influence estimates of potential wolverine
denninghabitable area (PWDA)? and 2) is the sensitivity of PWDAhabitat to different snow spatial




104 discretizations greater or smaller than_-habitatthe sensitivity to interannual changes in winter climatic

105  conditions? We also identify the spatial locations and causes of the greatest differences PWDAin-thresholded

106  wolverine habitat, and evaluate sensitivities to small uncertainties in both SWE thresholds (+ 0.07 m) and threshold
107  dates (£ 2 weeks). More generally, this study highlights shortcomings, opportunities, and tradeoffs to thresholding
108  spatial snow products, and serves as a roadmap for future wildlife habitat assessments.
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Figure 1. SWE spatial heterogeneity inferred from airborne lidar at 1 m resolution, compared to 480 and 90 m grid

cells, and a point (star) with a snow drift suitably deep for wolverine denning (a). SWE is simulated in this study
using three different spatial discretizations: 480 m discrete grid cells (D480, column b), 480 m grid cells with
subgrid SWE heterogeneity (S480, column c), and 90 m discrete grid cells (D90, column d). Wekrerine -habitat
hottemrowris-definedfore The fraction of the area that could support wolverine denning is estimated for each
discretization en+5-Masy-using a 0.20 m SWE threshold on 15 May. The fraction of the area exceeding the SWE
threshold is binary (fully greater than or less than the threshold)resholded-habitat for discrete grid cells (b and d)-are
binary-(ne-habitat-erfull-habitat), while the area exceeding the SWE threshold forhabitatfor the S480subgrid
discretization (c) is defined by the fraction of the grid cell SWE distribution with-S'WE-exceeding the threshold
(white hatching)

2. Domain and Data
2.1. Domain

We focused this work over Rocky Mountain National Park in Colorado state (Fig. 2). This domain is home to
several snow-adapted wildlife species, and has been included in wolverine habitat assessments (Barsugli et al., 2020;
McKelvey et al., 2011; USFWS, 2018). Barsugli et al. (2020) estimated most of the terrain supportive of wolverine

habitat in this region to be between 2700 and 3600 m of elevation. Although few-welverineshave beensighted-here;
and-this area does not currently support a reproductive population of wolverines, this region is of potential interest
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for wolverinespeeies reintroduction. More information about wolverine habitat can be found in the U.S. Fish and
Wildlife Service species status assessment (USFWS, 2018).

The Rocky Mountain National Park domain contained several snow observations (Fig.; 2). These observations
included 28 snow telemetry (SNOTEL) stations, deployed and managed by the National Resources and
Conservation Service. These stations use snow pillows to measure the weight of snowpack and resulting SWE. A
distributed lidar observation of snow depth in southernmost portion of the domain was also collected by the National
Center for Airborne Laser Mapping in May 2010. These observations were used to assess the accuracy of the SWE
reanalysis discussed in Sect. 2.2.

2.2. SWE Reanalyses

SWE was calculated over the Rocky Mountain domain (Figure 2) fromusing a_popular satellite-era (water years
1985 — 2020) probabilistic snow reanalysis (Margulis et al., 2019, 2016, 2015) performed at 3 arcseconds (~90 m)
and 16 arcseconds (~480 m). This reanalysis was generated at each individual grid cell using an ensemble of
simulations forced by the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2;
Gelaro et al., 2017), and simulated using the simplified Simple Biosphere Model, Version 3 (Xue et al., 1991)
coupled with the Liston (2004) snow depletion curve. The forcing dataset was downscaled to the simulation grid
(Girotto et al., 2014; Margulis et al., 2015) before running the land surface model. Model ensemble members were
provided different 1) precipitation multipliers (influencing total snow mass), 2) snow albedo decay functions
(influencing the rate of snow ablation), and 3) parameterizations of subgrid snow spatial variability (influencing
subgrid snow cover during snowmelt), among other parameters. The reanalysis then reweighted the ensemble
members to most-heavily favor those that matched the snowmelt season evolution of fractional snow covered area
from 30 m Landsat observations. We expect uncertainties and errors in the snow reanalysis owing to both errors in
meteorological forcing data (e.g., Daloz et al., 2020; Liu and Marguhs 2019) and errors with the snow model (e 2.,
Feng et al., 2008; Xiao et al., 2021)sa = 2 :
However the ensemble approach used by this reanalysm ad]usted modeled SNOW accumulatlon and depletlon to
track remote sensing observations of snow cover depletion, which has shown the capability to bias-correct SWE and
implicitly account for difficult-to-simulate processes like precipitation lapse rates, wind-loading/scour, avalanching
and forest-snow processes (e.g., Pflug et al., 2022; Yang et al., 2021).

Relative to independent SNOTEL observations, which are not used by the snow reanalysis,-ofSWE-between 1985
and2020-in-the ReckyMeuntain-domain; the reanalysis exhibited a SWE coefficient of correlation of 0.82 (ret
pietared) between 1985 and 2020 in the Rocky Mountain domain (Fig. S1). On average, the reanalysis was biased
low relative to the snow pillow observations by approximately 23%. However, this could be attributed to the
location of SNOTEL observations in forested clearings (Fig. 2a) which typically have SWE deeper than the terrain
covered by the 480 and 90 m pixels-(c.g.. Livneh et al., 2014; Pflug et al., 2022)=vreh-etals 2044 Pflugetal1/n
Review).-While the snow reanalysis used in this study is ultimately a model product and subject to a number of
modeling uncertainties, the SWE simulated by the 90 m and 480 m discretizations agreed closely with each other
and with ground observations. Therefore, spatial differences in 15 May SWE. and the resulting distribution of snow
that exceeded the SWE threshold (e.g., Fig. 1) was attributable to differences in the interactions between the static
SWE threshold and different spatial discretizations of snow.

For the 480 m grid cells with subgrid snow variability (Fig. 1c, S480), the heterogeneity of SWE was estimated
using a method developed by Liston (2004). This method assumes that the subgrid heterogeneity of SWE
accumulation is lognormally distributed, and is dictated by a time-constant coefficient of variation (CoV),

o
CoV =—,
u

)

where p is the grid cell mean SWE and o is the standard deviation of the SWE within that grid cell. The CoV of
subgrid SWE accumulation (Fig. 2b and 2¢) was determined for each 480 m grid cell using the most common
pattern of SWE accumulation from the overlapping 90 m reanalysis grid cells (Fig. 1d) between 1985 and 2020
(detailed further in Text S1). In Sect. 3.1, we discuss how CoV was used to estimate the temporal evolution of
subgrid SWE heterogeneity.
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Figure 2. Rocky Mountain National Park study domain. The location of SNOTEL observations and lidar snow depth
observations are superimposed in the terrain map (a). The 480 m coefficient of variation of subgrid SWE
accumulation is shown both spatially (b) and across 100 m elevation bands (c).

3. Methods
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The methods evaluate the impacts of snow spatial discretizations and winter climatic conditions on assessments of
total area suitable for denning wolverines-habitat. We investigated three different spatial discretizations; two
discretizations using more common discrete representations of snow, and one with an implicit representation of
subgrid snow heterogeneity (see Sect. 3.1). For each, annual potential wolverine denninghabitable area
(PWDA)EWHAS was calculated using a static SWE threshold (0.20 m) on a static spring date (15 May) (Sect. 3.2).
Finally, we partitioned years Wlth w1nter prempltatlon magmtude and prempltatlon phase climate categorlee (wet
dry, cold, and warm)anem 3 r-the-sn s

and-2020 (see Sect. 3.3). These &Hemahe%— ategone@ were used to examine whether wmter chmatlc condltlons or
model representations of snow spatial distribution most-influenced estimates of PWD Aannual-welverine-habitat.

3.1. Subgrid SWE evolution

The temporal evolution of subgrid SWE heterogeneity was estimated for 480 m grid cells (Fig. 1, S480) using
methods developed by Liston (2004) (Fig. 3). Provided the reanalysis grid cell mean SWE (u) from a D480diserete
480-m-grid cell (Fig. 1b), and a CoV of subgrid SWE accumulation (Fig. 2b), the probability distribution of subgrid
SWE for that grid cell (f (SWE)) was calculated using a lognormal distribution,

(SWE) = 1 _ 1[In(SWE) — ,1]2
! )= (sww/%) R [ ¢ '

(2)
=ln(u)—l62.
2
(3)
¢? =1In(1 + CoV?).
(4)

Figure 3b demonstrates the subgrid distribution of SWE in two winter periods (t} and t2) assuming the mean SWE
evolution from Fig. 3a, a CoV 0f 0.50, and Eq. 2 — 4.

In the snowmelt season, the Liston (2004) methodology assumes spatially-uniform snowmelt, causing snow
disappearance first in locations with thinner SWE, and last in locations with deeper SWE. This can be
conceptualized as taking the subgrid distribution of snow at peak SWE (Fig. 3b, t5), and adjusting it downwards by
a constant amount to reflect spatially-uniform melt (SWE,,) (Fig. 3c). In doing so, snow-weuld only exists for
portions of the gridcell where f(SWE) at peak SWE was greater than SWE,,,. Therefore, the fractional snow-
covered area (fSCA) of the grid cell could be calculated from the fraction of the distribution (f (SWE)) with SWE
greater than SWE,,,

[oe]

FSCA = f f(SWE)dSWE.

SWEp
(5)

Since SWE,, can exceed the amount of SWE that exists in some locations at peak SWE timing, and since SWE
cannot be less than 0 m (snow-absent), the change in gridcell mean SWE (u) throughout snowmelt will not
necessarily equal SWE,,. Rather, u throughout the snowmelt season can be calculated from the expected value of
the melt-shifted distribution (Fig. 3c¢),

p= f [SWE — SWE,,|f (SWE)dSWE.
SWEm

(6)

In this study, we were provided u from the reanalysis at each 480 m grid cell and daily timestep. Using the CoV
calculated from the overlapping D90 data (Fig. 2b).- and maximum annual p at each grid cell, we calculated the
SWE distribution (Eq. 2) for each grid cell at peak SWE timing. Then, using a Newton-Raphson solver, we solved
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the SWE,, for each grid cell that caused u from Eq. 6 to match D480 u fremthe-480-mreanalysisat cach grid cell on
15 May.

The Liston (2004) subgrid SWE parameterization discussed above operates under several assumptions. Like many
other studies (e.g., Donald et al., 1995; Helbig et al., 2021; Jonas et al., 2009), Eq. 2 assumes that the distribution of
snow accumulation at scales finer than the grid cell resolution can be represented by a lognormal distribution. We
tested this assumption by evaluating the distribution of 1 m lidar snow depth observations (Fig. 2a) that fell within
480 m grid cells. The Kolmogorov-Smirnov (KS) statistic, or maximum difference between cumulative distribution
functions, was used to test how well different theoretical distributions (e.g., normal, lognormal, gamma, Rayleigh, chi,
etc.) used by a variety of snow studies (e.g., He et al., 2019; Helbig et al., 2015; Mendoza et al., 2020; Pflug and
Lundquist, 2020; Skaugen and Melvold, 2019) matched the lidar-observed snow depth distributions. The KS statistic
for the lognormal distribution (Eq. 2) was 0.12 + 0.05, and was significantly worse (greater than 0.22) when
comparing the observed lidar distributions versus other common distributions, like normal and gamma distributions.
While not perfect, these results showed that subgrid snow heterogeneity was approximated best by lognormal
distributions. The Liston (2004) subgrid methodology also assumed that the CoV of subgrid SWE accumulation was
constant, resulting in a linear increase in SWE variability (standard deviation) with mean SWE throughout the snow
accumulation season (Fig. 3b). While we lacked validation data to test this, this assumption is the basis for other
modeling approaches, which scale snow input using information from historic snow accumulation patterns (Liston,
2004; Luce et al., 1998; Pflug et al., 2021; Vogeli et al., 2016). Finally, although subgrid snowmelt is not spatially-
uniform, melt-season snow heterogeneity is often modeled well by assuming uniform snowmelt. This is due to the
outsized influence of snow accumulation spatial heterogeneity on snowmelt onset timing and snowmelt rates (Egli et
al., 2012; Luce et al., 1998; Lundquist and Dettinger, 2005; Pflug and Lundquist, 2020). Here, we acknowledge that
this approach operates on multiple assumptions (discussed above), all of which could vary in accuracy on grid cell
level. However, this approach may also provide the opportunity to implicitly represent the heterogeneity of snow in
complex terrain and the fraction of the area that could be more supportive for denning habitat (e.g., Fig. 1). We discuss
this more in Section 3.2. Readers should refer to Liston (2004) for more information about the subgrid snow
methodology described in this section.

b) Accumulation season
(a) Coarse-scale SWE evolution (b)

i H 0.02 A a
! ! t eak-SWE
0.74 — ¢ P 5 p ]
i o9
0.6 - : £ 0.01 1
/A N I .~ T
0.5 - N G S sl T
_ : 0.00 . , ; . =
= | 0.0 0.2 0.4 0.6 0.8 1.0
e i Subgrid SWE [m]
% 0.3 1 I (c) Melt season
0.02 A m m
. — " - t
0.2 ! 1 2
: s
0.1 ! 2 0.01 1
1
00 et NovDee Jan FebMar AprMa Jill.n Ju 900 ' '
priay 0.0 0.2 0.4 0.6 0.8 1.0

1993
Subgrid SWE [m]

Figure 3. An example of the Liston (2004) subgrid SWE parameterization assuming CoV = 0.5, and SWE evolution
for a 480 m grid cell in a random year (panel a). Subgrid SWE distributions are shown for two times (¢, subscripts 1
and 2) in the accumulation (superscript a) and melt (superscript m) seasons (panels b and c, respectively). The
timing of each date corresponds to the matching vertical bar in panel a.

3.2. Thresholding wolverine habitable area

The area that could support denning wolverines habitat-was calculated for each of the discretizations in each year
using a SWE threshold of 0.20 m on 15 May, in accordance with previous studies (e.g., Barsugli et al., 2020;

Copeland et al., 2010; McKelvey et al., 2011). For the 480-and-90-m-diseretereanalyses D480 and D90
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discretizations), each cell’s denninghabitable fraction (DHF) was classified as fully-suitable for denninghabitable
(DHF = 1.0) or unsuitableinhabitable (DHF = 0.0) if the 15 May grid cell-srean SWE was greater than or less than

0.20 m, respectively. For the 480-m-simulation-with-subgrid snew-heterogeneity{S480_discretizationy, DHF was

calculated for each grid cell using:

[oe]

DHF = f F(SWE)dSWE,
SWEm+Pe

(37)

which represented the portion of the cell’s SWE distribution greater than the SWE threshold (f& = 0.20 m).
PWDAWHA: was calculated for each discretization as the sum of DHF (in space), multiplied by grid cell area.

Relative to DHF calculated from a discrete 480 m grid cell (D480), DFHE calculated over the same area from the
finer-scale discretizations (S480 and D90) could have one of four possible relationships. First, the mean SWE of the
D480 grid cell, and the finer-scale distribution of SWE (S480 and D90), could both be entirely greater than the 0.20
SWE threshold. This results in a fully-habitable-suitable denning fractionarea (DHF = 1.0) for all discretizations
(Fig. 4a). DHF would also agree in regions where all discretizations have SWE below 0.20 m (Fig. 4d), resulting in
no denning opportunitieshabitat (DHF = 0.0). The scenarios shown in Fig. 4b and Fig. 4c are where DHF is sensitive
to the discretization. Figure 4b shows a scenario where the coarse-scale- D488 mean SWE is sufficiently deep
enough to be classified as fully-habitable-suitable for denning (SWE > 0.20 m), even though some portion of that
grid cell contains SWE that is shallower than the SWE threshold. Therefore, using a finer-scale discretization would
result in a net loss in DFhabitatrelativete-the D480-diseretization;-, the magnitude of which is shown by the red
hatching in Fig. 4b. Ofeeurse;theThe opposite could be true for instances where coarse-scale mean SWE falls
below the 0.20 m SWE threshold, thereby underestimating denning opportunitieshabitat relative to finer-scale
representations that resolve some deeper snow deposits (Fig. 4c, blue hatching). Here.Sinee the three reanalysis
discretizations (D480, D90, and S480) weare provided identical meteorological forcing, and when coarsened to
480m resolution, hadreselvesimilar SWE that agreed to within 1%, on average on 15 May{within1%). Therefore,;
the degree to which the scenarios shown in Fig. 4b and 4c occur were the drivers of habitat-differences to wolverine
denning opportunities.-
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Figure 4. Conceptual portrayal of the similarities (a and d) and differences (b and c) in welverine-habitable
fraetionDF for a 480 m discrete grid cell (vertical solid line) and a finer-scale representation (distribution) of SWE
over the same area. The vertical dashed lines represent the 0.20 m SWE threshold. Shaded areas show the portion of
the distribution with SWE greater than the threshold. Hatched areas demonstrate differences in DFhabitat between
the coarser and finer-scale discretizations of SWE.

3.3. Categorizing winter climate categoriesanemalies

To determine PWDAWHA: sensitivity to different climatic conditions, we identified years from the reanalysis with
differentanemalens winter precipitation magnitude and phase (rain versus snow). Here, winter is defined by periods
between October 1% and the date of domain peak SWE volume. Following work from (Heldmyer et al.; (2023),
HeldmeyeretalA{in+eview)-we used domain basin-average cumulative winter precipitation and the fraction of the
winter precipitation that fell as snow (both from the reanalysis) as indices for winter precipitation magnitude and the
temperature at which precipitation fell. Using a percentile, we separated years that fell at least that far from the 1985
— 2020 median precipitation magnitude and fraction of snow precipitation. In doing so, we partitioned years with
wet, dry, cold, and warm winter climate categoriesanematies. We did this separation using a range of percentiles
until the statistical difference (measured using the Mann-Whitney u-test) in D480 PWDAWHA: was maximized
between the years with different climatic conditions (warm, cold, wet, dry, and typical). To avoid spurious results,
this percentile was also adjusted to ensure that each climate categoryaremaly included at least 6 years. This
approach maximized the difference in interannual PWDAWHA as a function of different winter climatic conditions.
This was then used as the baseline to compare how much more or less sensitive PWDAWHA was to the different
SWE spatial discretizations.

4. Results

2b-and-2e)—Over low-elevation forested grid cells (< 2800 m), SWE accumulation variability was large relative to
the smaller amounts of snow, resulting in large CoV (typically between 0.50 and 0.80) (Fig. 2b and 2¢). On mid-
elevation slopes (2800 — 3300 m), where-winter snewmeltwastesseemmens-CoV tended to be smaller
(approximately 0.30, on average). However, CoV increased again at higher elevations (> 3300 m), and particularly
on the leeward side of peaks. This was expected given the more extreme terrain and increased spatial variability of
snow from wind-drifting, preferential deposition, cornice formation, and avalanching.

The difference in PWD A-welverine-habitable-area-CWHA) was maximized between 1) warm and cold years, and 2)
wet and dry years, that had winter precipitation magnitude (Fig. 5a, x-axis) and precipitation phase (Fig. 5a, y-axis)
that fell above the 77" and below the 23" percentiles (+27™ percentile from the median). These climate
conditionsanematies had impacts on the anntal-evolution of SWE and snow-covered area (Fig. 5b and Fig. 5¢). On
average, as compared to years with normal winter precipitation magnitude and phase (Fig. 5a, white region), cold
years and wet years had peak SWE volume that was 23% and 28% greater, respectively. This was opposed to warm
years and dry years, with peak SWE volume that was 21% and 31% smaller, on average, than typical water years.
The timing of peak-SWE was driven most by the magnitude of winter precipitation. In fact, average peak-SWE
timing was 28 days later for wet years than dry years. Snow disappearance timing (snow-covered area < 200 km?)
was also 21 days later for wet years than dry years. Statistically, the timing of snow disappearance, crucial for
wolverine denning habitat, was explained well by the peak-SWE volume (r = 0.82) and the date of peak-SWE (r =
0.63), both of which were influenced more by winter precipitation magnitude than temperature.
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Figure 5. Annual climatic conditions grouped into-anemaly categories based on winter precipitation magnitude (a,
horizontal-axis) and precipitation phase (a, vertical-axis) outside the 23" and 77" percentiles (a, dashed lines). The
annaal-evolution of SWE volume and snow cover are compared for warm versus cold (column b) and wet versus dry
years (column c). Vertical dashed lines in columns ¢ and d indicate 15 May.

In all years except dry 2002, PWDAWHA: was smaller for the D90 discretization than the D480 discretization (Fig.
6). This resulted in a 10% reduction to the 36-year median PWDAWHA: (Fig. 6b). The PWDAWHA: differences
between the D480 and S480 discretizations varied more on an annual basis. For years with D480 PWDAWHA: less
than 1000 km?, S480 discretizations increased PWDAWHA: by up to 30%, 11% on average. However, in years with
PWDAWHA greater than 1000 km?, S480 PWDAWHA: was approximately 3% smaller, on average, than D480
PWDAWHA:. In short, the S480 discretization tended to have fess-dramatiesmaller annual swings in PWDAWHA
than the D480 discretization. The causes of these PWDAWHA: disagreements are discussed in Sect. 5.1. Despite the
interannual differences in D480 and S480 PWDAWHA, the 36-year median PWDAWHA for these discretizations
agreed to within 1% (Fig. 6b).
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Figure 6. 15 May welverine-habitable-area-comparedPWDA compared annually for three different spatial
discretizations (a). Lower panels show the kernel distributions for the data in panel a, separated based on the spatial

discretization (b), temperature anemalies-categories (c), and precipitation categoriesarnemalies (d). The medians of
each distribution are shown by the vertical dashed lines (b — d). The data in panels ¢ and d include data from all
three spatial discretizations. The data from WY 1992 (a, faded bars) exhibited artifacts, and was excluded from the
kernel distributions (b-d).

Even though PWDAWHA: was sensitive to different spatial discretizations (Fig. 6b), PWDAWHA across the 36-
year period was not statistically different between any of the three discretizations (p > 0.48). Conversely, the
difference in 15 May PWDAWHA: was significantly larger between the years with different winter climate
categories-anematies (Fig. 6¢ and 6d).-Differences in PWDAWHA: between years with-aremaleusly warm and cold
conditions were statistically significant (p = 1 X 10~%). Given that 15 May snow covered area were similar between
warm and cold years (Fig. 5b), this difference between warm and cold years in Fig. 6¢ show that changes to PWDA
were driven by changes to SWE magnitude and the area with SWE exceeding the SWE threshold.;-and Dry and wet
years exhibited larger differences to both 15 May SWE and snow cover (Fig. 5¢), resulting in PWDA (Fig. 6d) that
was even more different between the years with diy-and-wetthese climate conditions (p = 1 X 1078). The impact of
these warm, dry, cold, and wet climate conditions resulted in the bimodal distributions in PWDA shown for the
different discretizations across the full time period (Fig. 6a). While PWDAWHA: was not statistically different
between cold and wet years (p = 0.34), the distribution of PWDAWHA: in dry years was significantly smaller than
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the distribution of PWDAWHA: in warm years (p = 0.001), showing that PWDAWHA was more sensitive to
conditions that reduced snow habitat, like warm and dry conditionsanemalies.

The results from Fig. 6 suggested that changes in PWDAWHA: across annual periods of differing climatic
conditions, or across future periods with expected changes in climate (e.g., Barsugli et al., 2020) should be
informative from a species status assessment perspective, regardless of the snow spatial discretizations that we
tested here. However, as noted above, the S480 discretization increased PWDAWHA by 11% on average in low
snow years, with increases as large as 30% for individual years. These low snow years often corresponded with drier
and/or warmer winter conditions, the latter of which are expected in the future. For example, the average air
temperature during December, January, and February precipitation events during warm years in the reanalysis
record was approximately 0.8° higher than winter precipitation events in typical years. These conditions are
consistent with what is projected for this region by 2055 (Eyring et al., 2016; Scott et al., 2016). This suggests that
the disparity between habitat inferred from discrete grid cells, and grid cells with subgrid snow heterogeneity, could
be of greater importance for future snow habitat assessments. Additionally, using PWDAWHA: as the sole metric for
evaluating differences in annual opportunities for wolverine denninghabitat may oversimplify the degree to which
static thresholds and different spatial discretizations interact. For instance, PWDAWH-A: inferred on a static date (15
May) compares very different regimes of the snow season- as wet years had peak SWE timing, and snowmelt season
onset, that was 21 days later than typical snow seasons (Fig. 5). Since shallower snow melts more readily than
deeper snow (provided the same energy), comparing SWEWHA on a static date in years with very different
conditions neglects the different rates of habitat depletion for a few days on either side of the date threshold. These
issues are investigated more in Sect. 5.

5. Discussion

In this section we diagnose the leeations-and-causes for habitat-disagreements_in the frequency and locations at
which 15 May SWE exceeded the 0.20m SWE threshold between the three spatial discretizations of snow (Sect.
5.1). We alsond investigate how the use of a static SWE threshold and threshold date, may obscure the picture of
interannual changes to srew-habitatwolverine denning habitat availability (Sect. 5.2). Using these findings, we
discuss how information provided from multiple spatial discretizations could provide information about the fidelity
and uncertainty of thresholds, as well as the interactions and tradeoffs between spatial discretizations and thresholds,

both in context for assessing snow-adapted wildlife habitat, and more broadly for other environmental studies (Sect.
5.3).

5.1. Spatial-habitat differences in DF

The spatial difference in habitablefraction-(HE)DF between the three discretizations had annually similar patterns,
with the largest differences at locations where the domain had SWE that was near the 0.20 m SWE threshold. This
iswas shown iniltastrated-in Fig.7d and Fig. 7e; where the greatestnumberofspatial DHF disagreements that spiked
on 15 May 2008 were focused between approximately 2800 and 3200 m of elevation. Relative to the D480
discretization, the S480 discretization tended to increase DF habitat-in grid cells at lower elevations where mean
SWE was less than the SWE threshold, but some portion of the grid cell had SWE deep enough to suppert
habitatexceed the threshold (e.g., Fig. 4c). The opposite effect occurred at higher elevations where mean SWE
exceeded the SWE threshold, but the lower-tails of the S480 SWE distributions were below the threshold (e.g., Fig.
4b). As a result, the S480 discretization had a more-gradual increase in thresholded denning habitatavailability with
elevation, and a downward shift in the elevations that could support denning wolverines habitat-(Fig. 7f). In fact,
relative to the D480 discretization, the S480 discretization had 23% less interannual variability in the elevation-of
redian-habitat(Fie—Sta)-er-elevation at which equal PWDAWHA existed at higher and lower elevations (Fig.
S2a). This was a result of the subgrid representations of SWE heterogeneity which allowed for gradual and
fractional (0.0 < DFHE < 1.0) increases in DFHE with increases in SWE. This was opposed to the D480
discretization, which could only resolve binary DFHE (0 or 1 for SWE less than and greater than 0.20 m), resulting
in larger elevational tepegraphieatshifts in the annual locations that could support wolverine denning-efwelverine
habitat.

14



A0S

15 May wolverine habitable fraction

1.0

0.8

0.6

0.4

0.2

0.0

Cumulative WHA [km?]

(a) D480

1750

0.4

o
IS

o
=)

- —
N (o)
[ o
o (=)
! !

750 1

—— D480
— 5480

D90

2800 3000 3200
Elevation [m]

3400

3600

3800

|
o
o

|
o
IS

difference In habitable fraction

15



o
S
B
o
@
&
o
g
g
&
)
o
>
T
=
)
i

0.4

0.2

0.0

-0.2

-0.4

difference in denning fraction

. (f) Cumulative increase in PWDA with elevation

— D480
15001 — s480

]
I
i
1250 D90 :
1000 - i
750

500 A

Cumulative PWDA [km?]

250 1

ey v e

2600 2800 3000 3200 3400 3600 3800
Elevation [m]

Figure 7. Spatial comparisons of habitable-fractionsDF for the three discretizations on 15 May 2008. Panel f
compares the cumulative PWDAWHA: (y-axis) calculated for grid cells sorted in order of increasing elevation (x-
axis). Vertical dashed lines show the elevation of median PWDAkhabitat, or elevation at which PWDAWHA is equal
for higher and lower elevations.

Relative to the D480 discretization, the D90 discretization also tended to increase DFHE at lower elevations.
However, all years had reduced D90 DFHE in elevations higher than the-snow-tne approximately 3120m. This was
the cause of the 10% reduction in D90 PWDAWHA relative to the other discretizations (Fig. 6b). These decreases
in-habitat were typically located on unvegetated, exposed, and steep slopes, where it was likely that winter snow
retention was decreased, snow sublimation was increased, and sloughing to lower-elevations was more common
(Bernhardt and Schulz, 2010; Griinewald et al., 2014; Machguth et al., 2006). This demonstrates the utility of the
observation-based reanalysis used in this study, which may have resolved thinner snow deposits on slopes with
decreased snow retention and/or enhanced snow removal by processes like sloughing, both of which are among the
most-difficult processes to represent with models. The D480 discretization averaged snow from surrounding areas,
smoothing out thinner snow deposits resolved by the D90 discretization. Although attempting to resolve subgrid
snow heterogeneity, the evolution of SWE assumed by the S480 simulation, which assumed lognormal snow
accumulation and spatially-uniform subgrid snowmelt (Fig. 3), may have been less-appropriate for the areas
containing these isolated thinner-snow 90 m grid cells. While the D90 discretization decreased total PWDAWHA,
D90 snow cover was also patchier (Fig. 7c), which could also influence the movement and connectivity for
wWolverines (USFWS, 2018) and other snow-adapted species.

16



449

Winter precipitation magnitude and temperature influenced the volume of snow and the elevation of the snow line
that existed on 15 May in each year. Since the differences in DEFHE between the discretizations were largest at grid
cells near the 0.20 m SWE threshold, often located just above the snow line, the spatial pattern of DFHE differences
(e.g., Fig. 7) exhibited an interannually-repeatable relationship with the dry, warm, cold, and wet winter climate
categoriesanemalies (Fig. 5). To show this, we calculated the differences in DFHE between all three discretizations
(D480 versus S480 D480 versus D90, and S48O versus D90) in all 36 years Then for each 480 m gr1d cell we

%6—year—reeefd,—we 1dent1ﬁedeL&ss+Hed the meteefe}egred—eeﬁd—meﬁchmate category that resulted in the greatest
wreertainty-mean absolute differences in DFHE across the three discretizations-foreach-486-mgrideel. The climate

categoriesanemalies that had the greatest influence on DFHE uncertainties covered similar portions of the domain,
with 33.7%, 20.9%, 25.2%, and 20.2% being most attributed to dry, warm, cold, and wet conditions, respectively
(Fig. 8). At low elevations (2650 — 3050 m), 15 May snow typically existed only in wet years. In those years and
elevations, mean SWE for the D480 and D90 discretizations often fell below the 0.20 m SWE threshold. However,
the large CoVs of subgrid SWE accumulation in these elevations (Fig. 2) resulted in S480 subgrid SWE
distributions with upper-tails that sometimeseften exceeded 0.20 m (e.g., Fig. 4c)inereasingtotal-habitat (Fig. 8c).
This was in-line with findings from Magoun et al. (2017), who noted suitable denning conditions at lower-
elevations, even in instances when the surrounding terrain was predominantly snow-free.

The average differences in DFHE between the three discretizations were largest in cold years for elevations
spanning 3050 — 3150 m, and in warm years for elevations spanning 3150 — 3350 m (Fig. 8). Across this elevation
range (3050 — 3350 m), both of the 480 m discretizations (D480 and S480) estimated more denning
opportunitieshabitat than the D90 discretization (Fig. 8c). However at hrgher elevatrons (&3 3350 m) Wel-verme
habitat DF calculated from the S480 discretizationin e o

54803 approached DF calculated from the D90 thinner snow depos1ts est&ﬂated—by—th%g%n—ésereﬂ—zaﬂeﬂ—(ﬁg
8c).
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Figure 8. Winter climate categoriesanemalies that most-influenced DFhabitat disagreements between the three
discretizations (a). Panel b shows the most-prevalenteeramen influence from panel a, for 100 m elevation bands.
Using DFHE- from the D90 discretization as a reference, the 36-year average difference in DFHE for the D480 and
S480 simulations are shown by distributions for each 100 m elevation band (c). Lines inside the distributions show
the median and interquartile range.

5.2. Threshold sensitivities

To this point, we assumed confidence in the SWE (0.20 m) and date (15 May) thresholds. However, small changes
to either threshold could influence annual estimates of PWDAWHA: (e.g., Copeland et al., 2010; Magoun et al.,
2017). In Fig. 9, we show PWDAWHA: calculated from a range of realistic SWE thresholds and threshold dates. The
range of SWE thresholds (0.20 + 0.07 m) were determined using a snow depth of 0.50 m, corresponding to
observed wolverine dens (USFWS, 2018), and the 90" percentile range of 15 May snow densities from SNOTEL
observations (Fig. 2a) between 1985 and 2020 (260 — 540 kg/m3). The range of threshold dates spanned a period of
+ 2 weeks, corresponding to the difference in peak-SWE timing between dry and wet years (Fig. 5). This month-
long time span is also consistent with the observed range of wolverine birth dates (Inman et al., 2012).- Fhis-menth-

PWDAWHA sensitivi was calculated using all combinations 0 SWE and date thresholds, both of which were
discretized at 14 equally-spaced increments (Fig. 9, left). Then, the gradients (direction and magnitude of greatest
change in PWDAWHA) were calculated from each unique combination of SWE and date thresholds. The gradients
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71 were summed using vector addition (Fig. 9, right column) to determine 1) the total rate of change in PWDAWHA
72 with changing thresholds (arrow length), and 2) the degree to which PWDAWHA: was sensitive to one threshold
473 versus the other (arrow angle). This process was repeated for each discretization and year.
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Figure 9. PWDAWHA: calculated using different SWE (y-axes) and date thresholds (x-axes), for the different
discretizations (columns), in three different years (rows) with very different sensitivities. PWDAWHA: calculated
from the default thresholds (0.20 m SWE on 15 May) is shown by the black circle. Combinations of thresholds that
could reproduce the default PWDAWHA: are approximated by the dashed contour. The rightmost arrows show the
total direction and magnitude of PWDAWHA changes with changes in the thresholds.

PWDAWHA in warm 1990 was 18% more-sensitive to the SWE thresholds than the threshold dates (Fig. 9, top
row). To put this another way, the change in PWDAWHA across a period of * 3 days from 15 May was
approximately equal to the change in PWDAWHA from adjusting the SWE threshold by + 2.5 centimeters. This
sensitivity was similar to the average threshold sensitivity from the 36-year reanalysis record (Fig. S2+b). However,
multiple years exhibited unique sensitivities. For example, spring snowfall between 1 May and 6 May 2001 (Fig. 9,
middle row) caused PWDAWHA to both increase and decrease over the range of date thresholds (assuming a
constant SWE threshold). Therefore, PWDAWHA: changed based on whether the threshold date was before, during,
or after the May snowfall event, buffering the degree to which thresholded denning habitat estimates wereas
influenced by the specific winter meteorological conditions that occurred in that year. This effect also occurred in
2015, when 15 May fell between two spring snowfall events (Fig. 9, bottom row). As a result, PWDAWHA tended
to increase, on average, over the range of threshold dates, resulting in heightened sensitivities to the date on which
denning opportunitieshabitat-was were evaluated. These spring snowfall events had large impacts on 15 May
PWDA, but are unlikely to accurately represent the habitat opportunities and stresses that wolverine were subject to
in that year. This demonstrates the dangers of thresholds applied on static dates, and suggest that metrics over
multiple dates (e.g., number of May days exceedmg a SWE threshold) and across sequences of years could be more
accurate representatlons of Snow refugla : e :

Overall PWDAWHA varied by as much 82% between the realistic thresholds shown in Fig. 9. This was similar in
magnitude to the differences in PWDAWHA between years with opposing winter climate anomalies (Fig. 6¢ and

21



Elo
11

543
544

545
546
47
48
49
550
551
552
553

6d). Across the years evaluated in this studylamestrears, the sensitivities to the thresholds were largest for the
D480 simulation, and smallest for the S480 simulation (Fig. 9 and Fig. S2+b). As discussed in Sect. 5.1, the S480
discretization, which represented subgrid snow distribution and fractional changes to DFHE with changes to the
SWE threshold and threshold date, had less sensitivity to interannual changes in meteorological conditions.
Similarly, small changes in the SWE threshold and threshold date changed the prevalence of snew-habitat-snow that
exceeded the static threshold for discrete grid cells by larger amounts than the S480 discretization. This suggests that
studies with subgrid representations of snow heterogeneity may decrease the overall sensitivity to SWE and date
thresholds.uneertainties:

5.3. Threshold caveats and future suggestions

The D90 and S480 discretizations provided unique, but different advantages for estimating PWDAWHA.. We
believe that the upper-elevation decreases in D90 SWE and denning habitat on steep and unvegetated surfaces were
realistic. These results were contrary to the findings from Barsugli et al. (2020), who in the same domain, found that
finer-scale physically-based simulations resulted in net increases in wolverine denning opportunitieshabitat.
However, this analysis used a joint model and observation-based approach (Sect. 2) that may have implicitly
represented decreased snow retention and/or snow sloughing better than the physically based models used by
Barsugli et al. (2020). The discretization with subgrid snow heterogeneity (S480), which is not as commonly used,
had less-dramatic swings in tetal-habitatPWDA with changes in annual winter climatic conditions (Fig. 6) and
thresholds (Fig. 9). We therefore think that subgrid representations of snow may beare important for habitat
assessments, especially given that snow deposits suitable for denning at scales of 10 m or less sometimes-may occur
in regions with otherwise little snow (Magoun et al., 2017).

The results of this study suggest that uncertainties provided from combinations of multiple discretizations, applied
across a range of realistic thresholds, would be more informative than a single discretization and set of thresholds.
For instance, SWE volume on 15 May 2015 was 10% less than the 36-year median 15 May SWE volume. However,
due to spring snowfall (Fig. 9), SWE Volume on 30 May 2015 was 31% greater than the 36 -year med1an on the same
date. Fhe—< ‘ : :
a—f%w—days—ai%er—lé—k‘l—a—yLMultlple dlscretlzatlons could also be used to 1dent1fy the locatlons of most (e g, Flg 4a
and 4d) and least-certain (Fig. 4b and 4¢) opportunities for denning habitathabitat. This information could be used as
the basis for identifying the locations where remote sensing or field campaigns could hone annual estimates of
refugiumhabitat, given that year’s meteorological conditions. Altogether, differences across discretizations (e.g.,
Fig. 6) and threshold sensitivities (e.g., Fig. 9) could also be used to provide uncertainty bounds for PWDAWHA:
calculated in any given year.

Our results show that caution is warranted when combining gridded data and static thresholds. While we focus on
the impact that thresholds and different snow spatial discretizations have on approximations of wolverine denning
opportunitieswelverine-habitat, we expect these results to be applicable to other environmental applications. For
instance, while temperature thresholds are widely used to partition rain and snow precipitation in models,
temperature discretized at different spatial scales could influence the spatial variability of temperature and resulting
snowfall volume thresholded across one or many snowfall events (e.g., Jennings et al., 2018; Nolin and Daly, 2006;
Wayand et al., 2017). Snow cover thresholded using visible and infrared satellite observations may also require
changes based on the size of the satellite pixels and the underlying topographic and vegetative characteristics (Hérer
et al., 2018; Pestana et al., 2019). Future studies should report the extent to which different spatial discretizations
and ranges of realistic thresholds influence results. This information could be used to report the 1) uncertainty of
thresholded outputs, 2) fidelity of different gridded products, and 3) the degree to which multiple spatial
discretizations could be combined to improve the fidelity and transferability of results.

6. Conclusions

Potential wWolverine denninghabitable area (PWDA )V HAY) was thresholded using a published SWE threshold
(0.20 m) on a threshold date (15 May) in a Colorado Rocky Mountain domain between 1985 and 2020. Results
showed that PWDAWHA was statistically different (p <0.01) between years with different winter precipitation
magnitude (wet versus dry) and precipitation temperature (cold versus warm) conditionsanesalies. In fact, climate-
driven differences in annual PWDA-WHA were substantially larger than differences in PWDAWHA: between snow
discretized using 1) discrete 480 m grid cells, 2) 480 m grid cells with subgrid representations of SWE
heterogeneity, and 3) discrete 90 m grid cells. Therefore, studies that assess changes in tetal-habitathabitat health for
species like wolverines with past and future changes in climate could be informative, regardless of the spatial
discretizations tested.
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Despite the sensitivity to winter climatic conditions, annual differences in spatial-habitatdenning patterns and
parameter sensitivities emerged for the different discretizations. For instance, 90 m grid cells resolved thinner snow
deposits in mid-to-upper elevations (approximately 3050 — 3350 m) that were not resolved by either of the 480 m
discretizations, decreasing PWDA-WHA by 10%, on average. Snow discretized with subgrid representations of
SWE spatial heterogeneity also had less-dramatic swings in annual PWD A-welverine-habitat. The simulations with
subgrid SWE heterogeneity increased snrow-habitatPWDA by 10 — 30% in low-snow years, many of which were
representative of future changes in average temperature expected over the next 50 years. Spatially, the differences in
wolverine-habitatthe prevalence of SWE that exceeded the threshold between the three different snow discretizations
were heightened at the grid cells that had SWE values close to the SWE threshold (0.20 m) on 15 May, the elevation
of which was driven in large part by the winter climatic conditions. On average, wolverine-habitatP WDA was—18%
more sensitive to the SWE threshold than the date threshold, but had the smallest amount of sensitivity to the 480 m
simulation with subgrid snow heterogeneity, which alleswed-forhad more gradual changes to the fraction of a region
exceeding the SWE thresholdwekrerine-habitat with small changes in SWE. This discretization also had the least
amount of habitat-sensitivity to interannual changes in winter climatic conditions. However, some years had late-
spring snowfall events, altering the amount of welverine-habitatP WDA by up to 82% depending on whether the
threshold date was before, during, or after the snowfall event.

Our results show that differences in how snow is spatially discretized can influence information generalized using
thresholds. Therefore, future studies thresholding spatiotemporal environmental data should include multiple spatial
discretizations and ranges of realistic thresholds to provide a more comprehensive picture of uncertainties associated
with chosen thresholds and datasets. Although we used wolverine habitat as an example, we expect these results to
be applicable to any study thresholding environmental data, especially for studies generalizing information at spatial
scales finer than those of modeled or observed resolutions.
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