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Short summary. Wolverine denning habitat inferred using a snow threshold differed for three different spatial 1 
representations of snow. These differences were annually repeatable and based on the annual volume of snow and 2 
the elevation of the snow line. While denning habitat was most influenced by winter meteorological conditions, our 3 
results show that studies applying thresholds to environmental datasets should report uncertainties stemming from 4 
different spatial resolutions and uncertainties introduced by the thresholds themselves. 5 
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Abstract. Thresholds can be used to interpret environmental data in a way that is easily communicated and useful 20 
for decision making purposes. However, thresholds are often developed for specific data products and time periods, 21 
changing findings when the same threshold is applied to datasets or periods with different characteristics. Here, we 22 
test the impact of different  spatial discretizations of snow on annual estimates of wolverine denning 23 
opportunitieshabitat in the Colorado Rocky Mountains, defined using a snow water equivalent (SWE) threshold 24 
(0.20 m) and threshold date (15 May) from previous habitat assessments. Annual potential wolverine 25 
denninghabitable area (PWDA)(WHA) was thresholded from a 36-year (1985 – 2020) snow reanalysis model withat 26 
three different spatial discretizations: 1) 480 m grid cells (D480), 2) 90 m grid cells (D90), and 3) 480 m grid cells 27 
with implicit representations of subgrid snow spatial heterogeneity (S480). Relative to the D480 and S480 28 
discretizations480 m grid cells, D9090 m grid cells resolved shallower snow deposits on slopes between 3050 and 29 
3350 m elevation, decreasing PWDAWHA by 10%, on average.. In years with warmer and/or drier winters, S480 30 
discretizations with subgrid representations of snow heterogeneity grid cells with subgrid representations of snow 31 
heterogeneity increased the prevalence of 15 May snow deposits that exceeded the 0.20 m SWE thresholdPWDA, 32 
even within grid cells where mean 15 May SWE was less than the SWE threshold. These simulations increased 33 
PWDAWHA by upwards of 30% in low snow years, as compared to the D480 and D90 simulations without subgrid 34 
snow heterogeneity. Despite PWDAWHA sensitivity to different snow spatial discretizations, PWDAWHA was 35 
controlled more by annual variations in winter precipitation and temperature. However, small changes to the SWE 36 
threshold (±	0.07 m) and threshold date (± 2 weeks) also affected PWDAWHA by as much as 82%. Across these 37 
threshold ranges, PWDAWHA was approximately 18% more sensitive to the SWE threshold than the threshold date. 38 
However, the sensitivity to the threshold date was larger in years with late spring snowfall, when PWDAWHA 39 
depended greatly on depended on whether modeledthe date SWE was thresholded was before, during, or after spring 40 
snow accumulation. Our results demonstrate that snow thresholds are useful but may not always provide a complete 41 
picture of the annual variability in snow-adapted wildlife denning opportunitieshabitat. Studies thresholding 42 
spatiotemporal datasets could be improved by including 1) information about the fidelity of thresholds across 43 
multiple spatial discretizations, and 2) uncertainties related to ranges of realistic thresholds. 44 
1. Introduction 45 
Generalizing environmental data using thresholds can present information in a way that is more easily understood, 46 
communicated, and applied for decision-making purposes. Conceptually, thresholds are static constraints intended to 47 
partition the areas, timing, and/or prevalence of data greater or less than some scientifically or managerially relevant 48 
limit. In the field of snow science, thresholds are used to classify snow cover and snow absence from remotely-49 
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sensed observations (Dozier, 1989; Hall and Riggs, 2007; Sankey et al., 2015), partition snow accumulation and 50 
snowmelt seasons (Cayan, 1996; Hamlet et al., 2005; Mote et al., 2005; Serreze et al., 1999), and parameterize 51 
modeled processes like snow-layer formation and merging (e.g., Clark et al., 2015; Liston and Elder, 2006; 52 
Wigmosta et al., 2002), rain and snow precipitation partitions (Auer, 1974; Harder and Pomeroy, 2013), and snow 53 
holding capacity on steep slopes (Bernhardt and Schulz, 2010). Thresholds are also used to identify drought 54 
conditions in snow-dominated watersheds (Dierauer et al., 2019; Harpold et al., 2017; Heldmyer et al., 2023) 55 
(Dierauer et al., 2019; Harpold et al., 2017; Heldmeyer et al., In Review), and the associated “decision trigger” and 56 
“tipping point” thresholds that determine water use and allocation in regulated basins (Herman and Giuliani, 2018; 57 
Kwadijk et al., 2010; Shih and ReVelle, 1995). However, despite widespread use, thresholds are often developed for 58 
specific applications, and over short time intervals, decreasing the likelihood that a threshold developed for one 59 
purpose could be applied in an identical manner to different periods of time, or to environmental products with 60 
different characteristics (Härer et al., 2018; Jennings et al., 2018; Maher et al., 2012; Pflug et al., 2019). 61 
Here, we focus on snow thresholds that have been used increasingly over the past decade to identify regions with 62 
conditions suitable for the survival of snow-adapted wildlife. Many studies use thresholds that focus on snow 63 
characteristics like snow depth, snow cover, snow density, snow water equivalent (SWE), and snowmelt season 64 
snow persistence, which can be important for denning, migration, and food-availability for species like  North 65 
American wolverines (Ggulo gulo luscus), polar bears (Ursus maritimus), and Dall sheep (Ovis dalli dalli) (Barsugli 66 
et al., 2020; Durner et al., 2013; Liston et al., 2016; Mahoney et al., 2018; McKelvey et al., 2011; Sivy et al., 2018). 67 
However, relatively few studies simulate snow at spatial resolutions that correspond to the features that drive snow 68 
habitat (e.g., Glass et al., 2021; Liston et al., 2016; Mahoney et al., 2018). For instance, wolverines rely on snow 69 
drifts for maternal and natal denning. These drifts often form alee of obstructions near the forest edge and in talus 70 
fields (e.g., Fig. 1, star). Yet, few models simulate snow at den-scale spatial-resolutions (< 10 m), and represent the 71 
physical processes that control the formation of dens, like wind-redistribution, preferential deposition, avalanching, 72 
and microtopographic shading. This is particularly the case for species status assessments which often attempt to 73 
quantify wildlife habitat at large regional extents where high-resolution snow simulations with complex physical 74 
processes would be computationally prohibitive. Thresholds are therefore used to facilitate the relationship between 75 
a coarser-resolution representation of snow, and the finer-scale feasibility of wildlife habitat. The validity of this 76 
approach is debated (e.g., Araújo and Peterson, 2012; Barsugli et al., 2020; Boelman et al., 2019; Bokhorst et al., 77 
2016; Copeland et al., 2010; Magoun et al., 2017). For example, coarser-scale representations of snow may resolve 78 
the larger-scale meteorological influences on habitat availability, but coarser-scale representations of snow likely 79 
overlook the smaller-scale refugia that could continue to support habitat, even with future changes to climate. 80 
This manuscript study builds on work a study from Barsugli et al. (2020), whoich used physically-based simulations 81 
to identify regions that could support wolverine denninghabitable areas using SWE thresholds, including a SWE 82 
threshold (0.20 m) from known denning locations on a static date (15 May) corresponding to the tail end of the 83 
maternal denning period (Copeland et al., 2010; McKelvey et al., 2011; USFWS, 2018)(Copeland et al., 2010; Heim 84 
et al., 2017; McKelvey et al., 2011; USFWS, 2018). This 0.20 m SWE threshold was chosen based on 15 May SWE 85 
that corresponded to known wolverine denning sites from a 250 m snow simulation (Barsugli et al., 2020; Ray et al., 86 
2017; USFWS, 2018). Barsugli et al. (2020) found that, relative to previous studies that used ~10 km products 87 
(Laliberte and Ripple, 2004; McKelvey et al., 2011), snow simulations at 250 m resolution were able to better 88 
resolve SWE persistence, and increased habitat, on shaded north-facing slopes. 250 m simulations also increased the 89 
overall prevalence of snow that could support wWolverine denshabitat, both in current and future climates, over 90 
Colorado and Montana Rocky Mountain domains. 91 
Here, we extend the findings from Barsugli et al. (2020), testing the difference in wolverine denning supporthabitat 92 
defined using thresholds (0.20 m SWE on 15 May) and a historic snow reanalysis with different spatial 93 
discretizations (Fig. 1). These discretizations include: 1) discrete 480 m grid cells (D480), 2) discrete 90 m grid cells 94 
(D90), and 3) 480 m grid cells with implicit representations of subgrid SWE spatial heterogeneity (S480). These 95 
discretizations straddle the 250 m resolution used by Barsugli et al. (2020) and include both discrete (D480 and 96 
D90) and implicit (S480) representations of snow distribution. These reanalyses, which combine snow modeling and 97 
remotely-sensed observations of snow cover (more in Sect. 2.2), also resolve snow volume and distribution in 98 
mountain terrain significantly better than more common modeling approaches (Pflug et al., 2022; Yang et al., 99 
2021)(Pflug et al., In Review ;Yang et al., 2021). We focus onover the same Colorado Rocky Mountain domain used 100 
by Barsugli et al. (2020) over a longer period of 36 years, spanning 1985 to 2020. We address the following research 101 
questionsask: 1) how does the spatial discretization of snow influence estimates of potential wolverine 102 
denninghabitable area (PWDA)? and 2) is the sensitivity of PWDAhabitat to different snow spatial 103 
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discretizations greater or smaller than  habitatthe sensitivity to interannual changes in winter climatic 104 
conditions? We also identify the spatial locations and causes of the greatest differences PWDAin thresholded 105 
wolverine habitat, and evaluate sensitivities to small uncertainties in both SWE thresholds (±	0.07 m) and threshold 106 
dates (±	2 weeks). More generally, this study highlights shortcomings, opportunities, and tradeoffs to thresholding 107 
spatial snow products, and serves as a roadmap for future wildlife habitat assessments. 108 

 109 
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 110 
Figure 1. SWE spatial heterogeneity inferred from airborne lidar at 1 m resolution, compared to 480 and 90 m grid 111 
cells, and a point (star) with a snow drift suitably deep for wolverine denning (a). SWE is simulated in this study 112 
using three different spatial discretizations: 480 m discrete grid cells (D480, column b), 480 m grid cells with 113 
subgrid SWE heterogeneity (S480, column c), and 90 m discrete grid cells (D90, column d). Wolverine habitat 114 
(bottom row) is defined for e The fraction of the area that could support wolverine denning is estimated for each 115 
discretization on 15 May using a 0.20 m SWE threshold on 15 May. The fraction of the area exceeding the SWE 116 
threshold is binary (fully greater than or less than the threshold)resholded habitat for discrete grid cells (b and d) are 117 
binary (no habitat or full habitat), while the area exceeding the SWE threshold forhabitat for the S480subgrid 118 
discretization (c) is defined by the fraction of the grid cell SWE distribution with SWE exceeding the threshold 119 
(white hatching) 120 
2. Domain and Data 121 
2.1. Domain 122 
We focused this work over Rocky Mountain National Park in Colorado state (Fig. 2). This domain is home to 123 
several snow-adapted wildlife species, and has been included in wolverine habitat assessments (Barsugli et al., 2020; 124 
McKelvey et al., 2011; USFWS, 2018). Barsugli et al. (2020) estimated most of the terrain supportive of wolverine 125 
habitat in this region to be between 2700 and 3600 m of elevation. Although few wolverines have been sighted here, 126 
and this area does not currently support a reproductive population of wolverines, this region is of potential interest 127 
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for wolverinespecies reintroduction. More information about wolverine habitat can be found in the U.S. Fish and 128 
Wildlife Service species status assessment (USFWS, 2018).  129 
The Rocky Mountain National Park domain contained several snow observations (Fig., 2). These observations 130 
included 28 snow telemetry (SNOTEL) stations, deployed and managed by the National Resources and 131 
Conservation Service. These stations use snow pillows to measure the weight of snowpack and resulting SWE. A 132 
distributed lidar observation of snow depth in southernmost portion of the domain was also collected by the National 133 
Center for Airborne Laser Mapping in May 2010. These observations were used to assess the accuracy of the SWE 134 
reanalysis discussed in Sect. 2.2. 135 
2.2. SWE Reanalyses 136 
SWE was calculated over the Rocky Mountain domain (Figure 2) fromusing a popular satellite-era (water years 137 
1985 – 2020) probabilistic snow reanalysis (Margulis et al., 2019, 2016, 2015) performed at 3 arcseconds (~90 m) 138 
and 16 arcseconds (~480 m). This reanalysis was generated at each individual grid cell using an ensemble of 139 
simulations forced by the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2; 140 
Gelaro et al., 2017), and simulated using the simplified Simple Biosphere Model, Version 3 (Xue et al., 1991) 141 
coupled with the Liston (2004) snow depletion curve. The forcing dataset was downscaled to the simulation grid 142 
(Girotto et al., 2014; Margulis et al., 2015) before running the land surface model. Model ensemble members were 143 
provided different 1) precipitation multipliers (influencing total snow mass), 2) snow albedo decay functions 144 
(influencing the rate of snow ablation), and 3) parameterizations of subgrid snow spatial variability (influencing 145 
subgrid snow cover during snowmelt), among other parameters. The reanalysis then reweighted the ensemble 146 
members to most-heavily favor those that matched the snowmelt season evolution of fractional snow covered area 147 
from 30 m Landsat observations. We expect uncertainties and errors in the snow reanalysis owing to both errors in 148 
meteorological forcing data (e.g., Daloz et al., 2020; Liu and Margulis, 2019) and errors with the snow model (e.g., 149 
Feng et al., 2008; Xiao et al., 2021)satellite-observed snow cover disappearance throughout the snowmelt season. 150 
However, the ensemble approach used by this reanalysis adjusted modeled snow accumulation and depletion to 151 
track remote sensing observations of snow cover depletion, which has shown the capability to bias-correct SWE and 152 
implicitly account for difficult-to-simulate processes like precipitation lapse rates, wind-loading/scour, avalanching, 153 
and forest-snow processes (e.g., Pflug et al., 2022; Yang et al., 2021). 154 
Relative to independent SNOTEL observations, which are not used by the snow reanalysis, of SWE between 1985 155 
and 2020 in the Rocky Mountain domain, the reanalysis exhibited a SWE coefficient of correlation of 0.82 (not 156 
pictured) between 1985 and 2020 in the Rocky Mountain domain (Fig. S1). On average, the reanalysis was biased 157 
low relative to the snow pillow observations by approximately 23%. However, this could be attributed to the 158 
location of SNOTEL observations in forested clearings (Fig. 2a) which typically have SWE deeper than the terrain 159 
covered by the 480 and 90 m pixels (e.g., Livneh et al., 2014; Pflug et al., 2022)(Livneh et al., 2014; Pflug et al., In 160 
Review). While the snow reanalysis used in this study is ultimately a model product and subject to a number of 161 
modeling uncertainties, the SWE simulated by the 90 m and 480 m discretizations agreed closely with each other 162 
and with ground observations. Therefore, spatial differences in 15 May SWE, and the resulting distribution of snow 163 
that exceeded the SWE threshold (e.g., Fig. 1) was attributable to differences in the interactions between the static 164 
SWE threshold and different spatial discretizations of snow. 165 
For the 480 m grid cells with subgrid snow variability (Fig. 1c, S480), the heterogeneity of SWE was estimated 166 
using a method developed by Liston (2004). This method assumes that the subgrid heterogeneity of SWE 167 
accumulation is lognormally distributed, and is dictated by a time-constant coefficient of variation (CoV), 168 

𝐶𝑜𝑉 =
𝜎
𝜇, 169 

(1) 170 

where 𝜇 is the grid cell mean SWE and 𝜎 is the standard deviation of the SWE within that grid cell. The CoV of 171 
subgrid SWE accumulation (Fig. 2b and 2c) was determined for each 480 m grid cell using the most common 172 
pattern of SWE accumulation from the overlapping 90 m reanalysis grid cells (Fig. 1d) between 1985 and 2020 173 
(detailed further in Text S1). In Sect. 3.1, we discuss how CoV was used to estimate the temporal evolution of 174 
subgrid SWE heterogeneity.  175 



 6 

 176 

 177 
Figure 2. Rocky Mountain National Park study domain. The location of SNOTEL observations and lidar snow depth 178 
observations are superimposed in the terrain map (a). The 480 m coefficient of variation of subgrid SWE 179 
accumulation is shown both spatially (b) and across 100 m elevation bands (c). 180 
3. Methods 181 
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The methods evaluate the impacts of snow spatial discretizations and winter climatic conditions on assessments of 182 
total area suitable for denning wolverines habitat. We investigated three different spatial discretizations; two 183 
discretizations using more common discrete representations of snow, and one with an implicit representation of 184 
subgrid snow heterogeneity (see Sect. 3.1). For each, annual potential wolverine denninghabitable area 185 
(PWDA)(WHA) was calculated using a static SWE threshold (0.20 m) on a static spring date (15 May) (Sect. 3.2). 186 
Finally, we partitioned years with winter precipitation magnitude and precipitation phase climate categories (wet, 187 
dry, cold, and warm)anomalies, relative to average conditions from the snow reanalysis between water years 1985 188 
and 2020 (see Sect. 3.3). These anomalies categories were used to examine whether winter climatic conditions or 189 
model representations of snow spatial distribution most-influenced estimates of PWDAannual wolverine habitat. 190 
3.1. Subgrid SWE evolution 191 
The temporal evolution of subgrid SWE heterogeneity was estimated for 480 m grid cells (Fig. 1, S480) using 192 
methods developed by Liston (2004) (Fig. 3). Provided the reanalysis grid cell mean SWE (𝜇) from a D480discrete 193 
480 m grid cell (Fig. 1b), and a CoV of subgrid SWE accumulation (Fig. 2b), the probability distribution of subgrid 194 
SWE for that grid cell (𝑓(𝑆𝑊𝐸)) was calculated using a lognormal distribution,  195 
 196 

𝑓(𝑆𝑊𝐸) = 3
1

𝑆𝑊𝐸𝜁√2𝜋
9𝑒𝑥𝑝 =−

1
2 ?
ln(𝑆𝑊𝐸) − 𝜆

𝜁 C
!

D, 197 

( 2 ) 198 

𝜆 = ln(𝜇) −
1
2 𝜁

!, 199 

( 3 ) 200 
𝜁! = ln(1 + 𝐶𝑜𝑉!). 201 

( 4 ) 202 
Figure 3b demonstrates the subgrid distribution of SWE in two winter periods (𝑡"# and 𝑡"!) assuming the mean SWE 203 
evolution from Fig. 3a, a CoV of 0.50, and Eq. 2 – 4.  204 
In the snowmelt season, the Liston (2004) methodology assumes spatially-uniform snowmelt, causing snow 205 
disappearance first in locations with thinner SWE, and last in locations with deeper SWE. This can be 206 
conceptualized as taking the subgrid distribution of snow at peak SWE (Fig. 3b, 𝑡!"), and adjusting it downwards by 207 
a constant amount to reflect spatially-uniform melt (𝑆𝑊𝐸$) (Fig. 3c). In doing so, snow would only exists for 208 
portions of the gridcell where	𝑓(𝑆𝑊𝐸) at peak SWE was greater than 𝑆𝑊𝐸$. Therefore, the fractional snow-209 
covered area (fSCA) of the grid cell could be calculated from the fraction of the distribution (𝑓(𝑆𝑊𝐸)) with SWE 210 
greater than 𝑆𝑊𝐸$, 211 

𝑓𝑆𝐶𝐴 =	H 𝑓(𝑆𝑊𝐸)𝑑𝑆𝑊𝐸
%

&'(!
. 212 

( 5 ) 213 
Since 𝑆𝑊𝐸$ can exceed the amount of SWE that exists in some locations at peak SWE timing, and since SWE 214 
cannot be less than 0 m (snow-absent), the change in gridcell mean SWE (𝜇) throughout snowmelt will not 215 
necessarily equal 𝑆𝑊𝐸$. Rather, 𝜇 throughout the snowmelt season can be calculated from the expected value of 216 
the melt-shifted distribution (Fig. 3c), 217 

𝜇 = H [𝑆𝑊𝐸 − 𝑆𝑊𝐸$]𝑓(𝑆𝑊𝐸)𝑑𝑆𝑊𝐸
%

&'(!
. 218 

( 6 ) 219 
In this study, we were provided 𝜇 from the reanalysis at each 480 m grid cell and daily timestep. Using the CoV 220 
calculated from the overlapping D90 data (Fig. 2b),  and maximum annual 𝜇 at each grid cell, we calculated the 221 
SWE distribution (Eq. 2) for each grid cell at peak SWE timing. Then, using a Newton-Raphson solver, we solved 222 
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the 𝑆𝑊𝐸$ for each grid cell that caused 𝜇 from Eq. 6 to match D480 𝜇 from the 480 m reanalysisat each grid cell on 223 
15 May. 224 
The Liston (2004) subgrid SWE parameterization discussed above operates under several assumptions. Like many 225 
other studies (e.g., Donald et al., 1995; Helbig et al., 2021; Jonas et al., 2009), Eq. 2 assumes that the distribution of 226 
snow accumulation at scales finer than the grid cell resolution can be represented by a lognormal distribution. We 227 
tested this assumption by evaluating the distribution of 1 m lidar snow depth observations (Fig. 2a) that fell within 228 
480 m grid cells. The Kolmogorov-Smirnov (KS) statistic, or maximum difference between cumulative distribution 229 
functions, was used to test how well different theoretical distributions (e.g., normal, lognormal, gamma, Rayleigh, chi, 230 
etc.) used by a variety of snow studies (e.g., He et al., 2019; Helbig et al., 2015; Mendoza et al., 2020; Pflug and 231 
Lundquist, 2020; Skaugen and Melvold, 2019) matched the lidar-observed snow depth distributions. The KS statistic 232 
for the lognormal distribution (Eq. 2) was 0.12 ± 0.05, and was significantly worse (greater than 0.22) when 233 
comparing the observed lidar distributions versus other common distributions, like normal and gamma distributions. 234 
While not perfect, these results showed that subgrid snow heterogeneity was approximated best by lognormal 235 
distributions. The Liston (2004) subgrid methodology also assumed that the CoV of subgrid SWE accumulation was 236 
constant, resulting in a linear increase in SWE variability (standard deviation) with mean SWE throughout the snow 237 
accumulation season (Fig. 3b). While we lacked validation data to test this, this assumption is the basis for other 238 
modeling approaches, which scale snow input using information from historic snow accumulation patterns (Liston, 239 
2004; Luce et al., 1998; Pflug et al., 2021; Vögeli et al., 2016). Finally, although subgrid snowmelt is not spatially-240 
uniform, melt-season snow heterogeneity is often modeled well by assuming uniform snowmelt. This is due to the 241 
outsized influence of snow accumulation spatial heterogeneity on snowmelt onset timing and snowmelt rates (Egli et 242 
al., 2012; Luce et al., 1998; Lundquist and Dettinger, 2005; Pflug and Lundquist, 2020). Here, we acknowledge that 243 
this approach operates on multiple assumptions (discussed above), all of which could vary in accuracy on grid cell 244 
level. However, this approach may also provide the opportunity to implicitly represent the heterogeneity of snow in 245 
complex terrain and the fraction of the area that could be more supportive for denning habitat (e.g., Fig. 1). We discuss 246 
this more in Section 3.2. Readers should refer to Liston (2004) for more information about the subgrid snow 247 
methodology described in this section. 248 

 249 
Figure 3. An example of the Liston (2004) subgrid SWE parameterization assuming CoV = 0.5, and SWE evolution 250 
for a 480 m grid cell in a random year (panel a). Subgrid SWE distributions are shown for two times (t, subscripts 1 251 
and 2) in the accumulation (superscript a) and melt (superscript m) seasons (panels b and c, respectively). The 252 
timing of each date corresponds to the matching vertical bar in panel a.  253 
3.2. Thresholding wolverine habitable area 254 
The area that could support denning wolverines habitat was calculated for each of the discretizations in each year 255 
using a SWE threshold of 0.20 m on 15 May, in accordance with previous studies (e.g., Barsugli et al., 2020; 256 
Copeland et al., 2010; McKelvey et al., 2011). For the 480 and 90 m discrete reanalyses (D480 and D90 257 
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discretizations), each cell’s denninghabitable fraction (DHF) was classified as fully-suitable for denninghabitable 258 
(DHF = 1.0) or unsuitableinhabitable (DHF = 0.0) if the 15 May grid cell mean SWE was greater than or less than 259 
0.20 m, respectively. For the 480 m simulation with subgrid snow heterogeneity (S480 discretization), DHF was 260 
calculated for each grid cell using: 261 

𝐷𝐻𝐹 =	H 𝑓(𝑆𝑊𝐸)𝑑𝑆𝑊𝐸
%

&'(!)*+
, 262 

( 57 ) 263 
which represented the portion of the cell’s SWE distribution greater than the SWE threshold (𝛽𝛼 = 	0.20	m). 264 
PWDAWHA was calculated for each discretization as the sum of DHF (in space), multiplied by grid cell area. 265 
Relative to DHF calculated from a discrete 480 m grid cell (D480), DFHF calculated over the same area from the 266 
finer-scale discretizations (S480 and D90) could have one of four possible relationships. First, the mean SWE of the 267 
D480 grid cell, and the finer-scale distribution of SWE (S480 and D90), could both be entirely greater than the 0.20 268 
SWE threshold. This results in a fully-habitable suitable denning fractionarea (DHF = 1.0) for all discretizations 269 
(Fig. 4a). DHF would also agree in regions where all discretizations have SWE below 0.20 m (Fig. 4d), resulting in 270 
no denning opportunitieshabitat (DHF = 0.0). The scenarios shown in Fig. 4b and Fig. 4c are where DHF is sensitive 271 
to the discretization. Figure 4b shows a scenario where the coarse-scale D480 mean SWE is sufficiently deep 272 
enough to be classified as fully-habitable suitable for denning (SWE > 0.20 m), even though some portion of that 273 
grid cell contains SWE that is shallower than the SWE threshold. Therefore, using a finer-scale discretization would 274 
result in a net loss in DFhabitat relative to the D480 discretization, , the magnitude of which is shown by the red 275 
hatching in Fig. 4b. Of course, theThe opposite could be true for instances where coarse-scale mean SWE falls 276 
below the 0.20 m SWE threshold, thereby underestimating denning opportunitieshabitat relative to finer-scale 277 
representations that resolve some deeper snow deposits (Fig. 4c, blue hatching). Here,Since the three reanalysis 278 
discretizations (D480, D90, and S480) weare provided identical meteorological forcing, and when coarsened to 279 
480m resolution, hadresolve similar SWE that agreed to within 1%, on average on 15 May(within 1%). Therefore,,  280 
the degree to which the scenarios shown in Fig. 4b and 4c occur were the drivers of habitat differences to wolverine 281 
denning opportunities..  282 

 283 
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Figure 4. Conceptual portrayal of the similarities (a and d) and differences (b and c) in wolverine habitable 284 
fractionDF for a 480 m discrete grid cell (vertical solid line) and a finer-scale representation (distribution) of SWE 285 
over the same area. The vertical dashed lines represent the 0.20 m SWE threshold. Shaded areas show the portion of 286 
the distribution with SWE greater than the threshold. Hatched areas demonstrate differences in DFhabitat between 287 
the coarser and finer-scale discretizations of SWE. 288 
3.3. Categorizing winter climate categoriesanomalies 289 
To determine PWDAWHA sensitivity to different climatic conditions, we identified years from the reanalysis with 290 
differentanomalous winter precipitation magnitude and phase (rain versus snow). Here, winter is defined by periods 291 
between October 1st and the date of domain peak SWE volume. Following work from (Heldmyer et al., (2023),  292 
Heldmeyer et al. (in review), we used domain basin average cumulative winter precipitation and the fraction of the 293 
winter precipitation that fell as snow (both from the reanalysis) as indices for winter precipitation magnitude and the 294 
temperature at which precipitation fell. Using a percentile, we separated years that fell at least that far from the 1985 295 
– 2020 median precipitation magnitude and fraction of snow precipitation. In doing so, we partitioned years with 296 
wet, dry, cold, and warm winter climate categoriesanomalies. We did this separation using a range of percentiles 297 
until the statistical difference (measured using the Mann-Whitney u-test) in D480 PWDAWHA was maximized 298 
between the years with different climatic conditions (warm, cold, wet, dry, and typical). To avoid spurious results, 299 
this percentile was also adjusted to ensure that each climate categoryanomaly included at least 6 years. This 300 
approach maximized the difference in interannual PWDAWHA as a function of different winter climatic conditions. 301 
This was then used as the baseline to compare how much more or less sensitive PWDAWHA was to the different 302 
SWE spatial discretizations.  303 
4. Results 304 
The spatial variability of subgrid SWE accumulation (Sect. 2.2 and Text S1) had a relationship with the terrain (Fig. 305 
2b and 2c). Over low-elevation forested grid cells (< 2800 m), SWE accumulation variability was large relative to 306 
the smaller amounts of snow, resulting in large CoV (typically between 0.50 and 0.80) (Fig. 2b and 2c). On mid-307 
elevation slopes (2800 – 3300 m), where winter snowmelt was less common, CoV tended to be smaller 308 
(approximately 0.30, on average). However, CoV increased again at higher elevations (> 3300 m), and particularly 309 
on the leeward side of peaks. This was expected given the more extreme terrain and increased spatial variability of 310 
snow from wind-drifting, preferential deposition, cornice formation, and avalanching. 311 
The difference in PWDA wolverine habitable area (WHA) was maximized between 1) warm and cold years, and 2) 312 
wet and dry years, that had winter precipitation magnitude (Fig. 5a, x-axis) and precipitation phase (Fig. 5a, y-axis) 313 
that fell above the 77th and below the 23rd percentiles (±27th percentile from the median). These climate 314 
conditionsanomalies had impacts on the annual evolution of SWE and snow-covered area (Fig. 5b and Fig. 5c). On 315 
average, as compared to years with normal winter precipitation magnitude and phase (Fig. 5a, white region), cold 316 
years and wet years had peak SWE volume that was 23% and 28% greater, respectively. This was opposed to warm 317 
years and dry years, with peak SWE volume that was 21% and 31% smaller, on average, than typical water years. 318 
The timing of peak-SWE was driven most by the magnitude of winter precipitation. In fact, average peak-SWE 319 
timing was 28 days later for wet years than dry years. Snow disappearance timing (snow-covered area < 200 𝑘𝑚!) 320 
was also 21 days later for wet years than dry years. Statistically, the timing of snow disappearance, crucial for 321 
wolverine denning habitat, was explained well by the peak-SWE volume (r = 0.82) and the date of peak-SWE (r = 322 
0.63), both of which were influenced more by winter precipitation magnitude than temperature. 323 
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 324 
Figure 5. Annual climatic conditions grouped into anomaly categories based on winter precipitation magnitude (a, 325 
horizontal-axis) and precipitation phase (a, vertical-axis) outside the 23rd and 77th percentiles (a, dashed lines). The 326 
annual evolution of SWE volume and snow cover are compared for warm versus cold (column b) and wet versus dry 327 
years (column c). Vertical dashed lines in columns c and d indicate 15 May.  328 
In all years except dry 2002, PWDAWHA was smaller for the D90 discretization than the D480 discretization (Fig. 329 
6). This resulted in a 10% reduction to the 36-year median PWDAWHA (Fig. 6b). The PWDAWHA differences 330 
between the D480 and S480 discretizations varied more on an annual basis. For years with D480 PWDAWHA less 331 
than 1000	𝑘𝑚!, S480 discretizations increased PWDAWHA by up to 30%, 11% on average. However, in years with 332 
PWDAWHA greater than 1000	𝑘𝑚!, S480 PWDAWHA was approximately 3% smaller, on average, than D480 333 
PWDAWHA. In short, the S480 discretization tended to have less-dramaticsmaller annual swings in PWDAWHA 334 
than the D480 discretization. The causes of these PWDAWHA disagreements are discussed in Sect. 5.1. Despite the 335 
interannual differences in D480 and S480 PWDAWHA, the 36-year median PWDAWHA for these discretizations 336 
agreed to within 1% (Fig. 6b).  337 
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 339 
Figure 6. 15 May wolverine habitable area comparedPWDA compared annually for three different spatial 340 
discretizations (a). Lower panels show the kernel distributions for the data in panel a, separated based on the spatial 341 
discretization (b), temperature anomalies categories (c), and precipitation categoriesanomalies (d). The medians of 342 
each distribution are shown by the vertical dashed lines (b – d). The data in panels c and d include data from all 343 
three spatial discretizations. The data from WY1992 (a, faded bars) exhibited artifacts, and was excluded from the 344 
kernel distributions (b-d). 345 
Even though PWDAWHA was sensitive to different spatial discretizations (Fig. 6b), PWDAWHA across the 36-346 
year period was not statistically different between any of the three discretizations (p > 0.48). Conversely, the 347 
difference in 15 May PWDAWHA was significantly larger between the years with different winter climate 348 
categories anomalies (Fig. 6c and 6d). Differences in PWDAWHA between years with anomalously warm and cold 349 
conditions were statistically significant (p = 1 × 10,-). Given that 15 May snow covered area were similar between 350 
warm and cold years (Fig. 5b), this difference between warm and cold years in Fig. 6c show that changes to PWDA 351 
were driven by changes to SWE magnitude and the area with SWE exceeding the SWE threshold., and Dry and wet 352 
years exhibited larger differences to both 15 May SWE and snow cover (Fig. 5c), resulting in PWDA (Fig. 6d) that 353 
was even more different between the years with dry and wetthese climate conditions (p = 1 × 10,.). The impact of 354 
these warm, dry, cold, and wet climate conditions resulted in the bimodal distributions in PWDA shown for the 355 
different discretizations across the full time period (Fig. 6a). While PWDAWHA was not statistically different 356 
between cold and wet years (p = 0.34), the distribution of PWDAWHA in dry years was significantly smaller than 357 
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the distribution of PWDAWHA in warm years (p = 0.001), showing that PWDAWHA was more sensitive to 358 
conditions that reduced snow habitat, like warm and dry conditionsanomalies. 359 
The results from Fig. 6 suggested that changes in PWDAWHA across annual periods of differing climatic 360 
conditions, or across future periods with expected changes in climate (e.g., Barsugli et al., 2020) should be 361 
informative from a species status assessment perspective, regardless of the snow spatial discretizations that we 362 
tested here. However, as noted above, the S480 discretization increased PWDAWHA by 11% on average in low 363 
snow years, with increases as large as 30% for individual years. These low snow years often corresponded with drier 364 
and/or warmer winter conditions, the latter of which are expected in the future. For example, the average air 365 
temperature during December, January, and February precipitation events during warm years in the reanalysis 366 
record was approximately 0.8° higher than winter precipitation events in typical years. These conditions are 367 
consistent with what is projected for this region by 2055 (Eyring et al., 2016; Scott et al., 2016). This suggests that 368 
the disparity between habitat inferred from discrete grid cells, and grid cells with subgrid snow heterogeneity, could 369 
be of greater importance for future snow habitat assessments. Additionally, using PWDAWHA as the sole metric for 370 
evaluating differences in annual opportunities for wolverine denninghabitat may oversimplify the degree to which 371 
static thresholds and different spatial discretizations interact. For instance, PWDAWHA inferred on a static date (15 372 
May) compares very different regimes of the snow season. as wet years had peak SWE timing, and snowmelt season 373 
onset, that was 21 days later than typical snow seasons (Fig. 5). Since shallower snow melts more readily than 374 
deeper snow (provided the same energy), comparing SWEWHA on a static date in years with very different 375 
conditions neglects the different rates of habitat depletion for a few days on either side of the date threshold. These 376 
issues are investigated more in Sect. 5. 377 
5. Discussion 378 
In this section we diagnose the locations and causes for habitat disagreements in the frequency and locations at 379 
which 15 May SWE exceeded the 0.20m SWE threshold between the three spatial discretizations of snow (Sect. 380 
5.1). We alsond investigate how the use of a static SWE threshold and threshold date, may obscure the picture of 381 
interannual changes to snow habitatwolverine denning habitat availability (Sect. 5.2). Using these findings, we 382 
discuss how information provided from multiple spatial discretizations could provide information about the fidelity 383 
and uncertainty of thresholds, as well as the interactions and tradeoffs between spatial discretizations and thresholds, 384 
both in context for assessing snow-adapted wildlife habitat, and more broadly for other environmental studies (Sect. 385 
5.3). 386 
5.1. Spatial habitat differences in DF 387 
The spatial difference in habitable fraction (HF)DF between the three discretizations had annually similar patterns, 388 
with the largest differences at locations where the domain had SWE that was near the 0.20 m SWE threshold. This 389 
iswas shown inillustrated in Fig.7d and Fig. 7e, where the greatest number of spatial DHF disagreements that spiked 390 
on 15 May 2008 were focused between approximately 2800 and 3200 m of elevation. Relative to the D480 391 
discretization, the S480 discretization tended to increase DF habitat in grid cells at lower elevations where mean 392 
SWE was less than the SWE threshold, but some portion of the grid cell had SWE deep enough to support 393 
habitatexceed the threshold (e.g., Fig. 4c). The opposite effect occurred at higher elevations where mean SWE 394 
exceeded the SWE threshold, but the lower-tails of the S480 SWE distributions were below the threshold (e.g., Fig. 395 
4b). As a result, the S480 discretization had a more-gradual increase in thresholded denning habitatavailability with 396 
elevation, and a downward shift in the elevations that could support denning wolverines habitat (Fig. 7f). In fact, 397 
relative to the D480 discretization, the S480 discretization had 23% less interannual variability in the elevation of 398 
median habitat (Fig. S1a), or elevation at which equal PWDAWHA existed at higher and lower elevations (Fig. 399 
S2a). This was a result of the subgrid representations of SWE heterogeneity which allowed for gradual and 400 
fractional (0.0 ≤ DFHF ≤ 1.0) increases in DFHF with increases in SWE. This was opposed to the D480 401 
discretization, which could only resolve binary DFHF (0 or 1 for SWE less than and greater than 0.20 m), resulting 402 
in larger elevational topographical shifts in the annual locations that could support wolverine denning of wolverine 403 
habitat. 404 
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 406 
Figure 7. Spatial comparisons of habitable fractionsDF for the three discretizations on 15 May 2008. Panel f 407 
compares the cumulative PWDAWHA (y-axis) calculated for grid cells sorted in order of increasing elevation (x-408 
axis). Vertical dashed lines show the elevation of median PWDAhabitat, or elevation at which PWDAWHA is equal 409 
for higher and lower elevations.  410 
Relative to the D480 discretization, the D90 discretization also tended to increase DFHF at lower elevations. 411 
However, all years had reduced D90 DFHF in elevations higher than the snow line approximately 3120m. This was 412 
the cause of the 10% reduction in D90 PWDAWHA, relative to the other discretizations (Fig. 6b). These decreases 413 
in habitat were typically located on unvegetated, exposed, and steep slopes, where it was likely that winter snow 414 
retention was decreased, snow sublimation was increased, and sloughing to lower-elevations was more common 415 
(Bernhardt and Schulz, 2010; Grünewald et al., 2014; Machguth et al., 2006). This demonstrates the utility of the 416 
observation-based reanalysis used in this study, which may have resolved thinner snow deposits on slopes with 417 
decreased snow retention and/or enhanced snow removal by processes like sloughing, both of which are among the 418 
most-difficult processes to represent with models. The D480 discretization averaged snow from surrounding areas, 419 
smoothing out thinner snow deposits resolved by the D90 discretization. Although attempting to resolve subgrid 420 
snow heterogeneity, the evolution of SWE assumed by the S480 simulation, which assumed lognormal snow 421 
accumulation and spatially-uniform subgrid snowmelt (Fig. 3), may have been less-appropriate for the areas 422 
containing these isolated thinner-snow 90 m grid cells. While the D90 discretization decreased total PWDAWHA, 423 
D90 snow cover was also patchier (Fig. 7c), which could also influence the movement and connectivity for 424 
wWolverines (USFWS, 2018) and other snow-adapted species. 425 
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Winter precipitation magnitude and temperature influenced the volume of snow and the elevation of the snow line 426 
that existed on 15 May in each year. Since the differences in DFHF between the discretizations were largest at grid 427 
cells near the 0.20 m SWE threshold, often located just above the snow line, the spatial pattern of DFHF differences 428 
(e.g., Fig. 7) exhibited an interannually-repeatable relationship with the dry, warm, cold, and wet winter climate 429 
categoriesanomalies (Fig. 5). To show this, we calculated the differences in DFHF between all three discretizations 430 
(D480 versus S480, D480 versus D90, and S480 versus D90) in all 36 years. Then, for each 480 m grid cell, we 431 
calculated the climate anomaly that had the greatest absolute differences in HF. In other words, using the historic 432 
36-year record, we identifiedclassified the meteorological conditionclimate category that resulted in the greatest 433 
uncertainty mean absolute differences in DFHF across the three discretizations for each 480 m grid cell. The climate 434 
categoriesanomalies that had the greatest influence on DFHF uncertainties covered similar portions of the domain, 435 
with 33.7%, 20.9%, 25.2%, and 20.2% being most attributed to dry, warm, cold, and wet conditions, respectively 436 
(Fig. 8). At low elevations (2650 – 3050 m), 15 May snow typically existed only in wet years. In those years and 437 
elevations, mean SWE for the D480 and D90 discretizations often fell below the 0.20 m SWE threshold. However, 438 
the large CoVs of subgrid SWE accumulation in these elevations (Fig. 2) resulted in S480 subgrid SWE 439 
distributions with upper-tails that sometimesoften exceeded 0.20 m (e.g., Fig. 4c), increasing total habitat (Fig. 8c). 440 
This was in-line with findings from Magoun et al. (2017), who noted suitable denning conditions at lower-441 
elevations, even in instances when the surrounding terrain was predominantly snow-free. 442 
The average differences in DFHF between the three discretizations were largest in cold years for elevations 443 
spanning 3050 – 3150 m, and in warm years for elevations spanning 3150 – 3350 m (Fig. 8). Across this elevation 444 
range (3050 – 3350 m), both of the 480 m discretizations (D480 and S480) estimated more denning 445 
opportunitieshabitat than the D90 discretization (Fig. 8c). However, at higher elevations (> 3350 m), wolverine 446 
habitat DF calculated from the S480 discretizationinferred from the discretization with subgrid snow heterogeneity 447 
(S480)  approached DF calculated from the D90 thinner snow deposits estimated by the 90 m discretization (Fig. 448 
8c).  449 
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 451 
Figure 8. Winter climate categoriesanomalies that most-influenced DFhabitat disagreements between the three 452 
discretizations (a). Panel b shows the most-prevalentcommon influence from panel a, for 100 m elevation bands. 453 
Using DFHF  from the D90 discretization as a reference, the 36-year average difference in DFHF for the D480 and 454 
S480 simulations are shown by distributions for each 100 m elevation band (c). Lines inside the distributions show 455 
the median and interquartile range. 456 
5.2. Threshold sensitivities 457 
To this point, we assumed confidence in the SWE (0.20 m) and date (15 May) thresholds. However, small changes 458 
to either threshold could influence annual estimates of PWDAWHA (e.g., Copeland et al., 2010; Magoun et al., 459 
2017). In Fig. 9, we show PWDAWHA calculated from a range of realistic SWE thresholds and threshold dates. The 460 
range of SWE thresholds (0.20 ± 0.07 m) were determined using a snow depth of 0.50 m, corresponding to 461 
observed wolverine dens (USFWS, 2018), and the 90th percentile range of 15 May snow densities from SNOTEL 462 
observations (Fig. 2a) between 1985 and 2020 (260 – 540 𝑘𝑔/𝑚/). The range of threshold dates spanned a period of 463 
± 2 weeks, corresponding to the difference in peak-SWE timing between dry and wet years (Fig. 5). This month-464 
long time span is also consistent with the observed range of wolverine birth dates (Inman et al., 2012).. This month-465 
long time span also reflected the disparity between threshold dates and dates of observed wolverine habitat from 466 
multiple studies (Barsugli et al., 2020; Copeland et al., 2010; Magoun et al., 2017; McKelvey et al., 2011). 467 
PWDAWHA sensitivity was calculated using all combinations of SWE and date thresholds, both of which were 468 
discretized at 14 equally-spaced increments (Fig. 9, left). Then, the gradients (direction and magnitude of greatest 469 
change in PWDAWHA) were calculated from each unique combination of SWE and date thresholds. The gradients 470 
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were summed using vector addition (Fig. 9, right column) to determine 1) the total rate of change in PWDAWHA 471 
with changing thresholds (arrow length), and 2) the degree to which PWDAWHA was sensitive to one threshold 472 
versus the other (arrow angle). This process was repeated for each discretization and year.  473 

 474 
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 475 
Figure 9. PWDAWHA calculated using different SWE (y-axes) and date thresholds (x-axes), for the different 476 
discretizations (columns), in three different years (rows) with very different sensitivities. PWDAWHA calculated 477 
from the default thresholds (0.20 m SWE on 15 May) is shown by the black circle. Combinations of thresholds that 478 
could reproduce the default PWDAWHA are approximated by the dashed contour. The rightmost arrows show the 479 
total direction and magnitude of PWDAWHA changes with changes in the thresholds. 480 
PWDAWHA in warm 1990 was 18% more-sensitive to the SWE thresholds than the threshold dates (Fig. 9, top 481 
row). To put this another way, the change in PWDAWHA across a period of ± 3 days from 15 May was 482 
approximately equal to the change in PWDAWHA from adjusting the SWE threshold by ± 2.5 centimeters. This 483 
sensitivity was similar to the average threshold sensitivity from the 36-year reanalysis record (Fig. S21b). However, 484 
multiple years exhibited unique sensitivities. For example, spring snowfall between 1 May and 6 May 2001 (Fig. 9, 485 
middle row) caused PWDAWHA to both increase and decrease over the range of date thresholds (assuming a 486 
constant SWE threshold). Therefore, PWDAWHA changed based on whether the threshold date was before, during, 487 
or after the May snowfall event, buffering the degree to which thresholded denning habitat estimates wereas 488 
influenced by the specific winter meteorological conditions that occurred in that year. This effect also occurred in 489 
2015, when 15 May fell between two spring snowfall events (Fig. 9, bottom row). As a result, PWDAWHA tended 490 
to increase, on average, over the range of threshold dates, resulting in heightened sensitivities to the date on which 491 
denning opportunitieshabitat was were evaluated. These spring snowfall events had large impacts on 15 May 492 
PWDA, but are unlikely to accurately represent the habitat opportunities and stresses that wolverine were subject to 493 
in that year. This demonstrates the dangers of thresholds applied on static dates, and suggest that metrics over 494 
multiple dates (e.g., number of May days exceeding a SWE threshold) and across sequences of years could be more 495 
accurate representations of snow refugia. Overall, WHA varied by as much 82% between the realistic thresholds 496 
shown in Fig. 9. This was similar in magnitude to the differences in WHA between years with opposing winter 497 
climate anomalies (Fig. 6c and 6d).  498 
Overall, PWDAWHA varied by as much 82% between the realistic thresholds shown in Fig. 9. This was similar in 499 
magnitude to the differences in PWDAWHA between years with opposing winter climate anomalies (Fig. 6c and 500 
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6d). Across the years evaluated in this studyIn most years, the sensitivities to the thresholds were largest for the 501 
D480 simulation, and smallest for the S480 simulation (Fig. 9 and Fig. S21b). As discussed in Sect. 5.1, the S480 502 
discretization, which represented subgrid snow distribution and fractional changes to DFHF with changes to the 503 
SWE threshold and threshold date, had less sensitivity to interannual changes in meteorological conditions. 504 
Similarly, small changes in the SWE threshold and threshold date changed the prevalence of snow habitat snow that 505 
exceeded the static threshold for discrete grid cells by larger amounts than the S480 discretization. This suggests that 506 
studies with subgrid representations of snow heterogeneity may decrease the overall sensitivity to SWE and date 507 
thresholds. uncertainties. 508 
5.3. Threshold caveats and future suggestions 509 
The D90 and S480 discretizations provided unique, but different advantages for estimating PWDAWHA. We 510 
believe that the upper-elevation decreases in D90 SWE and denning habitat on steep and unvegetated surfaces were 511 
realistic. These results were contrary to the findings from Barsugli et al. (2020), who in the same domain, found that 512 
finer-scale physically-based simulations resulted in net increases in wolverine denning opportunitieshabitat. 513 
However, this analysis used a joint model and observation-based approach (Sect. 2) that may have implicitly 514 
represented decreased snow retention and/or snow sloughing better than the physically based models used by 515 
Barsugli et al. (2020). The discretization with subgrid snow heterogeneity (S480), which is not as commonly used, 516 
had less-dramatic swings in total habitatPWDA with changes in annual winter climatic conditions (Fig. 6) and 517 
thresholds (Fig. 9). We therefore think that subgrid representations of snow may beare important for habitat 518 
assessments, especially given that snow deposits suitable for denning at scales of 10 m or less sometimes may occur 519 
in regions with otherwise little snow (Magoun et al., 2017).  520 
The results of this study suggest that uncertainties provided from combinations of multiple discretizations, applied 521 
across a range of realistic thresholds, would be more informative than a single discretization and set of thresholds. 522 
For instance, SWE volume on 15 May 2015 was 10% less than the 36-year median 15 May SWE volume. However, 523 
due to spring snowfall (Fig. 9), SWE volume on 30 May 2015 was 31% greater than the 36-year median on the same 524 
date. The static 15 May threshold date thereby failed to capture the boost to wolverine habitat provided by snowfall 525 
a few days after 15 May. Multiple discretizations could also be used to identify the locations of most (e.g., Fig. 4a 526 
and 4d) and least-certain (Fig. 4b and 4c) opportunities for denning habitathabitat. This information could be used as 527 
the basis for identifying the locations where remote sensing or field campaigns could hone annual estimates of 528 
refugiumhabitat, given that year’s meteorological conditions. Altogether, differences across discretizations (e.g., 529 
Fig. 6) and threshold sensitivities (e.g., Fig. 9) could also be used to provide uncertainty bounds for PWDAWHA 530 
calculated in any given year. 531 
Our results show that caution is warranted when combining gridded data and static thresholds. While we focus on 532 
the impact that thresholds and different snow spatial discretizations have on approximations of wolverine denning 533 
opportunitieswolverine habitat, we expect these results to be applicable to other environmental applications. For 534 
instance, while temperature thresholds are widely used to partition rain and snow precipitation in models, 535 
temperature discretized at different spatial scales could influence the spatial variability of temperature and resulting 536 
snowfall volume thresholded across one or many snowfall events (e.g., Jennings et al., 2018; Nolin and Daly, 2006; 537 
Wayand et al., 2017). Snow cover thresholded using visible and infrared satellite observations may also require 538 
changes based on the size of the satellite pixels and the underlying topographic and vegetative characteristics (Härer 539 
et al., 2018; Pestana et al., 2019). Future studies should report the extent to which different spatial discretizations 540 
and ranges of realistic thresholds influence results. This information could be used to report the 1) uncertainty of 541 
thresholded outputs, 2) fidelity of different gridded products, and 3) the degree to which multiple spatial 542 
discretizations could be combined to improve the fidelity and transferability of results. 543 
6. Conclusions 544 
Potential wWolverine denninghabitable area (PWDA)(WHA) was thresholded using a published SWE threshold 545 
(0.20 m) on a threshold date (15 May) in a Colorado Rocky Mountain domain between 1985 and 2020. Results 546 
showed that PWDAWHA was statistically different (p < 0.01) between years with different winter precipitation 547 
magnitude (wet versus dry) and precipitation temperature (cold versus warm) conditionsanomalies. In fact, climate-548 
driven differences in annual PWDA WHA were substantially larger than differences in PWDAWHA between snow 549 
discretized using 1) discrete 480 m grid cells, 2) 480 m grid cells with subgrid representations of SWE 550 
heterogeneity, and 3) discrete 90 m grid cells. Therefore, studies that assess changes in total habitathabitat health for 551 
species like wolverines with past and future changes in climate could be informative, regardless of the spatial 552 
discretizations tested.  553 
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Despite the sensitivity to winter climatic conditions, annual differences in spatial habitatdenning patterns and 554 
parameter sensitivities emerged for the different discretizations. For instance, 90 m grid cells resolved thinner snow 555 
deposits in mid-to-upper elevations (approximately 3050 – 3350 m) that were not resolved by either of the 480 m 556 
discretizations, decreasing PWDA WHA by 10%, on average. Snow discretized with subgrid representations of 557 
SWE spatial heterogeneity also had less-dramatic swings in annual PWDA wolverine habitat. The simulations with 558 
subgrid SWE heterogeneity increased snow habitat PWDA by 10 – 30% in low-snow years, many of which were 559 
representative of future changes in average temperature expected over the next 50 years. Spatially, the differences in 560 
wolverine habitatthe prevalence of SWE that exceeded the threshold between the three different snow discretizations 561 
were heightened at the grid cells that had SWE values close to the SWE threshold (0.20 m) on 15 May, the elevation 562 
of which was driven in large part by the winter climatic conditions. On average, wolverine habitatPWDA was 18% 563 
more sensitive to the SWE threshold than the date threshold, but had the smallest amount of sensitivity to the 480 m 564 
simulation with subgrid snow heterogeneity, which allowed forhad more gradual changes to the fraction of a region 565 
exceeding the SWE thresholdwolverine habitat with small changes in SWE. This discretization also had the least 566 
amount of habitat sensitivity to interannual changes in winter climatic conditions. However, some years had late-567 
spring snowfall events, altering the amount of wolverine habitatPWDA by up to 82% depending on whether the 568 
threshold date was before, during, or after the snowfall event. 569 
Our results show that differences in how snow is spatially discretized can influence information generalized using 570 
thresholds. Therefore, future studies thresholding spatiotemporal environmental data should include multiple spatial 571 
discretizations and ranges of realistic thresholds to provide a more comprehensive picture of uncertainties associated 572 
with chosen thresholds and datasets. Although we used wolverine habitat as an example, we expect these results to 573 
be applicable to any study thresholding environmental data, especially for studies generalizing information at spatial 574 
scales finer than those of modeled or observed resolutions.  575 
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