
The ICON-A model for direct QBO simulations on GPUs (version
icon-cscs:baf28a514)
Marco A. Giorgetta1, William Sawyer2, Xavier Lapillonne3, Panagiotis Adamidis4, Dmitry Alexeev5,
Valentin Clément6, Remo Dietlicher3, Jan Frederik Engels4, Monika Esch1, Henning Franke1, 12,
Claudia Frauen4, Walter M. Hannah7, Benjamin R. Hillman8, Luis Kornblueh1, Philippe Marti6,
Matthew R. Norman9, Robert Pincus10, Sebastian Rast1, Daniel Reinert11, Reiner Schnur1,
Uwe Schulzweida1, and Bjorn Stevens1

1Max-Planck-Institut für Meteorologie, Hamburg, Germany
2Centro Svizzero di Calcolo Scientifico, Lugano, Switzerland
3Bundesamt für Meteorologie und Klimatologie MeteoSchweiz, Zürich-Flughafen, Switzerland
4Deutsches Klimarechenzentrum, Hamburg, Germany
5NVIDIA, Zürich, Switzerland
6Center for Climate Systems Modeling, ETH, Zürich, Switzerland
7Lawrence Livermore National Laboratory, Livermore, USA
8Sandia National Laboratories, Albuquerque, USA
9Oak Ridge National Laboratory, Oak Ridge, USA
10Lamont-Doherty Earth Observatory, Columbia University, Palisades, USA
11Deutscher Wetterdienst, Offenbach, Germany
12International Max Planck Research School on Earth System Modelling, Hamburg, Germany

Correspondence: Marco Giorgetta (marco.giorgetta@mpimet.mpg.de)

Abstract. Classical numerical models for the global atmosphere, as used for numerical weather forecasting or climate research,

have been developed for conventional central processing unit (CPU) architectures. This now hinders the employment of such

models on current top performing supercomputers, which achieve their computing power with hybrid architectures, mostly

using graphics processing units (GPUs). Thus also scientific applications of such models are restricted to the lesser computer

power of CPUs. Here we present the development of a GPU enabled version of the ICON atmosphere model (ICON-A)5

motivated by a research project on the quasi-biennial oscillation (QBO), a global scale wind oscillation in the equatorial

stratosphere that depends on a broad spectrum of atmospheric waves, which origins from tropical deep convection. Resolving

the relevant scales, from a few
::::::::
kilometers

:
to the size of the globe, is a formidable computational problem, which can only

be realized now on top performing supercomputers. This motivated porting ICON-A, in the specific configuration needed for

the research project, in a first step to the GPU architecture of the Piz Daint computer at the Swiss National Supercomputing10

Centre, and in a second step to the Juwels-Booster computer at the Forschungszentrum Jülich. On Piz Daint the ported code

achieves a single node GPU vs. CPU speed-up factor of 6.3
:::
6.4, and now allows global experiments at a horizontal resolution

of 5 km on 1024 computing nodes with 1 GPU per node with a turnover of 48 simulated days per day. On Juwels-Booster

the more modern hardware in combination with an upgraded code base allows for simulations at the same resolution on 128

computing nodes with 4 GPUs per node and a turnover of 133 simulated days per day. Additionally, the code still remains15

functional on CPUs as it is demonstrated by additional experiments on the Levante compute system at the German Climate

1

Computing Center. While the application shows good weak scaling
:::
over

:::
the

:::::
tested

:::::::
16-fold

::::::
increase

::
in
::::
grid

::::
size

:::
and

::::
node

::::::
count,

making also higher resolved global simulations possible, the strong scaling on GPUs is relatively weak
::::
poor, which limits the

options to increase turnover with more nodes. Initial experiments demonstrate that the ICON-A model can simulate downward

propagating QBO jets, which are driven by wave meanflow interaction.20

1 Introduction

Numerical weather prediction (NWP) and climate research make use of numerical models which solve discretized equations

for fluid dynamics on the globe. For NWP and many research applications the resolution is chosen as high as possible for

the available computing resources. Higher resolution allows to explicitly compute atmospheric processes over a larger range

of scales, and thus to compute more faithfully the dynamics of the global atmosphere. Examples of small scale features,25

which are relevant for NWP or climate research are cumulus clouds, gravity waves generated by orographic obstacles and

convective clouds, or turbulent motions in the boundary layer. The advantages of higher resolution, however comes at higher

costs and especially longer time-to-solution, which practically limits the maximum resolution that can be afforded in specific

applications. In climate research most global simulations of the atmospheric circulations still use resolutions of a few tens of

kilometers to about 200 km for simulations over decades to centuries. But the most ambitious global simulations now reach30

already resolutions of ca. 5 km, which means that basic structures of tropical deep convection can be computed explicitly.

Such simulations are still the exception and limited to short time periods, owing to the slow turnover in terms of simulated

time per wall clock time unit. A specific reason for the limitation of such simulations in resolution or simulated time is that

the computing codes of these numerical models have been developed and optimized for conventional central processing unit

(CPU) architectures, while the most advanced and powerful computer systems employ now hybrid architectures with graphics35

processing units (GPUs). Thus the most powerful computing systems are effectively out of reach for most existing computing

codes for numerical weather prediction and climate research.

This holds also for the ICON model system, which has been developed since the early 2000s for use on either cache based or

vectorizing CPUs, with components for atmosphere, land and ocean. The build up of the hybrid Piz Daint compute system at

the Swiss National Supercomputing Centre, however, created a strong motivation to port the ICON model to GPUs in order to40

benefit from the immense compute power of Piz Daint resulting from up to 5704 GPUs. With this motivation it was decided to

port the atmospheric component of ICON (ICON-A) in two specific configurations to GPUs so that the development effort can

be limited initially to a subset of the ICON codes. The model configuration in the focus of the presented work was designed for

the Quasi-biennial oscillation in a changing climate (QUBICC) project, for which global simulations at horizontal resolutions

of 5 km or better and vertical resolutions of a few hundred meters up to the middle stratosphere are planned to investigate the45

dynamics of the quasi-biennial oscillation (QBO), a global scale zonal wind oscillation in the equatorial stratosphere. Using

this very high resolution is essential for the QUBICC project so that the dynamical links from small scale and quickly evolving

tropical deep convection to the global scale and slowly varying wind system of the QBO can be directly computed. This makes

a substantial difference to existing simulations of the QBO in coarser models, where deep convection and the related gravity

2

wave effects must be parameterized. The uncertainty in the parameterization of convection and gravity waves, as necessary in50

coarser models, is the main reason for problems in simulating the QBO (??).

Until now only a few attempts have been made to port general circulation models for the atmosphere or the ocean to

GPUs, using different methods. ? presented an early attempt, in which only the most costly part of the NICAM model, the

two-dimensional dynamics, was ported to GPUs, for which these parts were re-programmed in CUDA Fortran. ? ported the

COSMO5 limited area model to GPUs by using directives and by re-writing the dynamical core from Fortran to C++ and55

employing the STELLA domain specific language. Similarly ? ported their LICOM3 model by rewriting the code in the time

loop from Fortran to C and further to HIP. In the case of the NIM weather model, ?, however, decided to work with directives

only so that the same code can be used on CPU, GPU and Many Integrated Core (MIC) processors.
:::::
Other

::::::
models

::::
have

::::::
partial

::::
GPU

::::::::::::::
implementations,

::::
such

:::
as

:::::
WRF,

:
?
:
,
::
in

::::::::
CUDA-C

:::
and

::::::
MPAS,

::
?,

::::
with

::::::::::
OpenACC. In our attempt, after initial steps described

later, it was decided to stay with the standard ICON Fortran code wherever possible and thus to work with directives, so that60

ICON-A works on CPUs and GPUs.
::
In

:::
the

::::
CPU

::::
case

:::::::::::
applications

::::
shall

::::::::
continue

::
to

:::
use

:::
the

:::::::
proven

::::::::::::
parallelization

::
by

:::::
MPI

::::::
domain

::::::::::::
decomposition

::::::
mixed

::::
with

::::::::
OpenMP

:::::::::::::
multi-threading,

:::::
while

:::
in

:::
the

::::
GPU

::::
case

::::::::::::
parallelization

::::::
should

::::
now

::::::::
combine

:::
the

::::
MPI

::::::
domain

::::::::::::
decomposition

::::
with

:::::::::
OpenACC

:::::::::
directives

::
for

:::
the

::::::::::::
parallelization

:::
on

:::
the

:::::
GPU.

:::::::::
OpenACC

:::
was

::::::
chosen

:::::::
because

::::
this

:::
was

:::
the

:::::
only

:::::::
practical

::::::
option

:::
on

:::
the

:::::
GPU

:::::::
compute

:::::::
systems

:::::
used

::
in

:::
the

:::::::::
presented

:::::
work

:::
and

:::::::::
described

::::::
below.

::::::::::
Specifically

:::::::
OpenMP

:::::::
version

:
5
::::
was

:::
not

::::::::
available

:::
on

::::
these

::::::::
systems.

:::::::::::
Consequently

::::
the

:::::::
resulting

::::::
ICON

::::
code

::::::::
presented

::::
here

::::::::
includes

::::
now65

:::::::
OpenMP

::::
and

::::::::
OpenACC

:::::::::
directives.

:

In the following we present the model configuration for QUBICC experiments, for which the ICON-A model has been

ported to GPUs (Sect. ??), the relevant characteristics of the compute systems Piz Daint, Juwels-Booster and Levante used

in this study (Sect. ??), the methods used for porting ICON codes to GPUs (Sect. ??), the validation methods used to detect

porting errors (Sect. ??), the results from benchmarking on the three compute systems (Sect. ??), selected results from first70

QUBICC experiments (Sect. ??), and the conclusions.

2 Model configuration for QUBICC experiments

The QUBICC experiments make use of very high resolution grids, on which dynamics and transport are explicitly solved.

This means that only a small number of processes needs to be parameterized in comparison to the low resolution simulations

presented by ?. This reduced physics package, which we call the Sapphire physics, comprises parameterizations for radiation,75

vertical turbulent diffusion, and cloud microphysics in the atmosphere, and land surface physics,
::
as
:::::::
detailed

::
in

::::::
section

:::
??. Thus

the model components to be ported to GPU include dynamics, transport, the aforementioned physics parameterizations, and

additionally the essential infrastructure components for memory and communication. The following subsections provide more

details on the model grids defining the resolution and the components computed on these grids.

3

2.1 Horizontal grid80

The horizontal resolution needs to be high enough to allow the explicit simulation of tropical deep convection, and at the

same time simulation costs must be limited to realistic amounts, as every doubling of the horizontal resolution multiplies the

computing costs by a factor of 8, resulting from a factor 2 for each horizontal dimension and a factor 2 for the necessary

shortening of the time step. From earlier work made with ICON-A it is understood that ∆x= 5km is the smallest resolution,

for which deep convection is simulated in an acceptable manner (?), and for which realistic gravity wave spectra related to85

the resolved convection can be diagnosed (??). As any substantial increase in horizontal resolution is considered to exceed the

expected compute time budget, a horizontal mean resolution of ∆x= 5km is used, as available on the R2B9 grid of the ICON

model, see Table 1 in ?. The specific ICON grid-id is 0015, referring to a north-south symmetric grid, which results from a 36

degree longitudinal rotation of the southern hemispheric part of the ICON grid after the initial R2 root bisection of the spherical

icosahedron. (Older setups as in ? did not yet use the rotation step for a north-south symmetric grid.)90

2.2 Vertical grid

The vertical grid of the ICON-A model is defined by a generalized smooth-level vertical coordinate (?) formulated in geometric

height above the reference ellipsoid, which is assumed to be a sphere. At the height of 22.5 km the model levels transition

to levels of constant height, which are as well levels of constant geopotential. For the QUBICC experiments a vertical grid is

chosen that has 191 levels between the surface and the model top at a height of 83km. This vertical extension and resolution is95

chosen as a compromise between a number of factors:

– A high vertical resolution is needed to represent the dynamics of vertically propagating waves, considering waves which

can be resolved horizontally. The resolution should also be sufficient in the shear layers of the QBO, where the Doppler

shifting shortens the vertical wave lengths of upward propagating waves with phase speeds similar to the velocity of the

meanflow in the shear layer. Typically a vertical resolution of a few hundred meters is wanted.100

– The vertical extent of the model should be high enough to allow the simulation of the QBO in the tropical stratosphere

without direct numerical impacts from the layers near the model top, where numerical damping is necessary to avoid

numerical artifacts. In practice the ICON model uses the upper boundary condition of zero vertical wind, w = 0, and

applies a Rayleigh damping on the vertical wind (?). This damping starts above a given minimum height from where it

is applied up to the top of the model, using a tanh vertical scaling function changing from 0 at the minimum height to105

1 at the top of the model (?). Based on experience the depth of the damped layer should be ca. 30 km. Combining this

with the stratopause height of ca. 50 km, a top height of ca. 80 km is needed.

– A further constraint is the physical validity of the model formulation. The key limitation consists in the radiation scheme

RTE+RRTMGP, which is developed and validated for conditions of local thermal equilibrium (LTE) between the vibra-

tional levels of the molecules involved in radiative transitions and the surrounding medium. This limits the application110

of this radiation scheme to levels below atmospheric pressures of 0.01 hPahPa. The atmospheric pressure of 0.01 hPa

4

hPa corresponds to a height of ca. 80 km with a few km variation depending on season, latitude and weather. Other

complications existing at higher altitudes, beside non-LTE, are strong tides, and processes which are not represented in

the model as for instance atmospheric chemistry and effects from the ionized atmosphere. Such complication shall be

avoided in the targeted model setup.115

– Computational cost increases approximately linearly with the number of layers. Thus less layers would allow more or

longer simulations at the same costs.

As a compromise a vertical grid is chosen that has 191 levels between the surface and the model top at a height of 83 km. The

first layer above the surface has a constant thickness of 40 m. Between this layer and a height of 22.5 km the height of the model

levels and thus the layer thicknesses vary following the implemented smooth-level algorithm. Above 22.5 km all remaining120

model levels are levels of constant height. The resulting profile of layer thickness versus layer height is shown in Fig. ?? for

a surface point at sea level (black
:::
blue

::::::
profile) and the highest surface point on the R2B9 grid, which is in the Himalayas and

has a height of 7368 m
:::
(red

:::::::
profile). Thus the vertical resolution ranges from 300 m at 12 km, near the tropopause, to 600 m

at 50 km height near the stratopause. Over high terrain, however, a relatively strong change in vertical resolution appears near

13 km height, which unfortunately cannot be avoided with the existing implementation of the smooth level algorithm.125

2.3 Dynamics

For the QUBICC experiments the time step is adjusted to the higher resolution in the horizontal and vertical grids: dt= 40s =

5 ·dtdyn, where dtdyn is the time step of the substeps used in the dynamical core. The model time step dt is thus slightly

shorter than the 45 s time step used for the same horizontal resolution in ?. The reason is the increased vertical resolution

which imposes narrower limits for stability in the vertical tracer transport.130

2.4 Tracer transport

The QUBICC experiments include a total of 6 tracers for water vapor, cloud water, cloud ice, rain, snow and graupel. This

enlarged set of tracers compared to ? is related to the more detailed cloud microphysics scheme that predicts also rain, snow

and graupel, see below. For efficiency reasons the transport of hydrometeors, i.e. cloud water, cloud ice, rain, snow and graupel,

is limited to heights below 22.5 km, assuming that none of these hydrometeors exist in the vicinity of this stratospheric height135

level and above. Concerning the configuration of the transport scheme, the horizontal advection for water vapor has been

changed from a combination of a semi-Lagrangian flux form and a third order Miura scheme with sub-cycling to a second

order Miura scheme with sub-cycling. The choice of the simpler scheme is related to the difficulty of a GPU implementation

for a semi-Lagrangian flux form scheme, as discussed later. (The GPU port of this scheme is currently ongoing.) Sub-cycling

means that the integration from time step n to n+1 is split into 3 sub-steps to meet the stability requirements. This sub-cycling140

is applied only above 22.5 km height, i.e. in the stratosphere and mesosphere where strong winds exist. The other tracers,

the hydrometeors, are also transported with the second order Miura scheme, though without sub-cycling because they are not

transported above 22.5 km.

5

Figure 1. Level height vs. layer thickness from the surface to the model top for a surface height of 0 m over ocean (blue), and for the highest

surface point of the R2B9 grid at 7368 m at 87°6’45” E / 27°55’52” N in the Himalayas (red). The lowermost layer has a constant thickness

of 40 m, thus is centered at 20 m height above the surface. The uppermost layer is centered at 82361 m and has an upper bound at 83000 m.

At heights above 22500 m, the vertical resolution profile is independent of the surface height.

2.5 Physics

The QUBICC experiments make use of the Sapphire physics package for storm resolving simulations. This package deviates145

from the ECHAM based physics package described in ? in a number of points. First of all the physics package excludes pa-

rameterizations for convection, atmospheric and orographic gravity waves and other sub-grid scale orographic effects. These

processes are mostly resolved, though not completely, at the grid resolutions used in QUBICC experiments. Further the scien-

tific goal of the QUBICC experiments consist in the investigation of the QBO forcing based on the resolved dynamics of deep

convective clouds and related waves, which can be granted by excluding parameterized representations of these processes. As150

a result the Sapphire physics package is considerably smaller and the model structurally simplified.

6

The atmospheric processes which still require parameterizations are radiation, the vertical diffusion related to unresolved

eddies, and the cloud microphysics. Additionally land processes must be parameterized for the interactive representation of the

lower atmospheric boundary conditions over land.

2.5.1 Radiation155

From the beginning of the GPU port it was clear that the radiation code was a special challenge due to its additional dimension in

spectral space that resolves the shortwave and longwave spectra. Further, initial work on the original PSRAD radiation scheme

(?) showed that a substantial refactoring would have been necessary for a well performing GPU version of PSRAD, with

uncertain outcome. Therefore the decision was taken to replace PSRAD by the new RTE+RRTMGP radiation code (?), which

was designed from the beginning to work efficiently on CPUs and GPUs, with separate code kernels for each architecture. Thus160

the ICON code for QUBICC employs now the RTE+RRTMGP code. From a modeling point of view RTE+RRTMGP employs

the same spectral discretization methods as PSRAD, namely the k-distribution method and the correlated-k approximation.

Differences exist however in using absorption coefficients from more recent spectroscopic data in RTE+RRTMGP, and in

the number and distribution of discretization points, so-called g-points, in the SW and LW spectra. While PSRAD used 252

g-points (140 in the longwave spectral region and 112 in the shortwave), RTE+RRTMGP versions on Piz Daint and Juwels-165

Booster use 480 (256 LW + 224 SW) and 240 (128 LW + 112 SW) g-points, respectively. Scattering of longwave radiation by

cloud particles is not activated in RTE+RRTMGP, so that also in this aspect it is equivalent to the older PSRAD scheme.

As the calculations for the radiative transfer remain the most expensive portion of the model system, a reduced calling

frequency, as common in climate and numerical weather prediction models, remains necessary. For QUBICC experiments the

radiation time step is set to ∆trad = 12min = 18 ·dt, thus a bit shorter and more frequent than in the simulations of ? where170

∆trad = 15min = 20 ·dt was used.

Concerning the atmospheric composition the radiative transfer depends on prognostic fields for water vapor, cloud water,

and cloud ice, and on externally specified time dependent greenhouse gas concentrations for CO2, CH4, N2O, CFC11, and

CFC12, and O3, as prepared for the historical simulations of CMIP6 (?).

In the spirit of allowing only explicitly modeled scales, all tracers used in radiation are assumed to be homogeneous within175

each cell. Thus no parameterized effect of cloud inhomogeneities on the optical path of cloud water and cloud ice is applied in

the QUBICC simulations.

Further, rain, snow and graupel concentrations are neglected in the radiative transfer, and for practical reasons no aerosol

forcing has been used in the initial experiments.

2.5.2 Vertical diffusion180

For the representation of the vertical turbulent diffusion of heat, momentum and tracers the same total turbulent energy param-

eterization of ? is used, again implicitly coupled to the land surface scheme, see below.

7

2.5.3 Land surface physics

Land processes in ICON-A are described by the JSBACH land surface model which provides the lower boundary conditions

for the atmosphere and is implicitly coupled to the atmospheric vertical diffusion parameterization. The infrastructure, ICON-185

Land, for this ICON-A land component has been newly designed in a Fortran2008 object-oriented, modular and flexible way.

The specific implementations of physical, biogeophysical and biogeochemical processes constituting the JSBACH model have

been ported from the JSBACH version used with the MPIESM/ECHAM modeling framework (??).

For the experiments described in this study, JSBACH has been used in a simplified configuration that uses only the physical

processes and in which the sub-grid scale heterogeneity of the land surface properties in each grid box is described by lakes,190

glaciers and only one single vegetated tile, as in ICON-A (?).

2.5.4 Cloud microphysics

Cloud microphysics is parameterized by the "graupel" microphysics scheme (?, Sect. 5.2 and 5.3), which is a single moment

microphysics scheme for water vapor, cloud water, cloud ice, rain, snow and graupel. All hydrometeors are also transported.

For efficiency reasons the computation of cloud microphysics and the transport of cloud tracers are limited to heights below195

22.5 km height.

2.5.5 Cloud cover

In the spirit of allowing only explicitly modeled scales, it is assumed that all fields controlling cloud condensation and thus

cloud cover are homogeneous in each cell. Thus the instantaneous cloud cover in a cell is diagnosed as either 0 or 1 hundred

percent, depending on the cloud condensate mass fraction exceeding a threshold value of 10−6kg/kg. Total cloud cover in a200

column thus is either 0 or 1 hundred percent.

2.6 Coupling of processes

The coupling of the processes described above, the transformations between dynamics variables and physics variables, as well

as the time integration follow closely the setup described in Sect. 3 of ?, also using the simplified case of their Equation 8, for

which the scheme is displayed in Fig. ??. However, a difference with respect to ? consists in the coupling between the physical205

parameterizations and is shown in Figure ??. The coupling scheme applied in our study couples radiation, vertical diffusion

with surface land physics, and cloud microphysics sequentially instead of using a mixed coupling scheme (cf. Fig. 6 of ?).

3 The compute systems

In this section the compute systems used for the presented work are described briefly, with Piz Daint at the Swiss National

Supercomputing Centre (CSCS) being the main system where the GPU port of ICON was developed and experiments have210

been carried out during the first year of a PRACE allocation. The second year PRACE allocation was shifted to Juwels-Booster

8

D
1

D
1 D

1
D

1 D
1

A P

D
2

M

vn, θv, ρ

tracers q
j

P

X

F
o
r
c
i
n
g

t t+∆t

t t+∆t

F

F

Figure 2. The model operator M propagates the model state X from time t to t+dt, with X consisting of the variables vn,θv and ρ, which

are processed by the dynamics, and tracer mass fractions qi, which are processed by the advection scheme A. The dynamics consists of a

sequence of 5 sub-steps (D1), each propagating the dynamics variables by dt/5, followed by horizontal diffusion (D2). The intermediate

state resulting from dynamics and advection (A) is used for the computation of the forcing, which is applied in the physics update (P) that

produces the new state X(t+dt).

rad

cld

Y
0

vdf&sfc

Y
1

Y
2

Y
3

Y(t)

Y(t+dt)

Figure 3. The forcing consists of three sequentially coupled components for radiative heating (rad), vertical diffusion (vdf) coupled implicitly

to land surface processes (sfc), and cloud microphysics (cld). Each component computes its contribution to the forcing from a provisional

state Y expressed in the physics variables T,m,qi,u and v.

9

at the Forschungszentrum Jülich (FZJ), where the GPU port of ICON was further optimized followed by new scaling tests

and experiments. Last but not least the same code was used also for additional scaling tests on the new Levante computer

at the German Climate Computing Center (DKRZ), which is a CPU architecture, thus demonstrating the portability across a

number of platforms. The maximum sustained throughput Rmax from the HPL (high-performance linpack) benchmarks are215

used to normalize the performance across the machines. Because ICON is often memory bandwidth limited the HPCG (high

performance conjugate gradient) benchmarks would be a more informative norm, however these are not available for Levante.

3.1 The compute system Piz Daint at CSCS

The main work of porting ICON to GPUs including extensive testing, benchmarking, and performing the first set of experiments

for the QUBICC project was carried out on the Piz Daint computer at CSCS. Piz Daint is a hybrid Cray XC40/XC50 system220

with 5704 XC50 nodes and 1813 XC40 dual-socket CPU nodes (?) with a linpack performance of Rmax = 21.2PFlop/s (?).

The work presented here is targeting the XC50 nodes of the machine, which contain an Intel Xeon E5-2690 v3 CPU with 12

cores and 64 GB memory and a NVIDIA Tesla P100 GPU with 16 GB memory.

The main software used for compiling the ICON code is the PGI/NVIDIA compiler, which on Piz Daint is currently the only

option for using OpenACC directives in a large Fortran code like ICON that makes use of Fortran 2003 constructs. Software225

versions of essential packages used from Piz Daint for building the ICON executable are listed in Table ??.

Table 1. System software used for compiling ICON on Piz Daint, Juwels-Booster, and Levante.

Software Piz Daint Juwels-Booster Levante

Compiler pgi/20.1.1 pgi/21.5 intel/2022.0.1

MPI communication cray-mpich/7.7.16 OpenMPI/4.1.1 OpenMPI/4.1.2

CUDA Toolkit cudatoolkit/11.0.2 CUDA/11.3 -

NetCDF cray-netcdf/4.7.4.0 netCDF/4.7.4 netcdf-c/4.8.1,

netcdf-fortran/4.5.3

HDF5 cray-hdf5/1.12.0.0 HDF5/1.10.6 HDF5/1.12.1

3.2 The compute system Juwels-Booster at FZJ

After the first version of ICON-A for GPUs was working on Piz Daint, the newer Juwels-Booster system at FZJ became

available. This led to a second version of the ICON GPU code, with model improvements and further optimizations of the

GPU parallelization, both benefiting the computational performance of the model.230

The Juwels-Booster system at FZJ comprises 936 nodes, each with 2 AMD EPYC Rome CPUs and 256 GB memory

per CPU, and 4 NVIDIA A100 GPUs with 40 GB memory per GPU (?). The maximum linpack sustained performance of

10

this system is 44.1 PFlop/s (?). The main software used for compiling the ICON code on Juwels-Booster is also shown in

Table ??. Also here the PGIcompiler
::::::::
/NVIDIA

:::::::
compiler

::::
with

:::::::::
OpenACC

:
is the only option to use the model on GPUs.

3.3 The compute system Levante at DKRZ235

The third compute system used for scaling tests is the new CPU system Levante at DKRZ, which is the main provider of

computing resources for MPI-M and other climate research institutes in Germany. Levante is used here to demonstrate the

portability of the code developed for GPU machines back to CPUs.

The Levante system entered service in March 2022 consisting of a CPU partition with 2832 nodes, each with 2 AMD EPYC

Milan x86 processors. A GPU partition with 60 GPU nodes, each with 4 NVIDIA A100 GPUs is presently being installed.240

The 2520 standard CPU nodes have 128 GB memory per CPU, while others have more memory (?). When fully operational

Levante is expected to have a LINPACK Rmax = 9.7 PFlop/s. Benchmarks during the installation phase of Levante Levante

arrived at a LINPACK Rmax of 7 PFlop on 2048 CPU nodes (?). The software used for compiling is listed in Table ??.

4 Porting ICON to GPUs

4.1 General porting strategy245

On current supercomputer architectures, GPU and CPU have separate memories, and the transfer of data between the two goes

via a slow connection compared to the direct access of the local memory of each device. When considering the port of an

application to GPU, the key decision is which part can be run on CPU or GPU, so that data transfer between them can be

minimized. Since the compute intensity, i.e., ratio of floating point operations to memory load, of typical computation patterns

in weather and climate models is low, it becomes clear that all computations occurring during the time loop need to be ported250

to the GPU to avoid data transfers within it.

ICON-A inherently operates on three-dimensional domains: the horizontal is covered with a space-filling curve, which is

::::::::::
decomposed

::::
first

:::::::
between

:::
the

::::
MPI

:::::::::
porcesses

:::
and

:::::
then,

:::::
within

:::::
each

:::::::
domain, split up into nblocks blocks of arbitrary size

nproma in order to offer flexibility for a variety of processors. The vertical levels form the other dimension of size nlev. Most,

but not all, of the underlying arrays have the index order (nproma, nlev, nblocks), possibly with additional dimensions of255

limited size.

The basic idea of the GPU port is to introduce the OpenACC PARALLEL LOOP statements around all the loops that operate

on the grid data. We identify the following main approaches to improve the performance of such approach:

– employing structured data regions spanning multiple kernels to avoid any unnecessary CPU-GPU data transfers for the

automatic arrays;260

– collapsing horizontal and vertical loops where possible to increase the available parallelism;

– fusing adjacent similar loops when possible by writing an embracing PARALLEL region with multiple loops using LOOP

GANG(static:1) VECTOR;

11

– using ASYNC clause to minimize the launch latency;

– "scalarization", i.e., using scalar temporary variables instead of nproma-sized arrays where possible;265

– restructuring and rewriting a few loops that are not directly amenable to efficient porting, for example, using CLAW, see

Section ??.

In the GPU port of ICON we assume that nproma is chosen as large as possible, ideally such that all cell grid points of a

computational domain including first and second level halo points fit into a single block thus yielding nblocks= 1. Therefore

the nproma dimension is in general the main direction of parallelism. Considering the data layout with nproma, with unit270

stride in memory, this needs to be associated with the "vector" OpenACC keyword to ensure coalesced memory access.

4.2 GPU memory

Due to the 16 GB memory limitation on the P100 GPUs of Piz Daint, it was crucial to limit the allocation of ICON data

structures on the GPU. To this end, OpenACC’s selective deep copy was used, in which all relevant arrays are allocated only

if needed and then copied individually to the GPU just before the main time loop. At its end, the data types
::::::::
structures are275

deleted on GPU, because all subsequently required data have been updated on the host within the loop. The selective deep copy

required a new Fortran module mo_nonhydro_gpu_types, which is inactive for CPU compilation.

Within the time loop all calculation (Dynamics, Physics) is performed on the device, except for minor computation whose

results (at most one-dimensional arrays) can be copied to the device with minimal overhead with UPDATE(DEVICE) clauses.

ICON uses an unstructured grid formulation, meaning that accesses to cell, edge and vertex neighbors go through indexing280

arrays, i.e., indirect addressing. Therefore, within the time loop all graph information also has to reside on the device memory.

4.3 Porting the dynamical core

The ICON non-hydrostatic dynamical core algorithms have been extensively documented in ?. In this section, the dynamical

core, or "dycore", is defined as (1) the non-hydrostatic solver, (2) advection, (3) diffusion, and finally (4) all infrastructure

called by these — not necessarily exclusively — such as communication, as well as interpolations, divergence, gradient and285

other stencil computations.

Only the accelerator implementation of the dynamical core is discussed in this section. The validation of the accelerator

execution, which actually took much longer than the implementation, is discussed in Sect. ??.

4.3.1 Non-hydrostatic solver

In a preliminary phase, OpenCL and CUDAFortran versions of a prototype non-hydrostatic dycore were created as a proof of290

concept. ICON developers were not willing to include these paradigms into their code base and insisted on an implementation

with only compiler directives.

This methodology was explored first in the ICON dycore and the underlying infrastructure was ported to GPUs using

OpenACC directives. These improvements were also incorporated into the ICON development code base, and this work was

12

documented in ?. In this dycore version, kernels operated on the full three-dimensional (nproma, nlev, nblocks) domain,295

in other words over three nested DO loops. Due to this approach, the optimal block size nproma was in the range 500-2000.

However, this approach turned out to be a considerable limitation: in the physical parameterizations the loop over all blocks

is many subroutine levels above the loops over the block and the levels. Although it is in theory possible to construct OpenACC

parallel region with a complex and deep subroutine call tree, it proves in practice not to be a viable approach with the available

OpenACC compilers (PGI and Cray). In order to avoid a complex programming technique, it was decided to refactor the300

dynamical core to parallelize only over the two inner dimensions, nproma and nlev, when possible, see Listing ??. With this

approach the optimal nproma is chosen as large as possible, i.e., having effectively one block per MPI subdomain and thus a

single iteration in the jb loop in Listing ??.

Listing 1. Most common loop structure in dynamical core with asynchronous execution.
DO j b = i _ s t a r t b l k , i _ e n d b l k

305

CALL g e t _ i n d i c e s _ c (p_pa tch , jb , i _ s t a r t b l k , i _ e n d b l k , &

i _ s t a r t i d x , i _ e n d i d x , r l _ s t a r t , r l _ e n d)

!$ACC PARALLEL IF (i_am_a cce l_nod e .AND. acc_on) DEFAULT(NONE) ASYNC(1)

!$ACC LOOP GANG VECTOR COLLAPSE (2)310

DO j k = 1 , n l e v

DO j c = i _ s t a r t i d x , i _ e n d i d x

:

ENDDO

ENDDO315

!$ACC END PARALLEL

:

ENDDO

Generally kernels are denoted with the ACC PARALLEL directive, which allows the user to be more prescriptive than the320

higher level descriptive ACC KERNELS directive, which is used in ICON only for operations using Fortran array syntax. Usage

of KERNELS for more complicated tasks tended to reduce performance.

There are code divergences
:::::::::
differences

:::::::
between

:::::
CPU

:::
and

:::::
GPU in the non-hydrostatic solver. On the accelerator it is advan-

tageous to use scalars within loops, while for the CPU frequently two-dimensional arrays perform better, see Listing ??.

Listing 2. Register variables outperform arrays on GPU. One of roughly 10 code divergences in the dynamical core
!$ACC PARALLEL IF (i_am_a cce l_nod e .AND. acc_on) DEFAULT(NONE) ASYNC(1)325

!$ACC LOOP GANG VECTOR COLLAPSE (2)

DO j k = n f l a t l e v (j g)+ 1 , n l e v

DO j c = i _ s t a r t i d x , i _ e n d i d x

! O r i g i n a l code had a d v a n t a g e s wi th o l d e r v e c t o r c o m p i l e r s ,

z_w_concorr_mc_m1 = & ! o r i g i n a l : z_w_concor r (j c , jk −1)330

p _ i n t%e _ b l n _ c _ s (j c , 1 , j b)* z_w_concorr_me (i e i d x (j c , jb , 1) , jk −1 , i e b l k (j c , jb , 1)) + &

13

p _ i n t%e _ b l n _ c _ s (j c , 2 , j b)* z_w_concorr_me (i e i d x (j c , jb , 2) , jk −1 , i e b l k (j c , jb , 2)) + &

p _ i n t%e _ b l n _ c _ s (j c , 3 , j b)* z_w_concorr_me (i e i d x (j c , jb , 3) , jk −1 , i e b l k (j c , jb , 3))

:

z_w_concorr_mc_m0 = & ! o r i g i n a l : z_w_concor r (j c , j k)335

p _ i n t%e _ b l n _ c _ s (j c , 1 , j b)* z_w_concorr_me (i e i d x (j c , jb , 1) , jk , i e b l k (j c , jb , 1)) + &

p _ i n t%e _ b l n _ c _ s (j c , 2 , j b)* z_w_concorr_me (i e i d x (j c , jb , 2) , jk , i e b l k (j c , jb , 2)) + &

p _ i n t%e _ b l n _ c _ s (j c , 3 , j b)* z_w_concorr_me (i e i d x (j c , jb , 3) , jk , i e b l k (j c , jb , 3))

p_nh%d i a g%w_concor r_c (j c , jk , j b) = &

p_nh%m e t r i c s%w g t f a c _ c (j c , jk , j b)* z_w_concorr_mc_m0 + &340

(1 . _vp − p_nh%m e t r i c s%w g t f a c _ c (j c , jk , j b)) * z_w_concorr_mc_m1

! O r i g i n a l : . . . * z_w_concor r (j c , jk −1) + (1 . _vp − p_nh%m e t r i c s%w g t f a c _ c (j c , jk , j b)) * z_w_concor r (j c , j k)

ENDDO

ENDDO

!$ACC END PARALLEL345

After extensive refactoring and optimizations, such as asynchronous kernel execution and strategically placed ACC WAIT

directives, the resulting dycore version performed at least as well on GPUs as the original GPU version with triple-nested

parallelism, with the former operating with nblocks= 1 or a very small integer, and thus the largest possible nproma. See

Sect. ?? for complete performance comparisons, in particular between CPU and GPU.

4.3.2 Transport schemes350

Transport schemes predict the large-scale redistribution of atmospheric tracers such as water substances, as in the model setup

used here, and chemical constituents or aerosols in the atmosphere due to air motion. Mathematically, advection solves one of

the fundamental laws of physics, namely the equation of tracer mass continuity.

In ICON transport, the numerical solution to the tracer mass continuity equation is based on so called space-time finite

volume methods (?). Finite volume methods are derived on the cell-integrated form of the underlying partial differential355

equation.

There are several different variants of horizontal and vertical advection, depending on whether the scheme is Eulerian or

semi-Lagrangian, what sort of reconstructions (second or third order) and which type of time-stepping is employed. All of

these variants ultimately can be considered stencil operations on a limited number of neighboring cells, i.e., physical quantities

defined in cell centers, vertices or edges. As such, the structure of the corresponding kernels is usually similar to Listing ??.360

In several parts of the code specific optimization, using so called index lists as shown in Listing ?? are used for better

performance on CPUs, in particular for vector machines. The advantage of an index list is that the subsequent calculation can

be limited only to the points which fulfill a certain criterion, which is generally quite rare, meaning the list is sparse and thus

quite small. In addition such an implementation avoids the use of if statements which makes it easier for compiler to auto-

vectorize this code section. For the GPU parallelization such index list implementation has unfortunately a negative impact on365

performance as the list creation is a sequential operation.

Listing 3. Index lists used in vertical flux calculation with reconstruction by the piece-wise parabolic method.

14

DO j c = i _ s t a r t i d x , i _ e n d i d x

! j k _ s h i f t e d must f a l l w i t h i n t h e r a n g e [top_bound , bot_bound] i n o r d e r

! t o p a s s t h e f o l l o w i n g i f c o n d i t i o n . U n f o r t u n a t e l y , t h e r a n g e depends on370

! t h e s i g n o f w.

:

IF (z_aux (j c) > p_ce l lmass_now (jc , j k _ s h i f t e d (j c , jk , j b) , j b) &

& .AND. j k _ s h i f t e d (j c , jk , j b) <= bot_bound &

& .AND. j k _ s h i f t e d (j c , jk , j b) >= s l e v p 1 _ t i) THEN375

:

! F i l l i n d e x l i s t s w i th t h o s e p o i n t s t h a t need i n d e x s h i f t s

! Note t h a t we have t o use a s c a l a r c o u n t e r i n s t e a d o f a v e c t o r , l i k e

! i _ l i s t d i m (n l i s t , j b) . O t h e r w i s e t h i s l oop w i l l n o t v e c t o r i z e .

c o u n t e r _ j i = c o u n t e r _ j i + 1380

i _ i n d l i s t (c o u n t e r _ j i , n l i s t , j b) = j c

i _ l e v l i s t (c o u n t e r _ j i , n l i s t , j b) = j k

:

ENDIF

385

END DO ! end loop ove r c e l l s

On an accelerator, numerous execution threads will be competing to increment counter_ji and insert indices into

i_indlist, i_levlist. We overcame this by using OpenACC atomics or parallel algorithms based on exclusive scan

techniques. However, in some cases the proper GPU algorithm is to operate over the full loop. The GPU executes both code

paths of the IF statement, only to throw the results of one path away. The algorithm for vflux_ppm4gpu is functionally390

equivalent (Listing ??).

Listing 4. Index list-free implementation adapted for accelerator execution.
!$ACC PARALLEL DEFAULT(NONE) PRESENT(z _ c f l) ASYNC(1) IF (i_am _acce l_n ode .AND. acc_on)

!$ACC LOOP GANG VECTOR PRIVATE (z_mass , j k s) COLLAPSE (2)

DO j k = s l e v p 1 _ t i , e l e v

DO j c = i _ s t a r t i d x , i _ e n d i d x395

z_mass = p_dt ime * p _ m f l x _ c o n t r a _ v (j c , jk , j b) ! t o t a l mass c r o s s i n g jk ’ t h edge

IF (z_mass > 0 . _wp) THEN

j k s = j k ! i n i t i a l i z e s h i f t e d i n d e x

DO WHILE((z_mass > p_ce l lmass_now (jc , j k s , j b)) .AND. (j k s <= nlev −1))

! u p d a t e Couran t number400

ENDDO

! now we add t h e f r a c t i o n a l Couran t number

z _ c f l (j c , jk , j b) = z _ c f l (j c , jk , j b) + MIN (1 . _wp , z_mass / p_ce l lmass_now (jc , j k s , j b))

ELSE

:405

! u p d a t e Couran t number

:

15

! now we add t h e f r a c t i o n a l Couran t number

z _ c f l (j c , jk , j b) = z _ c f l (j c , jk , j b) + MAX(−1 . _wp , z_mass / p_ce l lmass_now (jc , j k s , j b))

ENDIF410

ENDDO ! j c

ENDDO ! j k

Some horizontal advection schemes and their flux limiters require halo exchanges in order to make all points in the stencil

available on a given process. The communication routines are described in Sect. ??.

4.3.3 Non-hydrostatic diffusion415

The dynamical core contains several variants of horizontal diffusion. The default approach is a more physically motivated

second-order Smagorinsky diffusion of velocity and potential temperature combined with a fourth-order background diffusion

of velocity, using a different discretization for velocity that is formally second-order accurate on equilateral triangles.

Most of the horizontal diffusion contains kernels in the style of Listing ??, but again there are index lists for the normal CPU

calculation. Listing ?? illustrates how the index lists are avoided at the cost of a temporary 3-D array.420

Listing 5. The OpenACC version uses a temporary 3D array enh_diffu_3d defined in cell centers and a revised MAX statement on the

edge grid to avoid the construction of iclist/iklist from previous loop.
i f n d e f _OPENACC

DO j b = i _ s t a r t b l k , i _ e n d b l k

IF (i c o u n t (j b) > 0) THEN

DO i c = 1 , i c o u n t (j b)

j c = i c l i s t (i c , j b)425

j k = i k l i s t (i c , j b)

e n h _ d i f f u = t d l i s t (i c , j b) * 5 . e −4_vp

kh_smag_e (i e i d x (j c , jb , 1) , jk , i e b l k (j c , jb , 1)) = &

MAX(e n h _ d i f f u , kh_smag_e (i e i d x (j c , jb , 1) , jk , i e b l k (j c , jb , 1)))

kh_smag_e (i e i d x (j c , jb , 2) , jk , i e b l k (j c , jb , 2)) = &430

MAX(e n h _ d i f f u , kh_smag_e (i e i d x (j c , jb , 2) , jk , i e b l k (j c , jb , 2)))

kh_smag_e (i e i d x (j c , jb , 3) , jk , i e b l k (j c , jb , 3)) = &

MAX(e n h _ d i f f u , kh_smag_e (i e i d x (j c , jb , 3) , jk , i e b l k (j c , jb , 3)))

ENDDO

ENDIF435

ENDDO

e l s e

:

DO j b = i _ s t a r t b l k , i _ e n d b l k

CALL g e t _ i n d i c e s _ e (p_pa tch , jb , i _ s t a r t b l k , i _ e n d b l k , i _ s t a r t i d x , i _ e n d i d x , r l _ s t a r t , r l _ e n d)440

!$ACC PARALLEL LOOP DEFAULT(NONE) GANG VECTOR COLLAPSE (2) ASYNC(1) IF (i_a m_acce l_ node .AND. acc_on)

DO j k = nlev −1 , n l e v

DO j e = i _ s t a r t i d x , i _ e n d i d x

kh_smag_e (j e , jk , j b) = MAX(kh_smag_e (j e , jk , j b) , &

16

e n h _ d i f f u _ 3 d (i e c i d x (j e , jb , 1) , jk , i e c b l k (j e , jb , 1)) , &445

e n h _ d i f f u _ 3 d (i e c i d x (j e , jb , 2) , jk , i e c b l k (j e , jb , 2)))

ENDDO

ENDDO

!$ACC END PARALLEL LOOP

ENDDO450

e n d i f

4.3.4 Dynamical core infrastructure

The dynamical core also calls horizontal operators such as averaged divergence or cell-to-vertex interpolation. These operators,

along with numerous related stencil operations required in other parts of the model, were also ported with OpenACC. These

almost always adhere to the style of Listing ??, and are thus straightforward to port to OpenACC.455

Essentially all of the halo exchanges occur in the dynamical core, the horizontal flux calculation of advection, or in the

dynamics-physics interface. During the exchange, the surface of a vertical prism residing on a given process is written into the

halo surface of vertical prisms residing on its neighboring processes. Since these halo exchanges are performed within the time

loop, the halo regions are in device memory. Two mechanisms are provided
:::::::
available

:
to perform the exchange:

– Update the prism surface on the CPU, post the corresponding MPI_Isend, and Irecv with a temporary (host) buffer, and460

after the subsequent MPI_WAIT operation, update receive buffer on the device, and copy the buffer to the halo region

solely on the device.

– Pass GPU pointers to the same Isend and Irecv routines in a GPU-aware MPI implementation. The final copy to the halo

region is again performed on the device.

These two mechanisms illustrated in Listings ?? and ?? are easily woven together with logicals in the corresponding Ope-465

nACC IF clauses.

Listing 6. High level halo receive operation with optional GPU-to-GPU communication
!$ACC DATA CREATE(send_buf , r e c v _ b u f) PRESENT(recv , p _ p a t) IF (use_gpu)

IF (i o r d e r _ s e n d r e c v == 1 .OR. i o r d e r _ s e n d r e c v == 3) THEN

! S e t up i r e c v ’ s f o r r e c e i v e b u f f e r s470

DO np = 1 , p _ p a t%np_recv ! loop ove r PEs from where t o r e c e i v e t h e d a t a

p i d = p _ p a t%p e l i s t _ r e c v (np) ! ID of r e c e i v e r PE

i r s = p _ p a t%r e c v _ s t a r t i d x (np)

i c o u n t = p _ p a t%r e c v _ c o u n t (np)* ndim2475

CALL p _ i r e c v (r e c v _ b u f (1 , i r s) , p id , 1 , p_coun t = i c o u n t , comm= p _ p a t%comm , use_g2g = use_g2g)

ENDDO

ENDIF

:

17

CALL p_ wa i t480

!$ACC UPDATE DEVICE(r e c v _ b u f) IF (. NOT. use_g2g)

Listing 7. Implemention of p_irecv, which supports GPU-to-GPU communication
!$ACC HOST_DATA USE_DEVICE (t _ b u f f e r) IF (use_g2g)

CALL p _ i n c _ r e q u e s t

CALL m p i _ i r e c v (t _ b u f f e r , i c o u n t , p _ r e a l _ d p , p_source , p_ tag , &

p_comm , p _ r e q u e s t (p _ i r e q u e s t) , p _ e r r o r)485

!$ACC END HOST_DATA

4.4 Physical Parameterizations

The provision of the physical forcing for the time integration is organized in four levels. The first level, which is the dynamics

physics interface, transforms the provisional variable state X(t) that results from dynamics and transport (Fig. ??) to the physics

variable state Y that is the input for the physical parameterizations (Fig. ??). And on return from the physics the collected total490

tendencies from physics in Y variables are converted to tendencies in X variables for dynamics and computes the new dynamics

state X(t+dt). These tasks involve loops over blocks, levels and grid points as in dynamics. Their parallelization on the GPU

therefore follows the pattern used in the dynamics codes, see Listing ??.

At the second level the physics main routine calls the physical parameterizations of the Sapphire configuration in the se-

quence shown in Fig. ?? by use of a generic subroutine. This routine contains the block loop from which a parameterization495

interface, as specified by argument, is called for each single data block. Thus the computation below this level concerns only

the nproma dimension over cells and the nlev dimension over levels, and in some cases extra dimensions for instance for

tracers or surface tiles. This second level contains only OpenMP directives for the parallelization of the block loop, but not

OpenACC directives because the parallelization on GPUs is employed only within data blocks.

The third level consists of the interfaces to the specfic
::::::
specific

:
parameterizations. These interfaces provide the access to500

the global memory for the parameterizations by USE access to memory modules. The equivalent variables in GPU memory,

which have been created before and updated where necessary, are now declared as present either for individual variables,

as for instance the 3-dimensional atmospheric temperature ta and the 4-dimensional array qtrc for tracer mass fractions

in$ACC DATA PRESENT(field%ta, field%qtrc). This practice was followed in the code used on Piz Daint. The

newer code on Juwels-Booster instead declares the entire variable construct as present instead of its components, like$ACC505

DATA PRESENT(field). Beside the memory access these interfaces use the output of the parameterization for computing

the provisional physics state for the next parameterization in the sequentially coupled physics, and for accumulating the contri-

bution of the parameterizaion
::::::::::::::
parameterization tendencies in the total physics tendencies. These tasks typically require loops

over the nproma and nlev dimension, but sometimes also over additional dimensions like tracers. The typical loop structure

follows Listing ??.510

Listing 8. Most common loop structure over levels jk and cells jc in parameterizations and their interfaces.
!$ACC PARALLEL DEFAULT(NONE) ASYNC(1)

18

!$ACC LOOP GANG VECTOR COLLAPSE (2)

DO j k = 1 , n l e v

DO j c = j c s , j c e

:515

END DO

END DO

!$ACC END PARALLEL

Particular attention is paid to the
::::::
bit-wise

:
reproducibility of sums, as for instance for vertical integrals of tracer masses

computed in some of these interfaces in loops over the vertical dimension. Here the !$ACC LOOP SEQ directive is employed520

to fix the order of the summands.
:::
This

::::::::
bit-wise

::::::::::::
reproducibility

::
is
:::::::::
important

::
in

:::
the

::::::
model

:::::::::::
development

:::::::
process

:::::::
because

::
it

::::::::
facilitates

:::
the

::::::::
detection

::
of

:::::::::
unexpected

:::::::
changes

::
of

::::::
model

::::::
results,

::
as

::::::
further

::::::::
discussed

::
in
:::::
Sect.

:::
??.

Finally, the forth level exists in the parameterizations. The parameterizations used here are inherently one dimensional, as

they couple levels by vertical fluxes. This would allow to encode them for single columns, but for traditional optimization

reasons, these codes include a horizontal loop dimension, which in ICON is the nproma dimension. Therefore these parame-525

terizations include this additional loop beside those required for the parameterization itself, and hence the GPU parallelization

in general follows the pattern in Listing ??. Subsequently some parameterization specific modifications for the GPU paral-

lelization are pointed out.

4.4.1 Radiation

As pointed out earlier, the GPU implementation aims at using maximum block sizes, so that all grid points and levels within530

a computational domain fit into a single block, and hence a single iteration of the block loop suffices. Using large block sizes,

however, means also that more memory is required to store the local arrays, which is a challenge especially on Piz Daint

with the small GPU memory capacity. This problem turned out to be most pronounced for the radiation code, owing to the

extra spectral dimension. On Piz Daint this meant that a single block per domain would not have been feasible. This issue was

resolved by allowing for a sub-blocking parameter rrtmgp_column_chunk (rcc) in the radiation code, so that the original535

blocks of size nproma are broken up into smaller data blocks for input and output of the radiation scheme. This radiation block

size can be specified as necessary and is typically ca. 5% to 10% of npromawhen using the smallest possible number of nodes.

But, at the largest node counts during strong scaling as shown in the experiments below, nproma can become small enough

so that no sub-blocking in the radiation is needed and rcc is set to the number of grid points in the computational domain.

As explained in ?, RTE+RRTMGP comprises a set of user-facing code, written in object-oriented Fortran 2008, which is540

responsible for flow control, input validation, etc. Computational tasks are performed by computational kernels using assumed-

size arrays with C bindings to facilitate language interoperability. For use on GPUs a separate set of kernels was implemented

in Fortran using OpenACC directives, with refactoring to increase parallelism at the cost of increased memory use relative to

the original CPU kernels. The Fortran classes also required the addition of OpenACC data directives to avoid unnecessary data

flows between CPU and GPU.545

19

RTE+RRTMGP, like ICON, operates on sets of columns whose fastest-varying dimension is set by the user and whose

second-fastest varying dimension is the vertical coordinate. Low-level CPU kernels are written as loops over these two di-

mensions, with higher-level kernels passing results between low-level kernels while looping over the slowest-varying spectral

dimension. This approach, illustrated in Listing ??, keeps memory use modest and facilitates the reuse of cached data. Low-

level GPU kernels, in contrast, operate on all three dimensions at once. When the calculation is parallelizable in all dimen-550

sions (i.e where values at every spatial and spectral location are independent) the parallelization is over all rcc×nlev(=

191)×ngpt(=O(125)) elements at once. Some loops have dependencies in the vertical; for these the GPU kernels are par-

allelized over the column and spectral point, with the vertical loop performed sequentially within each horizontal and spectral

loop (see Listing ??).

Listing 9. Example loop structure for CPU kernels in RTE+RRTMGP. High level kernels operate on all levels and columns in the block but

only one spectral point (g-point) at a time. In this example the loop over g-points is performed at one higher calling level.
!555

! Element − wise loop f o r f u l l y i n d e p e n d e n t c a l c u l a t i o n s

!

do i l a y = 1 , n l a y

do i c o l = 1 , n c o l

t a u _ s = t a u (i c o l , i l a y)560

! I n t e r m e d i a t e c o m p u t a t i o n

. . .

s o u r c e _ u p (i c o l , i l a y) = Rd i r * d i r _ f l u x _ i n c (i c o l)

end do

end do565

!

! V e r t i c a l l y − d e p e n d e n t loop (e . g . f o r r a d i a t i o n t r a n s p o r t)

!

do i l e v = nlay , 1 , −1570

denom = 1 . _wp / (1 . _wp − r d i f (: , i l e v)* a l b e d o (: , i l e v + 1)) ! Eq 10

a l b e d o (: , i l e v) = r d i f (: , i l e v) + &

t d i f (: , i l e v)* t d i f (: , i l e v) * a l b e d o (: , i l e v +1) * denom ! E q u a t i o n 9

. . .

end do575

Listing 10. Example loop structure for GPU kernels in RTE+RRTMGP. For the GPUs kernels operate on all levels, columns, and spectral

points at once, expect where dependencies in the vertical require the vertical loop to be done sequentially.
! $acc p a r a l l e l l oop c o l l a p s e (3)

do i g p t = 1 , ngp t

do i l a y = 1 , n l a y

do i c o l = 1 , n c o l

t a u _ s = t a u (i c o l , i l a y , i g p t)580

! I n t e r m e d i a t e c o m p u t a t i o n

20

. . .

s o u r c e _ u p (i c o l , i l a y , i g p t) = Rd i r * d i r _ f l u x _ i n c (i c o l , i g p t)

end do

end do585

end do

!

! V e r t i c a l l y − d e p e n d e n t loop (e . g . f o r r a d i a t i o n t r a n s p o r t)590

!

! $acc p a r a l l e l l oop gang v e c t o r c o l l a p s e (2)

! $omp t a r g e t teams d i s t r i b u t e p a r a l l e l do simd c o l l a p s e (2)

! Note loop ove r l e v e l s i s pe r fo rmed s e q u e n t i a l l y

do i g p t = 1 , ng p t595

do i c o l = 1 , n c o l

do i l e v = nlay , 1 , −1

denom (i c o l , i l e v , i g p t) = 1 . _wp / (1 . _wp − r d i f (i c o l , i l e v , i g p t)* a l b e d o (i c o l , i l e v +1 , i g p t)) ! Eq 10

a l b e d o (i c o l , i l e v , i g p t) = r d i f (i c o l , i l e v , i g p t) + &

t d i f (i c o l , i l e v , i g p t)* t d i f (i c o l , i l e v , i g p t) * &600

a l b e d o (i c o l , i l e v +1 , i g p t) * denom (i c o l , i l e v , i g p t) ! Eq 9

. . .

end do

end do

end do605

Most sets of kernels in RTE+RRTMGP now contain two separate implementations organized in distinct directories with

identical interfaces and file naming. A few sets of kernels (e.g. those related to summing over spectral points to produce

broadband fluxes) were simple enough to support the addition of OpenACC directives into the CPU code.

Though the original plan was to restrict OpenACC directives to the kernels themselves it became clear that the Fortran class

front ends contain enough data management and small pieces of computation that they, too, required OpenACC directives, both610

to keep all computations on the GPU and to allow the sharing of data from high level kernels (for example, to reuse interpolation

coefficients for the computation of absorption and scattering coefficients by gases). The classes therefore have been revised

such that communication with the CPU is not required if all the data used by the radiation parameterization (temperatures, gas

concentrations, hydrometeor sizes and concentrations, etc.) already exists on the GPU.

4.4.2 Land surface physics615

One of the design goals of the new ICON-Land infrastructure has been to make it easy for domain scientists to implement the

scientific routines for a specific land model configuration, such as JSBACH. Except for the (lateral) river routing of runoff, all

processes in JSBACH operate on each horizontal grid cell independently, either 2-D or 3-D with an additional third dimension

such as soil layers, and therefore don’t require detailed knowledge of the memory layout or horizontal grid information.

21

To further simplify the implementation, the 2-D routines are formulated as Fortran elemental subroutines or functions thus620

abstracting away the field dimensions of variables and loops iterating over the horizontal dimension. As intermediate layer

between the infrastructure and these scientific routines JSBACH uses interface routines which are responsible for accessing

variable pointers from the memory and calling the core (elemental) calculation routines. These interfaces make extensive use

of Fortran array notation.

Instead of re-factoring large parts of JSBACH to use explicit ACC directives and loops and thus hampering the usability for625

domain scientists, the CLAW (?) source-to-source translator has been used for the GPU port. CLAW consists of a domain-

specific language (DSL) and a compiler allowing it to automate the port to OpenACC with much fewer directives and changes

to the model code than are necessary with pure ACC. For example, blocks of statements in the interface routines using array

notation can simply be enclosed by !$claw expand parallel and !$claw end expand directives and are then

automatically expanded into ACC directives and loops.630

The elemental routines discussed above are transformed into ACC code by using an additional CLAW feature: the CLAW

Single Column Abstraction (SCA) (?). The CLAW SCA has been specifically introduced in CLAW to address performance

portability for physical parameterizations in weather and climate models which operate on horizontally independent columns.

Using the CLAW SCA translator, the only changes necessary in the original Fortran code of JSBACH were to

– prepend the call to an elemental routine by the CLAW directive !$claw sca forward,635

– insert !$claw model-data and !$claw end model-data around the declaration of scalar parameters in the

elemental routine that need to be expanded and looped over,

– insert a !$claw sca directive in the beginning of the statement body of the elemental routine.

The CLAW SCA transformation then automatically discards the ELEMENTAL and PURE specifiers from the routine, expands

the flagged parameters to the memory layout specified in a configuration file and inserts ACC directives and loops over the640

respective dimensions.

More details on the CLAW port of JSBACH including code examples and performance measurements for the radiation

component of JSBACH can be found in ?.

4.4.3 Cloud microphysics

Cloud microphysical processes are computed in three sequential steps: (1) saturation adjustment for local condensation or645

evaporation, (2) the microphysics between the different hydrometeors and the vertical fluxes of rain, snow and graupel, and

(3) again saturation adjustment for local condensation or evaporation. Here the code for the saturation adjustment exist in a

CPU and GPU variant, selected by a compiler directive. The CPU code sets up one dimensional lists of grid and level indices,

where the adjustment requires Newton iterations, while the GPU code uses a logical 2 dimensional mask with nproma and

nlev dimensions for the same purpose. The CPU code then loops over the cells stored in the index lists while the GPU code650

employs a two-dimensional loop structure in which computations happen only for the cells selected by the mask. Beside the

22

different means to restrict the computations to the necessary cells, the CPU code is also optimized for vectorizing CPUs, which

is the reason that the loop over the list occurs within the condition for ending the Newton iteration cycles, while the GPU code

checks this within the parallelized loops. The related code fragments are shown in Listing ?? and Listing ?? .

Listing 11. Code structure for saturation adjustment on CPU, making use of 1d-lists iwrk for the grid index and kwrk for the level index

of cells where the adjustment needs to be computed iteratively.
c o u n t = 0655

DO WHILE (ANY(ABS(twork (1 : n s a t) − t w o r k o l d (1 : n s a t)) > t o l) .AND. c o u n t < m a x i t e r)

DO indx = 1 , n s a t

:

IF (ABS(twork (indx) − t w o r k o l d (indx)) > t o l) THEN

! Here we s t i l l have t o i t e r a t e . . .660

i = iwrk (indx)

k = kwrk (indx)

t w o r k o l d (i ndx) = twork (indx)

:

twork (indx) = twork (indx) − . . .665

END IF

END DO

c o u n t = c o u n t + 1

END DO

Listing 12. Code structure for saturation adjustment on GPU, making use of a 2d-mask iwrk for the grid index and kwrk for the level index

of cells where the adjustment needs to be computed iteratively.
! $acc p a r a l l e l d e f a u l t (p r e s e n t)670

! $acc loop gang v e c t o r c o l l a p s e (2) p r i v a t e (. . . , c o u n t)

DO k = klo , kup

DO i = i l o , i u p

c o u n t = 0

DO WHILE (ABS(twork (i , k) − t w o r k o l d (i , k)) > t o l .AND. c o u n t < m a x i t e r .AND. i t e r _ m a s k (i , k))675

! Here we s t i l l have t o i t e r a t e . . .

t w o r k o l d (i , k) = twork (i , k)

:

twork (i , k) = twork (i , k) − . . .

c o u n t = c o u n t + 1680

END DO ! w h i l e

END DO ! i

END DO ! k

! $acc end p a r a l l e l

23

5 Validation685

The ICON development on CPU makes use of test suites comprising simplified test experiments for a variety of model config-

urations running on a number of compute systems using different compilers and parallelization setups. This includes the AMIP

experiment discussed in ?, but shortened to 4 time steps. The test suite for this experiment checks for reproducible results with

respect to changes of the blocking length, amount and kind of parallelization (MPI, OpenMP or both) as well as checks for

differences to stored reference solutions. This test suite was also implemented on Piz Daint, where the experiments have been690

run by pure CPU binaries as well as GPU-accelerated binaries. Output produced on these different architectures — even if

performed with IEEE arithmetic — will always produce slightly different results due to rounding. Therefore, above mentioned

tests for bit-identity cannot be used across different architectures. The problem is made worse by to the chaotic nature of

the underlying problem. These initially very small changes, which are on the order of floating point precision, quickly grow

across model components and timesteps which makes distinguishing implementation bugs from chaotically grown round-off695

differences a non-trivial task.

This central question of CPU vs. GPU code consistency was addressed in three ways, the “ptest” mode, by serializing the

model state before and after central components,
:
and tolerance tests of the model output.

::::::
Details

:::
for

::::
these

::::::::
methods

:::
are

:::::
given

::
in

:::
the

::::::::
following

:::::::::::
subsections. The first two methods are able to test a small fraction of the code in isolation where chaotic

growth of round-off differences is limited to the tested component and thus small. We found that tolerating relative errors700

up to differences of 10−12 with double precision floating point numbers (precision roughly at 10−15) did not result in many

false-positives (a requirement for continuous integration) while still detecting most bugs. Even though most of the code is

covered by such component tests, there is no guarantee that passing all these tests leads to correct model output. To ensure this,

a third method had to be implemented. This method came to be known as the "tolerance test" because tolerance ranges could

not be assumed constant but had to be estimated individually for each variable across all model components and over multiple705

time-steps. It should be emphasized that, while the introduction of directives took only weeks of work, the validation of proper

execution with the inevitable round-off differences between CPU and GPU execution took many months.

5.1 Testing with ptest mode

The pre-existing internal “ptest” mechanism in ICON allows the model to run sequentially on one process and in parallel on

the "compute processes" with comparisons of results at synchronization points, such as halo exchanges. This mechanism was710

extended for GPU execution with the addition of IF statements in kernel directives, so that the GPUs are active only on the com-

pute processes. Listing ?? illustrates all of the above-mentioned ideas. In particular, the global variable i_am_accel_node

is .TRUE. on all processes which are to execute on accelerators but .FALSE. on the worker node delegated for sequential

execution.

If the ptest mode is activated when a synchronization point is encountered, arrays calculated in a distributed fashion on the715

MPI compute processes are gathered and compared to the array calculated on the single sequential process. Synchronization

24

points can either be halo exchanges, or manually inserted check_patch_array invocations which can compare any arrays

in the standard 3-D ICON data layout.

While this method was very handy at the beginning of the effort to port the model to GPUs, especially for the dynamical core

of the model, extending it beyond the pre-existing mechanism turned out to be cumbersome. At the same time, the Serialbox720

library offered a very flexible way to achieve the same goal without running the same code on different hardware at the same

time.

5.2 Serialization

Besides the “ptest” technique mentioned two other approaches were used for the validation of GPU results. First the full model

code was used with test experiments, which typically use low resolution, just a few time steps, and only the component of725

interest. Examples are AMIP experiments on the R2B4 grid, as used in ?, but for 4 time steps only, with or without physics,

or with only a single parameterization. This approach has the advantage that the experiments can be compared to other related

experiments in the common way, based on output fields as well as the log files.

The second approach, the "serialization" method uses such experiments only to store all input and output variables of a

model component. Once this reference data is stored, the test binary (usually utilizing GPUs) reads the input data from file and730

calls the model component in exactly the same way as the reference binary (usually running exclusively on CPUs). The new

output is stored and compared to the previously generated reference data, for instance to check for identical results or for results

within defined tolerance limits due to round-off differences between pure CPU and GPU-accelerated binaries. This serialization

mechanism was implemented in ICON for all parameterizations (but not dynamics or transport, which were tested with the

technique mentioned in ??), which were ported to GPU, and was primarily used during the process of porting individual735

components to GPU. The advantage of this method is the fine test granularity that can be achieved by surrounding arbitrary

model components with the corresponding calls to the serialization library.

5.3 Tolerance testing

The methods discussed in the last two sections are valuable tools to locate sources of extraordinary model state divergence

(usually due to implementation bugs) as well as frequent testing during optimization and GPU code development. However,740

they do not guarantee the correctness of the model output. This problem is fundamentally different from component testing

because chaotic growth of initial round-off differences is not limited to a single component but quickly accumulates across all

model components and simulation timesteps. This section introduces a method to estimate this perturbation growth and how it

is used to accept or reject model state divergence between pure CPU and GPU-accelerated binaries.

The idea is to generate for each relevant test experiment on CPU an ensemble of solutions, which diverge due to tiny745

perturbations in the initial state. In practice the ensemble is created by perturbing the state variables conisting
::::::::
consisting

:
of

the vertical velocityw, normal velocities on cell edgesvn, the virtual potential temperature θv , the Exner function Π, and the

densityρ by uniformly distributed random numbers in the interval [-1e-14, 1e-14]. The resulting ensemble, which consist of

the unperturbed and 9 perturbed simulations, is used to define for each time step of the test the tolerance limits for all output

25

variables. In practice, we do not compute the tolerance limit for each gridpoint, but define a single value for each variable and750

timestep by applying different statistics across the horizontal dimension and selecting the largest value for each statistic across

the vertical dimension. The test is currently implemented using minimum, maximum and mean statistics in the horizontal.

This approach has proved to be effective to discard outliers. Applying the same procedure to the model output from the GPU-

accelerated binary allows to compare the test results with the pure CPU reference under the limits set by the perturbed CPU

ensemble. This method proved effective in highlighting divergences in the development of the GPU version of the ICON code755

over a small number of time steps.

6 Benchmarking Results

Once the GPU port of all components needed for the planned QUBICC experiments was completed, practical testing was

started with the first full experiment shortened to two simulation hours – a computational interval that proved to be sufficient to

provide robust results. For the technical setup it was found that a minimum of ca. 960 GPU nodes of Piz Daint was necessary760

for a QUBICC experiment. Because performance was affected when getting close to the limit, 1024 nodes was chosen for the

model integration. This number 1024 = 210 also has the advantage that it more easily facilitates estimates of scalings for factor

of two changes in node counts.
:::::::
Similarly

::
a
:::::::
minimal

:::::::
numbers

::
of

::::
128

:::::::
compute

:::::
nodes

::::
was

:::::::::
determined

:::
for

:
a
::::::::
QUBICC

::::::::::
experiment

::
on

:
Juwels-Booster

:::
and Levante

:
.

An additional small number of nodes was allocated for the asynchronous parallel output scheme. The number is chosen such765

that the output written hourly on Piz Daint and two-hourly on Juwels-Booster and Levante is faster than the integration of 90

or 180 time steps, respectively
:::
over

:::::
these

:::::
output

::::::::
intervals. As a result the execution time of the time loop of the simulation is

not affected by writing output. Only writing output at the end of the time loop adds additional time.

:::::
These

:::::
setups

:::::
were

::::
used

:::
for

::::
the

::::::
science

:::::::::::
experiments

::::::::
including

:::
the

::::::::::
experiment

::::::::
discussed

::
in

:::::::
section

::
??

:::
as

::::
well

::
as

:::::::
starting

:::::
points

:::
for

:::
the

::::::::::::
benchmarking

::::::::::
experiments.

:
770

6.1 Benchmarking experiments

The test experiment
::
for

::::::::::::
benchmarking

:
consists of precisely the configuration of dynamics, transport and physics as for the

intended QUBICC experiments. Only the horizontal grid size, the number of nodes, and parameters to optimize parallelization

were adjusted as needed for the benchmark tests. The length of the benchmark test is 180 time steps corresponding to 2 hours

simulated time, using the same 40 s time step in all tests. Hence to the extent the configuration should change for the scientific775

use of ICON on coarser grids ,

:::::
Three

:::::::
different

::::
grid

::::
sizes

:::
are

:::::
used

::
for

:::::::::::::
benchmarking.

:::::
First,

:::
for

:::::
single

::::
node

::::::
testing

:::
on Piz Daint

::::::
(section

::::
??)

:::
the

:::::
R2B4

::::
grid

:
is
:::::
used,

:::::::
because

::::
this

::::
grid

::
is

::::
1024

:::::
times

:::::::
smaller

::::
than

:::
the

:::::
R2B9

::::
grid

:::::
used

::
for

:::::::::::
experiments

:::::::
running

::
on

:::::
1024

:
Piz Daint

:::::
nodes.

::::::
Second,

:::
for

:::
the

::::::
strong

::::::
scaling

:::::::
analysis

:::
the

:::::
R2B7

::::
grid

::
is

:::::
used,

:::::
which

::
is

::
16

:::::
times

:::::::
smaller

::::
than

:::
the

:::::
R2B9

::::
grid.

:::::::::::
Accordingly

:::
the

:::::::
minimal

::::::
number

::
of
::::::

nodes
::::
used

:::
for

:::
the

:::::
strong

::::::
scaling

::::
tests

::
is
:::
16

:::::
times

::::::
smaller

::::
than

:::
for

:::
the

:::::
R2B9

:::::
setup

::::
used

::
in

::::::::::
experiments

:::
so780

:::
that

:::
this

:::::::
smallest

:::::
setup

::
is

:::::
again

::::::::::
comparable

::
in

:::::::
memory

::::::::::
consumption

:::
to

::
the

::::::
R2B9

::::
setup

:::
for

:::
the

:::::::::::
experiments,

:::
and

::::::
further

::
so

::::
that

26

:
at
:::::
least

:::
four

:::::
node

::::::::
doublings

:::
are

:::::::
possible

::::::
within

:::
the

:::::
limits

::
of

:::
the

::::::::
computer

:::::::::
allocations.

::::
The

:::::
actual

::::::
ranges

::
of

:::::::
compute

:::::
nodes

::::
ncn

::::
used

:::
for

::
the

::::::
strong

::::::
scaling

::::
tests

:::
for

:::
the

:::::
R2B7

::::
grid

::
on

:::
the

:::::
three

:::::::::
computers

:::
can

::
be

:::::
seen

::
in

:::::
Table

:::
??.

:::::
Third,

:::
for

:::
the

:::::
weak

::::::
scaling

::::::
analysis

:::
the

::::::
R2B9

:::
grid

::
is

::::
used

::
so

::::
that

::
it

:::
can

::
be

:::::::::
compared

::::
with

:::
the

:::::
R2B7

::::
tests

::::
with

::
16

:::::
times

:::::::
smaller

::::::
number

::
of

::::
grid

:::::
points

::::
and

:::::
nodes.

:
785

:::
The

:::::::::
allocations

:::
on Juwels-Booster

:::
and

:
Levante

::::::
allowed

::
to

:::
run

::::::::::
benchmark

::::
tests

::
for

:::
the

:::::
R2B9

::::
grid

::::
also

::
on

:::::
larger

::::
node

::::::::
numbers

::
so

:::
that

:::
the

::::::
strong

:::
and

:::::
weak

::::::
scaling

:::::
could

::::
also

::
be

::::::::
analyzed

:::
also

:::
for

::::::
higher

::::
node

::::::::
numbers,

::
as

::::::::
tabulated

::
in

:::::
Table

:::
??.

:

::::::
Among

:::
the

::::
three

:::::
grids

::::
used

::::
here,

::::
only

:::
the

::::::::::
benchmark

:::
test

::
on

:::
the

:::::::
original

::::::::
QUBICC

::::
grid

::::::
(R2B9)

:::
has

:
a
:::::::::
physically

::::::::::
meaningful

:::::::::::
configuration,

:::::
while

::::::::::
benchmark

::::
tests

::::
with

::::::
smaller

::::
grid

::::
sizes

:::
are

:::
not

:::::::::
configured

:::
for

::::::::::
meaningful

::::::::::
experiments.

::::::::
Timings

:::::::
reported

:::::
below

:::
for

:::::::::
benchmark

::::
tests

::
on

:::::::
smaller

:::
grid

::::
sizes

::::::::
therefore

::::::
should

:::
not

::
be

:::::::::
interpreted

::
as

:::::::
timings

::
for

::::::
ICON

::::::::::
experiments

:::::::::
configured790

::
for

::::
such

:::::::
reduced

::::::::::
resolutions,

:
e.g., through the introduction of additional processes or changes in time steps, the timings would

also change.

Two measures of scaling are introduced. Strong scaling Ss measures how much the time to solution
:::::::::::::
time-to-solution, Tf , is

increased for a fixed configuration with 2ncn computing nodes compared to one half of the time to solution
:::::::::::::
time-to-solution

with ncn nodes. Weak scaling Sw measures how much Tf increases for a two fold increase in the horizontal grid-size (with ngp795

grid points) balanced by a two-fold increase in the node count, ncn. These are calculated as

Ss ≡
Tf(ngp,ncn)/2

Tf(ngp,2ncn)
and Sw ≡ Tf(ngp,ncn)

Tf(2ngp,2ncn)
≈

(
Tf(ngp,ncn)

Tf(16ngp,16ncn)

)1/4

≡ (Sw,16)
1/4 (1)

respectively. Because global grids can more readily be configured with grid resolution changing in factors of 2 and conse-

quently ngp changing in multiplies of four, and to minimize the noise for the very good weak scaling, Sw is estimated through

experiments with a 4-fold increase in resolution and 16-fold increases in the computational mesh and node count. In the ideal800

case Ss and Ss would both be unity. Values less than 0.5
::
An

:::::
ideal

::::::
scaling

:::::
would

:::::
result

::
in
::::::::::::
Ss = Sw = 1,

:::::
while

:::::::
Ss < 0.5

::::::
would

indicate a detrimental effect of adding computational resources.

Values of Tf needed in calculating Ss and Sw are provided by the simulation log files. These time measurements, which

are part of the model infrastructure, are taken for the integration within the time loop that includes the computations for all

processes (dynamics, transport, radiation, cloud microphysics, vertical diffusion and land processes), as well as other operations805

required to combine the results from these components, to communicate between the domains of the parallelizations, to send

data to the output processes, etc. But for benchmarking we are mostly interested in the performance of the time loop integration

and the above-mentioned processes. The benchmarking should show that the GPU port provides a substantial speed-up on GPU

compared to CPU, and it should characterize the strong and weak scaling behavior of the ICON model on the compute systems

available in this study.810

Two model versions have been used in the benchmarking, as listed in Table ??. Version (1) resulted from the GPU-porting

on Piz Daint, and version (2) from the further developments made when porting to Juwels-Booster. This latter version was also

used on Levante.

27

Table 2. Model revisions and their usage.

#
:::::::
Computer

:
Revision Comments

(1) Piz Daint icon-cscs:7de52b43701a5f56b5f82c41f651a290edb3950c 480 g-points, clear-sky computation

(2) Juwels-Booster
:
, Levante icon-cscs:baf28a514c0f6d8143e1f4e2ebce7fe02bec479d 240 g-points, no clear-sky computation

6.2 Optimization parameters

The computational performance of benchmark experiments can be optimized by the choice of the blocking length nproma,815

the radiation sub-blocking length rcc, and the communication method. As discussed already in Sect. ??, the most important

point
::
for

::::::::
execution

:::
on

::::
GPU

:
is to have all data in a single block on each MPI domain,

::::
thus

::::::::
including

:::
the

::::
grid

:::::
points

:::
for

::::::
which

:::::::::::
computations

:::
are

::::::
needed

::
as

::::
well

::
as

:::
the

::::
halo

:::::
points

:::::::
needed

::
as

::::
input

:::
for

:::::::::
horizontal

:::::::::
operations

::
in

::::::::
dynamics

:::
and

::::::::
transport. At the

same time the GPU memory must be sufficient to store the local data given the (large) block size.

For Piz Daint the 1024 nodes setup for the R2B9 grid then has a nproma value of ca. 20000. Based on this the
:::::
21000.

::::
The820

single node benchmarking was made on
::::
uses

:
the R2B4 grid with 160 resolution that has

:
a
::::
total

:::
of 20480 cells .

::
and

::::::
hence

nproma
:
=
::::::
20480.

:
Strong scaling tests are based on a 64-times larger grid, the R2B7 grid with 20 resolution, using 64 to 1024

nodes. Thus the initial 64 node setup uses practically the same amount of memory per node as the small single node test, while

the largest setup has a
::
ca.

:
16 times smaller block size. The weak scaling tests consist of the same R2B7 setup on 64 nodes used

for strong scaling and the 16 times larger R2B9 setup on 1024 nodes, which is the size used for QUBICC experiments. This825

largest setup has therefore again a block size
:::::::
therefore

:::::
have

:::::::::
comparable

:::::
block

:::::
sizes of ca. 20000.

::::::
21000.

A second performance parameter consists in the size of the sub-blocking used for radiation, rcc,
:
which was introduced

to reduce the memory requirement of the radiation and thus to allow the usage of single blocks for all other components

of the model. For setups
::
on Piz Daint with nproma close to 20000

:::::
21000,

:
tests showed that the maximum length for the

sub-blocking rcc is 800.
:::
800

::::::
(Table

::::
??),

::::
thus

:::::::
splitting

::
a
::::
data

:::::
block

::::
into

::
26

::::::::::
sub-blocks

:::
for

:::
the

:::::::
radiation

::::::::::
calculation.

:
In the830

strong scaling series, where the
::
the

:::::::::
increasing

:::::::
number

::
of

:::::
nodes

:::::::
reduces

:::
the

:::
the

:
grid size per node is 16 times smaller at

:::
and

nproma
::::::::::
accordingly,

::::::
which

:::::
allows

:::
to

:::::::
increase rcc

:
.
::::
Only

:::
for

::::
512

:::::
nodes

::
it
:::::::
showed

:::
that

::::::
having

:::::::::::
rcc= 1280,

:::::
which

::::::::
amounts

::
to

:::
two

:::::::::
sub-blocks

:::
of

:::::
equal

::::
size,

:::
was

:::::
more

:::::::
efficient

::
to
::::::::

compute
:::
the

::::::::
radiation

::::
than

::::::
having

:
a
:::::::::
maximum

:::
rcc

::
of

:::
ca.

:::::
2000,

::::::
which

::::::
triggers

::::
two

:::::::
radiation

:::::
calls

::::
with

:::::
quite

::::::
unequal

::::::
block

::::
sizes

::
of

:::
ca.

:::::
2000

:::
and

:::::
560.

::::::
Finally,

:::
for

:
1024 nodes, for single blocks is

accordinglysmaller and thus the radiation sub-block sizecan be increased to 1280, so that
:::::::::
rcc= 1280

::::::
covers

:::
the

:::
full

::::
data

:::::
block835

::
so

:::
that

::
a

:::::
single

::::::::
radiation

:::
call

::
is

::::::::
sufficient,

:::
i.e.

:
no sub-blocking is needed when reaching 1024 nodes.Both blocking parameters

are compiled in Table ??.
::::::::::
sub-blocking

:::::
takes

:::::
place.

:

Further optimizations can be exploited in the communication. Choosing direct GPU to GPU communication instead of CPU

to CPU communication results in a speed-up of ca. 10% on Piz Daint. Unfortunately the GPU to GPU communication on Piz

Daint caused random crashes seemingly related to the MPICH implementation, and therefore all scaling tests and experiments840

28

on Piz Daint use the slower CPU communication. On Juwels-Booster no such problems were encountered so that the GPU to

GPU communication is used in all experiments.

On Juwels-Booster more GPU memory (160GB as compared to
::
is

:::::::
available

:::::::::
compared

::
to Piz Daint

::::::::
(160GB

::
vs. 16GB per

node)is available compared to . This allows scaling tests with the same R2B7 and R2B9 grids on a minimum of 8 and 128

nodes, respectively, with a blocking length nproma close to 42000 and a sub-blocking length starting at 5120. rcc
::::::
starting

::
at845

:::::
5120,

::
or

:
8
::::::::::
sub-blocks

::
of

:::::
equal

:::
size

::::
per

:::
data

::::::
block.

:
This larger sub-blocking length is possible not only because of the larger

GPU memory, but also because the newer ICON code that is used on Juwels-Booster has only half of the g-points of the gas

optics in the radiation, 240 instead of 480, which reduces the memory for local arrays
::
in

:::::::
radiation

:
accordingly. On Juwels-

Booster the strong scaling tests extend from 8 to 256 nodes, thus from 32 to 1024 GPUs. On the 128 and 256 nodessetups
::
64

:::
and

::::
more

::::::
nodes,

:
nproma is reduced to 2999 and 1589

::::
small

::::::
enough

::
to
:::
set

:
rcc

::
to

:::
the

:::
full

:::::::
number

::
of

:::
grid

::::::
points

::
in

:::
the

::::::
domain,850

which allows to compute the radiation scheme without sub-blocking. Further it should be pointed out that the reduction of the

number of g-points constitutes a major computational optimization by itself, as this reduces the computing costs of this process

by a factor 2 without physically significant effects on the overall results of the simulations.

On Levante, where no GPUs are used and the CPUs have a comparatively large memory, the best nproma is 32 for all grids

and number of nodes, and no sub-blocking is necessary for the radiation.
:
,
:::
i.e.

:::
also

:
rcc

::
is

::
32

:::
for

:::
all

:::::
cases. An additional opti-855

mization concerns the parallelization between MPI processes and OpenMP threads. In all tests on Levante we use 2 CPU/node

× 16 process/CPU × 4 thread/process = 128 thread/node.

6.3 Time-to-solution
:::::
Single

:::::
node

::::::::::::
CPU-to-GPU

::::::::
speed-up

:::
on Piz Daint

6.3.1 Single node GPU/CPU speed-up on

On Piz Daint the achievable speed-up of a small R2B4 model setup on a single GPU versus a single CPU was an important860

metric.
:::::
Single

::::
node

::::
tests

::::
give

::
a

::::
clear

::::::::
indication

::
of

:::
the

:::::::::::
performance

:::::::
speed-up

:::::::::
achievable

:::
on

:::::
GPUs

:::
vs.

:::::
CPUs

::::::
without

::::
side

::::::
effects

::::
from

::::::::::::
parallelization

:::::::
between

::::::
nodes. Only a speed-up clearly larger than two would be an improvement for a node hosting one

CPU and one GPU versus a node with two CPUs.
::
To

::::::
achieve

::::
this

::::
goal,

:::
the

::::::::
speed-up

::::
must

::
be

::::::::
favorable

:::::::::
especially

::
for

:::
the

::::::
model

::::::::::
components

:::::
which

::::::::
dominate

:::
the

:::::::::::::
time-to-solution

::
of
:::
the

::::::::::
integration.

:

Figure ?? shows the ratio of the computing time on GPU
::
??

::::::::
therefore

:::::
shows

::
in
:::::

panel
:::

(a)
:::
the

:::::::
relative

:::::
costs

::
of

:::
the

::::::
model865

::::::::::
components

:::
on

:::
the

:::::
GPU

::
as

::::::::::
percentage

::
of

::::
the

:::::::::::::
time-to-solution

:::
of

:::
the

::::::::::
integration

::
in

:::
the

:::::
time

:::::
loop,

::::
and

::
in

:::::
panel

:::
(b)

::::
the

:::::::::::
CPU-to-GPU

:::::::
speed-up

:::
for

:::
the

:::::::::
integration

:::
and

:::
the

::::::
model

::::::::::
components.

::::::::::
Concerning

:::
the

::::::
relative

::::
costs

::
it
::
is

::::
clear

:::
that

::::::::
dynamics

::::
and

:::::::
radiation

:::
are

:::
the

::::::::::
dominating

:::::::::::
components,

::::
each

:::::
taking

::::::::
between

::
30

:
and CPU for the major components of the test simulation.

The experiments show that
::
40

::
%.

::::
All

::::
other

::::::::::
components

::::::::
consume

:::
less

::::
than

:::
10

::
%

::
of

:::
the

:::::::::
integration

::::
time.

:::::
Also

::
the

::::::::::::
CPU-to-GPU

:::::::
speed-up

:::::
varies

::::::::
between

:::
the

::::::::::
components.

::::
The

::::::
highest

:::::
value

::
is

::::::::
achieved

::
by

::::::::
radiation:

::::
7.4,

:::
and

:::
the

::::::
lowest

:::
by

:::
the

::::
land

:::::::
scheme:870

:::
2.9.

:::
All

::::::::
together, the time to solution reduces by more than a factor of six. Among the different components, radiationshows

the greatest increase in throughput, which is
:::::::
speed-up

:::
of

:::
the

:::
full

:::::::::
integration

::
is
::::
6.4,

::
as

:
a
:::::
result

:::
of

:::
the

::::
high

::::::
scaling

::
of

:::
the

:::::
most

::::::::
expensive

::::::::::
components

:::
and

:::
the

::::
very

::::
low

::::
costs

:::
of

::
the

:::::::::::
components

::::
with

:
a
:::::
lower

::::::::
speed-up.

:

29

Table 3. Time-to-solution, Tf ; percent of time spent on dynamical solver (Dyn); strong and weak scaling, Ss and Sw respectively; and

temporal compression, τ, for experiments on Piz Daint, Juwels-Booster, and Levante with code version (Code) from Table ??, grid name,

number of grid points, ngp, number of computing nodes, ncn, and optimization parameters, nproma and rcc. Scaling values shown in bold

are used in the extrapolation for a 1 SYPD simulation at ca. 1 km resolution, see Sect. ??. The temporal compression is only shown for the

R2B9 setup, to which the chosen time-step (40 s) corresponds.

Code Grid ngp ncn nproma rcc Tf / s Dyn / % Ss Sw τ / SDPD

Piz Daint 1×P100 GPU per compute node

(1) R2B7 1310720 64 21464 800 132.8 35.5

(1) ” ” 128 10944 1200 73.43 38.9 0.904

(1) ” ” 256 5621 1600 49.77 38.7 0.738

(1) ” ” 512 2999 1280 37.18 38.9 0.669

(1) ” ” 1024 1589 1280 31.20 31.9 0.596

(1) R2B9 20971520 1024 21706 800 147.4 33.6 0.974 48.85

Juwels-Booster 4×A100 GPU per compute node

(2) R2B7 1310720 8 42338 5120 49.58 39.5

(2) ” ” 16 21464 ” 31.07 37.2 0.798

(2) ” ” 32 10944 10240 22.66 38.7 0.686

(2) ” ” 64 5621 5120 16.13 33.8 0.703

(2) ” ” 128 2999 2560 14.40 30.9 0.560

(2) ” ” 256 1589 1280 14.77 26.2 0.487

(2) R2B9 20971520 128 42690 4096 54.13 37.5 0.978 133.0

(2) ” ” 256 21706 5120 33.97 35.5 0.797 0.978 212.0

Levante 2×Milan CPU per compute node

(2) R2B7 1310720 8 32 32 484.3 46.5

(2) ” ” 16 ” ” 241.2 47.5 1.004

(2) ” ” 32 ” ” 118.6 48.6 1.017

(2) ” ” 64 ” ” 63.60 47.5 0.932

(2) ” ” 128 ” ” 34.46 44.7 0.923

(2) ” ” 256 ” ” 18.60 39.3 0.926

(2) ” ” 512 ” ” 11.14 34.3 0.835

(2) R2B9 20971520 128 ” ” 491.1 46.4 0.997 14.7

(2) ” ” 256 ” ” 249.7 46.8 0.984 0.991 28.8

(2) ” ” 512 ” ” 127.3 46.7 0.980 0.982 56.5

(2) ” ” 1024 ” ” 69.45 44.7 0.917 0.978 103.7

30

integrate dynamics transport land radiation cld microphys. vert. diff.
0

20

40

60

80

100

120

(a) Percentage of time-to-solution of components on GPU

20480 points, 191 levels, 180 time steps

tim
e(

co
m

p.
)/

tim
e(

in
te

gr
at

e)
 in

 %

integrate dynamics transport land radiation cld microphys. vert. diff.
0

1

2

3

4

5

6

7

8

(b) Single node CPU to GPU speed-up factor

20480 points, 191 levels, 180 time steps
tim

e
(C

P
U

)
/

tim
e

(G
P

U
)

Figure 4. Single node speed-up on GPU compared to CPU for
::
For

:
a small setup with 20480 grid points and 191 levels integrated over 180

time steps. :
:::
(a)

::::::::::::
Time-to-solution

:::
on

::::
GPU

::
of

:::
the

:::::
model

:::::::::
components

:::
as

::::::::
percentage

::
of

:::
the

::::
time

:::
for

::
the

:
"integrate" includes the full

::::
timer

:::
that

:::::::
measures

::
to

:::::
whole

:
time loop, which includes

:::
and

::
(b)

:
the main

::::::::::
CPU-to-GPU

:::::::
speed-up

:::
for

::
the

:::::
whole

::::
time

::::
loop

::
as

::::
well

::
as

:::
the

:::::
model

components"dynamics", "transport" and "atm.physics" and "land physics". "radiation" is the most costly component of "atm. physics".

:::
The

::::
high

::::::::
speed-up

::
of

::::::::
radiation

::
is

:
attributed to the higher computational intensity and more time invested in optimizations

as compared to other, less costly components. The land physics stands out for its poor performance, which is attributed to875

the very small GPU kernels, so that the launch time is often comparable to the compute time. But for the same reason (small

computational cost), this has little effect on the speed-up of the full model. The roughly 6.5
:::
6.4-fold speed-up of the code

::
of

:::
the

:::::
whole

:::::::::
integration

:
is considered satisfactory, given that the ICON model is bandwidth limited and the GPU bandwidth to CPU

bandwidth ratio on Piz Daint is of approximately the same order.

6.3.1 Load distribution among components880

6.4
::::::

Scaling

Full
::
On

::::
each

::::::::
compute

::::::
system

:::
the

:::::
R2B7

:::
and

::::::
R2B9

:::::
setups

:::
are

:::
run

:::
for

:::::::::
successive

::::::::
doublings

:::
of

::::
ncn, ::::::

starting
::::
from

:::
the

:::::::::
minimum

::::
value

:::
of

:::
ncn::::::::

(ncn,min)
::::
that

:::::::
satisfies

:::
the

:::::::
memory

:::::::::::
requirements

::
of

:::
the

:::::::
model,

:::
and

::::::::::
proceeding

::
to

:::
the

::::::
largest

:::
ncn:::

for
::::::
which

:::
we

::::
could

::::::
obtain

:::
an

:::::::::
allocation.

::::::::
Blocking

::::
sizes

:::
are

:::::::::
optimized

:::
for

::::
each

:::::
value

::
of

::::
ncn.::::

The
:::::::
smaller

:::::::
memory

:::::::::::
requirements

::
of

::::::
R2B7

31

::::
allow

::
it
::
to
:::

be
:::
run

::::
over

::
a
:::::
much

:::::
larger

:::::
range

:::
of

::::
ncn.

::
In

::::
each

::::
case

::::
the

:::
full

:
time-to-solution Tf for a fixed period of simulated885

time and resolution allows quantification of the relative costs of the main components, which can also help to guide future

optimization efforts. Tf for the time loop, i.e. for the “integrate" timer, are tabulated
::::::::
measured

:::
for

:::
the

:::::
model

::::::::::
integration

::
is

:::::::
provided

:
in Table ??, for different configurations. The time to solution .

::::
(The

::::::::::::::
time-to-solution per grid column and time step

can be calculated straightforwardly from these data as Ti = Tf/ngp/180.
:
)
::::
The

:::::
strong

::::
and

:::::
weak

::::::
scaling

::::::::::
parameters

:::
are

::::
then

::::::::
calculated

:::::
from

::
Tf:::

and
::::
Eq.

::::
(??).

::::
First

:::
we

::::::
discuss

:::
the

::::::
R2B7

::::::::::
benchmarks

:::::
made

::
for

:::
the

::::::
strong

::::::
scaling

::::::::
analysis,

:::::::
followed

:::
by

:::
the890

::::
weak

::::::
scaling

:::::::
analysis

:::::
based

:::
on

:::::
R2B7

:::
and

::::::
R2B9

::::::::::
benchmarks.

:

The

6.4.1
::::::::::::::
Time-to-solution

::::
and

::::::
strong

::::::
scaling

::
of

::::
the

:::::
model

::::::::::
integration

:::
The

:::
full

::::::::::::::
time-to-solution

::
Tf::::

and
:::
the

:::::::::
cumulative

:::::
strong

:::::::
scaling

::::::
Ss,cum ::

of
:::
the

:::::
model

:::::::::
integration

:::
on

:::
the

:::::
R2B7

::::
grid,

:::
as

::::::::
measured

::
by

:::
the

:::::::::
"integrate"

:::::
timer,

::::
are

::::::::
displayed

::
in

::::::
Figure

:::
??.

::::
The

:::::::::::::
time-to-solution

:::
for

:::
the

:::::::
smallest

::::::
setups

::::::
clearly

:::::
shows

::::
that

:::
the

:::::
GPU895

::::::::
machines

::::
allow

::
to

:::
get

:::::
more

::::::
quickly

::
to

:::
the

:::::::
solution

::::
than

:::
the

::::
CPU

::::::::
machine,

::::
when

:::::
small

::::
node

::::::::
numbers

:::
are

::::
used.

::::
And

::
as

::::::::
expected

::
the

:::::
more

::::::
modern

:
Juwels-Booster

:::::::
machine

::
is

::::
faster

::::
than

:::
the

:::::
older Piz Daint

:::::::
machine.

:::
The

::::::
benefit

::
of

:::::::::
repeatedly

:::::::
doubling

:::
the

:::::
GPU

::::
node

:::::
count

::::::::
decreases,

::
as
::::::
visible

::
in

:::
the

::::::::
flattening

::
of

:::
the

:::::::::::::
time-to-solution

:::::
series

:::
for

:
Piz Daint

:::
and

:
Juwels-Booster.

:::::::::
Generally

::::
only

:
2
::::::::
doubling

::::
steps

::::
are

:::::::
possible

::
if

::::::
Ss,cum ::::::

should
::
be

::::::
higher

::::
than

::::
0.5.

:::
For

:
Juwels-Booster

:
,
:::::
where

::::
the

::::::::
allocation

:::::::
allowed

::
a
::::
fifth

:::::::
doubling

:::::
step,

:::
the

::::::::::::::
time-to-solution

::
of

:::
the

::::
last

::::
step,

::
at
::::

256
::::::

nodes,
::
is
:::::::

actually
::::::

higher
:::::

than
:::
for

:::
128

::::::
nodes.

::::
For

:
Levante,

::::
the900

:::::::::::::
time-to-solution

:::::::::
essentially

:::::
halves

:::
for

:::::
each

:::::::
doubling

::
of

::::::
nodes,

::::::
except

:::
for

:
a
:::::
small

::::::::::
degradation

:::::::
building

:::
up

::::::
towards

:::
the

:::::::
highest

::::
node

::::::
counts.

::::
This

:::::
makes

:::::::
already

::::
clear

:::
that

:::
the

::::::
strong

::::::
scaling

::
of

:::
this

:::::::::
experiment

::::::
differs

::::::::::
substantially

::::::::
between

::
the

:::::
GPU

::::::::
machines

Piz Daint
:::
and Juwels-Booster

:
,
:::
and

:::
the

:::::
CPU

:::::::
machine Levante.

:

:::::
Indeed

:::
the

:::::::
scaling

:::::
panel

:::::
shows

::::
that

:::
the

::::
GPU

::::::::
machines

:::::
have

:
a
:::::::::
cumulative

::::::
strong

::::::
scaling

::::::
Ss,cum::::

that
::::::
decays

:::::
rather

:::::::
quickly,

:::::
almost

:::::::
linearly

::::
with

:::
the

:::::::
number

::
of

::::
node

::::::::
doubling

:::::
steps.

::::::::::::::
Correspondingly

:::
also

:::
the

::::::
single

:::
step

::::::
strong

::::::
scaling

::
Ss:::::::::

decreases
::::
with905

::::::::
increasing

:::::
node

::::::
counts,

::
as

:::
can

:::
be

::::
seen

::
in

:::::
Table

::
??

:::
for Piz Daint

:::
and Juwels-Booster.

:::
For

:
Levante

:::
we

::::
find,

:::::::
however,

::::
that

::::::
Ss,cum

::::
even

::::::
slightly

::::::::
increases

::
in

:::
the

::::
first

:::
two

::::::::
doubling

:::::
steps,

::::::
before

:::::::
showing

::
a

::::
weak

:::::::::::
degradation,

::
so

::::
that

::::::
Ss,cum ::::::

exceeds
:::
0.6

:::::
even

::
at

::
the

:::::::
highest

:::::
tested

::::::::::::
parallelization

:::
on

:::
512

:::::
nodes

::::
with

::
a
::
64

:::::
times

::::::::
increased

:::::
node

:::::
count,

::::::
where

::::
only

::
80

::::
grid

:::::::
columns

:::
are

::::
left

:::
per

::::
MPI

:::::::
process.

::::
This

::::::
results

::::
from

::::::::
favorable

:::
Ss :::::

values
::::
even

::
at
:::::
high

::::
node

::::::
counts,

::::
with

:::
Ss::::::

staying
::::::
above

:::
0.9

::
up

::
to

::::
256

::::::
nodes,

:::
see

::::
Table

:::
??.

:
910

6.4.2
::::::::::::::
Time-to-solution

::
of

:::::::::::
components

:::
The

:::::::::::
measurement

:::
of

::
Tf::

of
:::
the

::::::
model

::::::::::
components

::
in

:::
the

::::::
strong

::::::
scaling

::::::::::
benchmarks

::::::
allows

:::::::::::
quantification

:::
of

:::
the

::::::
relative

:::::
costs

::
of

:::
the

::::
main

:::::::::::
components.

::::::::
Typically

:::
the

:
most time-consuming components

::
not

:::::
only dominate the total time and often also

:::
but

:::
also

:::::
often

:::::::::
determine the scaling behavior of the model.

::::
Thus

::::::::
knowing

:::
the

::::::
relative

:::::
costs

::::
and

:::
the

::::::
scaling

::
of

:::
the

:::::::::::
components

:::::::::
contributes

::
to

::::::::::::
understanding

:::
the

:::::::
behavior

::
of

:::
the

:::
full

::::::
model

:::
and

:::
can

::::
give

::::::::
guidance

:::
for

:::::
future

::::::::::::
improvements.

:
For these purposes915

the contribution to Tf from the dynamical coreand ,
:

tracer transport, radiative transfer, turbulent mixing processes, cloud

microphysics. ,
:
and land processes are

:
is
:

displayed in the left column of Fig. ??
::
?? for all three compute systems. Among

32

8 16 32 64 128 256 512

64 128 256 512 1024 2048 4096

8

16

32

64

128

256

512

(a) Time-to-solution for the integration

1.3 M points, 191 levels, 180 time steps

Piz Daint

Juwels-Booster

Levante

nodes (Juwels-Booster and Levante)
tim

e
/

s

nodes (Piz Daint)

8 16 32 64 128 256 512

64 128 256 512 1024 2048 4096

0

0.2

0.4

0.6

0.8

1

1.2

(b) Cumulative strong scaling of the integration

1.3 M points, 191 levels, 180 time steps

Piz Daint

Juwels-Booster

Levante

Ss = 0.5

nodes (Juwels-Booster and Levante)

sc
al

in
g

nodes (Piz Daint)

Figure 5. Time-to-solution (left columna) and cumulative strong scaling Ss,cum (right columnb) for
:::
from

:::
the

:::::
model

::::::::
integration

::
on

:
Piz Daint

(top row
::::
black), Juwels-Booster (middle row

::
red), and Levante (bottom row

:::
blue). The time used and the cumulative strong scaling are shown

for the full time loop (integrate) and the contributing processes:
::::
panel

:::::::::
additionally

:::::
shows in blue the resolved processes dynamics, transport;

in red the atmospheric parameterizations
:::
grey

:::::
Ss,cum:

for radiation, vertical diffusion and cloud microphysics, and in brown the land physics.

The solid horizontal line shows the perfect scaling = 1 and the dashed line the strong scaling
:::::::
Ss = 0.5 for the case that the time-to-solution

is a
:
constant

::::::::::::
time-to-solution.

these components the dynamics generally dominates, taking about 40% of the compute time on the GPU systems, and closer

to 50% of the time on Levante (see Table ?? for precise percentages). The fraction of the compute time spent on the dynamics

decreases for high node counts as the model stops scaling. On Piz Daint radiation is the second most computationally expensive920

component, while on Juwels-Booster transport is substantially more costly. This difference results from the changed setup of

the radiation code used on Juwels-Booster and Levante, which includes (1) the reduction of g-points from 480 to 240 and (2)

avoiding the extra computation of clear sky fluxes. In the smallest R2B7 setup on Juwels-Booster, the first step reduces the

radiation time by 43%, and both steps together yield a reduction of 60%. On Levante, where also the faster radiation is used,

the compute time spent in transport and radiation is almost equal.925

The ranking of the less costly processes partly depends on the scaling of the components, which makes the radiation scheme

relatively cheaper and the land processes relatively more expensive for higher number of nodes. The
::
On

:::
the

:::::
GPU

::::::::
machines Piz

Daint
::
and

:
Juwels-Booster

:
,
:::
the least amount of time is spent for cloud microphysics , on all systems and for all numbers of nodes.

:
,
::::
while

:::
on

:::
the

::::
CPU

:::::::
machine

:
Levante

::
the

:::::
same

::
is

:::
true

:::
for

:::
the

::::
land

::::::::
processes.

::::
This

:::::
points

:::::
again

::
at

:::
the

::::
poor

:::::::::::
CPU-to-GPU

::::::::
speed-up

::
of

:::
the

::::
land

::::::
scheme

::::
and

::
in

:::::::
addition

::::
also

::
at
::
a
::::
poor

::::::
strong

::::::
scaling.

:
However, the total cost of the microphysical complexity is930

much larger, as in the absence of microphysics there would be no need for tracer transport, which is computed here for six

tracers, and the vertical diffusion would be computed only for temperature and wind.

6.5 Scaling

On each compute system the R2B7 and R2B9 setups are run for successive doublings of ncn, starting from the minimum value

of ncn (ncn,min) that satisfies the memory requirements of the model, and proceeding to the largest ncn for which we could935

obtain an allocation. Blocking sizes are optimized for each value of ncn. The smaller memory requirements of R2B7 allow it

33

64 128 256 512 1024 2048 4096
0.50

1.00

2.00

4.00

8.00

16.00

32.00

64.00

(a) Piz Daint: Time to solution for components

1.3 M points, 191 levels, 180 time steps

nodes
tim

e
/

s

8 16 32 64 128 256 512
0.13

0.25

0.50

1.00

2.00

4.00

8.00

16.00

32.00

(c) Juwels-Booster: Time to solution for components

1.3 M points, 191 levels, 180 time steps

nodes

tim
e

/
s

8 16 32 64 128 256 512
0.06
0.12
0.25
0.50
1.00
2.00
4.00
8.00

16.00
32.00
64.00

128.00
256.00

(e) Levante: Time to solution for components

1.3 M points, 191 levels, 180 time steps

nodes

tim
e

/
s

64 128 256 512 1024 2048 4096
0

0.2

0.4

0.6

0.8

1

1.2

(b) Piz Daint: Cumulative strong scaling of components

1.3 M points, 191 levels, 180 time steps

dynamics

transport

radiation

vertical diffusion

cloud microphysics

land

Ss = 0.5

nodes

sc
al

in
g

8 16 32 64 128 256 512
0

0.2

0.4

0.6

0.8

1

1.2

(d) Juwels-Booster: Cumulative strong scaling of component

1.3 M points, 191 levels, 180 time steps

nodes

sc
al

in
g

8 16 32 64 128 256 512
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(f) Levante: Cumulative strong scaling of components

1.3 M points, 191 levels, 180 time steps

nodes

sc
al

in
g

Figure 6.
::::::::::::
Time-to-solution

::::
(left

::::::
column)

:::
and

::::::::
cumulative

:::::
strong

::::::
scaling

:::::
Ss,cum::::

(right
:::::::
column)

::
for

:
Piz Daint

::
(top

:::::
row), Juwels-Booster

::::::
(middle

::::
row),

:::
and Levante

::::::
(bottom

::::
row).

:::
The

::::
time

::::
used

:::
and

::
the

:::::::::
cumulative

:::::
strong

:::::
scaling

:::
are

:::::
shown

:::
for

::
the

:::::
model

::::::::::
components:

::
in

::::
blue

::
the

:::::::
resolved

:::::::
processes

::::::::
dynamics,

:::::::
transport;

:::
in

:::
red

::
the

::::::::::
atmospheric

:::::::::::::
parameterizations

:::
for

::::::::
radiation,

::::::
vertical

:::::::
diffusion

:::
and

:::::
cloud

::::::::::
microphysics,

::::
and

::
in

:::::
brown

::
the

::::
land

::::::
physics.

:::
The

::::::
scaling

:::::
panels

:::::::::
additionally

:::::
shows

::
in

:::
grey

::::::
Ss,cum ::

for
:::::::
Ss = 0.5

:::
for

:
a
::::::
constant

:::::::::::::
time-to-solution.

to be run over a much larger range of ncn. In each case Tf measured for the model integration is provided in Table ??. The

strong and weak scaling parameters are then calculated from Tf and Eq. (??).

6.4.1
::::::
Strong

::::::
scaling

::
of

:::::::::::
components

6.5 Strong and weak scaling940

Figure ?? presents the
:::
The

:
cumulative strong scaling , Ss,cum , from the R2B7 benchmarks, which includes all successive

doublings from ncn,min to ncn nodes, and the weak scaling Sw,16 measured from the R2B7 and R2B9 benchmarks with a

factor 16 in node count and grid points and thus equal cell count per process. If Ss was independent of ncn the cumulative

scaling should decay exponentially in log2(ncn) with Ss,cum = S
(log2(ncn/ncn,min))
s , as shown for the special case of constant

time of solution, for which Ss = 0.5. A more linear decay of Ss,cum is indicative of reductions in Ss with increasing ncn.945

34

It is found that ICON exhibits very good weak-scaling for a 16-fold increase in node count. And for and , where Sw,16

was evaluated for different node counts, Sw,16 remains higher than 0.9 (and Sw above 0.97) for all node counts. The strong

scaling is less impressive, particularly on the GPU machines. In general Ss < Sw and it also decreases much more rapidly

with the number of doublings of nodes.This leads to a more linear decrease in Ss versus ncn/ncn,min, and implies that the

model will eventually yield less throughput as node counts are increased further, a limit that is reached in the last doubling (for950

ncn = 256→ 512) with the R2B7 configuration on . On the strong scaling is much better. Ss and Ss,cum actually exceed the

ideal case as ncn increases from 8 to 32, and remain above 0.9 and 0.8, respectively up until ncn = 256. Only for ncn = 512,

where only 80 grid columns are left per MPI process do they diminish substantially (decreasing to 0.83 and 0.68, respectively).

Cumulative strong and weak scaling, Ss,cum and Sw,16 respectively, on (PD, red), (JB, blue) and (Le, black). The strong955

scaling is shown for 1.3 M grid points with respect to the smallest node number Nmin (squares, PD: Nmin = 64, JB and Le:

Nmin = 8). The dashed line show the strong scaling from Nmin to N nodes for the case of a constant Ss = 0.5 and thus a

constant time-to-solution. The weak scaling is shown for the noted fixed number of points per process and a 16-fold increase

of the grid size and number of nodes.

For the practical employment of the ICON-A model, here in the QUBICC configuration, the scaling results have the960

following consequences. (1) On the GPU machines the possibilities to speed-up the turnover rate along the strong scaling

line is rather limited. Starting from the smallest setup only a doubling or quadrupling of the number of compute nodes would

be reasonable. (2) On the CPU machine the high strong scaling allows to increase the turnover with little scaling loss as long

as the number of grid columns stays roughly above 100. (3) The excellent weak scaling would allow to increase the horizontal

resolution to the largest grids fitting in these systems. Thus while a 2.5 km (R2B10) QUBICC simulation would still be efficient965

on and on , on also a 1.25 km (R2B11) simulation would be an effective use of computational resources.

6.4.1 Strong scaling of components

::
of

:::
the

::::::::::
components

::
is

::::::
shown

::
in

:::
the

::::
right

:::::::
column

::
of

::::
Fig.

:::
??.

:
Most components show similar scaling behavior to the model as

a whole (Fig. ??
:::
??b), with some noteworthy exceptions. On the GPU machines Piz Daint and Juwels-Booster the

::::::::
important

exceptions to this rule are the land and radiation. Land shows very poor strong scaling, while radiation
::::::
quickly

:::::::::::
approaching

:::
the970

:::::::::
cumulative

:::::
strong

:::::::
scaling

:::
for

::::::::
Ss = 0.5,

:::::
shown

:::
in

::::
grey

:::::::
symbols,

::::::
where

:::
the

::::::::::::::
time-to-solution

:
is
::::::::

constant
:::
for

::
all

:::::
node

::::::::
numbers.

::::::::
Radiation,

::::::::
however,

:
achieves a scaling better than 1 on Piz Daint, and remains close to 1 on Juwels-Booster in the first and

second doubling of nodes, only starting to decay for larger increases in ncn.

The strong scaling on GPUs depends sensitively on the ability to maintain sufficient work for each node as the node count

is increased. In the case of land, which is computationally inexpensive and spatially sparse, this is not possible. For radiation975

the workload can be increased through the optimization of the sub-blocking parameter, rcc. On Piz Daint this is possible up

to ncn = 512, reaching the case of no sub-blocking in the last step only, on 1024 nodes, see Table ??. On Juwels-Booster the

initial sub-blocking size is substantially larger from the beginning, owing to the larger available memory, and thus the largest

35

workload is reached already on 32 nodes. From this step onward no sub-blocking is needed and the work load decays with the

decreasing number of grid points on the processor.980

On the exceptions are the transport and
:::
Not

:::::::
critical

:::
but

::::::::::
noteworthy

::
is

:::
the

::::::
scaling

:::
of

::::::::
transport.

:::::::::
Generally

:::
the

::::::
scaling

:::
of

:::::::
transport

:::::::::
resembles

:::
that

:::
of

::::::::
dynamics,

:::
as

::::
both

:::::::
schemes

:::::
have

::::::::
horizontal

::::::::::::
dependencies.

::::
But

:::
for

:::
the

::::
first

::::
node

::::::::
doubling

:::
on Piz

Daint
::
and

:::
the

::::::
second

:::::
node

:::::::
doubling

:::
on Levante

:
,
::::::::
transport

:::::
shows

:
a
::::::::::
remarkably

:::::
higher

::::::
strong

::::::
scaling

::::
than

:::::::::
dynamics.

::::::
Further,

:::
on

Levante the vertical diffusion, for which the cumulative strong scaling exceeds the ideal scaling (=
:
of

:::
the

:::::::
vertical

:::::::
diffusion

:::::
takes

:
a
:::::
value

::
of

:
1) from 8 to 64 and from 64 to

::::
nodes

::::
and

::::::::
increases

:::
for

:::::
higher

:::::
node

:::::
counts

:::
up

::
to

:::
1.2

:::
for 512 nodes, respectively.

:
.985

:::
The

:::::::
reasons

::
for

:::::
these

::::::::
behaviors

::::
have

::::
not

::::
been

::::::::::
investigated.

:

6.4.1
:::::
Weak

::::::
scaling

:::
The

:::::
weak

::::::
scaling

:::
Sw:::::::

derived
:::::
from

::::
pairs

:::
of

:::::
R2B7

:::
and

::::::
R2B9

::::::::::
benchmarks

::::
with

::
a
:::::
factor

:::
16

::
in

:::::
node

:::::
count

:::
and

::::
grid

::::::
points

::
is

:::::
shown

::
in
::::::

Table
:::
??.

::::::::
Generally

::
it
::
is
::::::

found
:::
that

::::::
ICON

:::::::
exhibits

::::
very

:::::
good

:::::
weak

:::::::
scaling,

:::::::
whether

:::
on

:::::
GPUs

:::
or

::
on

::::::
CPUs.

::::
For

Juwels-Booster
:::
and

:
Levante

:
,
:::::
where

:::
Sw::::

was
:::::::::
evaluated

:::
for

::::
more

::::
than

::::
one

::::
pair

::
of

::::::
R2B7

:::
and

::::::
R2B9

:::::::::::
experiments,

:::
Sw :::::::

remains990

:::::
higher

::::
than

::::
0.97

:::
for

::
all

::::::
cases.

6.4.2
::::::
Scaling

::::::::::
evaluation

:::
For

:::
the

:::::::
practical

:::::::::::
employment

::
of

:::
the

:::::::
ICON-A

::::::
model,

::::
here

::
in

:::
the

::::::::
QUBICC

::::::::::::
configuration,

:::
the

::::::
scaling

:::::
results

:::::
have

:::
the

::::::::
following

:::::::::::
consequences.

:::
(1)

:::
On

:::::
GPU

::::::::
machines

::
the

:::::::::
possibility

::
to

::::::::
speed-up

:::
the

:::::::
turnover

:::
rate

:::::
along

:::
the

::::::
strong

::::::
scaling

:::
line

::
is

:::::
rather

:::::::
limited.

::::::
Starting

:::::
from

:::
the

:::::::
smallest

::::
setup

:::::
only

:
a
::::::::
doubling

::
or

::::::::::
quadrupling

::
of

:::
the

:::::::
number

::
of

:::::::
compute

:::::
nodes

::::::
would

::
be

::::::::::
reasonable.

:::
(2)

:::
On995

::
the

:::::
CPU

:::::::
machine

:::
the

::::
high

::::::
strong

::::::
scaling

::::::
allows

::
to

:::::::
increase

:::
the

:::::::
turnover

::::
with

:::::
little

::::::
scaling

::::
loss

::
as

::::
long

::
as

:::
the

:::::::
number

::
of

::::
grid

:::::::
columns

::::
stays

:::::::
roughly

:::::
above

::::
100.

:::
(3)

:::
The

::::::::
excellent

::::
weak

::::::
scaling

::::::
would

:::::
allow

::
to

::::::
increase

:::
the

:::::::::
horizontal

::::::::
resolution

::
to

:::
the

::::::
largest

::::
grids

:::::
fitting

:::
in

::::
these

::::::::
systems.

::::
Thus

:::::
while

::
a
::::::
2.5 km

:::::::
(R2B10)

:::::::::
QUBICC

:::::::::
simulation

:::::
would

::::
still

::
be

:::::::
efficient

:::
on

:
Piz Daint

:::
and

:::
on

Juwels-Booster
:
,
::
on

:
Levante

:::
also

::
a
:::::::
1.25 km

:::::::
(R2B11)

:::::::::
simulation

::::::
would

::
be

:::
an

:::::::
effective

:::
use

::
of

::::::::::::
computational

:::::::::
resources.

6.5 Outlook for 1 simulated year per day at 1 km resolution on a global grid1000

6.5.1 Temporal compression of benchmarks

The temporal compression, τ, of a model setup on an available compute systems is important for determining what kind of

scientific questions the model may be used for. Here it is measured as a unit-less parameter, of simulated days per day (SDPD),

and only calculated for the R2B9 benchmark simulations, for which the correct physical configuration and time step are used.

Achieving a full simulated year per day (1 SYPD = 365.25 SDPD), for kilometer-scale configurations, is a target for centennial1005

scale climate simulations, and still a major challenge.

:::
The

::::::::
temporal

:::::::::::
compression

::
of

:::
the

:::::
R2B9

::::::::::
benchmarks

::
is
::::::
shown

::
in

::::
Fig.

:::
??

:::
and

::::
also

::::::::
tabulated

::
in

:::::
Table

:::
??.

:
On Piz Daint the

R2B9 experiment on 1024 nodes achieves a temporal compression of 48 SDPD, considering .
:::::::::::
Considering the poor strong

scaling,
:
1 SDPD

:::::
SYPD

:
is well beyond reach. On Levante, where the experiment has been run on 128, 256, 512 and 1024

36

Figure 7. Simulated days per day R2B9 (20 M points) based on the "integrate" timer on Piz Daint(PD), Juwels-Booster(JB), and Levante(Le).

The black horizontal line indicates 1 simulated year per day. The thin straight
::
red

:
line is a linear fit in log(nodes) for the Juwels-Booster

simulations. The vertical markers on the 1 sim. year per day line indicate the estimated number of nodes for the integration of a full year on

Juwels-Booster: 984 nodes.

nodes, the turnover grows from 14.7 to 103.7 SDPD. Hence, using the entire machine gets closer, but still falls about 25%1010

short, of 1 SYPD. On Juwels-Booster a turnover of 133 and 212 SDPD was achieved on 128 and 256 nodes respectively. The

linear extrapolation in log(ncn)
:
,
::::::
shown

::
as

::::
thin

:::
red

::::
line

::
in

::::
Fig.

:::
??,

:
indicates that ca. 984 nodes could return about 1 SYPD.

Thus the entire Juwels-Booster system that has 936 nodes would get close to 1 SYPD with the model setup for QUBICC

experiments.

6.5.2 Computational demands for 1 SYPD1015

Based on the results above, we extrapolate to assess the computation requirements for a global simulation using an R2B11

(1.25 km) mesh with a temporal compression of 1 SYPD. We base our estimates on reference calculations using the QUBICC

configuration, anticipating that its increased number of vertical levels would be commensurate with the target system. Further

we assume that a four times smaller timestep is stable on the R2B11 grid.

Our calculations of weak-scaling allows us in a first step to estimate the performance of an R2B11 system on an enlarged (161020

fold) version of one of the reference compute systems (Ref → 16×Ref). Then we use the strong scaling factor for the reference

system to estimate the increase in the temporal compression for a four-fold larger system (16×Ref → 64×Ref). For this strong

scaling calculation we use the two Ss values starting from the R2B7 setup with the same number of grid points per node as

used in the R2B9 setup enlarged 16-fold in the weak scaling step. Sw and Ss values used for the extrapolation are shown in

bold in ??. The parameter γ1, measures the gap, i.e., the additional factor of temporal compression required to reach 1 SYPD1025

(Table ??), alternatively it can be understood as the number of days required to simulate one year for a given configuration.

It shows that for Piz Daint, where our reference system uses only 1024 of its 5704 nodes, a roughly 12 fold larger system

would still fall a factor 12 short of the desired compression. Thus the required system, based on this technology would have to

be 142 times the size of Piz Daint for the targeted ICON simulation. We get closer with the A100 chip-set, as a system roughly

37

Table 4. ICON R2B11 configurations and their expected turnover. Compute system with processor type, its total number of nodes and the

Rmax LINPACK benchmark, and ICON code version, ICON grid, horizontal resolution (∆x), time step, number of nodes, fraction of nodes

with respect to the total number of nodes, temporal compression τ (in SDPD), the gap factor, γ1 for 1 simulated year per day, defined as

γ1 = 365.25/τ , and the required computational power P1 =R ·γ1, where R= ncn/ncn,tot ·Rmax, and given in units of EFlop/s required

to simulate one year per day of the indicated model on the indicated configuration of the machine. Because we use the Linpack references

for Rmax, the ncn,tot for Levante is not its present node-count but the number used in the Nov 2021 benchmarks.

System Grid ∆x / km ∆t / s ncn ncn/ncn,tot τ / SDPD γ1 P1 / EFlop/s

Piz Daint, 1×P100 GPU per node, ncn,tot = 5704, Rmax = 21.2PFlop/s, code-base (1)

Ref R2B9 5.00 40 1024 0.18 48.85 7.48 0.028

16×Ref R2B11 1.25 10 16384 2.87 11.01 33.2 2.024

64×Ref ” ” ” 65536 11.5 29.37 12.4 3.033

Juwels-Booster, 4×A100 GPU per node, ncn,tot = 936, Rmax = 44.1PFlop/s, code-base (2)

Ref R2B9 5.00 40 128 0.14 133.0 2.75 0.017

16×Ref R2B11 1.25 10 2048 2.19 30.46 12.0 1.158

64×Ref ” ” ” 8192 8.75 66.66 5.48 2.116

HLRE5 4×NG-100 GPU per node, code-base (2)

R2B11 1.25 10 2048 131.0 2.79

” ” ” 8192 286.6 1.27

Levante 2×AMD EPYC Milan per node, ncn,tot = 2048, Rmax = 7.0PFlop/s, code-base (2)

Ref R2B9 5.00 40 1024 0.5 103.7 3.52 0.0123

16×Ref R2B11 1.25 10 16384 8 23.73 15.4 0.862

64×Ref ” ” ” 65536 32 81.15 4.50 1.008

nine times larger than Juwels-Booster (ncn,tot = 936) leads to less than a factor of six shortfall in temporal compression. Based1030

on this technology a system 48 times the size of Juwels-Booster is required. The system gets closer not just by being bigger,

but also because of the better usage of the compute power, characterized here by the LINPACK Rmax. For the Ref and 16×Ref

setups the required compute power, as measured by P1, is 1.7× reduced on Juwels-Booster compared to Piz Daint. Even if the

radiation costs on Piz Daint were reduced by 60% due to less g-points and computing no clear sky radiation (and assuming the

scaling remains unchanged), P1 on Juwels-Booster would still be 1.5× reduced. This higher efficiency is only partly explained1035

by the 30% increase in the counter-gradient versus LINPACK performance of Juwels-Booster versus Piz Daint.

For the CPU chip-set of Levante it is found that the 64×Ref setup would fall a factor 4.5 short of the targeted compression,

and the required system would be 104 times the size of Levante. The estimate for 16×Ref on Levante may be compared to that

of ?, which was based on similar ICON simulations (∆x= 5km, 90 levels, ∆t= 45s), albeit with a different implementation of

38

the physical processes. Their benchmarks were performed on the Mistral computer at DKRZ (now being replaced by Levante),1040

using the partition with two Broadwell CPUs per node. Scaling of their performance of 26 SDPD on 256 Mistral-Broadwell

nodes (their Fig. 4), and assuming an Rmax of 1.8715 PFlop/s for the 1714 node Broadwell partition1, yields an estimate2 of

P1 = 0.655 EFlop/s. This is somewhat better than what is realized on Levante, a difference that might be related to an initial,

and hence sub-optimal, Levante implementation, as well as slight differences in the configuration of physical processes, for

instance the treatment of radiative transfer. However, it seems reasonable to conclude that we are not seeing a large reduction1045

in P1 in transitioning from the Broadwell based Mistral machine to the Milan based Levante. This stands in contrast to the

reduction in P1 in transitioning from the P100 Piz Daint to the A100 Juwels-Booster, and while the P1 values for both GPU

machines remain higher than for the CPU machines, the trend is more favorable for the GPU machines, something consistent

with changes in memory bandwidth3 for the different architectures.

Strong scaling limits how much we could translate a larger machine into a reduction in γ1. For example, from Table ?? the1050

envisioned 16×Ref version of Juwels-Booster is 2.19 times larger than the existing machine, and thus would correspond to an

Rmax = 96.5 PFlop/s, which is still far from the required Rmax = 1.158 EFlop/s to achieve 1 SYPD. Were one to simply

increase the size of Juwels-Booster, poor strong scaling would create the need for a proportionally larger machine, something

that is measured by the increase in P1 from 1.158 EFlop/s for the 16×Ref implementation to 2.116 EFlop/s for 64×Ref

(Table ??). Using these numbers we see that 1 SYPD at R2B11 is likely not attainable with the present implementation1055

of ICON on existing GPU architectures. The present situation is somewhat more favorable on the CPU architectures. The

currently most performant computer, Fugaku, with (Rmax = 442 (?), would have γ1 = 2.3, if ICON operated on Fugaku at

the same P1 value as for the 64×Ref setup based on Levante. A factor 2.3 larger CPU machine with (Rmax = 1017)seems

technically within reach.

The situation for the GPU machines becomes more favorable when we look toward the future. Realizing a factor of1060

4.3×A100 in transitioning to a next generation GPU (NG-100 in Table ??), as found in the ICON-A benchmarks in the

transition from the P100 to the A100 GPU, would imply γ1 = 2.78 for a 2048 node 4×NG-100 system rated at Rmax = 415

PFlop/s. For such a system, even without improvements in strong scaling, the 64×Ref benchmark on Juwels-Booster implies

a γ1 = 1.3 and an Rmax = 1660 PFlop/s. This indicates that for the GPU architectures, performance improvement of 4.3×
over the A100 would begin to out perform the CPU performance for the same Rmax.1065

The recently announced Nvidia Hopper GPU, promises a performance increase in this range and perhaps even larger (?). In

addition, Fugaku, an exceptionally efficient CPU machine, still uses twice as much electrical power as Juwels-Booster when

1Top500 for Nov. 2015 reported Rmax = 1.1392 PFlop/s for 1556 Haswell nodes, and Top500 for Nov. 2016 reported Rmax = 3.0107 PFlop/s for 1557

Haswell nodes + 1714 Broadwell nodes. The difference, attributed here to 1714 Broadwell nodes, is 1.8715 PFlop/s
2Here we assume perfect weak scaling, starting from the 26 SDPD for R2B9 on 256 nodes, which yields a γ1 = 365.25

26/4

(
45
40

)
for R2B11, with the

latter (45/40) factor accounting for differences in time steps. The weak-scaling to R2B11 (using the same Sw = 0.978 as for Levante) inflates the size to

16 191
90

× 256/(0.978)4 = 9492 nodes
3Memory bandwidth per core decreased by approximately 25% on Levante relative to Mistral but increased by 10% on Juwels-Booster as compared to Piz

Daint.

39

normalized by Rmax, which further favors GPU based implementations of ICON in the future. The upshot of these calculations

is that the goal of 1 SYPD at roughly a 1 km scale is well within reach.

6.5.3 Anticipated increases in τ from hardware1070

General circulation models typically processes many grid points with often relatively little compute load, which results in the

bandwidth limitation encountered in the single node speed-up tests. This means that improved memory bandwidth allow for a

better exploitation of the compute power of the GPUs, which helps explain the considerably improved performance of ICON-A

on the A100 versus the P100 GPUs

Another typical characteristics is the organization of the work, which happens in many separated loops often with not very1075

many operations. On the GPUs this results in a non-negligible amount of time spent for the preparation of the parallel regions.

If this amount remains constant while the computation decreases with increasing parallelization, then the benefit of stronger

parallelization will be limited. Similarly, if a newer system has increased compute speed but still spends the same time for the

overhead for GPU kernels, then ICON cannot profit that much. Thus, in the absence of refactoring, to realize the benefits of

an acceleration of the GPU compute speed would require a commensurate speedup of the overhead time for the GPU parallel1080

regions.

6.5.4 Anticipated increases in τ from software

Because the scaling and computational throughput are limited by the dynamical core, algorithmic improvements to this com-

ponent of the code, followed by the transport scheme, stand the best chance of increasing τ. This part of the model is, however,

already relatively well optimized – given the limits of what can be accomplished with openACC. Further improvements in1085

performance would require a refactoring to exploit special features of the processors. For instance, exposing solvers to the

application of AI arithmetic, i.e., matrix-multiply and accumulates, where possible, could substantially improve throughput.

Obviously the very poor scaling of the land scheme is also a matter of concern, though it is unclear how the underlying problems

- little computational work - can be resolved.

Another, and perhaps the best, possibility to speed up the code concerns the precision of the variables and computations.1090

ICON uses by default 64-bit variables and arithmetic, although the ICON model can be used in a mixed precision mode, in

which mostly the dynamics is computed with 32-bit arithmetic, while the remaining model components still work with 64-bit

arithmetic. Because this mixed mode has not been validated on GPUs, the mixed mode is not used in this study, neither on

GPU nor on CPU, although on the latter ICON applications frequently make use of this option. Hence we see considerable

potential to speed up simulations by using 32-bit variables and arithmetic. Even as few as 16 bits can be sufficient if round-off1095

errors are kept under control, as shown in ? for a shallow water model. This would not only speed up the simulations, but also

reduce the memory footprint so that a certain turnover can be achieved with significantly fewer nodes. However, more model

development would be needed to explore the potential compute time or memory savings, and the effects on the simulations.

An open question is if a different parallelization would improve the turnover for a given number of nodes. The current

parallelization is organized as a single geographical domain decomposition used for all model processes (and a separate de-1100

40

composition for the output scheme). Thus all model processes in a domain are computed in a specified sequence by the same

processor. The practical sequence of the computations of processes is determined by the order of the processes in the coupling

scheme of the model. This method balances the total work to be done in each domain relatively well. But the single processes

can be quite different in their work load and as seen above this results in a quite uneven strong scaling behavior on GPUs.

Would this be better in a process-specific parallelization, in which each process has its own domain decomposition? Such1105

a parallelization would focus the resources on the more expensive components, and it would avoid higher parallelization of

processes where the scaling limit is reached. It would also require a more complex communication scheme, and an ability to

compute different processes in parallel, the latter can make it difficult to maintain physical limits in tendencies, for instance to

maintain positivity of tracers. While these ideas have not yet been developed or tested in ICON, they could provide a substantial

speed-up in the future.1110

7 First QBO experiments

Finally it is important to verify the utility of the new model code for the QUBICC experiments, for which a small selection

of results is presented here relating to two experiments performed on Piz Daint. (A more detailed analysis will be published

elsewhere.) The main questions to be addressed in the beginning are the following:

1. Is the model stable over at least 1 month?1115

2. Are there obvious biases which need to be corrected before scientific experiments can begin?

3. Can the model simulate a reasonable tropical precipitation and the downward propagation of the QBO jet as a result of

wave-meanflow interaction?

The initial series of experiments (hc experiments) was integrated over 1 month starting from four initial dates (1.4.2004,

1.11.2004, 1.4.2005, 1.11.2005), which were selected based on the protocol for the QBOi experiments (?). These dates spread1120

across a fairly normal QBO cycle, that is used here as well as in the QBOi project (?). A second series of experiments (dy

experiments) was made to investigate the issues identified in the hc experiments.

A key learning from the (hc experiments) was that all experiments remained stable over 1 month. Therefore, the first exper-

iment with start date 1.4.2004 was continued until it crashed after 2 months and 6 days with too high wind speed at the model

top. The analysis showed that not only this experiment, but also the other three (hc experiments) had a tendency towards a1125

nearly vertical axis of the polar night jet with a very strong wind maximum at the top of the model was found. A vertical jet

axis with a wind maximum at ca. 80 km height is in disagreement with observations, and the high wind speeds pose a threat for

numerical stability. This issue was addressed in a number of short experiments of the second series. These experiments showed

that the Rayleigh damping of the vertical wind in the uppermost ca. 30 km of the model domain was too strong. An increase

of the start level of the Rayleigh damping from 42 to 50 km and a reduction of the strength to 20% of the original value lead to1130

a more realistic wind maximum of the polar night jet at heights of 50 to 60 km.

41

0 100 200 300 400 500
precipitation rate (mm d 1)

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Oc
cu

rre
nc

e
fre

qu
en

cy

dy21
ERA5
TRMM

Probability density function of precipitation
(01.04.2004 - 30.04.2004, 15.0°S - 15.0°N)

Figure 8. Occurance frequency of the 3h mean precipitation rate between 15° S and 15° N from 1.4.2004 to 30.4.2004 in the QUBICC

simulation dy21, in ERA5, and in TRMM, using 250 bins of 2 mm/day width.

Another important finding from the first series was that the parameterized vertical diffusion was clearly too strong. This

not only slowly damped the QBO jet instead of simulating a downward propagation, but also affected many aspects of the

tropospheric circulation including the distribution and intensity of precipitation and convection. In the investigation of this

problem it was found that the maximum mixing length within the vertical diffusion scheme was implemented in the code at a1135

much larger value, 1000 m, than described in the original description, 150 m (Pithan et al., 2015). The too high value was reset

in the experiment dy21, which ultimately reduced many large biases. Figure ?? shows the occurrence frequency for equatorial

3-hourly precipitation in the dy21 experiment, now fitting reasonably well to TRMM data (?). In comparison ERA5
:::
(?) has

more frequent weak precipitation and less frequent strong precipitation.

In contrast to the hc experiments, the dy21 experiment also shows a downward propagation of the zonal mean zonal wind in1140

the equatorial stratosphere, thus a downward progression of the westerly and easterly QBO jets, which are initially centered at

ca. 30 and 40 km height, respectively (Fig. ??). However, in comparison to ERA5, the downward propagation of the easterly

jet in dy21 is clearly faster, which results in growing differences in the zonal mean zonal wind in the upper half of this region.

Nevertheless, the key result is that a downward propagation of the QBO jets is simulated.

The processes which cause this downward propagation of the QBO jets include the interaction of vertically propagating1145

waves in equatorial latitudes with these jets and their vertical advection. The contribution of these processes to the tendency

of the zonal mean zonal wind u can be estimated from the divergence of the Eliassen-Palm flux (EP-flux) and the residual

circulation (v∗,w∗) in the meridional plain (see for example ?). For this diagnostics the simulation data as well as the ERA5

data were first interpolated to a Gaussian grid with 1024 latitudes × 512 latitudes. Figure ?? shows the tendency of u and the

contributions from the EP-flux divergences and the advection terms averaged over the first month.1150

42

15

20

25

30

35

40

He
ig

ht
 (k

m
)

dy21

15

20

25

30

35

40
He

ig
ht

 (k
m

)

ERA5_1h

01. Apr
08. Apr

15. Apr
22. Apr

01. May
08. May

15. May
15

20

25

30

35

40

He
ig

ht
 (k

m
)

dy21 - ERA5_1h

16

8

0

8

16

u
(m

s
1)

16

8

0

8

16

u
(m

s
1)

18

14

10

6

2

2

6

10

14

18

u
(m

s
1)

zonal mean zonal wind, 5°S - 5°N mean

Figure 9. Zonal mean zonal wind u averaged from 5° S to 5° N from 1.1.2004 to 20.5.2004 in the simulation dy21 (top) and ERA5 (middle),

and the difference between dy21 and ERA5.

Over this first month the profiles of the zonal mean zonal wind (u) remain quite similar, except for the easterly jet centered

at 40 km altitude that extends already further down in dy21. The total tendency (du/dt) profile is also comparable up to 27

km, but diverges above with a large negative tendency in dy21 maximizing at 33 km height, where the easterly jet has started

its decent, while ERA5 shows a weaker negative tendency centered higher at 36 km height.

Below 30 km altitude the total tendency du/dt in ERA5 is mostly explained by the vertical divergence of the EP-flux,1155

(du/dtEP,z), which is almost identical to the total contribution by the EP-flux divergence and the advection terms (du/dtTEM).

These tendencies appear in similar shape in dy21. Thus for the wave meanflow interaction and the advection, as captured by

this diagnostics, the simulation is close to the reanalysis. A difference exist however in the residual term (du/dtres), which at

43

2.0 1.5 1.0 0.5 0.0 0.5 1.0
du/dt (m s 1 day 1), u (m s 1)

15

20

25

30

35

40

He
ig

ht
 (k

m
)

dy21

0.05 u
du/dt by v*-adv.
du/dt by w*-adv.
du/dt by EP-flux -div.
du/dt by EP-flux z-div.
du/dt by TEM diag.
du/dt residual
du/dt

2.0 1.5 1.0 0.5 0.0 0.5 1.0
du/dt (m s 1 day 1), u (m s 1)

ERA5_1h

0.05 u
du/dt by v*-adv.
du/dt by w*-adv.
du/dt by EP-flux -div.
du/dt by EP-flux z-div.
du/dt by TEM diag.
du/dt residual
du/dt

5°S - 5°N QBO momentum balance, 01.04.2004 - 30.04.2004 mean

Figure 10. Zonal mean zonal wind (dotted red line) and its tendencies averaged between 5° S and 5° N and between 1.4.2004 and 30.4.2004

from 15 to 40 km height in the simulation dy21 and in ERA5, with the total tendency (bold line) and contributions diagnosed in the

transformed Eulerian mean framework for advection by the residual meridional v∗ and vertical wind w∗ (dashed lines), the meridional and

vertical divergence of the Eliassen-Palm flux (dotted lines), the sum of these four terms (dot dashed line) and the residual (orange dot dashed

line).

these altitudes is negligible in ERA5 but significant in dy21, opposing the diagnosed vertical divergence of the EP-flux. This

residual term is the main reason for the difference in the total tendency between dy21 and ERA5.1160

Above 30 km altitude, where the easterly jet has propagated further downward in dy21 than in ERA5, du/dtEP,z is negative

and peaks in the lower shear layer of the easterly jet, with a stronger amplitude in the simulation. The upward vertical wind,

which creates a positive tendency du/dtw∗ in the same shear layer, however, is stronger in ERA5 than in dy21. Stronger

differences exist however in the residuals, which play here a role also in ERA5. The residual tendencies make a substantial

contribution to dy21 and ERA5, albeit with a vertical downward shift in the simulation. The meridional EP-flux divergence as1165

well as the meridional advection play only minor roles.

The initial sets of experiments thus led to a model version in which the wave meanflow interaction and the advection by the

residual meridional circulation play an important role. The nature of the residual terms is not yet known. But these simulations

build the base for further research on the factors that influence the processes of the QBO. Eventually, with sufficient resources,

this will also allow the simulation of full QBO cycles.1170

8 Conclusions

With the scientific motivation to conduct a first direct simulation of the QBO relying only on explicitly resolved convection

and gravity waves, the ICON atmosphere model has been ported to GPUs with all components needed for such a simulation

at a horizontal resolution of 5 km and with 191 levels up to a height of 83 km. The initial GPU port of ICON on Piz Daint

44

at CSCS is based on OpenACC directives. Benchmark experiments showed a single node CPU-to-GPU speed-up of ca. 6
:::
6.41175

corresponding to the ratio of the GPU bandwidth to the CPU bandwidth. This memory bandwidth limitation of the ICON

code is a typical characteristic for general circulation models. The strong scaling tests showed that a minimum of ca. 10k grid

columns is needed on the GPU to remain efficient, which limits the possibilities to profit from strong scaling. On CPUs the

limit is near 100 grid columns, which increases the strong scaling to larger processor counts. The weak scaling of ICON-A is

very good (typically 0.98)
:::
over

:::
the

:::::
tested

:::::::
16-fold

:::::::
increase

::
in

::::
grid

::::
size

:::
and

:::::
node

:::::
count,

:
on both GPU and CPU architectures,1180

making even higher resolved global simulations possible, albeit with the throughput limited by the strong scaling and the

required reduction in the model timestep.

For the model setup used in the QBO simulations, a turnover of 48 SDPD and 133 SDPD was achieved on the GPU systems

Piz Daint at CSCS and Juwels-Booster at FZJ, respectively, while 103 SDPD were achieved on the CPU system Levante at

DKRZ. Extrapolations show that ICON simulations at 1.25 km resolution and 1 SYPD turnover will be possible on the next1185

generation of supercomputers.

The GPU port of ICON-A made the first series of experiments related to the QBO processes possible. These experiments

led to a better tuning of the damping and diffusion schemes, which in the end allowed a first simulation showing downward

propagating QBO jets driven by wave-meanflow interaction in a model where the tropical wave-spectrum depends entirely

on explicitly simulated convection. However, further research is needed to understand why the downward propagation of the1190

easterly jet was too fast. As in the case of the QBO also other scientific problems in climate research which depend on scales

from a few km or smaller to the global scale will need enormous computational resources. Having now a code that can be used

on the largest supercomputers using GPUs will open up new opportunities in this direction.

Code availability. The codes (1) and (2) listed in Table ?? and the run scripts for Piz Daint, Juwels-Booster and Levante are available

in the primary data set (?). These code versions are not standard release versions, but the related GPU developments are merged in the1195

release candidate for the upcoming release version icon-2.6.5. Release versions of the code are available to individuals under licenses

(https://mpimet.mpg.de/en/science/modeling-with-icon/code-availability). By downloading the ICON source code, the user accepts the li-

cense agreement.

Author contributions. Marco Giorgetta guided the presented work from the experimental side, made the benchmark and QUBICC simula-

tions on Piz Daint and Juwels-Booster and led the writing of the manuscript as a whole. Will Sawyer, Dmitry Alexeev, Robert Pincus, and1200

Reiner Schnur wrote parts of the manuscript. Marco Giorgetta and Henning Franke worked on the evaluation of the QUBICC experiment.

Will Sawyer developed the GPU port of most parts of the dynamical core and the transport scheme, with additional contributions from

Daniel Reinert. Xavier Lapillonne and Philippe Marti ported most of the atmospheric physics parameterization. Monika Esch implemented

and ported the "graupel" cloud microphysics . Valentin Clément and Reiner Schnur developed the GPU port of the land physics and the

CLAW tool needed for this purpose. Robert Pincus and Sebastian Rast contributed with the RTE+RRTMGP radiation scheme and its in-1205

terfaces to ICON, while Matthew Norman, Ben Hillman, and Walter Hannah contributed to the initial developement of the RTE+RRTMGP

45

GPU implmentation. Dmitry Alexeev refined and optimized the GPU enabled ICON code especially with regard to the communication and

specifics of the compilers. He also optimized the GPU port for Juwels-Booster. Remo Dietlicher developed the tolerance test procedure. Luis

Kornblueh, Uwe Schulzweida, Jan Frederik and Panos Adamidis contributed to the I/O scheme, and Luis Kornblueh prepared the initial and

external parameter files for the experiments. Claudia Frauen made the benchmark runs on the Levante computer at DKRZ. Bjorn Stevens1210

initiated the PASC ENIAC project for the GPU port, contributed to the analysis of Sect. ??, and to the writing of the manuscript as a whole.

Competing interests. The authors have no competing interests.

Acknowledgements. P. Marti, and V. Clément received funding from the "Enabling the ICON model on heterogeneous architectures"

(ENIAC) project funded by the Platform for Advanced Scientific Computing (PASC) of ETH (reference number 2017-8). We acknowl-

edge PRACE for awarding us access to Piz Daint based in Switzerland at the Swiss National Supercomputing Centre and Juwels-Booster1215

based in Germany at the Forschungszentrum Jülich, under allocation no. 2019215178 for the project "Quasi-biennial oscillation in a changing

climate". Thomas Schulthess at CSCS generously supported the development of the GPU port of ICON with staff and additional compu-

tational resources on Piz Daint during, especially during the transition from Piz Daint to Juwels-Booster. Some portions of the work on

RTE+RRTMGP were funded by the US Department of Energy (grant number DE-SC0021262) and by Lawrence Livermore National Labo-

ratory under Contract DE-AC52-07NA27344.1220

46

