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Abstract. Classical numerical models for the global atmosphere, as used for numerical weather forecasting or climate research,
have been developed for conventional central processing unit (CPU) architectures. This now hinders the employment of such
models on current top performing supercomputers, which achieve their computing power with hybrid architectures, mostly
using graphics processing units (GPUs). Thus also scientific applications of such models are restricted to the lesser computer
power of CPUs. Here we present the development of a GPU enabled version of the ICON atmosphere model (ICON-A)
motivated by a research project on the quasi-biennial oscillation (QBO), a global scale wind oscillation in the equatorial
stratosphere that depends on a broad spectrum of atmospheric waves, which origins from tropical deep convection. Resolving
the relevant scales, from a few km to the size of the globe, is a formidable computational problem, which can only be realized
now on top performing supercomputers. This motivated porting ICON-A, in the specific configuration needed for the research
project, in a first step to the GPU architecture of the Piz Daint computer at the Swiss National Supercomputing Centre, and in
a second step to the Juwels-Booster computer at the Forschungszentrum Jiilich. On Piz Daint the ported code achieves a single
node GPU vs. CPU speed-up factor of 6-:36.4, and now allows global experiments at a horizontal resolution of 5 km on 1024
computing nodes with 1 GPU per node with a turnover of 48 simulated days per day. On Juwels-Booster the more modern
hardware in combination with an upgraded code base allows for simulations at the same resolution on 128 computing nodes
with 4 GPUs per node and a turnover of 133 simulated days per day. Additionally, the code still remains functional on CPUs

as it is demonstrated by additional experiments on the Levante compute system at the German Climate Computing Center.
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While the application shows good weak scaling making also higher resolved global simulations possible, the strong scaling on
GPUs is relatively weak, which limits the options to increase turnover with more nodes. Initial experiments demonstrate that

the ICON-A model can simulate downward propagating QBO jets, which are driven by wave meanflow interaction.

1 Introduction

Numerical weather prediction (NWP) and climate research make use of numerical models which solve discretized equations
for fluid dynamics on the globe. For NWP and many research applications the resolution is chosen as high as possible for
the available computing resources. Higher resolution allows to explicitly compute atmospheric processes over a larger range
of scales, and thus to compute more faithfully the dynamics of the global atmosphere. Examples of small scale features,
which are relevant for NWP or climate research are cumulus clouds, gravity waves generated by orographic obstacles and
convective clouds, or turbulent motions in the boundary layer. The advantages of higher resolution, however comes at higher
costs and especially longer time-to-solution, which practically limits the maximum resolution that can be afforded in specific
applications. In climate research most global simulations of the atmospheric circulations still use resolutions of a few tens of
kilometers to about 200 km for simulations over decades to centuries. But the most ambitious global simulations now reach
already resolutions of ca. 5 km, which means that basic structures of tropical deep convection can be computed explicitly.
Such simulations are still the exception and limited to short time periods, owing to the slow turnover in terms of simulated
time per wall clock time unit. A specific reason for the limitation of such simulations in resolution or simulated time is that
the computing codes of these numerical models have been developed and optimized for conventional central processing unit
(CPU) architectures, while the most advanced and powerful computer systems employ now hybrid architectures with graphics
processing units (GPUs). Thus the most powerful computing systems are effectively out of reach for most existing computing
codes for numerical weather prediction and climate research.

This holds also for the ICON model system, which has been developed since the early 2000s for use on either cache based or
vectorizing CPUs, with components for atmosphere, land and ocean. The build up of the hybrid Piz Daint compute system at
the Swiss National Supercomputing Centre, however, created a strong motivation to port the ICON model to GPUs in order to
benefit from the immense compute power of Piz Daint resulting from up to 5704 GPUs. With this motivation it was decided to
port the atmospheric component of ICON (ICON-A) in two specific configurations to GPUs so that the development effort can
be limited initially to a subset of the ICON codes. The model configuration in the focus of the presented work was designed for
the Quasi-biennial oscillation in a changing climate (QUBICC) project, for which global simulations at horizontal resolutions
of 5 km or better and vertical resolutions of a few hundred meters up to the middle stratosphere are planned to investigate the
dynamics of the quasi-biennial oscillation (QBO), a global scale zonal wind oscillation in the equatorial stratosphere. Using
this very high resolution is essential for the QUBICC project so that the dynamical links from small scale and quickly evolving
tropical deep convection to the global scale and slowly varying wind system of the QBO can be directly computed. This makes

a substantial difference to existing simulations of the QBO in coarser models, where deep convection and the related gravity
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wave effects must be parameterized. The uncertainty in the parameterization of convection and gravity waves, as necessary in
coarser models, is the main reason for problems in simulating the QBO (2?).

Until now only a few attempts have been made to port general circulation models for the atmosphere or the ocean to
GPUs, using different methods. ? presented an early attempt, in which only the most costly part of the NICAM model, the
two-dimensional dynamics, was ported to GPUs, for which these parts were re-programmed in CUDA Fortran. ? ported the
COSMOS limited area model to GPUs by using directives and by re-writing the dynamical core from Fortran to C++ and
employing the STELLA domain specific language. Similarly ? ported their LICOM3 model by rewriting the code in the time
loop from Fortran to C and further to HIP. In the case of the NIM weather model, ?, however, decided to work with directives
only so that the same code can be used on CPU, GPU and Many Integrated Core (MIC) processors. Other models have partial
GPU implementations, such as WRE, 2, in CUDA-C and MPAS, ?, with OpenACC. In our attempt, after initial steps described
later, it was decided to stay with the standard ICON Fortran code wherever possible and thus to work with directives, so that
ICON-A works on CPUs and GPUs.

In the following we present the model configuration for QUBICC experiments, for which the ICON-A model has been
ported to GPUs (Sect. ??), the relevant characteristics of the compute systems Piz Daint, Juwels-Booster and Levante used
in this study (Sect. ??), the methods used for porting ICON codes to GPUs (Sect. ??), the validation methods used to detect
porting errors (Sect. 2?), the results from benchmarking on the three compute systems (Sect. ??), selected results from first

QUBICC experiments (Sect. ??), and the conclusions.

2 Model configuration for QUBICC experiments

The QUBICC experiments make use of very high resolution grids, on which dynamics and transport are explicitly solved.
This means that only a small number of processes needs to be parameterized in comparison to the low resolution simulations
presented by ?. This reduced physics package, which we call the Sapphire physics, comprises parameterizations for radiation,
vertical turbulent diffusion, and cloud microphysics in the atmosphere, and land surface physics, as detailed in section ??. Thus
the model components to be ported to GPU include dynamics, transport, the aforementioned physics parameterizations, and
additionally the essential infrastructure components for memory and communication. The following subsections provide more

details on the model grids defining the resolution and the components computed on these grids.
2.1 Horizontal grid

The horizontal resolution needs to be high enough to allow the explicit simulation of tropical deep convection, and at the
same time simulation costs must be limited to realistic amounts, as every doubling of the horizontal resolution multiplies the
computing costs by a factor of 8, resulting from a factor 2 for each horizontal dimension and a factor 2 for the necessary
shortening of the time step. From earlier work made with ICON-A it is understood that Az = 5km is the smallest resolution,
for which deep convection is simulated in an acceptable manner (?), and for which realistic gravity wave spectra related to

the resolved convection can be diagnosed (??). As any substantial increase in horizontal resolution is considered to exceed the
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expected compute time budget, a horizontal mean resolution of Az = 5km is used, as available on the R2B9 grid of the ICON
model, see Table 1 in 2. The specific ICON grid-id is 0015, referring to a north-south symmetric grid, which results from a 36
degree longitudinal rotation of the southern hemispheric part of the ICON grid after the initial R2 root bisection of the spherical

icosahedron. (Older setups as in ? did not yet use the rotation step for a north-south symmetric grid.)
2.2 Vertical grid

The vertical grid of the ICON-A model is defined by a generalized smooth-level vertical coordinate (?) formulated in geometric
height above the reference ellipsoid, which is assumed to be a sphere. At the height of 22.5 km the model levels transition
to levels of constant height, which are as well levels of constant geopotential. For the QUBICC experiments a vertical grid is
chosen that has 191 levels between the surface and the model top at a height of 83km. This vertical extension and resolution is

chosen as a compromise between a number of factors:

— A high vertical resolution is needed to represent the dynamics of vertically propagating waves, considering waves which
can be resolved horizontally. The resolution should also be sufficient in the shear layers of the QBO, where the Doppler
shifting shortens the vertical wave lengths of upward propagating waves with phase speeds similar to the velocity of the

meanflow in the shear layer. Typically a vertical resolution of a few hundred meters is wanted.

— The vertical extent of the model should be high enough to allow the simulation of the QBO in the tropical stratosphere
without direct numerical impacts from the layers near the model top, where numerical damping is necessary to avoid
numerical artifacts. In practice the ICON model uses the upper boundary condition of zero vertical wind, w = 0, and
applies a Rayleigh damping on the vertical wind (?). This damping starts above a given minimum height from where it
is applied up to the top of the model, using a tanh vertical scaling function changing from O at the minimum height to
1 at the top of the model (?). Based on experience the depth of the damped layer should be ca. 30 km. Combining this
with the stratopause height of ca. 50 km, a top height of ca. 80 km is needed.

— A further constraint is the physical validity of the model formulation. The key limitation consists in the radiation scheme
RTE+RRTMGP, which is developed and validated for conditions of local thermal equilibrium (LTE) between the vibra-
tional levels of the molecules involved in radiative transitions and the surrounding medium. This limits the application
of this radiation scheme to levels below atmospheric pressures of 0.01 hPahPa. The atmospheric pressure of 0.01 hPa
hPa corresponds to a height of ca. 80 km with a few km variation depending on season, latitude and weather. Other
complications existing at higher altitudes, beside non-LTE, are strong tides, and processes which are not represented in
the model as for instance atmospheric chemistry and effects from the ionized atmosphere. Such complication shall be

avoided in the targeted model setup.

— Computational cost increases approximately linearly with the number of layers. Thus less layers would allow more or

longer simulations at the same costs.
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Vertical grid: level height vs. layer thickness
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Figure 1. Level height vs. layer thickness from the surface to the model top for a surface height of 0 m over ocean (blue), and for the highest
surface point of the R2B9 grid at 7368 m at 87°6°45” E / 27°55°52” N in the Himalayas (red). The lowermost layer has a constant thickness
of 40 m, thus is centered at 20 m height above the surface. The uppermost layer is centered at 82361 m and has an upper bound at 83000 m.

At heights above 22500 m, the vertical resolution profile is independent of the surface height.

As a compromise a vertical grid is chosen that has 191 levels between the surface and the model top at a height of 83 km.
The first layer above the surface has a constant thickness of 40 m. Between this layer and a height of 22.5 km the height of
the model levels and thus the layer thicknesses vary following the implemented smooth-level algorithm. Above 22.5 km all
remaining model levels are levels of constant height. The resulting profile of layer thickness versus layer height is shown in
Fig. ?? for a surface point at sea level (black) and the highest surface point on the R2B9 grid, which is in the Himalayas and
has a height of 7368 m. Thus the vertical resolution ranges from 300 m at 12 km, near the tropopause, to 600 m at 50 km
height near the stratopause. Over high terrain, however, a relatively strong change in vertical resolution appears near 13 km

height, which unfortunately cannot be avoided with the existing implementation of the smooth level algorithm.
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2.3 Dynamics

For the QUBICC experiments the time step is adjusted to the higher resolution in the horizontal and vertical grids: d¢ = 40s =
5 - dtqyn, where dtqyy is the time step of the substeps used in the dynamical core. The model time step d¢ is thus slightly
shorter than the 45 s time step used for the same horizontal resolution in 2. The reason is the increased vertical resolution

which imposes narrower limits for stability in the vertical tracer transport.
2.4 Tracer transport

The QUBICC experiments include a total of 6 tracers for water vapor, cloud water, cloud ice, rain, snow and graupel. This
enlarged set of tracers compared to ? is related to the more detailed cloud microphysics scheme that predicts also rain, snow
and graupel, see below. For efficiency reasons the transport of hydrometeors, i.e. cloud water, cloud ice, rain, snow and graupel,
is limited to heights below 22.5 km, assuming that none of these hydrometeors exist in the vicinity of this stratospheric height
level and above. Concerning the configuration of the transport scheme, the horizontal advection for water vapor has been
changed from a combination of a semi-Lagrangian flux form and a third order Miura scheme with sub-cycling to a second
order Miura scheme with sub-cycling. The choice of the simpler scheme is related to the difficulty of a GPU implementation
for a semi-Lagrangian flux form scheme, as discussed later. (The GPU port of this scheme is currently ongoing.) Sub-cycling
means that the integration from time step n to n+1 is split into 3 sub-steps to meet the stability requirements. This sub-cycling
is applied only above 22.5 km height, i.e. in the stratosphere and mesosphere where strong winds exist. The other tracers,
the hydrometeors, are also transported with the second order Miura scheme, though without sub-cycling because they are not

transported above 22.5 km.
2.5 Physics

The QUBICC experiments make use of the Sapphire physics package for storm resolving simulations. This package deviates
from the ECHAM based physics package described in ? in a number of points. First of all the physics package excludes pa-
rameterizations for convection, atmospheric and orographic gravity waves and other sub-grid scale orographic effects. These
processes are mostly resolved, though not completely, at the grid resolutions used in QUBICC experiments. Further the scien-
tific goal of the QUBICC experiments consist in the investigation of the QBO forcing based on the resolved dynamics of deep
convective clouds and related waves, which can be granted by excluding parameterized representations of these processes. As
a result the Sapphire physics package is considerably smaller and the model structurally simplified.

The atmospheric processes which still require parameterizations are radiation, the vertical diffusion related to unresolved
eddies, and the cloud microphysics. Additionally land processes must be parameterized for the interactive representation of the

lower atmospheric boundary conditions over land.
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2.5.1 Radiation

From the beginning of the GPU port it was clear that the radiation code was a special challenge due to its additional dimension in
spectral space that resolves the shortwave and longwave spectra. Further, initial work on the original PSRAD radiation scheme
(?) showed that a substantial refactoring would have been necessary for a well performing GPU version of PSRAD, with
uncertain outcome. Therefore the decision was taken to replace PSRAD by the new RTE+RRTMGP radiation code (?), which
was designed from the beginning to work efficiently on CPUs and GPUs, with separate code kernels for each architecture. Thus
the ICON code for QUBICC employs now the RTE+RRTMGP code. From a modeling point of view RTE+RRTMGP employs
the same spectral discretization methods as PSRAD, namely the k-distribution method and the correlated-k approximation.
Differences exist however in using absorption coefficients from more recent spectroscopic data in RTE+RRTMGP, and in
the number and distribution of discretization points, so-called g-points, in the SW and LW spectra. While PSRAD used 252
g-points (140 in the longwave spectral region and 112 in the shortwave), RTE+RRTMGP versions on Piz Daint and Juwels-
Booster use 480 (256 LW + 224 SW) and 240 (128 LW + 112 SW) g-points, respectively. Scattering of longwave radiation by
cloud particles is not activated in RTE+RRTMGSP, so that also in this aspect it is equivalent to the older PSRAD scheme.

As the calculations for the radiative transfer remain the most expensive portion of the model system, a reduced calling
frequency, as common in climate and numerical weather prediction models, remains necessary. For QUBICC experiments the
radiation time step is set to At,,q = 12min = 18 - d¢, thus a bit shorter and more frequent than in the simulations of ? where
Ataq = 15min = 20 - dt was used.

Concerning the atmospheric composition the radiative transfer depends on prognostic fields for water vapor, cloud water,
and cloud ice, and on externally specified time dependent greenhouse gas concentrations for CO,, CHy4, N,O, CFC11, and
CFC12, and O3, as prepared for the historical simulations of CMIP6 (?).

In the spirit of allowing only explicitly modeled scales, all tracers used in radiation are assumed to be homogeneous within
each cell. Thus no parameterized effect of cloud inhomogeneities on the optical path of cloud water and cloud ice is applied in
the QUBICC simulations.

Further, rain, snow and graupel concentrations are neglected in the radiative transfer, and for practical reasons no aerosol

forcing has been used in the initial experiments.
2.5.2  Vertical diffusion

For the representation of the vertical turbulent diffusion of heat, momentum and tracers the same total turbulent energy param-

eterization of ? is used, again implicitly coupled to the land surface scheme, see below.
2.5.3 Land surface physics

Land processes in ICON-A are described by the JSBACH land surface model which provides the lower boundary conditions
for the atmosphere and is implicitly coupled to the atmospheric vertical diffusion parameterization. The infrastructure, ICON-

Land, for this ICON-A land component has been newly designed in a Fortran2008 object-oriented, modular and flexible way.
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The specific implementations of physical, biogeophysical and biogeochemical processes constituting the JSBACH model have
been ported from the JSBACH version used with the MPIESM/ECHAM modeling framework (??).

For the experiments described in this study, JSBACH has been used in a simplified configuration that uses only the physical
processes and in which the sub-grid scale heterogeneity of the land surface properties in each grid box is described by lakes,

glaciers and only one single vegetated tile, as in ICON-A (?).
2.5.4 Cloud microphysics

Cloud microphysics is parameterized by the "graupel” microphysics scheme (?, Sect. 5.2 and 5.3), which is a single moment
microphysics scheme for water vapor, cloud water, cloud ice, rain, snow and graupel. All hydrometeors are also transported.
For efficiency reasons the computation of cloud microphysics and the transport of cloud tracers are limited to heights below
22.5 km height.

2.5.5 Cloud cover

In the spirit of allowing only explicitly modeled scales, it is assumed that all fields controlling cloud condensation and thus
cloud cover are homogeneous in each cell. Thus the instantaneous cloud cover in a cell is diagnosed as either O or 1 hundred
percent, depending on the cloud condensate mass fraction exceeding a threshold value of 10~%kg/kg. Total cloud cover in a

column thus is either 0 or 1 hundred percent.
2.6 Coupling of processes

The coupling of the processes described above, the transformations between dynamics variables and physics variables, as well
as the time integration follow closely the setup described in Sect. 3 of ?, also using the simplified case of their Equation 8, for
which the scheme is displayed in Fig. ??. However, a difference with respect to ? consists in the coupling between the physical
parameterizations and is shown in Figure ??. The coupling scheme applied in our study couples radiation, vertical diffusion

with surface land physics, and cloud microphysics sequentially instead of using a mixed coupling scheme (cf. Fig. 6 of ?).

3 The compute systems

In this section the compute systems used for the presented work are described briefly, with Piz Daint at the Swiss National
Supercomputing Centre (CSCS) being the main system where the GPU port of ICON was developed and experiments have
been carried out during the first year of a PRACE allocation. The second year PRACE allocation was shifted to Juwels-Booster
at the Forschungszentrum Jiilich (FZJ), where the GPU port of ICON was further optimized followed by new scaling tests
and experiments. Last but not least the same code was used also for additional scaling tests on the new Levante computer
at the German Climate Computing Center (DKRZ), which is a CPU architecture, thus demonstrating the portability across a

number of platforms. The maximum sustained throughput Ry,.x from the HPL (high-performance linpack) benchmarks are
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Figure 2. The model operator M propagates the model state X from time ¢ to ¢ 4+ d¢, with X consisting of the variables vy, 0, and p, which
are processed by the dynamics, and tracer mass fractions ¢;, which are processed by the advection scheme A. The dynamics consists of a
sequence of 5 sub-steps (D), each propagating the dynamics variables by dt/5, followed by horizontal diffusion (D). The intermediate
state resulting from dynamics and advection (A) is used for the computation of the forcing, which is applied in the physics update (P) that

produces the new state X (¢ + dt).
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Figure 3. The forcing consists of three sequentially coupled components for radiative heating (rad), vertical diffusion (vdf) coupled implicitly
to land surface processes (sfc), and cloud microphysics (cld). Each component computes its contribution to the forcing from a provisional

state Y expressed in the physics variables 7', m, g;,u and v.
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used to normalize the performance across the machines. Because ICON is often memory bandwidth limited the HPCG (high

performance conjugate gradient) benchmarks would be a more informative norm, however these are not available for Levante.
3.1 The compute system Piz Daint at CSCS

The main work of porting ICON to GPUs including extensive testing, benchmarking, and performing the first set of experiments
for the QUBICC project was carried out on the Piz Daint computer at CSCS. Piz Daint is a hybrid Cray XC40/XC50 system
with 5704 XC50 nodes and 1813 XC40 dual-socket CPU nodes (?) with a linpack performance of Ry.x = 21.2 PFlop/s (?).
The work presented here is targeting the XC50 nodes of the machine, which contain an Intel Xeon E5-2690 v3 CPU with 12
cores and 64 GB memory and a NVIDIA Tesla P100 GPU with 16 GB memory.

The main software used for compiling the ICON code is the PGI/NVIDIA compiler, which on Piz Daint is currently the only
option for using OpenACC directives in a large Fortran code like ICON that makes use of Fortran 2003 constructs. Software

versions of essential packages used from Piz Daint for building the ICON executable are listed in Table ??2.

Table 1. System software used for compiling ICON on Piz Daint, Juwels-Booster, and Levante.

Software Piz Daint Juwels-Booster  Levante

Compiler pgi/20.1.1 pgi/21.5 intel/2022.0.1

MPI communication  cray-mpich/7.7.16 ~ OpenMPI/4.1.1  OpenMPI/4.1.2

CUDA Toolkit cudatoolkit/11.0.2  CUDA/11.3 -

NetCDF cray-netcdf/4.7.4.0  netCDF/4.7.4 netcdf-c/4.8.1,
netcdf-fortran/4.5.3

HDF5 cray-hdf5/1.12.0.0  HDF5/1.10.6 HDF5/1.12.1

3.2 The compute system Juwels-Booster at FZJ

After the first version of ICON-A for GPUs was working on Piz Daint, the newer Juwels-Booster system at FZ] became
available. This led to a second version of the ICON GPU code, with model improvements and further optimizations of the
GPU parallelization, both benefiting the computational performance of the model.

The Juwels-Booster system at FZJ comprises 936 nodes, each with 2 AMD EPYC Rome CPUs and 256 GB memory
per CPU, and 4 NVIDIA A100 GPUs with 40 GB memory per GPU (?). The maximum linpack sustained performance of
this system is 44.1 PFlop/s (?). The main software used for compiling the ICON code on Juwels-Booster is also shown in

Table ??. Also here the PGI compiler is the only option to use the model on GPUs.

10
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3.3 The compute system Levante at DKRZ

The third compute system used for scaling tests is the new CPU system Levante at DKRZ, which is the main provider of
computing resources for MPI-M and other climate research institutes in Germany. Levante is used here to demonstrate the
portability of the code developed for GPU machines back to CPUs.

The Levante system entered service in March 2022 consisting of a CPU partition with 2832 nodes, each with 2 AMD EPYC
Milan x86 processors. A GPU partition with 60 GPU nodes, each with 4 NVIDIA A100 GPUs is presently being installed.
The 2520 standard CPU nodes have 128 GB memory per CPU, while others have more memory (?). When fully operational
Levante is expected to have a LINPACK Ry, = 9.7 PFlop/s. Benchmarks during the installation phase of Eevante-Levante
arrived at a LINPACK R, of 7 PFlop on 2048 CPU nodes (?). The software used for compiling is listed in Table ??.

4 Porting ICON to GPUs
4.1 General porting strategy

On current supercomputer architectures, GPU and CPU have separate memories, and the transfer of data between the two goes
via a slow connection compared to the direct access of the local memory of each device. When considering the port of an
application to GPU, the key decision is which part can be run on CPU or GPU, so that data transfer between them can be
minimized. Since the compute intensity, i.e., ratio of floating point operations to memory load, of typical computation patterns
in weather and climate models is low, it becomes clear that all computations occurring during the time loop need to be ported
to the GPU to avoid data transfers within it.

ICON-A inherently operates on three-dimensional domains: the horizontal is covered with a space-filling curve, which is
split up into nblocks blocks of arbitrary size nproma in order to offer flexibility for a variety of processors. The vertical
levels form the other dimension of size n1ev. Most, but not all, of the underlying arrays have the index order (nproma, nlev,
nblocks), possibly with additional dimensions of limited size.

The basic idea of the GPU port is to introduce the OpenACC PARALLEL LOOP statements around all the loops that operate

on the grid data. We identify the following main approaches to improve the performance of such approach:

— employing structured data regions spanning multiple kernels to avoid any unnecessary CPU-GPU data transfers for the

automatic arrays;
— collapsing horizontal and vertical loops where possible to increase the available parallelism;

— fusing adjacent similar loops when possible by writing an embracing PARALLEL region with multiple loops using LOOP

GANG (static:1) VECTOR;
— using ASYNC clause to minimize the launch latency;

— "scalarization", i.e., using scalar temporary variables instead of nproma-sized arrays where possible;

11
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— restructuring and rewriting a few loops that are not directly amenable to efficient porting, for example, using CLAW, see

Section ??.

In the GPU port of ICON we assume that nproma is chosen as large as possible, ideally such that all cell grid points of a
computational domain including first and second level halo points fit into a single block thus yielding nblocks = 1. Therefore
the nproma dimension is in general the main direction of parallelism. Considering the data layout with nproma, with unit

stride in memory, this needs to be associated with the "vector" OpenACC keyword to ensure coalesced memory access.
4.2 GPU memory

Due to the 16 GB memory limitation on the P100 GPUs of Piz Daint, it was crucial to limit the allocation of ICON data
structures on the GPU. To this end, OpenACC’s selective deep copy was used, in which all relevant arrays are allocated only if
needed and then copied individually to the GPU just before the main time loop. At its end, the data types are deleted on GPU,
because all subsequently required data have been updated on the host within the loop. The selective deep copy required a new
Fortran module mo_nonhydro_gpu_types, which is inactive for CPU compilation.

Within the time loop all calculation (Dynamics, Physics) is performed on the device, except for minor computation whose
results (at most one-dimensional arrays) can be copied to the device with minimal overhead with UPDATE (DEVICE) clauses.

ICON uses an unstructured grid formulation, meaning that accesses to cell, edge and vertex neighbors go through indexing

arrays, i.e., indirect addressing. Therefore, within the time loop all graph information also has to reside on the device memory.
4.3 Porting the dynamical core

The ICON non-hydrostatic dynamical core algorithms have been extensively documented in ?. In this section, the dynamical
core, or "dycore", is defined as (1) the non-hydrostatic solver, (2) advection, (3) diffusion, and finally (4) all infrastructure
called by these — not necessarily exclusively — such as communication, as well as interpolations, divergence, gradient and
other stencil computations.

Only the accelerator implementation of the dynamical core is discussed in this section. The validation of the accelerator

execution, which actually took much longer than the implementation, is discussed in Sect. ??.
4.3.1 Non-hydrostatic solver

In a preliminary phase, OpenCL and CUDAFortran versions of a prototype non-hydrostatic dycore were created as a proof of
concept. ICON developers were not willing to include these paradigms into their code base and insisted on an implementation
with only compiler directives.

This methodology was explored first in the ICON dycore and the underlying infrastructure was ported to GPUs using
OpenACC directives. These improvements were also incorporated into the ICON development code base, and this work was
documented in ?. In this dycore version, kernels operated on the full three-dimensional (nproma, nlev, nblocks) domain,

in other words over three nested DO loops. Due to this approach, the optimal block size nproma was in the range 500-2000.
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290 However, this approach turned out to be a considerable limitation: in the physical parameterizations the loop over all blocks
is many subroutine levels above the loops over the block and the levels. Although it is in theory possible to construct OpenACC
parallel region with a complex and deep subroutine call tree, it proves in practice not to be a viable approach with the available
OpenACC compilers (PGI and Cray). In order to avoid a complex programming technique, it was decided to refactor the
dynamical core to parallelize only over the two inner dimensions, nproma and nlev, when possible, see Listing ??. With this

295 approach the optimal nproma is chosen as large as possible, i.e., having effectively one block per MPI subdomain and thus a
single iteration in the jb loop in Listing ??.

Listing 1. Most common loop structure in dynamical core with asynchronous execution.
DO jb = i_startblk , i_endblk

CALL get_indices_c (p_patch, jb, i_startblk , i_endblk, &
300 i_startidx , i_endidx, rl_start, rl_end)

!$ACC PARALLEL IF( i_am_accel_node .AND. acc_on ) DEFAULT(NONE) ASYNC(1)
!$ACC LOOP GANG VECTOR COLLAPSE(2)
DO jk = 1, nlev
305 DO jc = i_startidx , i_endidx

ENDDO
ENDDO
!$ACC END PARALLEL
310

ENDDO

Generally kernels are denoted with the ACC PARALLEL directive, which allows the user to be more prescriptive than the
higher level descriptive ACC KERNELS directive, which is used in ICON only for operations using Fortran array syntax. Usage

315 of KERNELS for more complicated tasks tended to reduce performance.
There are code divergences in the non-hydrostatic solver. On the accelerator it is advantageous to use scalars within loops,

while for the CPU frequently two-dimensional arrays perform better, see Listing ??.

Listing 2. Register variables outperform arrays on GPU. One of roughly 10 code divergences in the dynamical core
!$ACC PARALLEL IF( i_am_accel_node .AND. acc_on ) DEFAULT(NONE) ASYNC(1)
!$ACC LOOP GANG VECTOR COLLAPSE(2)
320 DO jk = nflatlev(jg)+1, nlev
DO jc = i_startidx , i_endidx
! COMMENT: this optimization yields drastically better performance in an OpenACC context
z_w_concorr_mc_ml = &
p_int%e_bln_c_s(jc,l,jb)*xz_w_concorr_me(ieidx (jc,jb,1),jk—-1,ieblk (jc,jb,1)) + &
325 p_int%e_bln_c_s(jc,2,jb)*z_w_concorr_me (ieidx (jc ,jb,2),jk—-1,ieblk (jc,jb,2)) + &
p_int%e_bln_c_s(jc ,3,jb)*z_w_concorr_me (ieidx (jc,jb,3),jk—-1,ieblk (jc,jb,3))
!CPU
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! z_w_concorr_mc(jc ,jk) = &

! p_int%e_bln_c_s(jc,l,jb)*xz_w_concorr_me(ieidx (jc,jb,1),jk,ieblk(jc,jb,1)) + &
! p_int%e_bln_c_s(jc ,2,jb)*xz_w_concorr_me(ieidx (jc,jb,2),jk,ieblk(jc,jb,2)) + &
! p_int%e_bln_c_s(jc ,3,jb)*xz_w_concorr_me (ieidx (jc,jb,3),jk,ieblk (jc,jb,3))

ENDDO
ENDDO
!$ACC END PARALLEL

After extensive refactoring and optimizations, such as asynchronous kernel execution and strategically placed ACC WAIT
directives, the resulting dycore version performed at least as well on GPUs as the original GPU version with triple-nested
parallelism, with the former operating with nblocks =1 or a very small integer, and thus the largest possible nproma. See

Sect. ?? for complete performance comparisons, in particular between CPU and GPU.
4.3.2 Transport schemes

Transport schemes predict the large-scale redistribution of atmospheric tracers such as water substances, as in the model setup
used here, and chemical constituents or aerosols in the atmosphere due to air motion. Mathematically, advection solves one of
the fundamental laws of physics, namely the equation of tracer mass continuity.

In ICON transport, the numerical solution to the tracer mass continuity equation is based on so called space-time finite
volume methods (?). Finite volume methods are derived on the cell-integrated form of the underlying partial differential
equation.

There are several different variants of horizontal and vertical advection, depending on whether the scheme is Eulerian or
semi-Lagrangian, what sort of reconstructions (second or third order) and which type of time-stepping is employed. All of
these variants ultimately can be considered stencil operations on a limited number of neighboring cells, i.e., physical quantities
defined in cell centers, vertices or edges. As such, the structure of the corresponding kernels is usually similar to Listing 2?.

In several parts of the code specific optimization, using so called index lists as shown in Listing ?? are used for better
performance on CPUs, in particular for vector machines. The advantage of an index list is that the subsequent calculation can
be limited only to the points which fulfill a certain criterion, which is generally quite rare, meaning the list is sparse and thus
quite small. In addition such an implementation avoids the use of if statements which makes it easier for compiler to auto-
vectorize this code section. For the GPU parallelization such index list implementation has unfortunately a negative impact on
performance as the list creation is a sequential operation.

Listing 3. Index lists used in vertical flux calculation with reconstruction by the piece-wise parabolic method.

DO jc = i_startidx , i_endidx
! jk_shifted must fall within the range [top_bound, bot_bound] in order

! to pass the following if condition. Unfortunately , the range depends on

! the sign of w.
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IF ( z_aux(jc) > p_cellmass_now (jc,jk_shifted (jc,jk,jb),jb) &
& .AND. jk_shifted (jc,jk,jb) <= bot_bound &
& AND. jk_shifted (jc,jk,jb) >= slevpl_ti ) THEN

! Fill index lists with those points that need index shifts
! Note that we have to use a scalar counter instead of a vector, like

! i_listdim (nlist ,jb). Otherwise this loop will not vectorize.

counter_ji = counter_ji + 1
i_indlist(counter_ji ,nlist ,jb) = jc
i_levlist(counter_ji ,nlist ,jb) = jk

ENDIF

END DO ! end loop over cells

On an accelerator, numerous execution threads will be competing to increment counter_ji and insert indices into
i_indlist, i_levlist. We overcame this by using OpenACC atomics or parallel algorithms based on exclusive scan
techniques. However, in some cases the proper GPU algorithm is to operate over the full loop. The GPU executes both code
paths of the IF statement, only to throw the results of one path away. The algorithm for vf1lux_ppm4gpu is functionally

equivalent (Listing ?7?).

Listing 4. Index list-free implementation adapted for accelerator execution.
!$ACC PARALLEL DEFAULT(NONE) PRESENT(z_cfl) ASYNC(1) IF( i_am_accel_node .AND. acc_on )
!$ACC LOOP GANG VECTOR PRIVATE( z_mass, jks ) COLLAPSE(2)
DO jk = slevpl_ti, elev
DO jc = i_startidx , i_endidx
z_mass = p_dtimesxp_mflx_contra_v (jc,jk,jb) ! total mass crossing jk’th edge
IF (z_mass > 0._wp) THEN
jks = jk ! initialize shifted index
DO WHILE( (z_mass > p_cellmass_now (jc,jks,jb)) .AND. (jks <= nlev-1) )
! update Courant number
ENDDO
! now we add the fractional Courant number
z_cfl(jc,jk,jb) = z_cfl(jc,jk,jb) + MIN(1._wp,z_mass/p_cellmass_now (jc,jks,jb))
ELSE

! update Courant number

! now we add the fractional Courant number
z_cfl(jc,jk,jb) = z_cfl(jc,jk,jb) + MAX(—-1._wp,z_mass/p_cellmass_now (jc ,jks ,jb))
ENDIF
ENDDO ! jc
ENDDO ! jk

15



405

410

415

420

425

430

435

440

Some horizontal advection schemes and their flux limiters require halo exchanges in order to make all points in the stencil

available on a given process. The communication routines are described in Sect. ??.
4.3.3 Non-hydrostatic diffusion

The dynamical core contains several variants of horizontal diffusion. The default approach is a more physically motivated
second-order Smagorinsky diffusion of velocity and potential temperature combined with a fourth-order background diffusion
of velocity, using a different discretization for velocity that is formally second-order accurate on equilateral triangles.

Most of the horizontal diffusion contains kernels in the style of Listing ??, but again there are index lists for the normal CPU

calculation. Listing ?? illustrates how the index lists are avoided at the cost of a temporary 3-D array.

Listing 5. The OpenACC version uses a temporary 3D array enh_diffu_3d defined in cell centers and a revised MAX statement on the

edge grid to avoid the construction of iclist/iklist from previous loop.
#ifndef _OPENACC
DO jb = i_startblk ,i_endblk
IF (icount(jb) > 0) THEN
DO ic = 1, icount(jb)
jc = iclist(ic,jb)
jk = iklist(ic,jb)
enh_diffu = tdlist(ic,jb)*5.e-4_vp
kh_smag_e(ieidx (jc,jb,1),jk,ieblk(jc,jb,1)) = &
MAX(enh_diffu ,kh_smag_e(ieidx (jc,jb,1),jk,ieblk (jc,jb,1)))
kh_smag_e(ieidx (jc,jb,2),jk,ieblk (jc,jb,2)) = &
MAX(enh_diffu ,kh_smag_e(ieidx (jc,jb,2),jk,ieblk (jc,jb.,2)))
kh_smag_e(ieidx (jc,jb,3),jk,ieblk (jc,jb,3)) =&
MAX(enh_diffu ,kh_smag_e(ieidx (jc,jb,3),jk,ieblk (jc,jb,3)))
ENDDO
ENDIF
ENDDO

#else

DO jb = i_startblk ,i_endblk
CALL get_indices_e (p_patch, jb, i_startblk , i_endblk, i_startidx , i_endidx, rl_start, rl_end)
!$ACC PARALLEL LOOP DEFAULT(NONE) GANG VECTOR COLLAPSE(2) ASYNC(1) IF( i_am_accel_node .AND. acc_on )
DO jk = nlev-1, nlev
DO je = i_startidx , i_endidx
kh_smag_e(je ,jk,jb) = MAX(kh_smag_e(je ,jk.,jb), &
enh_diffu_3d (iecidx (je,jb,1),jk,iecblk(je,jb,1)), &
enh_diffu_3d(iecidx (je,jb,2),jk,iecblk(je,jb,2)) )
ENDDO
ENDDO
!$ACC END PARALLEL LOOP
ENDDO
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#endif

4.3.4 Dynamical core infrastructure

The dynamical core also calls horizontal operators such as averaged divergence or cell-to-vertex interpolation. These operators,
along with numerous related stencil operations required in other parts of the model, were also ported with OpenACC. These
almost always adhere to the style of Listing ??, and are thus straightforward to port to OpenACC.

Essentially all of the halo exchanges occur in the dynamical core, the horizontal flux calculation of advection, or in the
dynamics-physics interface. During the exchange, the surface of a vertical prism residing on a given process is written into the
halo surface of vertical prisms residing on its neighboring processes. Since these halo exchanges are performed within the time

loop, the halo regions are in device memory. Two mechanisms are provided to perform the exchange:

— Update the prism surface on the CPU, post the corresponding MPI_Isend, and Irecv with a temporary (host) buffer, and
after the subsequent MPI_WAIT operation, update receive buffer on the device, and copy the buffer to the halo region

solely on the device.

— Pass GPU pointers to the same Isend and Irecv routines in a GPU-aware MPI implementation. The final copy to the halo

region is again performed on the device.

These two mechanisms illustrated in Listings ?? and ?? are easily woven together with logicals in the corresponding Ope-

nACC IF clauses.

Listing 6. Halo receive operation, with or without GPUdirect communication

1$ACC DATA CREATE( send_buf, recv_buf ) &
1$ACC PRESENT( recv, p_pat ) &
1$ACC IF (use_gpu)
IF (iorder_sendrecv == 1 .OR. iorder_sendrecv == 3) THEN
! Set up irecv’s for receive buffers
DO np = 1, p_pat%np_recv ! loop over PEs from where to receive the data
pid = p_pat%pelist_recv(np) ! ID of receiver PE
irs = p_patdhrecv_startidx (np)
icount = p_pat%recv_count(np)=*ndim2

CALL p_irecv(recv_buf(l,irs), pid, 1, p_count=icount, comm=p_pat%comm, use_g2g=use_g2g)
ENDDO
ENDIF

Listing 7. Halo receive operation, with or without GPUdirect communication
!$ACC HOST_DATA USE_DEVICE( t_buffer ) IF ( loc_use_g2g )
CALL p_inc_request
CALL mpi_irecv(t_buffer, icount, p_real_dp, p_source, p_tag, &
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p_comm, p_request(p_irequest), p_error)
!$ACC END HOST_DATA

4.4 Physical Parameterizations

The provision of the physical forcing for the time integration is organized in four levels. The first level, which is the dynamics
physics interface, transforms the provisional variable state X (¢) that results from dynamics and transport (Fig. ??) to the physics
variable state Y that is the input for the physical parameterizations (Fig. ??). And on return from the physics the collected total
tendencies from physics in Y variables are converted to tendencies in X variables for dynamics and computes the new dynamics
state X (¢4 dt). These tasks involve loops over blocks, levels and grid points as in dynamics. Their parallelization on the GPU
therefore follows the pattern used in the dynamics codes, see Listing ??.

At the second level the physics main routine calls the physical parameterizations of the Sapphire configuration in the se-
quence shown in Fig. ?? by use of a generic subroutine. This routine contains the block loop from which a parameterization
interface, as specified by argument, is called for each single data block. Thus the computation below this level concerns only
the nproma dimension over cells and the nl1ev dimension over levels, and in some cases extra dimensions for instance for
tracers or surface tiles. This second level contains only OpenMP directives for the parallelization of the block loop, but not
OpenACC directives because the parallelization on GPUs is employed only within data blocks.

The third level consists of the interfaces to the speefie-specific parameterizations. These interfaces provide the access to
the global memory for the parameterizations by USE access to memory modules. The equivalent variables in GPU memory,
which have been created before and updated where necessary, are now declared as present either for individual variables,
as for instance the 3-dimensional atmospheric temperature ta and the 4-dimensional array gt rc for tracer mass fractions
in$ACC DATA PRESENT (field%ta, field%gtrc). This practice was followed in the code used on Piz Daint. The
newer code on Juwels-Booster instead declares the entire variable construct as present instead of its components, like SACC
DATA PRESENT (field). Beside the memory access these interfaces use the output of the parameterization for computing
the provisional physics state for the next parameterization in the sequentially coupled physics, and for accumulating the contri-
bution of the parameterizaion-parameterization tendencies in the total physics tendencies. These tasks typically require loops
over the nproma and nlev dimension, but sometimes also over additional dimensions like tracers. The typical loop structure
follows Listing ??.

Listing 8. Most common loop structure over levels jk and cells jc in parameterizations and their interfaces.
I$ACC PARALLEL DEFAULT(NONE) ASYNC(1)
I$ACC LOOP GANG VECTOR COLLAPSE(2)

DO jk = 1,nlev
DO jc = jcs,jce

END DO

END DO
!$ACC END PARALLEL
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Particular attention is paid to the reproducibility of sums, as for instance for vertical integrals of tracer masses computed in
some of these interfaces in loops over the vertical dimension. Here the ! SACC LOOP SEQ directive is employed to fix the
order of the summands.

Finally, the forth level exists in the parameterizations. The parameterizations used here are inherently one dimensional, as
they couple levels by vertical fluxes. This would allow to encode them for single columns, but for traditional optimization
reasons, these codes include a horizontal loop dimension, which in ICON is the nproma dimension. Therefore these parame-
terizations include this additional loop beside those required for the parameterization itself, and hence the GPU parallelization
in general follows the pattern in Listing ??. Subsequently some parameterization specific modifications for the GPU paral-

lelization are pointed out.
4.4.1 Radiation

As pointed out earlier, the GPU implementation aims at using maximum block sizes, so that all grid points and levels within
a computational domain fit into a single block, and hence a single iteration of the block loop suffices. Using large block sizes,
however, means also that more memory is required to store the local arrays, which is a challenge especially on Piz Daint
with the small GPU memory capacity. This problem turned out to be most pronounced for the radiation code, owing to the
extra spectral dimension. On Piz Daint this meant that a single block per domain would not have been feasible. This issue was
resolved by allowing for a sub-blocking parameter r rtmgp_column_chunk (rcc) in the radiation code, so that the original
blocks of size nproma are broken up into smaller data blocks for input and output of the radiation scheme. This radiation block
size can be specified as necessary and is typically ca. 5% to 10% of nproma when using the smallest possible number of nodes.
But, at the largest node counts during strong scaling as shown in the experiments below, nproma can become small enough
so that no sub-blocking in the radiation is needed and rcc is set to the number of grid points in the computational domain.

As explained in ?, RTE+RRTMGP comprises a set of user-facing code, written in object-oriented Fortran 2008, which is
responsible for flow control, input validation, etc. Computational tasks are performed by computational kernels using assumed-
size arrays with C bindings to facilitate language interoperability. For use on GPUs a separate set of kernels was implemented
in Fortran using OpenACC directives, with refactoring to increase parallelism at the cost of increased memory use relative to
the original CPU kernels. The Fortran classes also required the addition of OpenACC data directives to avoid unnecessary data
flows between CPU and GPU.

RTE+RRTMGP, like ICON, operates on sets of columns whose fastest-varying dimension is set by the user and whose
second-fastest varying dimension is the vertical coordinate. Low-level CPU kernels are written as loops over these two di-
mensions, with higher-level kernels passing results between low-level kernels while looping over the slowest-varying spectral
dimension. This approach, illustrated in Listing ??, keeps memory use modest and facilitates the reuse of cached data. Low-
level GPU kernels, in contrast, operate on all three dimensions at once. When the calculation is parallelizable in all dimen-
sions (i.e where values at every spatial and spectral location are independent) the parallelization is over all rcc X nlev(=

191) x ngpt (= O(125)) elements at once. Some loops have dependencies in the vertical; for these the GPU kernels are par-
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allelized over the column and spectral point, with the vertical loop performed sequentially within each horizontal and spectral

loop (see Listing 2?).

Listing 9. Example loop structure for CPU kernels in RTE+RRTMGP. High level kernels operate on all levels and columns in the block but

only one spectral point (g-point) at a time. In this example the loop over g-points is performed at one higher calling level.
!

! Element—wise loop for fully independent calculations

545 !
do ilay = 1, nlay
do icol = 1, ncol
tau_s = tau(icol, ilay)
! Intermediate computation
550
source_up (icol ,ilay) = Rdir # dir_flux_inc(icol)
end do
end do
555 !

! Vertically —dependent loop (e.g. for radiation transport)
!
do ilev = nlay, 1, -1
denom = 1._wp/(l._wp — rdif(:,ilev)=albedo(:,ilev+1)) ! Eq 10
560 albedo (:,ilev) = rdif (:,ilev) + &
tdif (:,ilev)=tdif (:,ilev) = albedo(:,ilev+1) = denom ! Equation 9

end do

Listing 10. Example loop structure for GPU kernels in RTE+RRTMGP. For the GPUs kernels operate on all levels, columns, and spectral

points at once, expect where dependencies in the vertical require the vertical loop to be done sequentially.
!$acc parallel loop collapse(3)
565 do igpt = 1, ngpt
do ilay = 1, nlay
do icol = 1, ncol
tau_s = tau(icol ,ilay ,igpt)

! Intermediate computation

570
source_up (icol ,ilay ,igpt) = Rdir % dir_flux_inc (icol ,igpt)
end do
end do
end do
575

! Vertically —dependent loop (e.g. for radiation transport)
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!
!$acc parallel loop gang vector collapse (2)
!$omp target teams distribute parallel do simd collapse (2)
! Note loop over levels is performed sequentially
do igpt = 1, ngpt
do icol = 1, ncol
do ilev = nlay, 1, -1
denom (icol ,ilev ,igpt) = 1._wp/(l._wp — rdif(icol ,ilev ,igpt)=albedo(icol ,ilev+1,igpt)) ! Eq 10
albedo (icol ,ilev ,igpt) = rdif(icol ,ilev ,igpt) + &
tdif (icol ,ilev ,igpt)=tdif (icol ,ilev ,igpt) = &
albedo (icol ,ilev+1,igpt) = denom(icol ,ilev ,igpt) ! Eq 9

end do
end do

end do

Most sets of kernels in RTE+RRTMGP now contain two separate implementations organized in distinct directories with
identical interfaces and file naming. A few sets of kernels (e.g. those related to summing over spectral points to produce
broadband fluxes) were simple enough to support the addition of OpenACC directives into the CPU code.

Though the original plan was to restrict OpenACC directives to the kernels themselves it became clear that the Fortran class
front ends contain enough data management and small pieces of computation that they, too, required OpenACC directives, both
to keep all computations on the GPU and to allow the sharing of data from high level kernels (for example, to reuse interpolation
coefficients for the computation of absorption and scattering coefficients by gases). The classes therefore have been revised
such that communication with the CPU is not required if all the data used by the radiation parameterization (temperatures, gas

concentrations, hydrometeor sizes and concentrations, etc.) already exists on the GPU.
4.4.2 Land surface physics

One of the design goals of the new ICON-Land infrastructure has been to make it easy for domain scientists to implement the
scientific routines for a specific land model configuration, such as JSBACH. Except for the (lateral) river routing of runoff, all
processes in JSBACH operate on each horizontal grid cell independently, either 2-D or 3-D with an additional third dimension
such as soil layers, and therefore don’t require detailed knowledge of the memory layout or horizontal grid information.
To further simplify the implementation, the 2-D routines are formulated as Fortran elemental subroutines or functions thus
abstracting away the field dimensions of variables and loops iterating over the horizontal dimension. As intermediate layer
between the infrastructure and these scientific routines JSBACH uses interface routines which are responsible for accessing
variable pointers from the memory and calling the core (elemental) calculation routines. These interfaces make extensive use
of Fortran array notation.

Instead of re-factoring large parts of JSBACH to use explicit ACC directives and loops and thus hampering the usability for

domain scientists, the CLAW (?) source-to-source translator has been used for the GPU port. CLAW consists of a domain-
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specific language (DSL) and a compiler allowing it to automate the port to OpenACC with much fewer directives and changes
to the model code than are necessary with pure ACC. For example, blocks of statements in the interface routines using array
notation can simply be enclosed by !$claw expand parallel and !$claw end expand directives and are then
automatically expanded into ACC directives and loops.

The elemental routines discussed above are transformed into ACC code by using an additional CLAW feature: the CLAW
Single Column Abstraction (SCA) (?). The CLAW SCA has been specifically introduced in CLAW to address performance
portability for physical parameterizations in weather and climate models which operate on horizontally independent columns.

Using the CLAW SCA translator, the only changes necessary in the original Fortran code of JSBACH were to
— prepend the call to an elemental routine by the CLAW directive ! $claw sca forward,

— insert ! $claw model-data and !$claw end model-data around the declaration of scalar parameters in the

elemental routine that need to be expanded and looped over,
— inserta ! $claw sca directive in the beginning of the statement body of the elemental routine.

The CLAW SCA transformation then automatically discards the ELEMENTAL and PURE specifiers from the routine, expands
the flagged parameters to the memory layout specified in a configuration file and inserts ACC directives and loops over the
respective dimensions.

More details on the CLAW port of JSBACH including code examples and performance measurements for the radiation

component of JSBACH can be found in ?.
4.4.3 Cloud microphysics

Cloud microphysical processes are computed in three sequential steps: (1) saturation adjustment for local condensation or
evaporation, (2) the microphysics between the different hydrometeors and the vertical fluxes of rain, snow and graupel, and
(3) again saturation adjustment for local condensation or evaporation. Here the code for the saturation adjustment exist in a
CPU and GPU variant, selected by a compiler directive. The CPU code sets up one dimensional lists of grid and level indices,
where the adjustment requires Newton iterations, while the GPU code uses a logical 2 dimensional mask with nproma and
nlev dimensions for the same purpose. The CPU code then loops over the cells stored in the index lists while the GPU code
employs a two-dimensional loop structure in which computations happen only for the cells selected by the mask. Beside the
different means to restrict the computations to the necessary cells, the CPU code is also optimized for vectorizing CPUs, which
is the reason that the loop over the list occurs within the condition for ending the Newton iteration cycles, while the GPU code

checks this within the parallelized loops. The related code fragments are shown in Listing ?? and Listing ?? .

Listing 11. Code structure for saturation adjustment on CPU, making use of 1d-lists iwrk for the grid index and kwrk for the level index

of cells where the adjustment needs to be computed iteratively.
count = 0
DO WHILE (ANY(ABS(twork (1:nsat)—tworkold(1:nsat)) > tol) .AND. count < maxiter)
DO indx = 1, nsat
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IF (ABS(twork (indx)—tworkold (indx)) > tol) THEN
! Here we still have to iterate
i = iwrk(indx)
650 k = kwrk(indx)
tworkold (indx) = twork(indx)

twork (indx) = twork(indx) -
END IF
655 END DO
count = count + 1
END DO

Listing 12. Code structure for saturation adjustment on GPU, making use of a 2d-mask iwrk for the grid index and kwrk for the level index

of cells where the adjustment needs to be computed iteratively.

!$acc parallel default(present)

!$acc loop gang vector collapse(2) private (... , count)
660 DO k = klo,kup
DO i = ilo ,iup

count = 0
DO WHILE (ABS(twork(i,k)—tworkold(i,k)) > tol .AND. count < maxiter .AND. iter_mask (i,k))
! Here we still have to iterate

665 tworkold (i ,k) = twork (i, k)

twork (i ,k) = twork(i,k) —

count = count + 1
END DO !while
670 END DO !i
END DO 'k

!$acc end parallel

5 Validation

The ICON development on CPU makes use of test suites comprising simplified test experiments for a variety of model config-
675 urations running on a number of compute systems using different compilers and parallelization setups. This includes the AMIP
experiment discussed in ?, but shortened to 4 time steps. The test suite for this experiment checks for reproducible results with
respect to changes of the blocking length, amount and kind of parallelization (MPI, OpenMP or both) as well as checks for
differences to stored reference solutions. This test suite was also implemented on Piz Daint, where the experiments have been
run by pure CPU binaries as well as GPU-accelerated binaries. Output produced on these different architectures — even if
680 performed with IEEE arithmetic — will always produce slightly different results due to rounding. Therefore, above mentioned

tests for bit-identity cannot be used across different architectures. The problem is made worse by to the chaotic nature of
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the underlying problem. These initially very small changes, which are on the order of floating point precision, quickly grow
across model components and timesteps which makes distinguishing implementation bugs from chaotically grown round-off
differences a non-trivial task.

This central question of CPU vs. GPU code consistency was addressed in three ways, the “ptest” mode, by serializing the
model state before and after central components and tolerance tests of the model output. The first two methods are able to test a
small fraction of the code in isolation where chaotic growth of round-off differences is limited to the tested component and thus
small. We found that tolerating relative errors up to differences of 1012 with double precision floating point numbers (precision
roughly at 1071°) did not result in many false-positives (a requirement for continuous integration) while still detecting most
bugs. Even though most of the code is covered by such component tests, there is no guarantee that passing all these tests leads
to correct model output. To ensure this, a third method had to be implemented. This method came to be known as the "tolerance
test" because tolerance ranges could not be assumed constant but had to be estimated individually for each variable across all
model components and over multiple time-steps. It should be emphasized that, while the introduction of directives took only
weeks of work, the validation of proper execution with the inevitable round-off differences between CPU and GPU execution

took many months.
5.1 Testing with ptest mode

The pre-existing internal “ptest” mechanism in ICON allows the model to run sequentially on one process and in parallel on
the "compute processes" with comparisons of results at synchronization points, such as halo exchanges. This mechanism was
extended for GPU execution with the addition of IF statements in kernel directives, so that the GPUs are active only on the com-
pute processes. Listing ?? illustrates all of the above-mentioned ideas. In particular, the global variable i_am_accel_node
is .TRUE. on all processes which are to execute on accelerators but .FALSE. on the worker node delegated for sequential
execution.

If the ptest mode is activated when a synchronization point is encountered, arrays calculated in a distributed fashion on the
MPI compute processes are gathered and compared to the array calculated on the single sequential process. Synchronization
points can either be halo exchanges, or manually inserted check_patch_array invocations which can compare any arrays
in the standard 3-D ICON data layout.

While this method was very handy at the beginning of the effort to port the model to GPUs, especially for the dynamical core
of the model, extending it beyond the pre-existing mechanism turned out to be cumbersome. At the same time, the Serialbox
library offered a very flexible way to achieve the same goal without running the same code on different hardware at the same

time.
5.2 Serialization

Besides the “ptest” technique mentioned two other approaches were used for the validation of GPU results. First the full model
code was used with test experiments, which typically use low resolution, just a few time steps, and only the component of

interest. Examples are AMIP experiments on the R2B4 grid, as used in ?, but for 4 time steps only, with or without physics,
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or with only a single parameterization. This approach has the advantage that the experiments can be compared to other related
experiments in the common way, based on output fields as well as the log files.

The second approach, the "serialization" method uses such experiments only to store all input and output variables of a
model component. Once this reference data is stored, the test binary (usually utilizing GPUs) reads the input data from file and
calls the model component in exactly the same way as the reference binary (usually running exclusively on CPUs). The new
output is stored and compared to the previously generated reference data, for instance to check for identical results or for results
within defined tolerance limits due to round-off differences between pure CPU and GPU-accelerated binaries. This serialization
mechanism was implemented in ICON for all parameterizations (but not dynamics or transport, which were tested with the
technique mentioned in ??), which were ported to GPU, and was primarily used during the process of porting individual
components to GPU. The advantage of this method is the fine test granularity that can be achieved by surrounding arbitrary

model components with the corresponding calls to the serialization library.
5.3 Tolerance testing

The methods discussed in the last two sections are valuable tools to locate sources of extraordinary model state divergence
(usually due to implementation bugs) as well as frequent testing during optimization and GPU code development. However,
they do not guarantee the correctness of the model output. This problem is fundamentally different from component testing
because chaotic growth of initial round-off differences is not limited to a single component but quickly accumulates across all
model components and simulation timesteps. This section introduces a method to estimate this perturbation growth and how it
is used to accept or reject model state divergence between pure CPU and GPU-accelerated binaries.

The idea is to generate for each relevant test experiment on CPU an ensemble of solutions, which diverge due to tiny
perturbations in the initial state. In practice the ensemble is created by perturbing the state variables eenisting-consisting of
the vertical velocityw, normal velocities on cell edgesv,,, the virtual potential temperature 6,,, the Exner function II, and the
densityp by uniformly distributed random numbers in the interval [-1e-14, le-14]. The resulting ensemble, which consist of
the unperturbed and 9 perturbed simulations, is used to define for each time step of the test the tolerance limits for all output
variables. In practice, we do not compute the tolerance limit for each gridpoint, but define a single value for each variable and
timestep by applying different statistics across the horizontal dimension and selecting the largest value for each statistic across
the vertical dimension. The test is currently implemented using minimum, maximum and mean statistics in the horizontal.
This approach has proved to be effective to discard outliers. Applying the same procedure to the model output from the GPU-
accelerated binary allows to compare the test results with the pure CPU reference under the limits set by the perturbed CPU
ensemble. This method proved effective in highlighting divergences in the development of the GPU version of the ICON code

over a small number of time steps.
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6 Benchmarking Results

Once the GPU port of all components needed for the planned QUBICC experiments was completed, practical testing was
started with the first full experiment shortened to two simulation hours — a computational interval that proved to be sufficient to
provide robust results. For the technical setup it was found that a minimum of ca. 960 GPU nodes of Piz Daint was necessary
for a QUBICC experiment. Because performance was affected when getting close to the limit, 1024 nodes was chosen for the
model integration. This number 1024 = 210 also has the advantage that it more easily facilitates estimates of scalings for factor
of two changes in node counts. Similarly a minimal numbers of 128 compute nodes was determined for a QUBICC experiment
on Juwels-Boosterand Levante.

An additional small number of nodes was allocated for the asynchronous parallel output scheme. The number is chosen such
that the output written hourly on Piz Daint and two-hourly on Juwels-Booster and Levante is faster than the integration of-90
or-180-time-steps;respeetivelyover these output intervals. As a result the execution time of the time loop of the simulation is
not affected by writing output. Only writing output at the end of the time loop adds additional time.

These setups were used for the science experiments including the experiment discussed in section ?? as well as starting.
points for the benchmarking experiments.

6.1 Benchmarking experiments

The test experiment for benchmarking consists of precisely the configuration of dynamics, transport and physics as for the
intended QUBICC experiments. Only the horizontal grid size, the number of nodes, and parameters to optimize parallelization

were adjusted as needed for the benchmark tests. The length of the benchmark test is 180 time steps corresponding to 2 hours

simulated time, using the same 40 s time step in all tests. Henee-to-the-extent-the-configuration-should-change for the-seientifie

Three different grid sizes are used for benchmarking. First, for single node testing on Piz Daint(section ??) the R2B4 grid
is used, because this grid is 1024 times smaller than the R2B9 grid used for experiments running on 1024 Piz Dainmodes.
Second, for the strong scaling analysis the R2B7 grid is used, which is 16 times smaller than the R2B9 grid. Accordingly the
minimal number of nodes used for the strong scaling tests is 16 times smaller than for the R2B9 setup used in experiments so
that this smallest setup is again comparable in memory consumption to the R2B9 setup for the experiments. and further so that
at least four node doublings are possible within the limits of the computer allocations. The actual ranges of compute nodes 7,
used for the strong scaling tests for the R2B7 grid on the three computers can be seen in Table ??. Third, for the weak scaling
analysis the R2BY grid is used so that it can be compared with the R2B7 tests with 16 times smaller number of grid points and
nodes.

The allocations on Juwels-Boosterand Levanteallowed to run benchmark tests for the R2B9 grid also on larger node numbers
s0 that the strong and weak scaling could also be analyzed also for higher node numbers, as tabulated in Table 22,

Among the three grids used here, only the benchmark test on the original QUBICC grid (R2B9) has a physically meaningful

configuration, while benchmark tests with smaller grid sizes are not configured for meaningful experiments. Timings reported
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below for benchmark tests on smaller grid sizes therefore should not be interpreted as timings for ICON experiments configured
for such reduced resolutions, €.g., through the introduction of additional processes or changes in time steps;-the-timings-would
also-change.

Two measures of scaling are introduced. Strong scaling S5 measures how much the time-to-solationtime-to-solution, T¢, is
increased for a fixed configuration with 2n., computing nodes compared to one half of the time-te-selution-time-to-solution
with n., nodes. Weak scaling S, measures how much 7} increases for a two fold increase in the horizontal grid-size (with ng,,

grid points) balanced by a two-fold increase in the node count, n,. These are calculated as

1/4
S, = Tt(ngp,ncn) /2 and S, = T;(ngp, nen) ~ Ti(ngp, nen) / = (Sy 16)1/4 (1)
Tt (ngp,2ncn) Ti(2ngp, 2ncn) T¢(16ngp, 16ncn) ’

respectively. Because global grids can more readily be configured with grid resolution changing in factors of 2 and conse-
quently ng, changing in multiplies of four, and to minimize the noise for the very-goed-weak scaling, S,, is estimated through
experiments with a 4-fold increase in resolution and 16-fold increases in the computational mesh and node count. In-the-ideal
indicate a detrimental effect of adding computational resources.

Values of Tt needed in calculating Sg and Sy, are provided by the simulation log files. These time measurements, which
are part of the model infrastructure, are taken for the integration within the time loop that includes the computations for all
processes (dynamics, transport, radiation, cloud microphysics, vertical diffusion and land processes), as well as other operations
required to combine the results from these components, to communicate between the domains of the parallelizations, to send
data to the output processes, etc. But for benchmarking we are mostly interested in the performance of the time loop integration
and the above-mentioned processes. The benchmarking should show that the GPU port provides a substantial speed-up on GPU
compared to CPU, and it should characterize the strong and weak scaling behavior of the ICON model on the compute systems

available in this study.

Table 2. Model revisions and their usage.

#  Computer_ Revision Comments
(1)  Piz Daint icon-cscs:7de52b43701a5f56b582c41f651a290edb3950c 480 g-points, clear-sky computation

(2)  Juwels-Booster, Levante  icon-cscs:baf28a514c0f6d8143e1fde2ebce7fe02becd 79d 240 g-points, no clear-sky computation

Two model versions have been used in the benchmarking, as listed in Table ??. Version (1) resulted from the GPU-porting
on Piz Daint, and version (2) from the further developments made when porting to Juwels-Booster. This latter version was also

used on Levante.
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6.2 Optimization parameters

The computational performance of benchmark experiments can be optimized by the choice of the blocking length nproma,
the radiation sub-blocking length rcc, and the communication method. As discussed already in Sect. ??, the most important
point for execution on GPU is to have all data in a single block on each MPI domain. At the same time the GPU memory must
be sufficient to store the local data given the (large) block size.

For Piz Daint the 1024 nodes setup for the R2B9 grid then-has a nproma value of ca. 20000-Based-on-this-the-21000.
The single node benchmarking was-made-on-uses the R2B4 grid with 160-resolution-that-has-a total of 20480 cells and hence
npromais set to this value. Strong scaling tests are based on a-64-times-targer-grid;-the R2B7 grid with-20-reselution;-using
64 to 1024 nodes. Thus the initial 64 node setup uses practically the same amount of memory per node as the small single
node test, while the largest setup has a 16 times smaller block size. The weak scaling tests consist of the same R2B7 setup
on 64 nodes used for strong scaling and the 16 times larger R2B9 setup on 1024 nodes, which is-the-size-usedfor-QUBICC

| ' ' ize therefore have comparable block sizes of ca. 20006-21000.

A second performance parameter consists in the size of the sub-blocking used for radiation, which was introduced to reduce

the memory requirement of the radiation and thus to allow the usage of single blocks for all other components of the model.
For setups with nproma close to 20006-21000 tests showed that the maximum length for the sub-blocking is 800. In the strong
scaling series, where the grid size per node is 16 times smaller at 1024 nodes, nproma for single blocks is accordingly smaller
and thus the radiation sub-block size can be increased to 1280, so that no sub-blocking is needed when reaching 1024 nodes.
Both blocking parameters are compiled in Table ??.

Further optimizations can be exploited in the communication. Choosing direct GPU to GPU communication instead of CPU
to CPU communication results in a speed-up of ca. 10% on Piz Daint. Unfortunately the GPU to GPU communication on Piz
Daint caused random crashes seemingly related to the MPICH implementation, and therefore all scaling tests and experiments
on Piz Daint use the slower CPU communication. On Juwels-Booster no such problems were encountered so that the GPU to
GPU communication is used in all experiments.

On Juwels-Booster more GPU memory (160 GB as compared to 16 GB per node) is available compared to Piz Daint. This
allows scaling tests with the same R2B7 and R2B9 grids on a minimum of 8 and 128 nodes, respectively, with a blocking length
nproma close to 42000 and a sub-blocking length starting at 5120. This larger sub-blocking length is possible not only because
of the larger GPU memory, but also because the newer ICON code that is used on Juwels-Booster has only half of the g-points
of the gas optics in the radiation, 240 instead of 480, which reduces the memory for local arrays in radiation accordingly. On
Juwels-Booster the strong scaling tests extend from 8 to 256 nodes, thus from 32 to 1024 GPUs. On the 128 and 256 nodes
setups nproma is reduced to 2999 and 1589, which allows to compute the radiation scheme without sub-blocking. Further it
should be pointed out that the reduction of the number of g-points constitutes a major computational optimization by itself, as
this reduces the computing costs of this process by a factor 2 without physically significant effects on the overall results of the

simulations.
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On Levante, where no GPUs are used and the CPUs have a comparatively large memory, the best nproma is 32 for all grids
and number of nodes, and no sub-blocking is necessary for the radiation. An additional optimization concerns the parallelization
between MPI processes and OpenMP threads. In all tests on Levante we use 2 CPU/node x 16 process/CPU x 4 thread/process
= 128 thread/node.

6.3 Time-to-selution-Single node CPU-to-GPU speed-up on Piz Daint

6.3.1 Singlenode-GPU/CPU-speed-up-on-

On Piz Daint the achievable speed-up of a small R2B4 model setup on a single GPU versus a single CPU was an important

metric. Single node tests give a clear indication of the performance speed-up achievable on GPUs vs. CPUs without side effects
from parallelization between nodes. Only a speed-up clearly larger than two would be an improvement for a node hosting one
CPU and one GPU versus a node with two CPUs. To achieve this goal, the speed-up must be favorable especially for the model
components which dominate the time-to-solution of the integration.

Figure >>-shows-the ratio-of the computing time-on-GPU-22 therefore shows in panel (a) the relative costs of the model
components on the GPU as percentage of the time-to-solution of the integration in the time loop, and in panel (b) the
CPU:to-GPU speed-up for the integration and the model components. Concerning the relative costs it is clear that dynamics and
radiation are the dominating components, each taking between 30 and EPU-for the-major components-of-the-test simulation:
2.9, Al together, the time . ) . e TS

expensive components and the very low costs of the components with a lower speed-up.
The high speed-up of radiation is attributed to the higher computational intensity and more time invested in optimizations

as compared to other, less costly components. The land physics stands out for its poor performance, which is attributed to
the very small GPU kernels, so that the launch time is often comparable to the compute time. But for the same reason (small
computational cost), this has little effect on the speed-up of the full model. The roughly-6-56.4-fold speed-up of the code of the
whole integration is considered satisfactory, given that the ICON model is bandwidth limited and the GPU bandwidth to CPU

bandwidth ratio on Piz Daint is of approximately the same order.
6.3.1 FEead-distribution-ameng-compenents
64 Scaling

Ful-On each compute system the R2B7 and R2B9 setups are run for successive doublings of n.,, starting from the minimum
value of 1, (Men.min) that satisfies the memory requirements of the model, and proceeding to the largest n., for which we
could obtain an allocation. Blocking sizes are optimized for each value of n.,. The smaller memory requirements of R2B7
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Table 3. Time-to-solution, 7%; percent of time spent on dynamical solver (Dyn); strong and weak scaling, Ss and Sy respectively; and
temporal compression, 7, for experiments on Piz Daint, Juwels-Booster, and Levante with code version (Code) from Table ??, grid name,
number of grid points, ngp, number of computing nodes, ncn, and optimization parameters, nproma and rcc. Scaling values shown in bold
are used in the extrapolation for a 1 SYPD simulation at ca. 1 km resolution, see Sect. ??. The temporal compression is only shown for the

R2B9 setup, to which the chosen time-step (40 s) corresponds.

Code Grid Ngp Nen  NProma rcc Ti/s Dyn/% Ss Sw 7 /SDPD

Piz Daint 1xP100 GPU per compute node

(1) R2B7 1310720 64 21464 800 132.8 355

1 ? 128 10944 1200 7343 389 0.904

1 ? 256 5621 1600  49.77 38.7 0.738

1 ? 512 2999 1280 37.18 389 0.669

v 7 71024 1589 1280  31.20 319 0.596

(1) R2B9 20971520 1024 21706 800 147.4 33.6 0.974 48.85

Juwels-Booster 4x A100 GPU per compute node

2) R2B7 1310720 8 42338 5120 49.58 39.5

2) ? ”? 16 21464 ” 31.07 37.2  0.798

2) ? ? 32 10944 10240 22.66 38.7 0.686

2) ? ? 64 5621 5120 16.13 33.8 0.703

2) ? ? 128 2999 2560 14.40 309 0.560

@))] ? ? 256 1589 1280 14.77 26.2  0.487

) R2B9 20971520 128 42690 4096 54.13 375 0.978 133.0
) ? ? 256 21706 5120 3397 355 0.797 0978 212.0

Levante 2 xMilan CPU per compute node

(2)  R2B7 1310720 8 32 32 4843 46.5
@ s 16 » 2412 475 1.004
@ > 3 » 1186 486 1.017
@ > 4 » " 63.60 475 0932
@ 128 » " 34.46 447 0923
@ 256 » " 18.60 393 0.926
@ 512 » 1114 343 0835
(2) R2B9 20971520 128 » " 4911 46.4 0.997 14.7
@ 256 » " 2497 468 0984 0.991 28.8
@ " 512 » 1273 467 0980 0.982 56.5
@ " 1024 » " 6945 447 0917 0978 103.7
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Figure 4. Single-node-speed-up-on-GPU-compared-to-CPU-for-For a small setup with 20480 grid points and 191 levels integrated over 180
time steps—:_(a) Time-to-solution on GPU of the model components as percentage of the time for the "integrate” inetuades-the—fut-timer

that measures to whole time loop, which-inetudes-and (b) the main-CPU-to-GPU speed-up for the whole time loop as well as the model
COmpOnentS”dyﬂﬂﬂﬂeS” "tfaﬂspeft' and—atm. physt and—"Yand-ph Fstes—radiation—t he—m —COFRPORER E  atm—phystes-

allow it to be run over a much larger range of n.,. In each case the full time-to-solution %eﬁ—ﬁ*eéﬁeﬂedﬂf—sﬁﬂ&}&ted

optimization-efforts—I; for-the-timeloop,t-e—for-the “integrate"timer—are-tabulated-measured for the model integration is
provided in Table ??-for-different-configurations—The-time-to-selution—. (The time-to-solution per grid column and time step
can be calculated straightforwardly from these data as 7; = T /ng;,/180.) The strong and weak scaling parameters are then
calculated from 7} and Eq. (2?). First we discuss the R2B7 benchmarks made for the strong scaling analysis, followed by the

weak scaling analysis based on R2B7 and R2B9 benchmarks.
The-

6.4.1 Time-to-solution and strong scaling of the model integration

The full time-to-solution 7 and the cumulative strong scaling Sg ., Of the model integration on the R2B7 grid, as measured
by the "integrate" timer, are displayed in Figure ??. The time-to-solution for the smallest setups clearly shows that the GPU
machines allow to get more quickly to the solution than the CPU machine, when small node numbers are used. And as
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expected the more modern Juwels-Boostermachine is faster than the older Piz Daintmachine. The benefit of doubling the

GPU node count decreases however step-by-step, as visible in the flattening of the time-to-solution series for Piz Daintand
Juwels-Booster. Generally only 2 doubling steps are possible if Ss.cum Should be higher than 0.5. For Juwels-Booster, where
the allocation allowed a fifth doubling step, the time-to-solution of the last step, at 256 nodes, is actually higher than for 128
nodes. For Levante, the time-to-solution essentially halves for each doubling of nodes, except for a small degradation building.
up towards the highest node counts. This makes already clear that the strong scaling of this experiment differs substantially

between the GPU machines Piz Daintand Juwels-Booster, and the CPU machine Levante.

Indeed the scaling panel shows that the GPU machines have a cumulative strong scaling S5y that decays rather quickly,
almost linearly with the number of node doubling steps. This happens because also the single step strong scaling S decreases
with increasing node counts, as can be seen in Table ?? for Piz Daintand Juwels-Booster. For Levantewe find, however, that
Ss.cum even slightly increases in the first two doubling steps, before showing a weak degradation, so that S5 cym exceeds 0.6
even at the highest tested parallelization on 512 nodes with a 64 times increased node count, where only 80 grid columns are

left per MPI process. This results from favorable S values even at high node counts, with S staying above 0.9 up to 256
nodes, see Table 22,

6.4.2 Time-to-solution of components

The measurement of T of the model components in the strong scaling benchmarks allows quantification of the relative costs
of the main components. Typically the most time-consuming components not only dominate the total time and-often-also-but
also often determine the scaling behavior of the model. Thus knowing the relative costs and the scaling of the components

contributes to understanding the behavior of the full model and can give guidance for future improvements. For these purposes
the-contribution—to-T; from the dynamical coreand-, tracer transport, radiative transfer, turbulent mixing processes, cloud

microphysics—, and land processes are-is displayed in the left column of Fig. 22-2? for all three compute systems. Among
these components the dynamics generally dominates, taking about 40 % of the compute time on the GPU systems, and closer
to 50 % of the time on Levante (see Table ?? for precise percentages). The fraction of the compute time spent on the dynamics
decreases for high node counts as the model stops scaling. On Piz Daint radiation is the second most computationally expensive
component, while on Juwels-Booster transport is substantially more costly. This difference results from the changed setup of
the radiation code used on Juwels-Booster and Levante, which includes (1) the reduction of g-points from 480 to 240 and (2)
avoiding the extra computation of clear sky fluxes. In the smallest R2B7 setup on Juwels-Booster, the first step reduces the
radiation time by 43%, and both steps together yield a reduction of 60%. On Levante, where also the faster radiation is used,
the compute time spent in transport and radiation is almost equal.

The ranking of the less costly processes partly depends on the scaling of the components, which makes the radiation scheme
relatively cheaper and the land processes relatively more expensive for higher number of nodes. Fhe-On the GPU machines Piz

Daintand Juwels-Booster, the least amount of time is spent for cloud microphysics s-en-att-systems-and-for all numbers of nodes-

» while on the CPU machine Levantethe same is true for the land processes. This points again at the poor CPU-to-GPU speed-u
of the land scheme and in addition also at a poor strong scaling. However, the total cost of the microphysical complexity is
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(a) Time-to-solution for the integration (b) Cumulative strong scaling of the integration
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Figure 5. Time-to-solution (lefteetumna) and cumulative strong scaling S cum (righteotumnb) for-from the model integration on Piz Daint
(teprowblack), Juwels-Booster (middlerowred), and Levante (bottomrowblue). The time-tused-and-the-cumulative strong-scaling are-shown

for-the-full timeloop-(integrate)-and-the-contributing proeesses:-panel additionally shows in blue-theresolved-processes-dynamies;transport;
iﬂe&fh&ﬁfmﬁﬁiﬁi&pﬂf&ﬂiﬁeﬁ&ﬁeﬂ&%@or adiation. vertical- ditfusion-and-cloud-microphysics.and-in-brown the land physi

is-a constant time-to-solution.

much larger, as in the absence of microphysics there would be no need for tracer transport, which is computed here for six

tracers, and the vertical diffusion would be computed only for temperature and wind.

6.4.1 Strong scaling of components

6.5 Streng-and-weak-sealing

Figare-2?-presents—the-The cumulative strong scaling 55 cum +from-the-R2B7-benchmarks—which-includes-all-suecessive
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(a) Piz Daint: Time to solution for components (b) Piz Daint: Cumulative strong scaling of components
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Figure 6. Time-to-solution (left column) and cumulative strong scaling Ss ¢ (right column) for Piz Daint(top row), Juwels-Booster(middle
row), and Levante(bottom row). The time used and the cumulative strong scaling are shown for the model components: in blue the resolved

rocesses dynamics, transport; in red the atmospheric parameterizations for radiation, vertical diffusion and cloud microphysics, and in

brown the land physics. The scaling panels additionally shows in grey S cum for Ss = 0.5 for a constant time-to-solution.
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6.4.1 Strengsealing-of-ecompeonents

of the components is shown in the right column of Fig. ??. Most components show similar scaling behavior to the model as
a whole (Fig. 222?b), with some noteworthy exceptions. On the GPU machines Piz Daint and Juwels-Booster the important

L

exceptions to this rule are the land and radiation. Land shows very poor strong scaling, whileradiati uickly approaching the
cumulative strong scaling for Sq = 0.5, shown in grey symbols, where the time-to-solution is constant for all node numbers.

Radiation, however, achieves a scaling better than 1 on Piz Daint, and remains close to 1 on Juwels-Booster in the first and
second doubling of nodes, only starting to decay for larger increases in n¢y,.

The strong scaling on GPUs depends sensitively on the ability to maintain sufficient work for each node as the node count
is increased. In the case of land, which is computationally inexpensive and spatially sparse, this is not possible. For radiation
the workload can be increased through the optimization of the sub-blocking parameter, rcc. On Piz Daint this is possible up
to nen = 512, reaching the case of no sub-blocking in the last step only, on 1024 nodes, see Table ??. On Juwels-Booster the
initial sub-blocking size is substantially larger from the beginning, owing to the larger available memory, and thus the largest
workload is reached already on 32 nodes. From this step onward no sub-blocking is needed and the work load decays with the

decreasing number of grid points on the processor.

On-the-exceptions—are-thetransport-and-Not critical but noteworthy is the scaling of transport. Generally the scaling of
transport resembles that of dynamics, as both schemes have horizontal dependencies. But for the second node doubling on

GPUs and the third node doubling on CPUs, transport shows a remarkably higher strong scaling than dynamics. Further, on
Levante the vertical-diffusionfor-which-the-cumulative strong scaling exceeds-the-ideatseating(=of the vertical diffusion takes

a value of 1 )-from 8 to 64 and-frem-64-te-nodes and increases for higher node counts up to 1.2 for 512 nodes;tespeetively-—.
The reasons for these behaviors have not been investigated.

64.1 Weak scaling

The weak scaling Sy, derived from pairs of R2B7 and R2B9 benchmarks with a factor 16 in node count and grid points is
shown in Table ??. Generally it is found that ICON exhibits very good weak scaling, whether on GPUs or on CPUs. For
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Figure 7. Simulated days per day R2B9 (20 M points) based on the "integrate" timer on Piz DaintPDy, Juwels-BoosterB), and Levanted=e}.
The black horizontal line indicates 1 simulated year per day. The thin straightred line is a linear fit in log(nodes) for the Juwels-Booster
simulations. The vertical markers on the 1 sim. year per day line indicate the estimated number of nodes for the integration of a full year on

Juwels-Booster: 984 nodes.

Juwels-Boosterand Levante, where Sy, was evaluated for more than one pair of R2B7 and R2B9 experiments, Sy, remains
higher than 0.97 for all cases.

6.4.2  Scaling evaluation

For the practical employment of the ICON-A model, here in the QUBICC configuration, the scaling results have the following.
consequences. (1) On GPU machines the possibility to speed-up the turnover rate along the strong scaling line is rather limited.
Starting from the smallest setup only a doubling or quadrupling of the number of compute nodes would be reasonable. (2) On
the CPU machine the high strong scaling allows to increase the turnover with little scaling loss as long as the number of grid
columns stays roughly above 100. (3) The excellent weak scaling would allow to increase the horizontal resolution to the largest
Juwels-Booster, on Levantealso a 1.25 km (R2B11) simulation would be an effective use of computational resources.

6.5 QOutlook for 1 simulated year per day at 1 km resolution on a global grid
6.5.1 Temporal compression of benchmarks

The temporal compression, 7, of a model setup on an available compute systems is important for determining what kind of
scientific questions the model may be used for. Here it is measured as a unit-less parameter, of simulated days per day (SDPD),
and only calculated for the R2B9 benchmark simulations, for which the correct physical configuration and time step are used.
Achieving a full simulated year per day (1 SYPD = 365.25 SDPD), for kilometer-scale configurations, is a target for centennial

scale climate simulations, and still a major challenge.
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The temporal compression of the R2B9 benchmarks is shown in Fig. ?? and also tabulated in Table ??. On Piz Daint the
R2B9 experiment on 1024 nodes achieves a temporal compression of 48 SDPD;-¢censidering-. Considering the poor strong

scaling, 1 SDPD is well beyond reach. On Levante, where the experiment has been run on 128, 256, 512 and 1024 nodes,
the turnover grows from 14.7 to 103.7 SDPD. Hence, using the entire machine gets closer, but still falls about 25% short, of
1 SYPD. On Juwels-Booster a turnover of 133 and 212 SDPD was achieved on 128 and 256 nodes respectively. The linear
extrapolation in log(n,), shown as thin red line in Fig. ??, indicates that ca. 984 nodes could return about 1 SYPD. Thus the
entire Juwels-Booster system that has 936 nodes would get close to 1 SYPD with the model setup for QUBICC experiments.

6.5.2 Computational demands for 1 SYPD

Based on the results above, we extrapolate to assess the computation requirements for a global simulation using an R2B11
(1.25 km) mesh with a temporal compression of 1 SYPD. We base our estimates on reference calculations using the QUBICC
configuration, anticipating that its increased number of vertical levels would be commensurate with the target system. Further
we assume that a four times smaller timestep is stable on the R2B11 grid.

Our calculations of weak-scaling allows us in a first step to estimate the performance of an R2B11 system on an enlarged (16
fold) version of one of the reference compute systems (Ref — 16 xRef). Then we use the strong scaling factor for the reference
system to estimate the increase in the temporal compression for a four-fold larger system (16 xRef — 64 xRef). For this strong
scaling calculation we use the two S values starting from the R2B7 setup with the same number of grid points per node as
used in the R2B9 setup enlarged 16-fold in the weak scaling step. Sy, and S values used for the extrapolation are shown in
bold in ??. The parameter ~;, measures the gap, i.e., the additional factor of temporal compression required to reach 1 SYPD
(Table ??), alternatively it can be understood as the number of days required to simulate one year for a given configuration.

It shows that for Piz Daint, where our reference system uses only 1024 of its 5704 nodes, a roughly 12 fold larger system
would still fall a factor 12 short of the desired compression. Thus the required system, based on this technology would have to
be 142 times the size of Piz Daint for the targeted ICON simulation. We get closer with the A100 chip-set, as a system roughly
nine times larger than Juwels-Booster ( nen ot = 936) leads to less than a factor of six shortfall in temporal compression. Based
on this technology a system 48 times the size of Juwels-Booster is required. The system gets closer not just by being bigger,
but also because of the better usage of the compute power, characterized here by the LINPACK R,,.x. For the Ref and 16 xRef
setups the required compute power, as measured by Py, is 1.7x reduced on Juwels-Booster compared to Piz Daint. Even if the
radiation costs on Piz Daint were reduced by 60% due to less g-points and computing no clear sky radiation (and assuming the
scaling remains unchanged), P; on Juwels-Booster would still be 1.5x reduced. This higher efficiency is only partly explained
by the 30% increase in the counter-gradient versus LINPACK performance of Juwels-Booster versus Piz Daint.

For the CPU chip-set of Levante it is found that the 64 xRef setup would fall a factor 4.5 short of the targeted compression,
and the required system would be 104 times the size of Levante. The estimate for 16 xRef on Levante may be compared to that
of ?, which was based on similar ICON simulations (Ax = 5km, 90 levels, At = 45s), albeit with a different implementation of
the physical processes. Their benchmarks were performed on the Mistral computer at DKRZ (now being replaced by Levante),

using the partition with two Broadwell CPUs per node. Scaling of their performance of 26 SDPD on 256 Mistral-Broadwell
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Table 4. ICON R2B11 configurations and their expected turnover. Compute system with processor type, its total number of nodes and the
Rmax LINPACK benchmark, and ICON code version, ICON grid, horizontal resolution (Ax), time step, number of nodes, fraction of nodes
with respect to the total number of nodes, temporal compression 7 (in SDPD), the gap factor, 1 for 1 simulated year per day, defined as
~1 = 365.25/7, and the required computational power Py = R v1, where R = nicn /Tien, tot - Rmax, and given in units of EFlop/s required
to simulate one year per day of the indicated model on the indicated configuration of the machine. Because we use the Linpack references

for Rmax, the ncn ot for Levante is not its present node-count but the number used in the Nov 2021 benchmarks.

System  Grid Azx/km At/s nen Nen/Nentot  7/SDPD 1 Py, /EFlop/s

Piz Daint, 1xP100 GPU per node, ncn,tot = 5704, Rmax = 21.2PFlop/s, code-base (1)

Ref R2B9 5.00 40 1024 0.18 48.85 7.48 0.028
16xRef R2B11 1.25 10 16384  2.87 11.01 332 2.024
64xRef 7 ? ? 65536 11.5 29.37 12.4 3.033

Juwels-Booster, 4x A100 GPU per node, nen,tot = 936, Rmax = 44.1 PFlop/s, code-base (2)

Ref R2B9 5.00 40 128 0.14 133.0 2.75 0.017
16xRef R2B11 1.25 10 2048 2.19 30.46 12.0 1.158
64xRef 7 ” ” 8192 8.75 66.66 5.48 2.116

HLRES5 4xNG-100 GPU per node, code-base (2)
R2B11 1.25 10 2048 131.0 2.79
” ” ” 8192 286.6 1.27

Levante 2x AMD EPYC Milan per node, e tot = 2048, Rmax = 7.0PFlop/s, code-base (2)

Ref R2B9 5.00 40 1024 0.5 103.7 3.52 0.0123
16xRef R2B11 1.25 10 16384 8 23.73 15.4 0.862
64xRef 7 ? ? 65536 32 81.15 4.50 1.008

nodes (their Fig. 4), and assuming an R, of 1.8715 PFlop/s for the 1714 node Broadwell partitionl, yields an estimate? of
P, =0.655 EFlop/s. This is somewhat better than what is realized on Levante, a difference that might be related to an initial,
and hence sub-optimal, Levante implementation, as well as slight differences in the configuration of physical processes, for
instance the treatment of radiative transfer. However, it seems reasonable to conclude that we are not seeing a large reduction
in P; in transitioning from the Broadwell based Mistral machine to the Milan based Levante. This stands in contrast to the

reduction in P, in transitioning from the P100 Piz Daint to the A100 Juwels-Booster, and while the P; values for both GPU

1TopSOO for Nov. 2015 reported Rmax = 1.1392 PFlop/s for 1556 Haswell nodes, and Top500 for Nov. 2016 reported Rmax = 3.0107 PFlop/s for 1557

Haswell nodes + 1714 Broadwell nodes. The difference, attributed here to 1714 Broadwell nodes, is 1.8715 PFlop/s
2Here we assume perfect weak scaling, starting from the 26 SDPD for R2B9 on 256 nodes, which yields a y1 = 352)15 (%) for R2B11, with the
latter (45/40) factor accounting for differences in time steps. The weak-scaling to R2B11 (using the same Sy, = 0.978 as for Levante) inflates the size to

16221 % 256/(0.978)* = 9492 nodes
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machines remain higher than for the CPU machines, the trend is more favorable for the GPU machines, something consistent
with changes in memory bandwidth® for the different architectures.

Strong scaling limits how much we could translate a larger machine into a reduction in ;. For example, from Table ?? the
envisioned 16 xRef version of Juwels-Booster is 2.19 times larger than the existing machine, and thus would correspond to an
Rumax = 96.5 PFlop/s, which is still far from the required Ryax = 1.158 EFlop/s to achieve 1 SYPD. Were one to simply
increase the size of Juwels-Booster, poor strong scaling would create the need for a proportionally larger machine, something
that is measured by the increase in P; from 1.158 EFlop/s for the 16 xRef implementation to 2.116 EFlop/s for 64 xRef
(Table ??). Using these numbers we see that 1 SYPD at R2B11 is likely not attainable with the present implementation
of ICON on existing GPU architectures. The present situation is somewhat more favorable on the CPU architectures. The
currently most performant computer, Fugaku, with (R,.x = 442 (?), would have v, = 2.3, if ICON operated on Fugaku at
the same P; value as for the 64 xRef setup based on Levante. A factor 2.3 larger CPU machine with (R,.x = 1017)seems
technically within reach.

The situation for the GPU machines becomes more favorable when we look toward the future. Realizing a factor of
4.3xA100 in transitioning to a next generation GPU (NG-100 in Table ??), as found in the ICON-A benchmarks in the
transition from the P100 to the A100 GPU, would imply ~; = 2.78 for a 2048 node 4 xNG-100 system rated at R ax = 415
PFlop/s. For such a system, even without improvements in strong scaling, the 64 x Ref benchmark on Juwels-Booster implies
a~y; =1.3 and an Rp,,x = 1660 PFlop/s. This indicates that for the GPU architectures, performance improvement of 4.3 x
over the A100 would begin to out perform the CPU performance for the same R, .-

The recently announced Nvidia Hopper GPU, promises a performance increase in this range and perhaps even larger (?). In
addition, Fugaku, an exceptionally efficient CPU machine, still uses twice as much electrical power as Juwels-Booster when
normalized by R, ax, Which further favors GPU based implementations of ICON in the future. The upshot of these calculations

is that the goal of 1 SYPD at roughly a 1 km scale is well within reach.
6.5.3 Anticipated increases in T from hardware

General circulation models typically processes many grid points with often relatively little compute load, which results in the
bandwidth limitation encountered in the single node speed-up tests. This means that improved memory bandwidth allow for a
better exploitation of the compute power of the GPUs, which helps explain the considerably improved performance of ICON-A
on the A100 versus the P100 GPUs

Another typical characteristics is the organization of the work, which happens in many separated loops often with not very
many operations. On the GPUs this results in a non-negligible amount of time spent for the preparation of the parallel regions.
If this amount remains constant while the computation decreases with increasing parallelization, then the benefit of stronger
parallelization will be limited. Similarly, if a newer system has increased compute speed but still spends the same time for the

overhead for GPU kernels, then ICON cannot profit that much. Thus, in the absence of refactoring, to realize the benefits of

3Memory bandwidth per core decreased by approximately 25% on Levante relative to Mistral but increased by 10% on Juwels-Booster as compared to Piz

Daint.
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an acceleration of the GPU compute speed would require a commensurate speedup of the overhead time for the GPU parallel

regions.
6.5.4 Anticipated increases in 7 from software

Because the scaling and computational throughput are limited by the dynamical core, algorithmic improvements to this com-
ponent of the code, followed by the transport scheme, stand the best chance of increasing 7. This part of the model is, however,
already relatively well optimized — given the limits of what can be accomplished with openACC. Further improvements in
performance would require a refactoring to exploit special features of the processors. For instance, exposing solvers to the
application of Al arithmetic, i.e., matrix-multiply and accumulates, where possible, could substantially improve throughput.
Obviously the very poor scaling of the land scheme is also a matter of concern, though it is unclear how the underlying problems
- little computational work - can be resolved.

Another, and perhaps the best, possibility to speed up the code concerns the precision of the variables and computations.
ICON uses by default 64-bit variables and arithmetic, although the ICON model can be used in a mixed precision mode, in
which mostly the dynamics is computed with 32-bit arithmetic, while the remaining model components still work with 64-bit
arithmetic. Because this mixed mode has not been validated on GPUs, the mixed mode is not used in this study, neither on
GPU nor on CPU, although on the latter ICON applications frequently make use of this option. Hence we see considerable
potential to speed up simulations by using 32-bit variables and arithmetic. Even as few as 16 bits can be sufficient if round-off
errors are kept under control, as shown in ? for a shallow water model. This would not only speed up the simulations, but also
reduce the memory footprint so that a certain turnover can be achieved with significantly fewer nodes. However, more model
development would be needed to explore the potential compute time or memory savings, and the effects on the simulations.

An open question is if a different parallelization would improve the turnover for a given number of nodes. The current
parallelization is organized as a single geographical domain decomposition used for all model processes (and a separate de-
composition for the output scheme). Thus all model processes in a domain are computed in a specified sequence by the same
processor. The practical sequence of the computations of processes is determined by the order of the processes in the coupling
scheme of the model. This method balances the total work to be done in each domain relatively well. But the single processes
can be quite different in their work load and as seen above this results in a quite uneven strong scaling behavior on GPUs.
Would this be better in a process-specific parallelization, in which each process has its own domain decomposition? Such
a parallelization would focus the resources on the more expensive components, and it would avoid higher parallelization of
processes where the scaling limit is reached. It would also require a more complex communication scheme, and an ability to
compute different processes in parallel, the latter can make it difficult to maintain physical limits in tendencies, for instance to
maintain positivity of tracers. While these ideas have not yet been developed or tested in ICON, they could provide a substantial

speed-up in the future.
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7 First QBO experiments

Finally it is important to verify the utility of the new model code for the QUBICC experiments, for which a small selection
of results is presented here relating to two experiments performed on Piz Daint. (A more detailed analysis will be published

elsewhere.) The main questions to be addressed in the beginning are the following:

1. Is the model stable over at least 1 month?
2. Are there obvious biases which need to be corrected before scientific experiments can begin?

3. Can the model simulate a reasonable tropical precipitation and the downward propagation of the QBO jet as a result of

wave-meanflow interaction?

The initial series of experiments (hc experiments) was integrated over 1 month starting from four initial dates (1.4.2004,
1.11.2004, 1.4.2005, 1.11.2005), which were selected based on the protocol for the QBOi experiments (?). These dates spread
across a fairly normal QBO cycle, that is used here as well as in the QBOi project (?). A second series of experiments (dy
experiments) was made to investigate the issues identified in the hc experiments.

A key learning from the (hc experiments) was that all experiments remained stable over 1 month. Therefore, the first exper-
iment with start date 1.4.2004 was continued until it crashed after 2 months and 6 days with too high wind speed at the model
top. The analysis showed that not only this experiment, but also the other three (hc experiments) had a tendency towards a
nearly vertical axis of the polar night jet with a very strong wind maximum at the top of the model was found. A vertical jet
axis with a wind maximum at ca. 80 km height is in disagreement with observations, and the high wind speeds pose a threat for
numerical stability. This issue was addressed in a number of short experiments of the second series. These experiments showed
that the Rayleigh damping of the vertical wind in the uppermost ca. 30 km of the model domain was too strong. An increase
of the start level of the Rayleigh damping from 42 to 50 ki and a reduction of the strength to 20% of the original value lead to
a more realistic wind maximum of the polar night jet at heights of 50 to 60 km.

Another important finding from the first series was that the parameterized vertical diffusion was clearly too strong. This
not only slowly damped the QBO jet instead of simulating a downward propagation, but also affected many aspects of the
tropospheric circulation including the distribution and intensity of precipitation and convection. In the investigation of this
problem it was found that the maximum mixing length within the vertical diffusion scheme was implemented in the code at a
much larger value, 1000 m, than described in the original description, 150 m (Pithan et al., 2015). The too high value was reset
in the experiment dy21, which ultimately reduced many large biases. Figure ?? shows the occurrence frequency for equatorial
3-hourly precipitation in the dy21 experiment, now fitting reasonably well to TRMM data (?). In comparison ERAS5 has more
frequent weak precipitation and less frequent strong precipitation.

In contrast to the hc experiments, the dy21 experiment also shows a downward propagation of the zonal mean zonal wind in
the equatorial stratosphere, thus a downward progression of the westerly and easterly QBO jets, which are initially centered at
ca. 30 and 40 km height, respectively (Fig. ??). However, in comparison to ERAS, the downward propagation of the easterly
jetin dy21 is clearly faster, which results in growing differences in the zonal mean zonal wind in the upper half of this region.

Nevertheless, the key result is that a downward propagation of the QBO jets is simulated.
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Figure 8. Occurance frequency of the 3h mean precipitation rate between 15° S and 15° N from 1.4.2004 to 30.4.2004 in the QUBICC
simulation dy21, in ERAS, and in TRMM, using 250 bins of 2 mm/day width.

The processes which cause this downward propagation of the QBO jets include the interaction of vertically propagating
waves in equatorial latitudes with these jets and their vertical advection. The contribution of these processes to the tendency
of the zonal mean zonal wind u can be estimated from the divergence of the Eliassen-Palm flux (EP-flux) and the residual
circulation (v*,w™*) in the meridional plain (see for example ?). For this diagnostics the simulation data as well as the ERA5
data were first interpolated to a Gaussian grid with 1024 latitudes x 512 latitudes. Figure ?? shows the tendency of u and the
contributions from the EP-flux divergences and the advection terms averaged over the first month.

Over this first month the profiles of the zonal mean zonal wind (%) remain quite similar, except for the easterly jet centered
at 40 km altitude that extends already further down in dy21. The total tendency (du/dt) profile is also comparable up to 27
km, but diverges above with a large negative tendency in dy21 maximizing at 33 km height, where the easterly jet has started
its decent, while ERAS shows a weaker negative tendency centered higher at 36 km height.

Below 30 km altitude the total tendency du/d¢ in ERAS5 is mostly explained by the vertical divergence of the EP-flux,
(du/dtgp .), which is almost identical to the total contribution by the EP-flux divergence and the advection terms (dw/dtTEMm).
These tendencies appear in similar shape in dy21. Thus for the wave meanflow interaction and the advection, as captured by
this diagnostics, the simulation is close to the reanalysis. A difference exist however in the residual term (d@/d¢,es), which at
these altitudes is negligible in ERAS but significant in dy21, opposing the diagnosed vertical divergence of the EP-flux. This
residual term is the main reason for the difference in the total tendency between dy21 and ERAS.

Above 30 km altitude, where the easterly jet has propagated further downward in dy21 than in ERAS, du/dtgp . is negative
and peaks in the lower shear layer of the easterly jet, with a stronger amplitude in the simulation. The upward vertical wind,
which creates a positive tendency du/dt,~ in the same shear layer, however, is stronger in ERAS5 than in dy21. Stronger

differences exist however in the residuals, which play here a role also in ERAS. The residual tendencies make a substantial
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Figure 9. Zonal mean zonal wind @ averaged from 5° S to 5° N from 1.1.2004 to 20.5.2004 in the simulation dy21 (top) and ERAS (middle),
and the difference between dy21 and ERAS.

1145 contribution to dy21 and ERAS, albeit with a vertical downward shift in the simulation. The meridional EP-flux divergence as
well as the meridional advection play only minor roles.

The initial sets of experiments thus led to a model version in which the wave meanflow interaction and the advection by the

residual meridional circulation play an important role. The nature of the residual terms is not yet known. But these simulations

build the base for further research on the factors that influence the processes of the QBO. Eventually, with sufficient resources,

1150 this will also allow the simulation of full QBO cycles.
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Figure 10. Zonal mean zonal wind (dotted red line) and its tendencies averaged between 5° S and 5° N and between 1.4.2004 and 30.4.2004
from 15 to 40 km height in the simulation dy21 and in ERAS, with the total tendency (bold line) and contributions diagnosed in the
transformed Eulerian mean framework for advection by the residual meridional v* and vertical wind w* (dashed lines), the meridional and
vertical divergence of the Eliassen-Palm flux (dotted lines), the sum of these four terms (dot dashed line) and the residual (orange dot dashed

line).

8 Conclusions

With the scientific motivation to conduct a first direct simulation of the QBO relying only on explicitly resolved convection
and gravity waves, the ICON atmosphere model has been ported to GPUs with all components needed for such a simulation
at a horizontal resolution of 5km and with 191 levels up to a height of 83 km. The initial GPU port of ICON on Piz Daint
at CSCS is based on OpenACC directives. Benchmark experiments showed a single node CPU-to-GPU speed-up of ea-6-6.4
corresponding to the ratio of the GPU bandwidth to the CPU bandwidth. This memory bandwidth limitation of the ICON
code is a typical characteristic for general circulation models. The strong scaling tests showed that a minimum of ca. 10k grid
columns is needed on the GPU to remain efficient, which limits the possibilities to profit from strong scaling. On CPUs the
limit is near 100 grid columns, which increases the strong scaling to larger processor counts. The weak scaling of ICON-A
is very good (typically 0.98) on both GPU and CPU architectures, making even higher resolved global simulations possible,
albeit with the throughput limited by the strong scaling and the required reduction in the model timestep.

For the model setup used in the QBO simulations, a turnover of 48 SDPD and 133 SDPD was achieved on the GPU systems
Piz Daint at CSCS and Juwels-Booster at FZ], respectively, while 103 SDPD were achieved on the CPU system Levante at
DKRZ. Extrapolations show that ICON simulations at 1.25 km resolution and 1 SYPD turnover will be possible on the next
generation of supercomputers.

The GPU port of ICON-A made the first series of experiments related to the QBO processes possible. These experiments

led to a better tuning of the damping and diffusion schemes, which in the end allowed a first simulation showing downward
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propagating QBO jets driven by wave-meanflow interaction in a model where the tropical wave-spectrum depends entirely
on explicitly simulated convection. However, further research is needed to understand why the downward propagation of the
easterly jet was too fast. As in the case of the QBO also other scientific problems in climate research which depend on scales
from a few km or smaller to the global scale will need enormous computational resources. Having now a code that can be used

on the largest supercomputers using GPUs will open up new opportunities in this direction.

Code availability. The codes (1) and (2) listed in Table ?? and the run scripts for Piz Daint, Juwels-Booster and Levante are available
in the primary data set (?). These code versions are not standard release versions, but the related GPU developments are merged in the
release candidate for the upcoming release version icon-2.6.5. Release versions of the code are available to individuals under licenses
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