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Abstract. Coastal river deltas are susceptible to flooding from pluvial, fluvial, and coastal flood drivers. Compound floods,
which result from the coccurrence of two or ore of these driversypically exacerbate impacts compared to floods from a
single driver. While several global flood models have been developed, these do not account for compound flooding. Local
scale compound flood models provide stat¢he-art analyss but are hard to deao other regions as these typically are

based on local datasets. Hence, there is a need for glalpalizable compound flood hazard modeling. We develop, validate

and apply a framework for compound flood hazard modehiagaccouns for interactions between alligers It consists of

the high-resolution 2D hydrodynamic flood model SFINCS, which is automatically set up from global datasetsigled

with a global hydrodynamic river routingodelanda global surge anddie model To test the framework, we simulate two
historical compound flood eventBropical Cyclones Idai and Elois@ the Sofala province of Mozambique, and compare the
simulatedflood extentsto satellitederived extent@t multiple dgs for both eventsCompared to thelobal CaMaFlood

mode] the globallyapplicable modegenerallyperforms bettein terms of the critical success indg®.011 0.09)and hit rate

(0.117 0.22) but lower in terms of false alarm ra{i©.041 0.14) Furthermore,tie simulatedlood depth mapsre more
realisticdue tobetterfloodplain connectivityandprovidea more comphensivepictureasdirect coastal angluvial flooding

are simulatedJsingthe newframework, wedetermine the dominant flood drivers and titios zones betwen flood drivers

These vary significantly between both events because of differences in the magnitade tfne lag between the flood
drivers. We argue that a wide range of plausible events should be investigateslnobgest understaling of compound flood
interactions, which is important to understand for flood adaptation, preparedness, and response. As the model setup ar
coupling is automated, reproducible, and globally applicable, the presented framework issingretep forwag towards

largescale compound flood hazard modeling.
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1. Introduction

Coastal river deltas are susceptible to flooding due to their physical setting in low elevation regions and the preaagce of m
densely populated cities. A re¢estudy showed tit deltas contain 4.5% of the global population in 2017, while only covering
0.57% of t he e ar(Bdihddsetlala2020flcodsindoastabieltaaegpasacan occur as the result of different
physical drivers, including extreme rainfall, river disgf@ror extreme cotas water levels. Floods can also occur (or be
exacerbated) by the @currence of combinations of these drivers¢calbed compound flood events, which may amplify the
total flood hazardLeonard et al., 2014Zscheischler etla 2018) Tropical Cyclone Idai, which made landfall near Beira,
Mozambique in March 2019, caused more than 600 casualties and affected an estimated 1.85 milligh/ideDQIEA,

2019) This is an example of tfrievastating impacts that compound floods can cétreerton et al., 2020 comprehensive

understanding of flood risk in deltas is therefore cruciakffective risk reduction.

There is a wide recognition thiateractionsetween flood drives should be takeinto account for flood risk assessment and
management in both the scientifiMoftakhari et al., 20Z; Wahl et al., 2015; Ward et al., 2018)d decisiormaking
communities(Browder et al., 2021; UNDRR, 2019%everal studies have used statistical models to assess the aepende
between flood dvers in order to understand the likelihood of extreme drivers occurring togé@eanus et al., 2021;
Couasnon et al., 2020; Bevacqua et al., 2019; Hendry et al., 2019; Ward et al.,R20tt&rmore, hydrodynamic model
simulationshave been used to understand the complex physical interactions between drivers and their relative importance fol
the total flood hazar@Bakhtyar et al., 2020; Eilander et al., 20Zri et al., 2020a; Harrison at., 2021; Kumbier et al.,
2018; Mufioz et al., 2021; Olbert et al., 2017; Santi@gbazo et al., 2019; Torres et al., 2015)

However, to date most global flood risk models still analyze each flood driver in isqlatimi et al., 2QL7; Hirabayashi et

al., 2021; Tiggeloven et al., 2020; Vousdoukas et al., 2018; Ward et al., Ra2@ntly, the effect of storm surge on fluvial
flooding was analyzed at the global scale, showing that1D years flwial flood levels are exacerbatey surge for 64% of

the locations analyzed, causing increased flood risk for 9.3% of the population exposed to riverine (i€itadidgr et al.,
2020; Ikeuchi et al., 2017Bates et a2021)were the first to make a combined risk assessment of fluvial, pluvial and coastal

flood hazard for the continerttdS, but did not account for physil intelactions of pluvial with other flood drivers.

While the performance and resolution of laggale flood models is approaching that of leszdle flood models in datéch
areas(Wing et al., 2021)there are dtilarge differences between global flood models in many areas glo@adlys et al.,

2020; Bernhofen et al., 2018; Trigg et al., 20T8)e setup of these models remains a challenging task, due to the lack of open
and accurate highesolution global topgraphy datgHawker et al., 2018bas well as missing data on river and estuarine
bathymetry(Neal et al., 2021and flood defense@Vard et al., 2015; Wing et al., 2019)herefore, building hydrodynamic
flood models from global dasets requires several data prepssing &ps that may have a large effect on the model skill

(Sampson et al., 2015Furthemore, the code for setting up most global flood models is closed source, while an open source
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framework would increase tlewmparability and reproducibilityy providing a transparent workflo@iall et al., 2021; Hoch
andTrigg, 2019) Sosa et al2020)presented an autoni@model builder for LISFLOOEFP models, and Uhe et §2021)
extended thiframework to a model cascade to qaite fluval flood hazard from meteorological drivers. Van Ormondt et al.
(2020)developed DetfDashboed, which is a graphical user interface with various modular toolboxes teagsgamatically

setup hydrodynamic models schematizations in the ocean and coastal domains, but lacks tools to couple riverifieisnodels.
leaves a gap for a fully aut@ted model builder that can be applied to the complex coastal delta environment to simulate

compound flood events.

In this study we present an automated framework to model compound flooding anywhere on the globedueilskEpand
transparent manner. €framework consists of 2D hydrodynamic model, which is automatically built from global datasets
andcoupled with a global hydrological and river routing model for upstream boundary conditionglabdlssurge and tide
model for downstrea boundary conditions. The goal of this study is to present the framgtwdsst its ability to simulate
compound floods in datsparse coastal deltaand to demonstratbow it can be used for compound floadalysis In
particular we compare flod hazard maps from the local hydrodynamic model against satidliveedflood extents for two
historical events. To evaluate the added value of usingldhally-applicablemodel, we also@mpare against a global model.

Furthermoe, we identifythe main flood drivers and transition zones between drivers following Bilskie and H2Q&8)

2. Case study

To evaluate the flood hazafichmework, we apply it to two historical events in the Sofala province of Mozambique, namely
Tropical Cyclone Idai in March 2019 antropical Cyclone Eloise in January 202Both events are examples of compound
flood events in a coastal delfehe largst city in the Sofala province is Beira, with more than 500,000 inhabitants and a large
port comecting the hinterland with the Indian Ocean. While the city itself is mainly threatened by coastal andlqdale,

the deltas othe Pungwe and Buzi rivers are also susceptible to fluvial floodngerton et al., 2020; van Berchum et al.,
2020)

TropicalCyclone Idai originagd in the Mozambique Channel as a tropical depression, which already caused extensive flooding
after its first landfall in early MarchAfter it moved back over the Mozambique Channel it gained intensity and became a
tropical cyclone with 18min sustaineavind speeds of 165 km/h, a maximum calculatedeswof ~4.4 m, and torrential rainfall

during the second landfall near Beira on 15th M&EIRRCC, 2019)After the second landfall, large asdffooded, first around

the coast, followed a few days later by the Buzi and Pungwe floodplains. The tropical cyclone destroyed more than 60,000
houses and an estimated 286,000 people received uit&dCHA, 2019)

Tropical Cyclone Eloise made landfall on 23 January 2021 around 20 km south of Beira, with winds of 140 km/h and
widespread and extreme rainfall. The region experienced widespreacyplaste flooding while it was already hit by heavy

rainfall on January 1@nd sukequent high river water levels and was still recovering from the 2019 floodTafigical
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Cyclone Idai. The Sofala province was the most affected, especially communities along the Pungwe and Buzi rivers. In total,
more than 8,800 houses were dayad ad 176,000 people were affectédN OCHA, 2021)

Theseeverts were selecteecaisethey providea unique casestudyof two differert compoundflood eventsin thesamestudy
areg allowing for a comparison of the compound flood dynanics between both events. Furthermore, the lack of compound

flooding in global models has been identified as akey limitation to supportdecisionmaking in this areéEmerton et al., 2020)

3. Methods

The globallyapplicable compound flood hazard framewisrkhavn in Figure 1. In Section 3.1 we describedlabal models
used to set the boundary conditions oftilgdrodynamianodel. In Section 3.2 we discuss tharodynamic model SFINCS

as well as its automated setup. In Section 3.3 we disbassalysis of the model results and the compound flood drivers.
Both the model setup and analysis (posicessing) are facilitatday HydroMT v0.4.5, an opesource Python package to
automate the building and analysis of geoscientific modetsitamodelspecific SFINCS plugin HydroM-BFINCS v0.2.1
(Eilander et al., 2022All required model preand postprocessing steps have been automated and can tlyusecgegpeated

for different locations. The approach is modular as datasets dgnbesimiterchanged, also for higher resolution local datasets

if available, and many workfles to process raw data into model input data can be reused for different models.

/_,_,.-—-—-———-—-—-.,_\ legend
\-,____________._._-/ -
hydroMT
model
Global datasets :LLF% =
\__‘_‘_‘___________'_,_,/
Setup model
schematization
Global ocean
models local hydrodynamic .| Postprocessing
model " | model output
Setup model
boundary
Global | conditions

hydrological &
routing models

Model setup
Data catalog configuration

> Global models >> Local hydrodynamic model >> Analysis >

Figure 1: Framework for globally applicable compound flood hazard modeling
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3.1 Global models

To make the framework globally applicable, we make use of global models eétfedocal flood model. The following
sections describe the global ocean models used for the coastal boundary conditions and global hydrological and rasiting mode
used for the fluvial boundary conditions. To ensure coherence between the flood drévatsidlpheric forcing of all models

is based on the ERA5S reanalysis dataset, which g% spatial resolution (30 km) and a 1 houtemporal resolution
(Hersbach et al., 2020)

3.11 Global ocean models

Total nearshore wateeVels consist of several components, namely astronomical tide, storm surge and wave setup. The latter
two are episodic fluctuations due to at mos p he@waterconsdorei v er
and the inverted barometeregts of the pressuf®esio and Westerink, 2008)ave setup is an episodic waggven increase

of nearshore water levelsstdting from wave shoaling and breaking proce¢Besven et al., 1968)

The tide and surge components are simulated with the Global Tide and Surge Model (GTSM) ve(dlois®0al., 2020)

which is based othe Delft3D Flexible Mesh hydrodynamic modslftware(Kernkamp et al., 2011)'he model resolution
varies from 25 km in the deep ocean to 2.5 km (1.25 km in Europe) near the coast and results are stored at a 10 min tempor
resolution. Details about#hGTSM model schematization and parametennadie discussed in Muis et @020)andWang

et al.(2021) In this study GTSM is forced with mean sea level pressure and 10m meridional (v; northward) and zonal (u;
eastward) wind congnents from ERA5 merged with wind apdessurefields from the Holland parametric wind model
(Holland, 1980pased on the IBTrAC8&nappet al., 2010) The data from the Ha@hd model are described with a polar grid
with 36 radias and a rdius of 750 km following Dullaart et a{2021), where the data in the outermo92 are linearly
interpolated with the background ERA5 data toidwawind speed and pressure drop towards the outdbDrttares, 2022)
Thesimulated tides are based on tiglenerating forces at 60 frequencies without assimilation of satellite altifhetzgpqui
Apecechea et al., 2017)he GTSM model has been validated for various historical hurricane €Renizart et al., 2020)

and for derived return leve(Muis et al., 202Q)showing good agement with observationiourly time series of significant
height of wind wavesQi) are extracted at GTSM output locations from the 30 arcmin ERAS datasbased on tHECMWF

Ocean Wave ModdBidlot, 2012; Hersbach et al., 202@0)e estimate the wave setup component base@®di, which is

an oftenused approximation for (larggcale) studiegCamus et al., 2021; Vousdoukas et al., 2016; US Army Corps of
Engineers, 2002Finally, time series of total water levélD0 () are derived by combining the GTSM tide and storm surge

components'Qi )avith theERA5 wave setugomponen{’Oi): 00 0 & 'Oi 0 1®Oi at al0 mintemporal resolution.

Due to a lack of observations from coastal water level gauges, a quantitative validation of the simidatésl/@la is not

possible, but some general observations about the simulated data can be made. The siaxitatedvater levelsn GTSM



140  duringboth event$5.0 m+MSL during Idai; 3.8 m+MSL during Eloisegcurred close to neap tide and are caused by surge
(3.2 m during Idai; 2.6 m during Eloise) and wind setup (1.2 m during Idai; 0.7 m during Eldisghaximum surge and its
timing during ldai(4.0 m)arein line with the operationdbrecast of 4.4 nibased on thelyFlux2 modelforced with NOAA
Hurricane Weather Research and Foreatrabspheric dattERCC, 2019 Probst and Annunziato, 201%s tide and wae
effects are not simulated by this mad®ital water levels are not available for comparisoncomparison withthe tidal

145  constituents ofinternational Hydrographic Organization (IH@)ation at the Port of Beiras retrieved usig the Delft
Dashboardvan Ormondt et al., 2020)he highest astronomical tidis expected tde around 3.8 mvhile our simulations
resultin 4.5 m, indicating an overestimation. This has however little effect on the maximum water levels which occearred clos

to neap tide.

3.1.2 Global hydrological & routing models

150 Riverine discharge is simulatedtivthe globalriver routing modeling CaM&lood version 4.0.1Yamazaki et al., 2013;
Hirabayasi et al., 2021)CaMaFlood is selected as to our knowledge it is thiy global river routing model with an explicit
representation of floodplain&hao et al., 201 7hat also accounts f@ownstreamea level boundary conditiorfikeuchi et
al., 2017) CaMaFlood uses the local inertial approxinuatiBates et al., 201ap solve the mass and momentum equations
for river and floodplain flowsn one dimensior(Yamazaki et al., 2013)A model grid cell represents a unit catchment

155 containing a river segment with a rectangular cross section and a floodplain profile based iontapbgraphy. In CaMa
Flood version v4.0 and later the subgrid paransetee based on the globaghiresolution topography data MERIT DEM
(Yamazaki et al., 20)7and hydrography data MERIT Hyd(¥amazaki et al., 2019Eech river segment is connected to one
downstream neighbor, but floodplains of neighboring unittoaents can exchange flows throughcsdled bifurcation
channels, making it a quasi 2D model. The bifurcation channels are baaeskbnumber of elevation thresholds for which a

160 representative stream width at the interface between the floodplains of two neighboring unit catchments is derived based o
the subgd topography. Bifurcation channels are activated if the surface watetien exceeds an elevation threshold. These
bifurcation channels are shown to be important in flat coastal areas to correctly simulate floodplain confiketicity et
al., 2015; Mateo et al., 2017; Yamazaki et al., 20T#geunit-catchment areas are used to interpolate the input runoff to the
modé grid, where the runoff witin the unitcatchment directly enters the river segment at its upstream end.

165
We use a regional cutout between 32 °\1,.5 °S, 35.5 °E andl7 °N of the3 arcmin spatial resolution global CaiNéood
schematization, see Figube2A. Default model settings are used except for the bifurcation scheme, which is defined at 10
instead of 5 elevation thresholds to maximize floodplain connectivity. Furthermoraki® the model comparable with the
globally-applicablemodel river width and depth maps are created using the same procedure as explained in Section 3.2.1, but

170  with the CaMaFlood river segments. CaMéood is forced with ERA5 runoff, which is sifatied with the Hydrological Tiled
ECMWF Scheme for Surface Exchanges dvand (HTESSEL)Balsamo et al., 2009ard total sea water levels from the

nearest GTSM output location at all river outlet locations Sssdion 3.1.1. Grids of instantaneous discharge and flepth

6
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with a daily temporal resolution are saved to be used as inptiidocal flood model. The flood depth maps at the model

resolution are downscaled to a 3 arsec (~100 m at the equator) resolution based on high resolution topography.

During Idai, national hydrological bulletins reported water levels for the Pungwe river at Mefambisse and for the Buzi river at
Goonda (approximate locations are shown in Figure 2A). The bulletins report water levels during the onset and fecession o
the flood peak bt missed the peak itself. Furthermore, neither exact locations nor the used vertical reference level could be
retrieved, making a quantitative comparison impossible. We therefore only make a qualitative comparison between the
observed ath with CaMaFloodsimulated water levels. Compared to the observations, the simulated flood peak at the Pungwe
river is slightly delayed but seems to correctly capthee recession, while the flood peak at the Buzi river seems to be
overestimated and thecession too fagFigure Al). The overestimation could be the result of missing schematization of

reservoirs in the model, such as @leicamba reservoir in the Revue river, a tributary to the Buzi river.

3.2Hydrodynamic model

The SupetFast INunlation of CoastS (SFINCS) modéLeijnse et al., 2021 used to simulate water levels and overland

flood depths within coastal deltas. SFINCS is gel@@s it is designed to efficiently simulate overlana/ffoom conpound

flooding at limited computation costs and with good accufaeyjnse et al., 2021; Sebastian et al., 202d1)e governing
equations of the SFINCS model are based on the local inegtiations in two dimensioriBates et al., 2010)irst, the flow

rate is solved based on two 1D momentum equations in x and y directions with spatially varying roughness. Then, the wate
levels are computed basedthe mass balance. &yid precipitation and discharge balary condions are added as a local

source term in the mass equation. At open boundaries, the model is forced with dynamic water levels, which are interpolate
from thetwo nearest usedefined point locatioswith water levels. For a full description of theodel we efer the reader to

Leijnse et al(2021) Here we use the SFINCS code revision 295.

In the remainder of this section we describe the steps taken to automatically seBldNB&S moel schematization and
forcing from global datasets using HydroMBIFINCS v0.2.1(Eilander et al., 2022)The complete model setup process is
described in a single configuratiam file, and all datasets (see Table 1) in a single data cajalodfile, see Appedix B.

This improves the transparency and reproducibility of the model setup.

Table 1: Overview of global datasets used to setup tgydrodynamic flood model

Dataset Variable [units]
ERAGS (Hersbach et al., 2020) Total Runoff (ro) [m/hr]
MERIT Hydro (Yamazaki et al., 2019) Elevation [M+EGM96]
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215

220

Upstream area [fh

D8 flow directions {]

GRWL (Allen and Pavelsky, 2018) Permanent water mas{ [

River width datasts(Lin et al., 2020) River width [m]

Bankfull discharge [ris]

CNESCLS18(Mulet et al., 2021) Mean dynamic topography [m]

OSM ocean shapefilg-OSSGIS, 2020) Ocean shapefile]

3.2.1Setup model schematization

Step 1 Model grid definition

The SFINCS model grid is set up based on a bounding box of the area of interest, a resolution and a projected coordinat
reference system, here between 34.33-20,12 °S, 34.95 °E and 9.30 °N (WGS84) at 100 m resolution in UThbae 36S
projection.Cells that are not connected to the Buzi or Pungwe flood pdaidgirain to adjacent basiase excludedrom the

model domain.

Step 2: Topography and hydrography data

Topography data is reprojected to the model grid using bilinéampiolation. As hydrography data (D8 flow directions and
upstream area) cannot be reprojected directly, we instead reproject a-pgsaglaphy grid based on upstream area and
subsequenthderive flow directions. The upstream area is then recalculatest lmas the new flow directions taking into
account the upstream area of inflowing rivers and streams at the model domain boundary. The hydrography maps are not us
by SFINCS but used at latstages of the automatic model setup to define river bathynretrsneer in and outflow locations.

Here we used topography and hydrography data from MERIT Hydrq Yar@azaki et al., 2019)

Step 3: River and esttine bathymetry
As global digital elevation models (DEMs) do nepresent the bed level of river channels, the river bathymetry is burned into
the data using a similar procedure as in Sampson et al. (2015). Rivers are defined based on an upstresshcddeanthr
discretized into river segments. For each segmentjratedbtermine the river width from a binary river mask, then the river
bankfull elevation from the cells adjacent to the river mask and finally the river depth relative to the bankdtibrel@he
detailed procedure is explained here.

0 Rivers are basedn D8 flow directions and a minimal upstream area threshold. River segments are defined between

river confluences or a river headwater cell or outlet cell and a confluence. Long segmsplis iate equal parts to



approximate a usatefined length. Hereve used a minimal upstream area threshold of 100 km2 and an approximate
225 segment length of 5 km.
0 The river width is calculated as the segment average width derived from a binary rivebyndiskding the surface
area of each segment by its length, wttbie areas across multiple parallel estuarine channels are summed. The mask
is primarily based on the Global River Widths from Landsat (GRWL) Dataffdkm and Pavisky, 2018) but
extended by rasterizing the river width from the Lin e{2020)dataset. This dataset contains river width estimates
230 for ~1.6 km river sgments based on a machine learning approach that uses 16 covariates and was trainad based o
an average width from GRWL and MERIT Hydro. Compared to MERITrdyor GRWL it has a higher spatial
coverage and extends to smaller rivers with a minimum width of 30 m.
0 The river bankfull elevation, relative to the segment elevation, is estimateafimmpercentile of height above the
nearest river values of celigighboring the river mask. These values are then corrected such that the absolute bankfull
235 elevation levels are monotonically increasing in upstream direction using the algorithm debglMaedazaki et al.
(2012) Here we use the 25th percentile, which was found to give good results faediois but might need to be
refined for other regions.
0 We distinguish between a fluvial and estuarine part of the river to determine the river depth. The riverireiagpth
is estimated from the bankfull dischar@e[m3s-1] using a powetaw relationshp: 'Q 0 , where the default
240 values fora (0.27) andb (0.30) are based on Andreadis et(aD13) The bankfull discharge is based on thie-2
year return values of the dischargesesulated by Lin et a[2019) and derived from the nearest river segment from
the Lin et al(2020)dataset. Gaps in bankfull discharge data are fillsxbd on the nearest valid upstream valbe.
estuarine depth is kept constant based on the depth of the most upstream estuaeinie wbigh provides a first
order approximation of the depth in ungauged estuaries and is in accordance with obsehsgeih dagal alluvial
245 estuaries in lowgradient regiongGisen and Savenije, 2013} stuaine segments are classified based on a width
convergence rate. Natural alluvial estuaries have a funnel planform shape that iskédeatn and narrows inland
(Savenije, 2015)Here we use a convergence rate threshold.@f m/m applied to a smoothed segment average
width. This value was found based on trial and error for the estuades consideration and might need to be esdin
for other locations. A global minimum river depth of 0.5 m is used.
250 0 The river bed elevain zb[m+EGM96] is calculated for each model cell of a river segment from the cell elevation
z0 [m+EGM96], relative bankfull elevation differenadz [m] and the bankfull deptth [m]: & @ &
G G afiQa Q. This bed level is burned into the riveener cells and spread to neighboring cells within the river
mask to burn a rectangular river profile in the DEM.
0 Finally, we ensure that each river cell has at least one horizontally or vertically neighboring cell with the same or

255 lower elevation to esurethe river has D4 connectivity in the model.

Step 4: Manning roughness
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A spatially varying manning roughness grid is set up that differentiates between land and river cells, based on thk river mas
as defined in the previous step. Here we used aamang 0.03 sm‘* for river cells and 0.1 sif for land cells, which is in

line with other studie¢e.g. Di Baldassarre et al., 200®2)d consistent with the global CaMéood modelYamazaki etl.,

2011) HydroMT-SFINCS also contains a routine to set up a spatially varying roughness grid basedanvéarahta whih

is not used here to keep the model consistent with Crlibtad.

Step 5: Boundary cells

By default, the cells at the edge bétmodel domain have closed boundaries, but these can be changed to Rypmapen
water level boundaries. Here, an open wéeel boundary is set for all cells at the interface with the ocean by intersecting
the model domain edge cells with the OStéan shapefil@OSSGS, 2020) In the absence of water level forcing of rivers
leaving the model domain at the south and east model boundaidet® avoid water building up within the model domain,
open boundary cells with a zero water depth are set at these locati@se dpen boundary cells are derived from the
previously set hydrography data based on a-deéned upstream area thresholdianriver width, here 10 kfrand 1 km

respectively.

Step 6: River inflow points

Discharge boundary conditions are set at sopaigt locations within the model domain. These points are based on cells
where a river flows into the model domain. Riverslzsed on a usetefined upstream area and river length thresholds and
derived from the hydrography data as derived previoudig.minimum length threshold is used to filter short river segments
that flow in and out of the model domain. Here we use amagstarea threshold @00km? and minimum length of 10 km

to force the model with discharge fragaverrivers flowing into the model domain, see 2B.

10
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Figure 2: Maps of a regional cutout of the global CaMaFlood model (left panel); ard the local SFINCS model with boundary
280  condition and modeloutput point locationsfor the case study in Sofala province, Mozambige (right panel). Note that both maps
are in different projections based on the projection used for the model schematizai.

3.2.2 Setup model boundary conditions

SFINCS is forced based on output from global models, which is automaticligformed to the input data format that
SFINCS requiresThis is also referred to as a loose coupling between m¢siatdiageCollazo et al., 2019)rhe following

285  steps, dealing with dynamic boundary conditions, are repeateddoregamn and/or sensitivity scenario (s€ection3.3.3).
The model boundary conditions for both historical éseme shown in Figure 3.

Step 7: Coastal boundary

Water level boundary conditions are defined at point locations and interpolateétNigSto the nearest water level boundary
290 cell. Water level data for the model simulation time period are selected(@obal) water level point time series datasets

based on a maximum distance from the water level boundary cells (stepcian 3.2.1). The water level data can optionally

be corrected for the offset between the vertical datum of the wateal@/&pography data. Here, we use a maximum distance

of 5 km to select GTSM output locations and correct these for the differencecheth®. and the EGM96 vertical datum

11
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based on the CNESLS18 mean dynamic topograpfiulet et al., 2021)Note that this fiset amounts to ~0.8 iwn average
for the selected output locations. The total water level time series at a representative location for both events arghshown i

top panels ofFigure 3 (full line).

Step 8: Fluvial boundary

Discharge boundary conditisrare defined at sourgmint locations (step 6 in Section 3.2.1) within the model domain.
Discharge data for the simulation time period are selected from a gridded discharge dataset. As the (global) discharge datas
is typically based on another (coarsesolution) river netwrk, the source point locations must be matched with a
corresponding river cell, which is not necessarily at the exact same location. A matching river cell is defined asitiia cell w

a userdefined maximum search radius that Hes smallest differenda upstream area with the inflow point location, that is

at least smaller than a usggfined threshold for the absolute or relative difference. Here, we select discharge from the gridded
CaMaFlood model output within a 1 cell serwindow around the soce point location based on a maximum relative error

of 5% andmaximumabsolute error of 100 khin upstream aredlhe discharge time series at the two main rivers for both

events are shown in the center panels of Figure 3liiell.

Step 9Pluvial boundary

We use spatially varying precipitation fields for direct rainrtaitgrid forcing. The data are derived from (global) gridded
precipitation datasets for the model domain and simulation time period and reprojected to ¢hgnujedted coalinate

system in a resolution similar to the source resolution. Here we use ERA5 runoff rather than precipitation to account for
hydrological processes such as infiltration and evaporation and to ensure comparability with the globBloGdMzodel.
Notethat infiltration can also be simulated within SFINCS but was turned off for this experiment as this process is accounted
for by using runoff instead of precipitation data. The spatially average runoff time series for both events aiie shewn

bottom m@nels of Figure 3.
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Figure 3: SFINCS boundary conditions duringTro pical Cyclone Idai (left column) and Tro pical Cyclone Eloise (right column) for
total sea levelfrom GTSM and ERA5 (top row); dischargefrom CaMa-Flood (center row); and spatialaverage runofffrom ERA5
(bottom row). The full lines show the total water levels andischarge, as used for the validation, see Section 3.3.1. The dashed lines
show the tidal water level component onlytop row) and normalized discharge to match tke climatological mean(center row), as
used in the compound driver analysis, see Section 3.3.3. Only one coastal location (H4) and the two main rivers-(Bdzi and Q6 -
Pungwe) are shown to improve the readability of the plots. Ae labelsin the legendscorrespond to theboundary locations as shown

in Figure 2B.

3.3 Analysis of the model results
3.3.1 Validation against observed flood extent

As no quantitative stream flow or water level observation data are openly available for this location, we focusiparison
betweersatellitederivedand simulated flood extent. Model skill is quantified based on three metrics that are cgmgeszhl

to analyze flood model&/ousdoukas et al., 2016; Wing et al., 20ZHe model skill isneasured by the critical success index
(6), which is the ratio of the area that is correctly simulated to be flod@ed"Q60¢ $Hover the mion of observed and
simulated flooded areg80i "Qa"0¢ ¢ ithereby accounting for both oveand umlerprediction, see eq. (1). The critical
success index ranges from 0 (no match) to 1 (perfect match). The hiQasetife ratio area thés correctly simulated to be
flooded over the observed flood extei®@4 § see eq. (2). The hit rate rarmfrom 0 (none of the observed flood extent are

flooded in the model) to 1 (the complete observed flood extent is flooded in the modd§ls€raarm rate'Q is the ratio of
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335 the area which is wrongly simulated to be floodé ("B®%  bverthe observed flood extent, see eq. (3). The false alarm

rate ranges from O (no overprediction) to infinity (1 indicates equally sized dneaangly simulated and observed flooding).

5 @ — 1)
° —— (2
30 0 —X (3)

High-resolution (10 mflood extentdataarederived from Sentinel Synthetic Aperture Radar (SARpages We useVV -
polarized ground range detecteddata, provided byGoode Earth Engine (GEE)which has undergongeometric terrain
correctionandprovides radar backscatter iregibel (B) units These datareprocessedisingthe GEE withan unsupervised

345 histogrambased surface water mapgialgorithmthat consistsof three stepgMarkert et al., 2020)First, noise is reduad
usingthe Refined Lee speckle filteflLee, 1981) Secondathreshold to distinguish water and dry cells is detected using the
Edge Otsuhresholdingalgorithm(Donchyts et al.2016) Third, cells with a relative elevation of more th& m above the
nearest strearareexdudedfrom the water clastw avoid false positivedVe process each image individually asmmbine
flood extens fromascending and desading orbits duringhe same dayn total we obtainflood extentdor four daysbased

350 on eightimagesonthe 19 and?0 March 2019or Tropical Cyclone Idaiwhich is aroundtte peak of the flood everdndon
25and 26January 2021or Tropical Cyclone Eloisevhich is just before thpeak of the flood evenFinally, the flood extents
are reprojected to the SFINCS model grid

The simulated flood extent derived fromthe maximum flood deptbased orcells with a flood deptHarger thama 15 cm

355 threshold(e.g. Wing et al., 2017)The same postprocessing is applied to the CkMad flood depth maps, but after
downscaling to a 3 arcsec grid (see Section 3.1.2) and reprojection to the SFINCS grid using nearest neighbor interpolatior
Cells with permanenwaterareexcluded from theomparisonWe compare thindividual satellitederivedflood extentswith
the maxmum simulated exterfrom the same dayand the maximunsatellitederivedextentper event with the maximum

simulated extendluring all days wittsatelliteobservations

360  3.3.2 Sensitivity analysis

We perform a sensitivity analysis of the model skill by varying several model parameters and model forcing for both historica

events. A description of eenodel sensitivity run is provided the table below.

Table 2: Overview of model sensitivity runs.

Parameter Description Lower value Upper value
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370

375

1. River depth | The river depth is varied by multiplying the coefficiarh the power [ 50% 150%
law equation, seSection3.2.1 (a=0.135) (a=0.405)
2. Land manning The spatially constant manning roughness value for land cells (| 50% 150%
roughness plain manning roughness in CaNféood) (0.05 sm) (0.15 sm)
3. Coastal (H)| Total water level forcing (tide, surge, and wave setup component| 80% 120%
forcing both SFINCS and CaMglood.
4. Pluvial (P)| The ERA5 runoff forcing of CaM&lood and pluvial forcing o] 80% 120%
and fluvial (Q)| SFINCS. Based on the CaM@ood simulation, ta fluvial forcing of
forcing SFINCS is also modified.
5. Bifurcations | CaMaFlood only The number of elevation thresholdsl0] at which| O 5
a representative width for flow between floodplains of adjacent { (no bifurcations)
catchments is described. Here, 10dejault.
6. Resolution CaMaFlood only The resolution at which unrdatchments ar{ N/A? 200%
described. (6 arcmin)

3.3.3 Compound flood drivers

To examine the role of each driver and interaxgibetween fluvial, pluvial, and coastal flood drivers on flood levels, we
perform a scenario analysis with tBEINCS model where we vary the boundary conditions, see Table 3 for details. During
single driver events, the forcing of both other drives adjusted to neaxtreme conditions, see dashed lines in Figure 3. For

the fluvial boundary condition, we normalize the event discharge to match théetomgnean discharge; for the pluvial
boundary weset the rainfall to zero; and for the coastaldmtary we use the tidal signal of the event only. We identify transition
zones as areas where water levels in the compound scenario are at least 5 cm higher than in any of the single dréyer scenari
in line with earlier studies on compound flooding whéreesholds vary betweeri 20 (Bilskie and Hagen, 2018; Goet al.,

2020b; Shen et al., 2019 addition, we identify the main flood driver based on the single driver scenario that results in the

largest water level.

Table 3: Overview of model boundary conditions in compound and singleriver scenarios.

Scenario

Fluvial boundary Pluvial boundary

Coastal boundary

Compound

CaMaFlood event discharge ERAS event runoff

GTSM event tide and surge
ERAS waves

Fluvial (single)

CaMaFlood event discharge none

GTSM event tide levels

Pluvial (shgle)

CaMaFlood event discharge scal§ ERA5 event runoff

to match longterm mean

GTSM event tide levels

Coastal (single)

CaMaFlood event discharge scal{ none

to matchlong-term mean

GTSM event tide and surge
ERAS waves
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4. Results and discussion
4.1 Model comparison

In this section we present a comparison of the skill of the global &ddtal and local SFINCS models to simulate the flood
extent of the historical flood events Idai and Eloise. Both models are forced with the same data and weameditharsng
roughness and river depth estimation for compatibility. In general, we senmlare widespread flooding durifdai
compared to Eloise and with SFINCS compared to CaMad (Figure 4). The difference between both models in the Buzi
floodplains is likely due to the limited connectivity between floodplains of neighborisgrethe CaMaFlood modethrough

its sacalled bifurcation scheeaThis scheme is too limited to represent the connectivity in the larggiagient floodplains

of the Buzi and Pungwe river$his can be seen in the downscaled Cafaod flood maps, which show unrealistic sudden
local drops in flood depth at the interéaof unit catchmentéFigure 4A) and larger simulated water levels in theiBoz
CaMaFlood compared to SFINCS (Figure 5A/B). The difference around the Pungwe estuary is likely due to the response of
both models to coastal boundary ddions. Water levels in the Pungwe estuary in Caiad are more attenuated and slower
comparedo SFINCS (Figure 5C/D) due to the lower resolution of the C&lMad model. In addition, some small coastal
areas at the estuary mouth which are floodedANGS are not covered by the Callmod model. The differences around
Beira, where no flooding isimulated by CaMdclood, can be attributed to the fact that CaMaod does not simulate direct
coastal flooding, but only the effect of coastal forcing orrniive water levels and subsequent fluvial flooding. Finally, the
difference on the hillslopes céde attributed to the fact that CaNrood does not simulate direct pluvial flooding. While in
SFINCS the runoff forcing (i.e. net precipitation) is addedoasce term to each grid cell, in CaNrood it is directly added

to the river component of eachit catchment. Furthermore, the drainage capacity in this area in SFINCS is likely
underestimated due to the absence of smallgsiagbscale) streams in theaabel topography which is limited by the model

resolution.
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400  Figure 4: Simulated maximum flood depths from CaMa-Flood (left panels) and SFINCS (right panels) fofTropical Cyclone Idai
(top panels) andTropical Cyclone Eloise (bottom panels). The diamonds indicate modalitput point locations for which water level
time series are extracted, see Figure Fhe grey areas indicate permanent water and the hatched areas are excluded.
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405 Figure 5: Simulated time series of weer levels during Tropical Cyclone Idai (left) and Tropical Cyclone Eloise (right) with SFINCS
(full lines) and CaMa-Flood (dashed lines) for two locations irthe Buzi (top) and three in thePungwe (bottom). See diamonds in
Figure 4 for the exactmodel output point locations.
Here, we comparesimulatedflood extentswith satellitederivedflood extentsfor both eventsFigure 6 showshe ill
calculated from comparing the maximumulti-dayflood extenswith Sentinell observationdn addition,Table 4 and Figure
410 A2 andA3 showcomparison®f individual satellitederivedextents with the maximum simulated extettiringthe sane day.
In generalthe skill of both models is higher for the Idai compared to the Eloise flood &tdatould be related tthe fact
that the satellitelerived flood extents for Eloise do not capture the maxinsimulaed extent. SFINCS showssimilar
performanceo CaMaFloodin terms of critical success ind& themulti-daymaximum exten¢C = 0.75 vs 0.73 during Idai
and0.46 vs0.47 during Eloise)but bettemperformancdor mostindividual days(C = 0.750.77 vs0.6872 during Idai and
415  0.47-0.47vs 045-0.47 during Eloise)There are substantial differences in the simulfiteatl extents between both models.
The SENCS simulations show larger flood extents compared to CBMad, resiiing in a higher hit ratio (H = 0.94 vs 0.83
during Idai and ®@2vs 063 during Eloise) and a higher false alarm ratio (F22@s 0.14 during Idai and 48 vs 035 during
Eloise)for the multi-day maximum extentg-or individualdaily exentswe findthe same pattarbut with larger differences
for the hit rate The underestimation of CaMeéood is concentrated in the floodplains of the Buzi river and around and north
420  of the city of Beira, see orange colors in Figure 6A/B. The overestimat SFINCS is concentrated along the banks of the
Pungwe riverandthe hillslopesnorth-eastfrom it. For Eloise the flood extent is a'so overestimatedn the floodplains south

of the Buzi river, see red colors in Figure 6C/D.
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