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Abstract. Coastal river deltas are susceptible to flooding from pluvial, fluvial, and coastal flood drivers. Compound floods, 

which result from the co-occurrence of two or more of these drivers, typically exacerbate impacts compared to floods from a 

single driver. While several global flood models have been developed, these do not account for compound flooding. Local 

scale compound flood models provide state-of-the-art analyses but are hard to scale to other regions as these typically are 

based on local datasets. Hence, there is a need for globally-applicable compound flood hazard modeling. We develop, validate, 15 

and apply a framework for compound flood hazard modeling that accounts for interactions between all drivers. It consists of 

the high-resolution 2D hydrodynamic flood model SFINCS, which is automatically set up from global datasets and coupled 

with a global hydrodynamic river routing model and a global surge and tide model. To test the framework, we simulate two 

historical compound flood events, Tropical Cyclones Idai and Eloise in the Sofala province of Mozambique, and compare the 

simulated flood extents to satellite-derived extents at multiple days for both events. Compared to the global CaMa-Flood 20 

model, the globally-applicable model generally performs better in terms of the critical success index (-0.01 ï 0.09) and hit rate 

(0.11 ï 0.22), but lower in terms of false alarm ratio (0.04 ï 0.14). Furthermore, the simulated flood depth maps are more 

realistic due to better floodplain connectivity and provide a more comprehensive picture as direct coastal and pluvial flooding 

are simulated. Using the new framework, we determine the dominant flood drivers and transition zones between flood drivers. 

These vary significantly between both events because of differences in the magnitude of- and time lag between the flood 25 

drivers. We argue that a wide range of plausible events should be investigated to get a robust understanding of compound flood 

interactions, which is important to understand for flood adaptation, preparedness, and response. As the model setup and 

coupling is automated, reproducible, and globally applicable, the presented framework is a promising step forward towards 

large-scale compound flood hazard modeling.  
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1. Introduction 30 

Coastal river deltas are susceptible to flooding due to their physical setting in low elevation regions and the presence of many 

densely populated cities. A recent study showed that deltas contain 4.5% of the global population in 2017, while only covering 

0.57% of the earthôs land surface area (Edmonds et al., 2020). Floods in coastal delta regions can occur as the result of different 

physical drivers, including extreme rainfall, river discharge, or extreme coastal water levels. Floods can also occur (or be 

exacerbated) by the co-occurrence of combinations of these drivers, so-called compound flood events, which may amplify the 35 

total flood hazard (Leonard et al., 2014; Zscheischler et al., 2018). Tropical Cyclone Idai, which made landfall near Beira, 

Mozambique in March 2019, caused more than 600 casualties and affected an estimated 1.85 million people (UN OCHA, 

2019). This is an example of the devastating impacts that compound floods can cause (Emerton et al., 2020). A comprehensive 

understanding of flood risk in deltas is therefore crucial for effective risk reduction. 

There is a wide recognition that interactions between flood drivers should be taken into account for flood risk assessment and 40 

management in both the scientific (Moftakhari et al., 2017; Wahl et al., 2015; Ward et al., 2018) and decision-making 

communities (Browder et al., 2021; UNDRR, 2019). Several studies have used statistical models to assess the dependence 

between flood drivers in order to understand the likelihood of extreme drivers occurring together (Camus et al., 2021; 

Couasnon et al., 2020; Bevacqua et al., 2019; Hendry et al., 2019; Ward et al., 2018). Furthermore, hydrodynamic model 

simulations have been used to understand the complex physical interactions between drivers and their relative importance for 45 

the total flood hazard (Bakhtyar et al., 2020; Eilander et al., 2020; Gori et al., 2020a; Harrison et al., 2021; Kumbier et al., 

2018; Muñoz et al., 2021; Olbert et al., 2017; Santiago-Collazo et al., 2019; Torres et al., 2015) 

However, to date most global flood risk models still analyze each flood driver in isolation (Alfieri et al., 2017; Hirabayashi et 

al., 2021; Tiggeloven et al., 2020; Vousdoukas et al., 2018; Ward et al., 2020). Recently, the effect of storm surge on fluvial 

flooding was analyzed at the global scale, showing that 1-in-10 years fluvial flood levels are exacerbated by surge for 64% of 50 

the locations analyzed, causing increased flood risk for 9.3% of the population exposed to riverine flooding (Eilander et al., 

2020; Ikeuchi et al., 2017). Bates et al. (2021) were the first to make a combined risk assessment of fluvial, pluvial and coastal 

flood hazard for the continental US, but did not account for physical interactions of pluvial with other flood drivers.  

While the performance and resolution of large-scale flood models is approaching that of local-scale flood models in data-rich 

areas (Wing et al., 2021), there are still large differences between global flood models in many areas globally (Aerts et al., 55 

2020; Bernhofen et al., 2018; Trigg et al., 2016). The setup of these models remains a challenging task, due to the lack of open 

and accurate high-resolution global topography data (Hawker et al., 2018b) as well as missing data on river and estuarine 

bathymetry (Neal et al., 2021) and flood defenses (Ward et al., 2015; Wing et al., 2019). Therefore, building hydrodynamic 

flood models from global datasets requires several data preprocessing steps that may have a large effect on the model skill 

(Sampson et al., 2015). Furthermore, the code for setting up most global flood models is closed source, while an open source 60 
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framework would increase the comparability and reproducibility by providing a transparent workflow (Hall et al., 2021; Hoch 

and Trigg, 2019). Sosa et al. (2020) presented an automatic model builder for LISFLOOD-FP models, and Uhe et al. (2021) 

extended this framework to a model cascade to compute fluvial flood hazard from meteorological drivers. Van Ormondt et al. 

(2020) developed Delft Dashboard, which is a graphical user interface with various modular toolboxes to semi-automatically 

setup hydrodynamic models schematizations in the ocean and coastal domains, but lacks tools to couple riverine models. This 65 

leaves a gap for a fully automated model builder that can be applied to the complex coastal delta environment to simulate 

compound flood events. 

In this study we present an automated framework to model compound flooding anywhere on the globe in a reproducible and 

transparent manner. The framework consists of a 2D hydrodynamic model, which is automatically built from global datasets 

and coupled with a global hydrological and river routing model for upstream boundary conditions and a global surge and tide 70 

model for downstream boundary conditions. The goal of this study is to present the framework, to test its ability to simulate 

compound floods in data-sparse coastal deltas, and to demonstrate how it can be used for compound flood analysis. In 

particular, we compare flood hazard maps from the local hydrodynamic model against satellite-derived flood extents for two 

historical events. To evaluate the added value of using the globally-applicable model, we also compare against a global model. 

Furthermore, we identify the main flood drivers and transition zones between drivers following Bilskie and Hagen (2018).  75 

2. Case study 

To evaluate the flood hazard framework, we apply it to two historical events in the Sofala province of Mozambique, namely 

Tropical Cyclone Idai in March 2019 and Tropical Cyclone Eloise in January 2021. Both events are examples of compound 

flood events in a coastal delta. The largest city in the Sofala province is Beira, with more than 500,000 inhabitants and a large 

port connecting the hinterland with the Indian Ocean. While the city itself is mainly threatened by coastal and pluvial flooding, 80 

the deltas of the Pungwe and Buzi rivers are also susceptible to fluvial flooding (Emerton et al., 2020; van Berchum et al., 

2020).   

Tropical Cyclone Idai originated in the Mozambique Channel as a tropical depression, which already caused extensive flooding 

after its first landfall in early March. After it moved back over the Mozambique Channel it gained intensity and became a 

tropical cyclone with 10-min sustained wind speeds of 165 km/h, a maximum calculated surge of ~4.4 m, and torrential rainfall 85 

during the second landfall near Beira on 15th March (ERCC, 2019). After the second landfall, large areas flooded, first around 

the coast, followed a few days later by the Buzi and Pungwe floodplains. The tropical cyclone destroyed more than 60,000 

houses and an estimated 286,000 people received shelter (UN OCHA, 2019).  

Tropical Cyclone Eloise made landfall on 23 January 2021 around 20 km south of Beira, with winds of 140 km/h and 

widespread and extreme rainfall. The region experienced widespread post-cyclone flooding while it was already hit by heavy 90 

rainfall on January 15 and subsequent high river water levels and was still recovering from the 2019 flood after Tropical 
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Cyclone Idai. The Sofala province was the most affected, especially communities along the Pungwe and Buzi rivers. In total, 

more than 8,800 houses were damaged and 176,000 people were affected (UN OCHA, 2021).  

These events were selected because they provide a unique case study of two different compound flood events in the same study 

area, allowing for a comparison of the compound flood dynamics between both events. Furthermore, the lack of compound 95 

flooding in global models has been identified as a key limitation to support decision making in this area (Emerton et al., 2020).  

3. Methods 

The globally-applicable compound flood hazard framework is shown in Figure 1. In Section 3.1 we describe the global models 

used to set the boundary conditions of the hydrodynamic model. In Section 3.2 we discuss the hydrodynamic model SFINCS 

as well as its automated setup. In Section 3.3 we discuss the analysis of the model results and the compound flood drivers. 100 

Both the model setup and analysis (post-processing) are facilitated by HydroMT v0.4.5, an open-source Python package to 

automate the building and analysis of geoscientific models, and its model-specific SFINCS plugin HydroMT-SFINCS v0.2.1 

(Eilander et al., 2022). All required model pre- and postprocessing steps have been automated and can thus easily be repeated 

for different locations. The approach is modular as datasets can easily be interchanged, also for higher resolution local datasets 

if available, and many workflows to process raw data into model input data can be reused for different models.  105 

 

Figure 1: Framework for globally applicable compound flood hazard modeling 
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3.1 Global models 

To make the framework globally applicable, we make use of global models to force the local flood model. The following 

sections describe the global ocean models used for the coastal boundary conditions and global hydrological and routing models 110 

used for the fluvial boundary conditions. To ensure coherence between the flood drivers, the atmospheric forcing of all models 

is based on the ERA5 reanalysis dataset, which has a 0.25° spatial resolution (~30 km) and a 1 hour temporal resolution 

(Hersbach et al., 2020).  

3.1.1 Global ocean models 

Total nearshore water levels consist of several components, namely astronomical tide, storm surge and wave setup. The latter 115 

two are episodic fluctuations due to atmospheric drivers. Storm surge is generated by a stormôs winds pushing water onshore 

and the inverted barometer effects of the pressure (Resio and Westerink, 2008). Wave setup is an episodic wave-driven increase 

of nearshore water levels resulting from wave shoaling and breaking processes (Bowen et al., 1968).  

 

The tide and surge components are simulated with the Global Tide and Surge Model (GTSM) version 3.0 (Muis et al., 2020) 120 

which is based on the Delft3D Flexible Mesh hydrodynamic model software (Kernkamp et al., 2011). The model resolution 

varies from 25 km in the deep ocean to 2.5 km (1.25 km in Europe) near the coast and results are stored at a 10 min temporal 

resolution. Details about the GTSM model schematization and parameterization are discussed in Muis et al. (2020) and Wang 

et al. (2021). In this study, GTSM is forced with mean sea level pressure and 10m meridional (v; northward) and zonal (u; 

eastward) wind components from ERA5 merged with wind and pressure fields from the Holland parametric wind model 125 

(Holland, 1980) based on the IBTrACS (Knapp et al., 2010). The data from the Holland model are described with a polar grid 

with 36 radials and a radius of 750 km following Dullaart et al. (2021), where the data in the outermost 33% are linearly 

interpolated with the background ERA5 data to avoid a wind speed and pressure drop towards the outer rim (Deltares, 2022). 

The simulated tides are based on tide-generating forces at 60 frequencies without assimilation of satellite altimetry (Irazoqui 

Apecechea et al., 2017). The GTSM model has been validated for various historical hurricane events (Dullaart et al., 2020) 130 

and for derived return levels (Muis et al., 2020), showing good agreement with observations. Hourly time series of significant 

height of wind waves (Ὄί) are extracted at GTSM output locations from the 30 arcmin ERA5 dataset and based on the ECMWF 

Ocean Wave Model (Bidlot, 2012; Hersbach et al., 2020). We estimate the wave setup component based on πȢςὌί, which is 

an often-used approximation for (large-scale) studies (Camus et al., 2021; Vousdoukas et al., 2016; US Army Corps of 

Engineers, 2002). Finally, time series of total water level (Ὄὸύὰ) are derived by combining the GTSM tide and storm surge 135 

components (Ὄίὸ) with the ERA5 wave setup component (Ὄί): Ὄὸύὰ  Ὄίὸ  πȢςὌί at a 10 min temporal resolution. 

 

Due to a lack of observations from coastal water level gauges, a quantitative validation of the simulated water levels is not 

possible, but some general observations about the simulated data can be made. The maximum simulated water levels in GTSM 
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during both events (5.0 m+MSL during Idai; 3.8 m+MSL during Eloise) occurred close to neap tide and are caused by surge 140 

(3.2 m during Idai; 2.6 m during Eloise) and wind setup (1.2 m during Idai; 0.7 m during Eloise). The maximum surge and its 

timing during Idai (4.0 m) are in line with the operational forecast of 4.4 m based on the HyFlux2 model forced with NOAA 

Hurricane Weather Research and Forecast atmospheric data (ERCC, 2019; Probst and Annunziato, 2019). As tide and wave 

effects are not simulated by this model, total water levels are not available for comparison. In comparison with the tidal 

constituents of International Hydrographic Organization (IHO) station at the Port of Beira as retrieved using the Delft 145 

Dashboard (van Ormondt et al., 2020), the highest astronomical tide is expected to be around 3.8 m while our simulations 

result in 4.5 m, indicating an overestimation. This has however little effect on the maximum water levels which occurred close 

to neap tide.  

3.1.2 Global hydrological & routing models 

Riverine discharge is simulated with the global river routing modeling CaMa-Flood version 4.0.1 (Yamazaki et al., 2013; 150 

Hirabayashi et al., 2021). CaMa-Flood is selected as to our knowledge it is the only global river routing model with an explicit 

representation of floodplains (Zhao et al., 2017) that also accounts for downstream sea level boundary conditions (Ikeuchi et 

al., 2017). CaMa-Flood uses the local inertial approximation (Bates et al., 2010) to solve the mass and momentum equations 

for river and floodplain flows in one dimension (Yamazaki et al., 2013). A model grid cell represents a unit catchment 

containing a river segment with a rectangular cross section and a floodplain profile based on subgrid topography. In CaMa-155 

Flood version v4.0 and later the subgrid parameters are based on the global high-resolution topography data MERIT DEM 

(Yamazaki et al., 2017) and hydrography data MERIT Hydro (Yamazaki et al., 2019). Each river segment is connected to one 

downstream neighbor, but floodplains of neighboring unit catchments can exchange flows through so-called bifurcation 

channels, making it a quasi 2D model. The bifurcation channels are based on a set number of elevation thresholds for which a 

representative stream width at the interface between the floodplains of two neighboring unit catchments is derived based on 160 

the subgrid topography. Bifurcation channels are activated if the surface water elevation exceeds an elevation threshold. These 

bifurcation channels are shown to be important in flat coastal areas to correctly simulate floodplain connectivity (Ikeuchi et 

al., 2015; Mateo et al., 2017; Yamazaki et al., 2014). The unit-catchment areas are used to interpolate the input runoff to the 

model grid, where the runoff within the unit-catchment directly enters the river segment at its upstream end.  

 165 

We use a regional cutout between 32 °W, -21.5 °S, 35.5 °E and -17 °N of the 3 arcmin spatial resolution global CaMa-Flood 

schematization, see Figure 5.2A. Default model settings are used except for the bifurcation scheme, which is defined at 10 

instead of 5 elevation thresholds to maximize floodplain connectivity. Furthermore, to make the model comparable with the 

globally-applicable model, river width and depth maps are created using the same procedure as explained in Section 3.2.1, but 

with the CaMa-Flood river segments. CaMa-Flood is forced with ERA5 runoff, which is simulated with the Hydrological Tiled 170 

ECMWF Scheme for Surface Exchanges over Land (HTESSEL) (Balsamo et al., 2009), and total sea water levels from the 

nearest GTSM output location at all river outlet locations, see Section 3.1.1. Grids of instantaneous discharge and flood depth 
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with a daily temporal resolution are saved to be used as input for the local flood model. The flood depth maps at the model 

resolution are downscaled to a 3 arsec (~100 m at the equator) resolution based on high resolution topography.  

 175 

During Idai, national hydrological bulletins reported water levels for the Pungwe river at Mefambisse and for the Buzi river at 

Goonda (approximate locations are shown in Figure 2A). The bulletins report water levels during the onset and recession of 

the flood peak but missed the peak itself. Furthermore, neither exact locations nor the used vertical reference level could be 

retrieved, making a quantitative comparison impossible. We therefore only make a qualitative comparison between the 

observed and with CaMa-Flood simulated water levels. Compared to the observations, the simulated flood peak at the Pungwe 180 

river is slightly delayed but seems to correctly capture the recession, while the flood peak at the Buzi river seems to be 

overestimated and the recession too fast (Figure A1). The overestimation could be the result of missing schematization of 

reservoirs in the model, such as the Chicamba reservoir in the Revue river, a tributary to the Buzi river. 

3.2 Hydrodynamic model 

The Super-Fast INundation of CoastS (SFINCS) model (Leijnse et al., 2021) is used to simulate water levels and overland 185 

flood depths within coastal deltas. SFINCS is selected as it is designed to efficiently simulate overland flow from compound 

flooding at limited computation costs and with good accuracy (Leijnse et al., 2021; Sebastian et al., 2021). The governing 

equations of the SFINCS model are based on the local inertial equations in two dimensions (Bates et al., 2010). First, the flow 

rate is solved based on two 1D momentum equations in x and y directions with spatially varying roughness. Then, the water 

levels are computed based on the mass balance. On-grid precipitation and discharge boundary conditions are added as a local 190 

source term in the mass equation. At open boundaries, the model is forced with dynamic water levels, which are interpolated 

from the two nearest user-defined point locations with water levels. For a full description of the model we refer the reader to 

Leijnse et al. (2021). Here we use the SFINCS code revision 295. 

 

In the remainder of this section we describe the steps taken to automatically setup the SFINCS model schematization and 195 

forcing from global datasets using HydroMT-SFINCS v0.2.1 (Eilander et al., 2022). The complete model setup process is 

described in a single configuration ini file, and all datasets (see Table 1) in a single data catalog yaml file, see Appendix B. 

This improves the transparency and reproducibility of the model setup. 

 

Table 1: Overview of global datasets used to setup the hydrodynamic flood model 200 

Dataset Variable [units]  

ERA5 (Hersbach et al., 2020) Total Runoff (ro) [m/hr] 

MERIT Hydro (Yamazaki et al., 2019) Elevation [m+EGM96] 
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Upstream area [m2] 

D8 flow directions [-] 

GRWL (Allen and Pavelsky, 2018) Permanent water mask [-] 

River width datasets (Lin et al., 2020) River width [m] 

Bankfull discharge [m3/s] 

CNES-CLS18 (Mulet et al., 2021) Mean dynamic topography [m] 

OSM ocean shapefile (FOSSGIS, 2020) Ocean shapefile [-] 

3.2.1 Setup model schematization  

Step 1: Model grid definition 

The SFINCS model grid is set up based on a bounding box of the area of interest, a resolution and a projected coordinate 

reference system, here between 34.33 °W, -20.12 °S, 34.95 °E and -19.30 °N (WGS84) at 100 m resolution in UTM zone 36S 

projection. Cells that are not connected to the Buzi or Pungwe flood plains and drain to adjacent basins are excluded from the 205 

model domain. 

 

Step 2: Topography and hydrography data 

Topography data is reprojected to the model grid using bilinear interpolation. As hydrography data (D8 flow directions and 

upstream area) cannot be reprojected directly, we instead reproject a pseudo-topography grid based on upstream area and 210 

subsequently derive flow directions. The upstream area is then recalculated based on the new flow directions taking into 

account the upstream area of inflowing rivers and streams at the model domain boundary. The hydrography maps are not used 

by SFINCS but used at later stages of the automatic model setup to define river bathymetry and river in- and outflow locations. 

Here we used topography and hydrography data from MERIT Hydro v1.0 (Yamazaki et al., 2019). 

 215 

Step 3: River and estuarine bathymetry 

As global digital elevation models (DEMs) do not represent the bed level of river channels, the river bathymetry is burned into 

the data using a similar procedure as in Sampson et al. (2015). Rivers are defined based on an upstream area threshold and 

discretized into river segments. For each segment, we first determine the river width from a binary river mask, then the river 

bankfull elevation from the cells adjacent to the river mask and finally the river depth relative to the bankfull elevation. The 220 

detailed procedure is explained here. 

ǒ Rivers are based on D8 flow directions and a minimal upstream area threshold. River segments are defined between 

river confluences or a river headwater cell or outlet cell and a confluence. Long segments are split into equal parts to 
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approximate a user-defined length. Here, we used a minimal upstream area threshold of 100 km2 and an approximate 

segment length of 5 km.  225 

ǒ The river width is calculated as the segment average width derived from a binary river mask, by dividing the surface 

area of each segment by its length, where the areas across multiple parallel estuarine channels are summed. The mask 

is primarily based on the Global River Widths from Landsat (GRWL) Database (Allen and Pavelsky, 2018), but 

extended by rasterizing the river width from the Lin et al. (2020) dataset. This dataset contains river width estimates 

for ~1.6 km river segments based on a machine learning approach that uses 16 covariates and was trained based on 230 

an average width from GRWL and MERIT Hydro. Compared to MERIT Hydro or GRWL it has a higher spatial 

coverage and extends to smaller rivers with a minimum width of 30 m.   

ǒ The river bankfull elevation, relative to the segment elevation, is estimated from a low percentile of height above the 

nearest river values of cells neighboring the river mask. These values are then corrected such that the absolute bankfull 

elevation levels are monotonically increasing in upstream direction using the algorithm developed by Yamazaki et al. 235 

(2012). Here we use the 25th percentile, which was found to give good results for this region but might need to be 

refined for other regions.  

ǒ We distinguish between a fluvial and estuarine part of the river to determine the river depth. The riverine depth h [m] 

is estimated from the bankfull discharge Q [m3s-1] using a power-law relationship: Ὤ  ὥὗ , where the default 

values for a (0.27) and b (0.30) are based on Andreadis et al. (2013). The bankfull discharge is based on the 1-in-2 240 

year return values of the discharge as simulated by Lin et al. (2019), and derived from the nearest river segment from 

the Lin et al. (2020) dataset. Gaps in bankfull discharge data are filled based on the nearest valid upstream value. The 

estuarine depth is kept constant based on the depth of the most upstream estuarine segment, which provides a first-

order approximation of the depth in ungauged estuaries and is in accordance with observed depths in ideal alluvial 

estuaries in low-gradient regions (Gisen and Savenije, 2015). Estuarine segments are classified based on a width 245 

convergence rate. Natural alluvial estuaries have a funnel planform shape that is wide at the ocean and narrows inland 

(Savenije, 2015). Here we use a convergence rate threshold of 0.01 m/m applied to a smoothed segment average 

width. This value was found based on trial and error for the estuaries under consideration and might need to be refined 

for other locations. A global minimum river depth of 0.5 m is used. 

ǒ The river bed elevation zb [m+EGM96] is calculated for each model cell of a river segment from the cell elevation 250 

z0 [m+EGM96], relative bankfull elevation difference dz [m] and the bankfull depth h [m]: ᾀὦ  ᾀπ 

 άὥὼπȟὨᾀ  Ὤ. This bed level is burned into the river center cells and spread to neighboring cells within the river 

mask to burn a rectangular river profile in the DEM.  

ǒ Finally, we ensure that each river cell has at least one horizontally or vertically neighboring cell with the same or 

lower elevation to ensure the river has D4 connectivity in the model.  255 

Step 4: Manning roughness 
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A spatially varying manning roughness grid is set up that differentiates between land and river cells, based on the river mask 

as defined in the previous step. Here we used a constant of 0.03 sm-1/3 for river cells and 0.1 sm-1/3 for land cells, which is in 

line with other studies (e.g. Di Baldassarre et al., 2009) and consistent with the global CaMa-Flood model (Yamazaki et al., 

2011). HydroMT-SFINCS also contains a routine to set up a spatially varying roughness grid based on land-cover data which 260 

is not used here to keep the model consistent with CaMa-Flood. 

 

Step 5: Boundary cells 

By default, the cells at the edge of the model domain have closed boundaries, but these can be changed to Riemann-type open 

water level boundaries. Here, an open water level boundary is set for all cells at the interface with the ocean by intersecting 265 

the model domain edge cells with the OSM ocean shapefile (FOSSGIS, 2020). In the absence of water level forcing of rivers 

leaving the model domain at the south and east model boundaries, and to avoid water building up within the model domain, 

open boundary cells with a zero water depth are set at these locations. These open boundary cells are derived from the 

previously set hydrography data based on a user-defined upstream area threshold and a river width, here 10 km2 and 1 km 

respectively. 270 

 

Step 6: River inflow points 

Discharge boundary conditions are set at source point locations within the model domain. These points are based on cells 

where a river flows into the model domain. Rivers are based on a user-defined upstream area and river length thresholds and 

derived from the hydrography data as derived previously. The minimum length threshold is used to filter short river segments 275 

that flow in and out of the model domain. Here we use an upstream area threshold of 100 km2 and minimum length of 10 km 

to force the model with discharge from seven rivers flowing into the model domain, see 2B. 
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Figure 2: Maps of a regional cutout of the global CaMa-Flood model (left panel); and the local SFINCS model with boundary 

condition and model output point locations for the case study in Sofala province, Mozambique (right panel). Note that both maps 280 
are in different projections based on the projection used for the model schematization.  

3.2.2 Setup model boundary conditions 

SFINCS is forced based on output from global models, which is automatically transformed to the input data format that 

SFINCS requires. This is also referred to as a loose coupling between models (Santiago-Collazo et al., 2019). The following 

steps, dealing with dynamic boundary conditions, are repeated for each event and/or sensitivity scenario (see Section 3.3.3). 285 

The model boundary conditions for both historical events are shown in Figure 3. 

 

Step 7: Coastal boundary 

Water level boundary conditions are defined at point locations and interpolated by SFINCS to the nearest water level boundary 

cell. Water level data for the model simulation time period are selected from (global) water level point time series datasets 290 

based on a maximum distance from the water level boundary cells (step 5 in section 3.2.1). The water level data can optionally 

be corrected for the offset between the vertical datum of the water level and topography data. Here, we use a maximum distance 

of 5 km to select GTSM output locations and correct these for the difference between MSL and the EGM96 vertical datum 
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based on the CNES-CLS18 mean dynamic topography (Mulet et al., 2021). Note that this offset amounts to ~0.8 m on average 

for the selected output locations. The total water level time series at a representative location for both events are shown in the 295 

top panels of Figure 3 (full line). 

 

Step 8: Fluvial boundary 

Discharge boundary conditions are defined at source point locations (step 6 in Section 3.2.1) within the model domain. 

Discharge data for the simulation time period are selected from a gridded discharge dataset. As the (global) discharge dataset 300 

is typically based on another (coarser resolution) river network, the source point locations must be matched with a 

corresponding river cell, which is not necessarily at the exact same location. A matching river cell is defined as the cell within 

a user-defined maximum search radius that has the smallest difference in upstream area with the inflow point location, that is 

at least smaller than a user-defined threshold for the absolute or relative difference. Here, we select discharge from the gridded 

CaMa-Flood model output within a 1 cell search window around the source point location based on a maximum relative error 305 

of 5% and maximum absolute error of 100 km2 in upstream area. The discharge time series at the two main rivers for both 

events are shown in the center panels of Figure 3 (full line). 

 

Step 9: Pluvial boundary 

We use spatially varying precipitation fields for direct rainfall-on-grid forcing. The data are derived from (global) gridded 310 

precipitation datasets for the model domain and simulation time period and reprojected to the model projected coordinate 

system in a resolution similar to the source resolution. Here we use ERA5 runoff rather than precipitation to account for 

hydrological processes such as infiltration and evaporation and to ensure comparability with the global CaMa-Flood model. 

Note that infiltration can also be simulated within SFINCS but was turned off for this experiment as this process is accounted 

for by using runoff instead of precipitation data. The spatially average runoff time series for both events are shown in the 315 

bottom panels of Figure 3. 
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Figure 3: SFINCS boundary conditions during Tropical Cyclone Idai (left column) and Tropical Cyclone Eloise (right column) for 

total sea level from GTSM and ERA5 (top row); discharge from CaMa-Flood (center row); and spatial average runoff from ERA5 

(bottom row). The full lines show the total water levels and discharge, as used for the validation, see Section 3.3.1. The dashed lines 320 
show the tidal water level component only (top row) and normalized discharge to match the climatological mean (center row), as 

used in the compound driver analysis, see Section 3.3.3. Only one coastal location (H4) and the two main rivers (Q1 - Buzi and Q6 - 

Pungwe) are shown to improve the readability of the plots. The labels in the legends correspond to the boundary locations as shown 

in Figure 2B. 

3.3 Analysis of the model results 325 

3.3.1 Validation against observed flood extent 

As no quantitative stream flow or water level observation data are openly available for this location, we focus on a comparison 

between satellite-derived and simulated flood extent. Model skill is quantified based on three metrics that are commonly used 

to analyze flood models (Vousdoukas et al., 2016; Wing et al., 2021). The model skill is measured by the critical success index 

(ὅ), which is the ratio of the area that is correctly simulated to be flooded (ὊίὭά᷊Ὂέὦί) over the union of observed and 330 

simulated flooded areas (ὊίὭά ᷾ Ὂέὦί), thereby accounting for both over- and underprediction, see eq. (1). The critical 

success index ranges from 0 (no match) to 1 (perfect match). The hit rate (Ὄ) is the ratio area that is correctly simulated to be 

flooded over the observed flood extent (Ὂέὦί), see eq. (2). The hit rate ranges from 0 (none of the observed flood extent are 

flooded in the model) to 1 (the complete observed flood extent is flooded in the model). The false alarm rate (Ὂ) is the ratio of 
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the area which is wrongly simulated to be flooded (ὊίὭάȾὊέὦί)  over the observed flood extent, see eq. (3). The false alarm 335 

rate ranges from 0 (no overprediction) to infinity (1 indicates equally sized areas of wrongly simulated and observed flooding). 

 

ὅ  
᷊  

 ᷾
  (1) 

Ὄ  
᷊  

  (2) 

Ὂ  
Ⱦ

  (3) 340 

 

High-resolution (10 m) flood extent data are derived from Sentinel-1 Synthetic Aperture Radar (SAR) images. We use VV-

polarized ground range detected data, provided by Google Earth Engine (GEE), which has undergone geometric terrain 

correction and provides radar backscatter in decibel (dB) units. These data are processed using the GEE with an unsupervised 

histogram-based surface water mapping algorithm that consists of three steps (Markert et al., 2020). First, noise is reduced 345 

using the Refined Lee speckle filter (Lee, 1981). Second, a threshold to distinguish water and dry cells is detected using the 

Edge Otsu thresholding algorithm (Donchyts et al., 2016). Third, cells with a relative elevation of more than 50 m above the 

nearest stream are excluded from the water class to avoid false positives. We process each image individually and combine 

flood extents from ascending and descending orbits during the same day. In total we obtain flood extents for four days based 

on eight images: on the 19 and 20 March 2019 for Tropical Cyclone Idai which is around the peak of the flood event, and on 350 

25 and 26 January 2021 for Tropical Cyclone Eloise which is just before the peak of the flood event. Finally, the flood extents 

are reprojected to the SFINCS model grid. 

 

The simulated flood extent is derived from the maximum flood depth based on cells with a flood depth larger than a 15 cm 

threshold (e.g. Wing et al., 2017). The same postprocessing is applied to the CaMa-Flood flood depth maps, but after 355 

downscaling to a 3 arcsec grid (see Section 3.1.2) and reprojection to the SFINCS grid using nearest neighbor interpolation. 

Cells with permanent water are excluded from the comparison. We compare the individual satellite-derived flood extents with 

the maximum simulated extent from the same day, and the maximum satellite-derived extent per event with the maximum 

simulated extent during all days with satellite observations.  

3.3.2 Sensitivity analysis 360 

We perform a sensitivity analysis of the model skill by varying several model parameters and model forcing for both historical 

events. A description of each model sensitivity run is provided in the table below. 

 

Table 2: Overview of model sensitivity runs. 

Parameter Description Lower value Upper value 
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1. River depth The river depth is varied by multiplying the coefficient a in the power-

law equation, see Section 3.2.1 

 50%  

(a = 0.135) 

150%  

(a = 0.405) 

2. Land manning 

roughness 

The spatially constant manning roughness value for land cells (flood 

plain manning roughness in CaMa-Flood)  

 50%  

(0.05 sm-ӎ) 

150%  

(0.15 sm-ӎ) 

3. Coastal (H) 

forcing 

Total water level forcing (tide, surge, and wave setup components) for 

both SFINCS and CaMa-Flood. 

80%  120% 

4. Pluvial (P) 

and fluvial (Q) 

forcing 

The ERA5 runoff forcing of CaMa-Flood and pluvial forcing of 

SFINCS. Based on the CaMa-Flood simulation, the fluvial forcing of 

SFINCS is also modified. 

80%  120% 

5. Bifurcations CaMa-Flood only. The number of elevation thresholds [0-10] at which 

a representative width for flow between floodplains of adjacent unit-

catchments is described. Here, 10 by default. 

0  

(no bifurcations) 

5 

6. Resolution CaMa-Flood only. The resolution at which unit-catchments are 

described. 

N/A? 200% 

(6 arcmin) 

3.3.3 Compound flood drivers 365 

To examine the role of each driver and interactions between fluvial, pluvial, and coastal flood drivers on flood levels, we 

perform a scenario analysis with the SFINCS model where we vary the boundary conditions, see Table 3 for details. During 

single driver events, the forcing of both other drivers is adjusted to non-extreme conditions, see dashed lines in Figure 3. For 

the fluvial boundary condition, we normalize the event discharge to match the long-term mean discharge; for the pluvial 

boundary we set the rainfall to zero; and for the coastal boundary we use the tidal signal of the event only. We identify transition 370 

zones as areas where water levels in the compound scenario are at least 5 cm higher than in any of the single driver scenarios, 

in line with earlier studies on compound flooding where thresholds vary between 0ï20 (Bilskie and Hagen, 2018; Gori et al., 

2020b; Shen et al., 2019). In addition, we identify the main flood driver based on the single driver scenario that results in the 

largest water level.  

 375 

Table 3: Overview of model boundary conditions in compound and single driver scenarios. 

Scenario Fluvial boundary Pluvial boundary Coastal boundary 

Compound CaMa-Flood event discharge ERA5 event runoff GTSM event tide and surge + 

ERA5 waves 

Fluvial (single) CaMa-Flood event discharge none GTSM event tide levels 

Pluvial (single) CaMa-Flood event discharge scaled 

to match long-term mean 

ERA5 event runoff GTSM event tide levels 

Coastal (single) CaMa-Flood event discharge scaled 

to match long-term mean 

none GTSM event tide and surge + 

ERA5 waves 
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4. Results and discussion 

4.1 Model comparison 

In this section we present a comparison of the skill of the global CaMa-Flood and local SFINCS models to simulate the flood 380 

extent of the historical flood events Idai and Eloise. Both models are forced with the same data and we used the same manning 

roughness and river depth estimation for compatibility. In general, we simulate more widespread flooding during Idai 

compared to Eloise and with SFINCS compared to CaMa-Flood (Figure 4). The difference between both models in the Buzi 

floodplains is likely due to the limited connectivity between floodplains of neighboring cells in the CaMa-Flood model through 

its so-called bifurcation scheme. This scheme is too limited to represent the connectivity in the large low-gradient floodplains 385 

of the Buzi and Pungwe rivers. This can be seen in the downscaled CaMa-Flood flood maps, which show unrealistic sudden 

local drops in flood depth at the interface of unit catchments (Figure 4A) and larger simulated water levels in the Buzi in 

CaMa-Flood compared to SFINCS (Figure 5A/B). The difference around the Pungwe estuary is likely due to the response of 

both models to coastal boundary conditions. Water levels in the Pungwe estuary in CaMa-Flood are more attenuated and slower 

compared to SFINCS (Figure 5C/D) due to the lower resolution of the CaMa-Flood model. In addition, some small coastal 390 

areas at the estuary mouth which are flooded in SFNCS are not covered by the CaMa-Flood model. The differences around 

Beira, where no flooding is simulated by CaMa-Flood, can be attributed to the fact that CaMa-Flood does not simulate direct 

coastal flooding, but only the effect of coastal forcing on riverine water levels and subsequent fluvial flooding. Finally, the 

difference on the hillslopes can be attributed to the fact that CaMa-Flood does not simulate direct pluvial flooding. While in 

SFINCS the runoff forcing (i.e. net precipitation) is added as source term to each grid cell, in CaMa-Flood it is directly added 395 

to the river component of each unit catchment. Furthermore, the drainage capacity in this area in SFINCS is likely 

underestimated due to the absence of small (sub-grid scale) streams in the model topography which is limited by the model 

resolution. 
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Figure 4: Simulated maximum flood depths from CaMa-Flood (left panels) and SFINCS (right panels) for Tropical  Cyclone Idai 400 
(top panels) and Tropical Cyclone Eloise (bottom panels). The diamonds indicate model output point locations for which water level 

time series are extracted, see Figure 5. The grey areas indicate permanent water and the hatched areas are excluded. 
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Figure 5: Simulated time series of water levels during Tropical Cyclone Idai (left) and Tropical Cyclone Eloise (right) with SFINCS 405 
(full lines) and CaMa-Flood (dashed lines) for two locations in the Buzi (top) and three in the Pungwe (bottom). See diamonds in 

Figure 4 for the exact model output point locations.  

Here, we compare simulated flood extents with satellite-derived flood extents for both events. Figure 6 shows the skill 

calculated from comparing the maximum multi-day flood extents with Sentinel-1 observations. In addition, Table 4, and Figure 

A2 and A3 show comparisons of individual satellite-derived extents with the maximum simulated extent during the same day. 410 

In general, the skill of both models is higher for the Idai compared to the Eloise flood event. This could be related to the fact 

that the satellite-derived flood extents for Eloise do not capture the maximum simulated extent. SFINCS shows similar 

performance to CaMa-Flood in terms of critical success index for the multi-day maximum extent (C = 0.75 vs 0.73 during Idai 

and 0.46 vs 0.47 during Eloise) but better performance for most individual days (C = 0.75-0.77 vs 0.68-72 during Idai and 

0.47-0.47 vs 0.45-0.47 during Eloise). There are substantial differences in the simulated flood extents between both models. 415 

The SFINCS simulations show larger flood extents compared to CaMa-Flood, resulting in a higher hit ratio (H = 0.94 vs 0.83 

during Idai and 0.82 vs 0.63 during Eloise) and a higher false alarm ratio (F = 0.22 vs 0.14 during Idai and 0.48 vs 0.35 during 

Eloise) for the multi-day maximum extents. For individual daily extents we find the same pattern but with larger differences 

for the hit rate. The underestimation of CaMa-Flood is concentrated in the floodplains of the Buzi river and around and north 

of the city of Beira, see orange colors in Figure 6A/B. The overestimation in SFINCS is concentrated along the banks of the 420 

Pungwe river and the hillslopes north-east from it. For Eloise, the flood extent is also overestimated in the floodplains south 

of the Buzi river, see red colors in Figure 6C/D.  


