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Abstract. Coastal river deltas are susceptible to flooding from pluvial, fluvial, and coastal flood drivers. Compound floods, 

which result from the co-occurrence of two or more of these drivers, typically exacerbate impacts compared to floods from a 

single driver. While several global flood models have been developed, these do not account for compound flooding. Local 

scale compound flood models provide state-of-the-art analyses but are hard to scale up as these typically are based on local 

datasets. Hence, there is a need for globally-applicable compound flood hazard modeling. We develop, validate, and apply a 15 

framework for compound flood hazard modeling that accounts for interactions between all drivers. It consists of the high-

resolution 2D hydrodynamic flood model SFINCS, which is automatically set up from global datasets and coupled with a 

global hydrodynamic river routing model and a global surge and tide model to. To test the framework, we simulate two 

historical compound flood events, Tropical Cyclones Idai and Eloise in the Sofala province of Mozambique, and compare the 

simulated flood extents to satellite-derived extents at multiple days for both events. Compared to the global CaMa-Flood 20 

model, the globally-applicable model generally performs better in terms of the critical success index (-0.01 – 0.09) and hit rate 

(0.11 – 0.22), but lower in terms of false alarm ratio (0.04 – 0.14). Furthermore, the simulated flood depth maps are more 

realistic due to better floodplain connectivity and provide a more comprehensive picture as direct coastal and pluvial flooding 

are simulated. Using the new framework, we determine the dominant flood drivers and transition zones between flood drivers. 

These vary significantly between both events because of differences in the magnitude of and time lag between the flood drivers. 25 

We argue that a wide range of plausible events should be investigated to get a robust understanding of compound flood 

interactions, which is important to understand for flood adaptation, preparedness, and response. As the model setup and 

coupling is automated, reproducible, and globally applicable, the presented framework is a promising step forward towards 

large-scale compound flood hazard modeling.  
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1. Introduction 30 

Coastal river deltas are susceptible to flooding due to their physical setting in low elevation regions and the presence of many 

densely populated cities. A recent study showed that deltas contain 4.5% of the global population in 2017, while only covering 

0.57% of the earth’s land surface area (Edmonds et al., 2020). Floods in coastal delta regions can occur as the result of different 

physical drivers, including extreme rainfall, river discharge, or extreme coastal water levels. Floods can also occur (or be 

exacerbated) by the co-occurrence of combinations of these drivers, so-called compound flood events, which may amplify the 35 

total flood hazard (Leonard et al., 2014; Zscheischler et al., 2018). Tropical Cyclone Idai, which made landfall near Beira, 

Mozambique in March 2019, caused more than 600 casualties and affected an estimated 1.85 million people (UN OCHA, 

2019). This is an example of the devastating impacts that compound floods can cause (Emerton et al., 2020). A comprehensive 

understanding of flood risk in deltas is therefore crucial for effective risk reduction. 

There is a wide recognition that interactions between flood drivers should be taken into account for flood risk assessment and 40 

management in both the scientific (Moftakhari et al., 2017; Wahl et al., 2015; Ward et al., 2018) and decision-making 

communities (Browder et al., 2021; UNDRR, 2019). Several studies have used statistical models to assess the dependence 

between flood drivers in order to understand the likelihood of extreme drivers occurring together (Camus et al., 2021; 

Couasnon et al., 2020; Bevacqua et al., 2019; Hendry et al., 2019; Ward et al., 2018). Furthermore, hydrodynamic model 

simulations have been used to understand the complex physical interactions between drivers and their relative importance for 45 

the total flood hazard (Bakhtyar et al., 2020; Eilander et al., 2020; Gori et al., 2020a; Harrison et al., 2021; Kumbier et al., 

2018; Muñoz et al., 2021; Olbert et al., 2017; Santiago-Collazo et al., 2019; Torres et al., 2015) 

However, to date most global flood risk models still analyze each flood driver in isolation (Alfieri et al., 2017; Hirabayashi et 

al., 2021; Tiggeloven et al., 2020; Vousdoukas et al., 2018; Ward et al., 2020). Recently, the effect of storm surge on fluvial 

flooding was analyzed at the global scale, showing that 1-in-10 years fluvial flood levels are exacerbated by surge for 64% of 50 

the locations analyzed, causing increased flood risk for 9.3% of the population exposed to riverine flooding (Eilander et al., 

2020; Ikeuchi et al., 2017). Bates et al. (2021) were the first to make a combined risk assessment of fluvial, pluvial and coastal 

flood hazard for the continental US, but did not account for physical interactions of pluvial with other flood drivers.  

While the performance and resolution of large-scale flood models is approaching that of local-scale flood models in data-rich 

areas (Wing et al., 2021), there are still large differences between global flood models in many areas globally (Aerts et al., 55 

2020; Bernhofen et al., 2018; Trigg et al., 2016). The setup of these models remains a challenging task, due to the lack of open 

and accurate high-resolution global topography data (Hawker et al., 2018b) as well as missing data on river and estuarine 

bathymetry (Neal et al., 2021) and flood defenses (Ward et al., 2015; Wing et al., 2019). Therefore, building hydrodynamic 

flood models from global datasets requires several data preprocessing steps that may have a large effect on the model skill 

(Sampson et al., 2015). Furthermore, the code for setting up most global flood models is closed source, while an open source 60 
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framework would increase the comparability and reproducibility by providing a transparent workflow (Hall et al., 2021; Hoch 

and Trigg, 2019). Sosa et al. (2020) presented an automatic model builder for LISFLOOD-FP models, and Uhe et al. (2021) 

extended this framework to a model cascade to compute fluvial flood hazard from meteorological drivers. Van Ormondt et al. 

(2020) developed Delft Dashboard, which is a graphical user interface with various modular toolboxes to semi-automatically 

setup hydrodynamic models schematizations in the ocean and coastal domains, but lacks tools to couple riverine models. This 65 

leaves a gap for a fully automated model builder that can be applied to the complex coastal delta environment to simulate 

compound flood events. 

In this study we present an automated framework to model compound flooding anywhere on the globe in a reproducible and 

transparent manner. The framework consists of a 2D hydrodynamic model, which is automatically built from global datasets 

and coupled with a global hydrological and river routing model for upstream boundary conditions and a global surge and tide 70 

model for downstream boundary conditions. The goal of this study is to present the framework, to test its ability to simulate 

compound floods in data-sparse coastal deltas, and to demonstrate how it can be used for compound flood analysis. In 

particular, we compare flood hazard maps from the local hydrodynamic model against satellite-derived flood extents for two 

historical events. To evaluate the added value of using the globally-applicable model, we also compare against a global model. 

Furthermore, we identify the main flood drivers and transition zones between drivers following Bilskie and Hagen (2018).  75 

2. Case study 

To evaluate the flood hazard framework, we apply it to two historical events in the Sofala province of Mozambique, namely 

Tropical Cyclone Idai in March 2019 and Tropical Cyclone Eloise in January 2021. Both events are examples of compound 

flood events in a coastal delta. While the relative data scarcity provides challenges in terms of model validation, global models 

can provide added value in such environments. For instance, the Global Flood Awareness System (GloFAS) has been shown 80 

to be useful in supporting decision making in this area (Emerton et al., 2020). The largest city in the Sofala province is Beira, 

with more than 500,000 inhabitants and a large port connecting the hinterland with the Indian Ocean. While the city itself is 

mainly threatened by coastal and pluvial flooding, the deltas of the Pungwe and Buzi rivers are also susceptible to fluvial 

flooding (Emerton et al., 2020; van Berchum et al., 2020).   

Tropical Cyclone Idai originated in the Mozambique Channel as a tropical depression, which already caused extensive flooding 85 

after its first landfall in early March. After it moved back over the Mozambique Channel it gained intensity and became a 

tropical cyclone with 10-min sustained wind speeds of 165 km/h, a maximum calculated surge of ~4.4 m, and torrential rainfall 

during the second landfall near Beira on 15th March (ERCC, 2019). After the second landfall, large areas flooded, first around 

the coast, followed a few days later by the Buzi and Pungwe floodplains. The tropical cyclone destroyed more than 60,000 

houses and an estimated 286,000 people received shelter (UN OCHA, 2019).  90 
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Tropical Cyclone Eloise made landfall on 23 January 2021 around 20 km south of Beira, with winds of 140 km/h and 

widespread and extreme rainfall. The region experienced widespread post-cyclone flooding while it was already hit by heavy 

rainfall on January 15 and subsequent high river water levels and was still recovering from the 2019 flood after Tropical 

Cyclone Idai. The Sofala province was the most affected, especially communities along the Pungwe and Buzi rivers. In total, 

more than 8,800 houses were damaged and 176,000 people were affected (UN OCHA, 2021).  95 

3. Methods 

The globally-applicable compound flood hazard framework is shown in Figure 1. In Section 3.1 we describe the global models 

used to set the boundary conditions of the hydrodynamic model. In Section 3.2 we discuss the hydrodynamic model SFINCS 

as well as its automated setup. In Section 3.3 we discuss the analysis of the model results and the compound flood drivers. 

Both the model setup and analysis (post-processing) are facilitated by HydroMT v0.4.5, an open-source Python package to 100 

automate the building and analysis of geoscientific models, and its model-specific SFINCS plugin HydroMT-SFINCS v0.2.1 

(Eilander et al., 2022). All required model pre- and postprocessing steps have been automated and can thus easily be repeated 

for different locations. The approach is modular as datasets can easily be interchanged, also for higher resolution local datasets 

if available, and many workflows to process raw data into model input data can be reused for different models.  

 105 

Figure 1: Framework for globally applicable compound flood hazard modeling 
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3.1 Global models 

To make the framework globally applicable, we make use of global models to force the local flood model. The following 

sections describe the global ocean models used for the coastal boundary conditions and global hydrological and routing models 

used for the fluvial boundary conditions. To ensure coherence between the flood drivers, the atmospheric forcing of all models 110 

is based on the ERA5 reanalysis dataset, which has a 0.25° spatial resolution (~30 km) and a 1 hour temporal resolution 

(Hersbach et al., 2020).  

3.1.1 Global ocean models 

Total nearshore water levels consist of several components, namely astronomical tide, storm surge and wave setup. The latter 

two are episodic fluctuations due to atmospheric drivers. Storm surge is generated by a storm’s winds pushing water onshore 115 

and the inverted barometer effects of the pressure (Resio and Westerink, 2008). Wave setup is an episodic wave-driven increase 

of nearshore water levels resulting from wave shoaling and breaking processes (Bowen et al., 1968).  

 

The tide and surge components are simulated with the Global Tide and Surge Model (GTSM) version 3.0 (Muis et al., 2020) 

which is based on the Delft3D Flexible Mesh hydrodynamic model software (Kernkamp et al., 2011). The model resolution 120 

varies from 25 km in the deep ocean to 2.5 km (1.25 km in Europe) near the coast and results are stored at a 10 min temporal 

resolution. Details about the GTSM model schematization and parameterization are discussed in Muis et al. (2020) and Wang 

et al. (2021). In this study GTSM is forced with mean sea level pressure and 10m meridional (v; northward) and zonal (u; 

eastward) wind components from ERA5 merged with wind and pressure fields from the Holland parametric wind model 

(Holland, 1980) based on the IBTrACS (Knapp et al., 2010). The data from the Holland model are described with a polar grid 125 

with 36 radial and a radius of 750 km following Dullaart et al. (2021), where the data in the outermost 33% are linearly 

interpolated with the background ERA5 data to avoid a wind speed and pressure drop towards the outer rim (Deltares, 2022). 

The simulated tides are based on tide-generating forces at 60 frequencies without assimilation of satellite altimetry (Irazoqui 

Apecechea et al., 2017). The GTSM model has been validated for various historical hurricane events (Dullaart et al., 2020) 

and for derived return levels (Muis et al., 2020), showing good agreement with observations. Hourly time series of significant 130 

height of wind waves (𝐻𝑠) are extracted at GTSM output locations from the 30 arcmin ERA5 dataset and based on the ECMWF 

Ocean Wave Model (Bidlot, 2012; Hersbach et al., 2020). We estimate the wave setup component based on 0.2𝐻𝑠, which is 

an often-used approximation for (large-scale) studies (Camus et al., 2021; Vousdoukas et al., 2016; US Army Corps of 

Engineers, 2002). Finally, time series of total water level (𝐻𝑡𝑤𝑙) are derived by combining the GTSM tide and storm surge 

components (𝐻𝑠𝑡) with the ERA5 wave setup component (𝐻𝑠): 𝐻𝑡𝑤𝑙 =  𝐻𝑠𝑡 +  0.2𝐻𝑠 at a 10 min temporal resolution. 135 

 

Due to a lack of observations from coastal water level gauges, a quantitative validation of the simulated water levels is not 

possible, but some general observations about the simulated data can be made. The maximum simulated water levels in GTSM 
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during both events (5.0 m+MSL during Idai; 3.8 m+MSL during Eloise) occurred close to neap tide and are caused by surge 

(3.2 m during Idai; 2.6 m during Eloise) and wind setup (1.2 m during Idai; 0.7 m during Eloise). The maximum surge and its 140 

timing during Idai (4.0 m) are in line with the operational forecast of 4.4 m based on the HyFlux2 model forced with NOAA 

Hurricane Weather Research and Forecast atmospheric data (ERCC, 2019; Probst and Annunziato, 2019). As tide and wave 

effects are not simulated by this model, total water levels are not available for comparison. In comparison with the tidal 

constituents of International Hydrographic Organization (IHO) station at the Port of Beira as retrieved using the Delft 

Dashboard (van Ormondt et al., 2020), the highest astronomical tide is expected to be around 3.8 m while our simulations 145 

result in 4.5 m, indicating an overestimation. This has however little effect on the maximum water levels which occurred close 

to neap tide.  

3.1.2 Global hydrological & routing models 

Riverine discharge is simulated with the global river routing modeling CaMa-Flood version 4.0.1 (Yamazaki et al., 2013; 

Hirabayashi et al., 2021). CaMa-Flood is selected as to our knowledge it is the only global river routing model with an explicit 150 

representation of floodplains (Zhao et al., 2017) that also accounts for downstream sea level boundary conditions (Ikeuchi et 

al., 2017). CaMa-Flood uses the local inertial approximation (Bates et al., 2010) to solve the mass and momentum equations 

for river and floodplain flows in one dimension (Yamazaki et al., 2013). A model grid cell represents a unit catchment 

containing a river segment with a rectangular cross section and a floodplain profile based on subgrid topography. In CaMa-

Flood version v4.0 and later the subgrid parameters are based on the global high-resolution topography data MERIT DEM 155 

(Yamazaki et al., 2017) and hydrography data MERIT Hydro (Yamazaki et al., 2019). Each river segment is connected to one 

downstream neighbor, but floodplains of neighboring unit catchments can exchange flows through so-called bifurcation 

channels, making it a quasi 2D model. The bifurcation channels are based on a set number of elevation thresholds for which a 

representative stream width at the interface between the floodplains of two neighboring unit catchments is derived based on 

the subgrid topography. Bifurcation channels are activated if the surface water elevation exceeds an elevation threshold. These 160 

bifurcation channels are shown to be important in flat coastal areas to correctly simulate floodplain connectivity (Ikeuchi et 

al., 2015; Mateo et al., 2017; Yamazaki et al., 2014). The unit-catchment areas are used to interpolate the input runoff to the 

model grid, where the runoff within the unit-catchment directly enters the river segment at its upstream end.  

 

We use a regional cutout between 32 °W, -21.5 °S, 35.5 °E and -17 °N of the 3 arcmin spatial resolution global CaMa-Flood 165 

schematization, see Figure 5.2A. Default model settings are used except for the bifurcation scheme, which is defined at 10 

instead of 5 elevation thresholds to maximize floodplain connectivity. Furthermore, to make the model comparable with the 

globally-applicable model, river width and depth maps are created using the same procedure as explained in Section 3.2.1, but 

with the CaMa-Flood river segments. CaMa-Flood is forced with ERA5 runoff, which is simulated with the Hydrological Tiled 

ECMWF Scheme for Surface Exchanges over Land (HTESSEL) (Balsamo et al., 2009), and total sea water levels from the 170 

nearest GTSM output location at all river outlet locations, see Section 3.1.1. Grids of instantaneous discharge and flood depth 
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with a daily temporal resolution are saved to be used as input for the local flood model. The flood depth maps at the model 

resolution are downscaled to a 3 arsec (~100 m at the equator) resolution based on high resolution topography.  

 

During Tropical Cyclone Idai, national hydrological bulletins reported water levels for the Pungwe river at Mefambisse and 175 

for the Buzi river at Goonda (approximate locations are shown in Figure 2A). The bulletins report water levels during the onset 

and recession of the flood peak but missed the peak itself. Furthermore, neither exact locations nor the used vertical reference 

level could be retrieved, making a quantitative comparison impossible. We therefore only make a qualitative comparison 

between the observed and with CaMa-Flood simulated water levels. Compared to the observations, the simulated flood peak 

at the Pungwe river is slightly delayed but seems to correctly capture the recession, while the flood peak at the Buzi river 180 

seems to be overestimated and the recession too fast (Figure A1). The overestimation could be the result of missing 

schematization of reservoirs in the model, such as the Chicamba reservoir in the Revue river, a tributary to the Buzi river. 

3.2 Hydrodynamic model 

The Super-Fast INundation of CoastS (SFINCS) model (Leijnse et al., 2021) is used to simulate water levels and overland 

flood depths within coastal deltas. SFINCS is selected as it is designed to efficiently simulate overland flow from compound 185 

flooding at limited computation costs and with good accuracy (Leijnse et al., 2021; Sebastian et al., 2021). The governing 

equations of the SFINCS model are based on the local inertia equations in two dimensions (Bates et al., 2010). First, the flow 

rate is solved based on two 1D momentum equations in x and y directions with spatially varying roughness. Then, the water 

levels are computed based on the mass balance. On-grid precipitation and discharge boundary conditions are added as a local 

source term in the mass equation. At open boundaries, the model is forced with dynamic water levels, which are interpolated 190 

from the nearest user defined point location with water levels. For a full description of the model we refer the reader to Leijnse 

et al. (2021). Here we use the SFINCS code revision 295. 

 

In the remainder of this section we describe the steps taken to automatically setup the SFINCS model schematization and 

forcing from global datasets using HydroMT-SFINCS v0.2.1 (Eilander et al., 2022). The complete model setup process is 195 

described in a single configuration ini file, and all datasets (see Table 1) in a single data catalog yaml file, see Appendix B. 

This improves the transparency and reproducibility of the model setup. 

 

Table 1: Overview of global datasets used to setup the hydrodynamic flood model 

Dataset Variable [units] 

ERA5 (Hersbach et al., 2020) Total Runoff (ro) [m/hr] 

MERIT Hydro (Yamazaki et al., 2019) Elevation [m+EGM96] 
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Upstream area [m2] 

D8 flow directions [-] 

GRWL (Allen and Pavelsky, 2018) Permanent water mask [-] 

River width datasets (Lin et al., 2020) River width [m] 

Bankfull discharge [m3/s] 

CNES-CLS18 (Mulet et al., 2021) Mean dynamic topography [m] 

OSM ocean shapefile (FOSSGIS, 2020) Ocean shapefile [-] 

3.2.1 Setup model schematization  200 

Step 1: Model grid definition 

The SFINCS model grid is set up based on a bounding box of the area of interest, a resolution and a projected coordinate 

reference system, here between 34.33 °W, -20.12 °S, 34.95 °E and -19.30 °N (WGS84) at 100 m resolution in UTM zone 36S 

projection. Cells that are not connected to the Buzi or Pungwe flood plains and drain to adjacent basins are excluded from the 

model domain. 205 

 

Step 2: Topography and hydrography data 

Topography data is reprojected to the model grid using bilinear interpolation. As hydrography data (D8 flow directions and 

upstream area) cannot be reprojected directly, we instead reproject a pseudo-topography grid based on upstream area and 

subsequently derive flow directions. The upstream area is then recalculated based on the new flow directions taking into 210 

account the upstream area of inflowing rivers and streams at the model domain boundary. The hydrography maps are not used 

by SFINCS but used at later stages of the automatic model setup to define river bathymetry and river in- and outflow locations. 

Here we used topography and hydrography data from MERIT Hydro v1.0 (Yamazaki et al., 2019). 

 

Step 3: River and estuarine bathymetry 215 

As global digital elevation models (DEMs) do not represent the bed level of river channels, the river bathymetry is burned into 

the data using a similar procedure as in Sampson et al. (2015). Rivers are defined based on an upstream area threshold and 

discretized into river segments. For each segment, we first determine the river width from a binary river mask, then the river 

bankfull elevation from the cells adjacent to the river mask and finally the river depth relative to the bankfull elevation. The 

detailed procedure is explained here. 220 

● Rivers are based on D8 flow directions and a minimal upstream area threshold. River segments are defined between 

river confluences or a river headwater cell or outlet cell and a confluence. Long segments are split into equal parts to 



9 

 

approximate a user defined length. Here, we used a minimal upstream area threshold of 100 km2 and an approximate 

segment length of 5 km.  

● The river width is calculated as the segment average width derived from a binary river mask, by dividing the surface 225 

area of each segment by its length, where the areas across multiple parallel estuarine channels are summed. The mask 

is primarily based on the Global River Widths from Landsat (GRWL) Database (Allen and Pavelsky, 2018), but 

extended by rasterizing the river width from the Lin et al. (2020) dataset. This dataset contains river width estimates 

for ~1.6 km river segments based on a machine learning approach that uses 16 covariates and was trained based on 

an average width from GRWL and MERIT Hydro. Compared to MERIT Hydro or GRWL it has a higher spatial 230 

coverage and extends to smaller rivers with a minimum width of 30 m.   

● The river bankfull elevation, relative to the segment elevation, is estimated from a low percentile of height above the 

nearest river values of cells neighboring the river mask. These values are then corrected such that the absolute bankfull 

elevation levels are monotonically increasing in upstream direction using the algorithm developed by Yamazaki et al. 

(2012). Here we use the 25th percentile, which was found to give good results for this region but might need to be 235 

refined for other regions.  

● We distinguish between a fluvial and estuarine part of the river to determine the river depth. The riverine depth h [m] 

is estimated from the bankfull discharge Q [m3s-1] using a power-law relationship: ℎ =  𝑎𝑄𝑏, where the default 

values for a (0.27) and b (0.30) are based on Andreadis et al. (2013). The bankfull discharge is based on the 1-in-2 

year return values of the discharge as simulated by Lin et al. (2019), and derived from the nearest river segment from 240 

the Lin et al. (2020) dataset. Gaps in bankfull discharge data are filled based on the nearest valid upstream value. The 

estuarine depth is kept constant based on the depth of the most upstream estuarine segment, which provides a first-

order approximation of the depth in ungauged estuaries and is in accordance with observed depths in ideal alluvial 

estuaries in low-gradient regions (Gisen and Savenije, 2015). Estuarine segments are classified based on a width 

convergence rate. Natural alluvial estuaries have a funnel planform shape that is wide at the ocean and narrows inland 245 

(Savenije, 2015). Here we use a convergence rate threshold of 0.01 m/m applied to a smoothed segment average 

width. This value was found based on trial and error for the estuaries under consideration and might need to be refined 

for other locations. A global minimum river depth of 0.5 m is used. 

● The river bed elevation zb [m+EGM96] is calculated for each model cell of a river segment from the cell elevation 

z0 [m+EGM96], relative bankfull elevation difference dz [m] and the bankfull depth h [m]: 𝑧𝑏 =  𝑧0 +250 

 𝑚𝑎𝑥(0, 𝑑𝑧 −  ℎ). This bed level is burned into the river center cells and spread to neighboring cells within the river 

mask to burn a rectangular river profile in the DEM.  

● Finally, we ensure that each river cell has at least one horizontally or vertically neighboring cell with the same or 

lower elevation to ensure the river has D4 connectivity in the model.  

Step 4: Manning roughness 255 
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A spatially varying manning roughness grid is set up that differentiates between land and river cells, based on the river mask 

as defined in the previous step. Here we used a constant of 0.03 sm-1/3 for river cells and 0.1 sm-1/3 for land cells, which is in 

line with other studies (e.g. Di Baldassarre et al., 2009) and consistent with the global CaMa-Flood model (Yamazaki et al., 

2011). HydroMT-SFINCS also contains a routine to set up a spatially varying roughness grid based on land-cover data which 

is not used here to keep the model consistent with CaMa-Flood. 260 

 

Step 5: Boundary cells 

By default, the cells at the edge of the model domain have closed boundaries, but these can be changed to Riemann-type open 

water level boundaries. Here, an open water level boundary is set for all cells at the interface with the ocean by intersecting 

the model domain edge cells with the OSM ocean shapefile (FOSSGIS, 2020). In the absence of water level forcing of rivers 265 

leaving the model domain at the south and east model boundaries, and to avoid water building up within the model domain, 

open boundary cells with a zero water depth are set at these locations. These open boundary cells are derived from the 

previously set hydrography data based on a user-defined upstream area threshold and a river width, here 10 km2 and 1 km 

respectively. 

 270 

Step 6: River inflow points 

Discharge boundary conditions are set at source point locations within the model domain. These points are based on cells 

where a river flows into the model domain. Rivers are based on a user-defined upstream area and river length thresholds and 

derived from the hydrography data as derived previously. The minimum length threshold is used to filter short river segments 

that flow in and out of the model domain. Here we use an upstream area threshold of 100 km2 and minimum length of 10 km 275 

to force the model with discharge from seven rivers flowing into the model domain, see 2B. 
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Figure 2: Maps of a regional cutout of the global CaMa-Flood model (left panel); and the local SFINCS model with boundary 

condition and model observation locations for the case study in Sofala province, Mozambique (right panel). Note that both maps are 

in different projections based on the projection used for the model schematization.  280 

3.2.2 Setup model boundary conditions 

SFINCS is forced based on output from global models, which is automatically transformed to the input data format that 

SFINCS requires. This is also referred to as a loose coupling between models (Santiago-Collazo et al., 2019). The following 

steps, dealing with dynamic boundary conditions, are repeated for each event and/or sensitivity scenario (see Section 3.3.3). 

The model boundary conditions for both historical events are shown in Figure 3. 285 

 

Step 7: Coastal boundary 

Water level boundary conditions are defined at point locations and interpolated by SFINCS to the nearest water level boundary 

cell. Water level data for the model simulation time period are selected from (global) water level point time series datasets 

based on a maximum distance from the water level boundary cells (step 5 in section 3.2.1). The water level data can optionally 290 

be corrected for the offset between the vertical datum of the water level and topography data. Here, we use a maximum distance 

of 5 km to select GTSM output locations and correct these for the difference between MSL and the EGM96 vertical datum 
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based on the CNES-CLS18 mean dynamic topography (Mulet et al., 2021). Note that this offset amounts to ~0.8 m on average 

for the selected output locations. The total water level time series at a representative location for both events are shown in the 

top panels of Figure 3 (full line). 295 

 

Step 8: Fluvial boundary 

Discharge boundary conditions are defined at source point locations (step 6 in Section 3.2.1) within the model domain. 

Discharge data for the simulation time period are selected from a gridded discharge dataset. As the (global) discharge dataset 

is typically based on another (coarser resolution) river network, the source point locations must be matched with a 300 

corresponding river cell, which is not necessarily at the exact same location. A matching river cell is defined as the cell within 

a user-defined maximum search radius that has the smallest difference in upstream area with the inflow point location, that is 

at least smaller than a user-defined threshold for the absolute or relative difference. Here, we select discharge from the gridded 

CaMa-Flood model output within a 1 cell search window around the source point location based on a maximum relative error 

of 5% and maximum absolute error of 100 km2 in upstream area. The discharge time series at the two main rivers for both 305 

events are shown in the center panels of Figure 3 (full line). 

 

Step 9: Pluvial boundary 

We use spatially varying precipitation fields for direct rainfall-on-grid forcing. The data are derived from (global) gridded 

precipitation datasets for the model domain and simulation time period and reprojected to the model projected coordinate 310 

system in a resolution similar to the source resolution. Here we use ERA5 runoff rather than precipitation to account for 

hydrological processes such as infiltration and evaporation and to ensure comparability with the global CaMa-Flood model. 

Note that infiltration can also be simulated within SFINCS but was turned off for this experiment as this process is accounted 

for by using runoff instead of precipitation data. The spatially average runoff time series for both events are shown in the 

bottom panels of Figure 3. 315 
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Figure 3: SFINCS boundary conditions during cyclone Idai (left column) and cyclone Eloise (right column) for total sea level from 

GTSM and ERA5 (top row); discharge from CaMa-Flood (center row); and spatial average runoff from ERA5 (bottom row). The 

full lines show the total water levels and discharge, as used for the validation, see Section 3.3.1. The dashed lines show the tidal water 

level component only (top row) and normalized discharge to match the climatological mean (center row), as used in the compound 320 
driver analysis, see Section 3.3.3. Only one coastal location (H4) and the two main rivers (Q1 - Buzi and Q4 - Pungwe) are shown to 

improve the readability of the plots. The location labels in the legends correspond to the locations as shown in Figure 2B. 

3.3 Analysis of the model results 

3.3.1 Validation against observed flood extent 

As no quantitative stream flow or water level observation data are openly available for this location, we focus on a comparison 325 

between satellite-derived and simulated flood extent. Model skill is quantified based on three metrics that are commonly used 

to analyze flood models (Vousdoukas et al., 2016; Wing et al., 2021). The model skill is measured by the critical success index 

(𝐶), which is the ratio of the area that is correctly simulated to be flooded (𝐹𝑠𝑖𝑚 ∩ 𝐹𝑜𝑏𝑠) over the union of observed and 

simulated flooded areas (𝐹𝑠𝑖𝑚 ∪ 𝐹𝑜𝑏𝑠), thereby accounting for both over- and underprediction, see eq. (1). The critical 

success index ranges from 0 (no match) to 1 (perfect match). The hit rate (𝐻) is the ratio area that is correctly simulated to be 330 

flooded over the observed flood extent (𝐹𝑜𝑏𝑠), see eq. (2). The hit rate ranges from 0 (none of the observed flood extent are 

flooded in the model) to 1 (the complete observed flood extent is flooded in the model). The false alarm rate (𝐹) is the ratio of 
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the area which is wrongly simulated to be flooded (𝐹𝑠𝑖𝑚/𝐹𝑜𝑏𝑠)  over the observed flood extent, see eq. (3). The false alarm 

rate ranges from 0 (no overprediction) to infinity (1 indicates equally sized areas of wrongly simulated and observed flooding). 

 335 

𝐶 =  
𝐹𝑠𝑖𝑚∩𝐹𝑜𝑏𝑠 

𝐹𝑠𝑖𝑚 ∪𝐹𝑜𝑏𝑠
  (1) 

𝐻 =  
𝐹𝑠𝑖𝑚∩𝐹𝑜𝑏𝑠 

𝐹𝑜𝑏𝑠
  (2) 

𝐹 =  
𝐹𝑠𝑖𝑚/𝐹𝑜𝑏𝑠

𝐹𝑜𝑏𝑠
  (3) 

 

High-resolution (10 m) flood extent data are derived from Sentinel-1 Synthetic Aperture Radar (SAR) images. We use VV-340 

polarized ground range detected level data, provided by Google Earth Engine (GEE), which has undergone geometric terrain 

correction and provides radar backscatter in decibel (dB) units. These data are processed using the GEE with an unsupervised 

histogram-based surface water mapping algorithm that consists of three steps (Markert et al., 2020). First, noise is reduced 

using the Refined Lee speckle filter (Lee, 1981). Second, a threshold to distinguish water and dry cells is detected using the 

Edge Otsu thresholding algorithm (Donchyts et al., 2016). Third, cells with a relative elevation of more than 50 m above the 345 

nearest stream are excluded from the water class to avoid false positives. We process each image individually and combine 

flood extents from ascending and descending orbits during the same day. In total we obtain flood extents for four days based 

on eight images: on the 19 and 20 March 2019 for Tropical Cyclone Idai which is around the peak of the flood event, and on 

25 and 26 January 2021 for Tropical Cyclone Eloise which is just before the peak of the flood event. Finally, the flood extents 

are reprojected to the SFINCS model grid. 350 

 

The simulated flood extent is derived from the maximum flood depth based on cells with a flood depth larger than a 15 cm 

threshold (e.g. Wing et al., 2017). The same postprocessing is applied to the CaMa-Flood flood depth maps, but after 

downscaling to a 3 arcsec grid (see Section 3.1.2) and reprojection to the SFINCS grid using nearest neighbor interpolation. 

Cells with permanent water are excluded from the comparison. We compare the individual satellite-derived flood extents with 355 

the maximum simulated extent from the same day and the maximum satellite-derived extent per event with the maximum 

simulated extent during all days with satellite observations.  

3.3.2 Sensitivity analysis 

We perform a sensitivity analysis of the model skill by varying several model parameters and model forcing for both historical 

events. A description of each model sensitivity run is provided in the table below. 360 

 

Table 2: Overview of model sensitivity runs. 

Parameter Description Lower value Upper value 
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1. River depth The river depth is varied by multiplying the coefficient a in the power-

law equation, see Section 3.2.1 

 50%  

(a = 0.135) 

150%  

(a = 0.405) 

2. Land manning 

roughness 

The spatially constant manning roughness value for land cells (flood 

plain manning roughness in CaMa-Flood)  

 50%  

(0.05 sm-⅓) 

150%  

(0.15 sm-⅓) 

3. Coastal (H) 

forcing 

Total water level forcing (tide, surge, and wave setup components) for 

both SFINCS and CaMa-Flood. 

80%  120% 

4. Pluvial (P) 

and fluvial (Q) 

forcing 

The ERA5 runoff forcing of CaMa-Flood and pluvial forcing of 

SFINCS. Based on the CaMa-Flood simulation, the fluvial forcing of 

SFINCS is also modified. 

80%  120% 

5. Bifurcations CaMa-Flood only. The number of elevation thresholds [0-10] at which 

a representative width for flow between floodplains of adjacent unit-

catchments is described. Here, 10 by default. 

0  

(no bifurcations) 

5 

6. Resolution CaMa-Flood only. The resolution at which unit-catchments are 

described. 

N/A? 200% 

(6 arcmin) 

3.3.3 Compound flood drivers 

To examine the role of each driver and interactions between fluvial, pluvial, and coastal flood drivers on flood levels, we 

perform a scenario analysis with the SFINCS model where we vary the boundary conditions, see Table 3 for details. During 365 

single driver events, the forcing of both other drivers is adjusted to non-extreme conditions, see dashed lines in Figure 3. For 

the fluvial boundary condition, we normalize the event discharge to match the long-term mean discharge; for the pluvial 

boundary we set the rainfall to zero; and for the coastal boundary we use the tidal signal of the event only. We identify transition 

zones as areas where water levels in the compound scenario are at least 5 cm higher than in any of the single driver scenarios, 

in line with earlier studies on compound flooding where thresholds vary between 0–20 (Bilskie and Hagen, 2018; Gori et al., 370 

2020b; Shen et al., 2019). In addition, we identify the main flood driver based on the single driver scenario that results in the 

largest water level.  

 

Table 3: Overview of model boundary conditions in compound and single driver scenarios. 

Scenario Fluvial boundary Pluvial boundary Coastal boundary 

Compound CaMa-Flood event discharge ERA5 event runoff GTSM event tide and surge + 

ERA5 waves 

Fluvial (single) CaMa-Flood event discharge none GTSM event tide levels 

Pluvial (single) CaMa-Flood event discharge scaled 

to match long-term mean 

ERA5 event runoff GTSM event tide levels 

Coastal (single) CaMa-Flood event discharge scaled 

to match long-term mean 

none GTSM event tide and surge + 

ERA5 waves 

 375 
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4. Results and discussion 

4.1 Model comparison 

In this section we present a comparison of the skill of the global CaMa-Flood and local SFINCS models to simulate the flood 

extent of the historical flood events Idai and Eloise. Both models are forced with the same data and we used the same manning 

roughness and river depth estimation for compatibility. In general, we simulate more widespread flooding during cyclone Idai 380 

compared to Eloise and with SFINCS compared to CaMa-Flood (Figure 4). The difference between both models in the Buzi 

floodplains is likely due to the limited connectivity between floodplains of neighboring cells in the CaMa-Flood model through 

its so-called bifurcation scheme. This scheme is too limited to represent the connectivity in the large low-gradient floodplains 

of the Buzi and Pungwe rivers. This can be seen in the downscaled CaMa-Flood flood maps, which show unrealistic sudden 

local drops in flood depth at the interface of unit catchments during cyclone Idai (Figure 4A) and larger simulated water levels 385 

in the Buzi in CaMa-Flood compared to SFINCS (Figure 5A/B). The difference around the Pungwe estuary is likely due to 

the response of both models to coastal boundary conditions. Water levels in the Pungwe estuary in CaMa-Flood are more 

attenuated and slower compared to SFINCS (Figure 5C/D) due to the lower resolution of the CaMa-Flood model. In addition, 

some small coastal areas at the estuary mouth which are flooded in SFNCS are not covered by the CaMa-Flood model. The 

differences around Beira, where no flooding is simulated by CaMa-Flood, can be attributed to the fact that CaMa-Flood does 390 

not simulate direct coastal flooding, but only the effect of coastal forcing on riverine water levels and subsequent fluvial 

flooding. Finally, the difference on the hillslopes can be attributed to the fact that CaMa-Flood does not simulate direct pluvial 

flooding. While in SFINCS the runoff forcing (i.e. net precipitation) is added as source term to each grid cell, in CaMa-Flood 

it is directly added to the river component of each unit catchment. Furthermore, the drainage capacity in this area in SFINCS 

is likely underestimated due to the absence of small (sub-grid scale) streams in the model topography which is limited by the 395 

model resolution. 
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Figure 4: Simulated maximum flood depths from CaMa-Flood (left panels) and SFINCS (right panels) for Tropical Cyclone Idai 

(top panels) and Tropical cyclone Eloise (bottom panels). The diamonds indicate model points for which water level time series are 

extracted, see Figure 5. The grey areas indicate permanent water and the hatched areas are excluded. 400 
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Figure 5: Simulated time series of water levels during cyclone Idai (left) and cyclone Eloise (right) with SFINCS (full lines) and 

CaMa-Flood (dashed lines) for two locations in the Buzi (top) and three in the Pungwe (bottom). See diamonds in Figure 4 for the 

exact locations.  405 

We compare the simulated with satellite-derived flood extents for both events. Figure 6 shows the skill calculated from 

comparing the maximum multi-day flood extents during the same days with Sentinel-1 observations. In addition, Table 4 and 

Figure A2 and A3 show comparisons of individual satellite-derived with the maximum simulated extent during the same day. 

In general, the skill of both models is higher for the Idai compared to the Eloise flood event. This could be related to the fact 

that the satellite-derived flood extents for Eloise do not capture the maximum extent. SFINCS shows similar performance to 410 

CaMa-Flood in terms of critical success index for the multi-day maximum extent (C = 0.75 vs 0.73 during Idai and 0.46 vs 

0.47 during Eloise) but better performance for most individual days (C = 0.75-0.77 vs 0.68-72 during Idai and 0.47-0.47 vs 

0.45-0.47 during Eloise). There are substantial differences in the simulated flood extents between both models. The SFINCS 

simulations show larger flood extents compared to CaMa-Flood, resulting in a higher hit ratio (H = 0.94 vs 0.83 during Idai 

and 0.82 vs 0.63 during Eloise) and a higher false alarm ratio (F = 0.22 vs 0.14 during Idai and 0.48 vs 0.35 during Eloise) for 415 

the multi-day maximum extents. For individual daily extents we find the same pattern but with larger differences for the hit 

rate. The underestimation of CaMa-Flood is concentrated in the floodplains of the Buzi river and around and north of the city 

of Beira, see orange colors in Figure 6A/B. The overestimation in SFINCS is concentrated along the banks of the Pungwe river 

and the hillslopes north-east from it. For Eloise also the floodplains south of the Buzi river, see red colors in Figure 6C/D.  
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To further investigate the model performance, we performed a sensitivity analysis on some of the most important model 420 

parameters and model forcing based on the multi-day maximum flood extents. In general, we find that the skill of both models 

is not very sensitive to the river depth (Table 5 - 1) and the manning roughness for land cells (Table 5 - 2). This is due to the 

extremeness of the fluvial driver, especially during cyclone Idai, during which the river conveyance capacity is small compared 

to the total discharge. Both models are also not sensitive to changes in the coastal forcing (Table 5 - 3) but are sensitive to 

changes in the pluvial and fluvial forcing, (Table 5 - 4). This is due to the relatively large fluvial flood driver compared to the 425 

coastal flood driver during these two events and the small fraction of the total flood area that is caused by direct coastal flooding 

(Section 4.2). The skill is likely more sensitive to the coastal water level forcing if assessed for a snapshot around the surge 

peaks of both events instead of the multi-day maximum flood extent. For CaMa-Flood, we find that the model is very sensitive 

to the presence of bifurcation channels (Table 5 - 5) and resolution of the model (Table 5 - 6). With less bifurcation layers and 

a coarser model resolution the connectivity between floodplains reduces, resulting in a large decrease in model skill. Flow 430 

connectivity in the model has been shown to be important to correctly simulate inundation dynamics in (coastal) floodplains 

(Bernhofen et al., 2018; Neal et al., 2012; Trigg et al., 2012). Multiple downstream connectivity, as implemented in the 

bifurcation scheme of CaMa-Flood, is crucial to adequately simulate floods in deltas (Ikeuchi et al., 2015; Mateo et al., 2017), 

which is underlined by the results in our study. However, we still find that the flow connectivity is underrepresented compared 

to the SFINCS mode as shown by the more widespread (fluvial) flooding with SFINCS.  435 

The skill of both models is in line with other flood studies using global models. Global flood models showed C = 0.45–0.70 

in comparison with MODIS imagery of three flood events over the African continent (Bernhofen et al., 2018) and C = 0.43–

0.65 in comparison with various reference flood maps in Germany and the UK (Alfieri et al., 2014). A Lisflood-FP model 

build with LFPtools was found to have C = 0.63 for a flood event in the river Severn (Sosa et al., 2020). For local fluvial 

inundation models that are calibrated against flood extent imagery typical C = 0.7–0.9 can be reached, depending on the quality 440 

of the flood extent imagery (Di Baldassarre et al., 2009; Horritt and Bates, 2002; Stephens and Bates, 2015; Wood et al., 2016). 

Our results also demonstrate that a commonly used metric to evaluate flood models such as the critical success index can mask 

large differences between model results and should be evaluated together with the false alarm and hit ratios and inspection of 

the geographical patterns and differences. An additional comparison with flood levels, if available, would allow for a more 

comprehensive validation (Stephens and Bates, 2015; Wing et al., 2021).   445 
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Figure 6: Skill of simulated maximum flood extents from CaMa-Flood (left panels) and SFINCS (right panels) based on satellite-

derived flood extents for Idai (left panels) and Eloise (right panels), evaluated based on critical success index (C), hit-rate (H) and 

false alarm ratio (F) as shown in the top right of each panel. The grey areas indicate permanent water and the hatched areas are 

excluded as these areas drain to other basins. 450 
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Table 4: Skill of simulated flood extents from CaMa-Flood (CMF) and SFINCS (SF) based on satellite-derived flood extents from 

individual dates and the maximum flood extent per event, evaluated based on critical success index (C), hit-rate (H) and false alarm 

ratio (F) 

  C F H 

  CMF SFINCS CMF SFINCS CMF SFINCS 

Idai 2019-03-19 0.68 0.77 0.09 0.13 0.72 0.86 

2019-03-20 0.72 0.75 0.14 0.22 0.82 0.94 

max extent 0.73 0.75 0.14 0.22 0.83 0.94 

Eloise 2021-01-25 0.45 0.47 0.33 0.47 0.59 0.81 

2021-01-26 0.47 0.47 0.34 0.48 0.63 0.82 

max extent 0.47 0.46 0.35 0.48 0.63 0.82 

 

Table 5: Sensitivity analysis of modeled flood extent with CaMa-Flood (CMF) and SFINCS (SF) in comparison with observations to 455 
river depth, manning roughness, coastal driver (H forcing), pluvial and fluvial drivers (P & Q forcing), bifurcations and spatial 

resolution. The flood extent is evaluated in terms of critical success index (C), hit-rate (H) and false alarm ratio (F). For scenarios 1-

6 the difference in skill relative to the base scenario is shown, the largest absolute differences per column are highlighted. 

 

  

Idai Eloise 

C F H C F H 

CMF SF CMF SF CMF SF CMF SF CMF SF CMF SF 

0. default 0.73 0.75 0.14 0.22 0.83 0.94 0.47 0.46 0.35 0.48 0.63 0.82 

1a. river depth: 50% 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.03 0.00 0.03 0.01 

1b. river depth: 150% 0.00 0.00 -0.01 0.00 -0.01 0.00 0.00 0.00 -0.03 -0.01 -0.04 -0.01 

2a. land manning: 50% -0.04 -0.01 0.00 -0.01 -0.06 -0.03 -0.01 0.00 -0.01 -0.02 -0.03 -0.05 

2b. land manning: 150% 0.00 0.00 -0.01 0.00 -0.01 0.00 0.01 -0.01 0.01 0.01 0.02 0.02 

3a. H forcing: 80% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

3b. Hl forcing: 120% 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4a. P & Q forcing: 80% -0.03 0.01 -0.02 -0.03 -0.05 -0.02 -0.02 0.00 -0.04 -0.03 -0.07 -0.05 

4b. P & Q forcing: 120% 0.01 -0.01 0.02 0.02 0.04 0.01 0.01 -0.01 0.03 0.02 0.05 0.03 
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Idai Eloise 

C F H C F H 

CMF SF CMF SF CMF SF CMF SF CMF SF CMF SF 

5a. bifurcations: 50% -0.03 N/A 0.02 N/A -0.03 N/A 0.00 N/A -0.02 N/A -0.01 N/A 

5b. bifurcations: 0% (off) -0.26 N/A 0.01 N/A -0.31 N/A -0.10 N/A 0.04 N/A -0.15 N/A 

6. spatial res: 200% -0.06 N/A 0.00 N/A -0.08 N/A -0.13 N/A 0.04 N/A -0.20 N/A 

4.2 Potential application: compound flood drivers 

To showcase a possible application of the compound flood model framework and the added value over the global model, we 460 

examine the role of each driver and interactions between flood drivers for both events (Figure 7). The difference in maximum 

water levels between the compound scenario and the single flood driver scenario that results in the largest flood depth (i.e. the 

dominant flood driver) is shown in the top panels. The bottom panels show the dominant flood driver with green (pluvial), 

purple (fluvial) or orange (coastal) colors, which are darker for transition zones, where interactions between drivers amplify 

the total water level (i.e. show a positive difference in the top panels larger than 5 cm). For most of the model domain, the 465 

dominant flood driver during both events is fluvial, especially around the Buzi river and the upstream part of the Pungwe river. 

The coastal flood driver is dominant in the most downstream ends of both estuaries and in small coastal areas around Beira. 

Pluvial drivers are dominant on the hill slopes in the north east corner of the model domain, but mainly add to fluvial and 

coastal driven flooding. When we compare both events, we find that, for Eloise, the extent where the coastal driver is dominant 

as well as the amplification of water levels in the transition zones are larger compared to the Idai event. This can be explained 470 

by the difference in fluvial flood magnitude and the timing between the peaks of fluvial and coastal drivers. During the Idai 

event sea water levels peaked around March 15, followed by a discharge peak at the Buzi river three days later and the Pungwe 

river 5 days later (Figure 3 left panels), causing little interaction between the fluvial and coastal drivers. During the Eloise 

event a first discharge peak at the Buzi river occurred two days before the coastal water level peak on January 23, followed by 

a small peak in the Pungwe river 1.5 days later and another large peak in the Buzi river 3 days later (Figure 3 right panels), 475 

causing a large (> 0.2 m) amplification of the water levels in both rivers. We also investigate the sensitivity of the transition 

zone for river and estuarine bathymetry. For the simulation with deeper bathymetry (simulation 2b in Table 2 and 5) the area 

where the coastal driver is dominant as well as the transition zone in the Pungwe estuary extends a bit further inland (Figure 

A4). While these changes are relatively small, the accuracy of the river and estuarine bathymetry is clearly important to 

accurately determine the transition zone.  480 
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Compared to earlier research that focused on interactions between coastal and pluvial drivers (Bilskie and Hagen, 2018; Gori 

et al., 2020b), we derive transition zones based on three drivers and distinguish between the fluvial and pluvial drivers. In line 

with the aforementioned studies, our results also demonstrate that a single map with discrete transition zones for a specific 

region does not exist. A comprehensive overview of flood transition zones could be derived based on the occurrence of 485 

compounding effects across a large range of plausible events. The relative timing between peaks of different flood drivers as 

well as their magnitude has a large effect on the locations and area of transition zones. This is also underlined by a recent study 

that found that compound flood levels are sensitive to the timing between flood peaks, especially for events and locations 

where the duration of discharge peaks is relatively short (Harrison et al., 2021).  
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 490 
Figure 7: Compound flood dynamics during Idai (left panels) and Eloise (right panels) illustrated by the difference between water 

levels from the compound flood scenario and the maximum of all single driver scenarios (top panels); and the main flood driver 

based on the single driver scenario with the maximum water level (bottom panels). The main driver is indicated with light colors 

where the water level results for a single flood driver and dark colors where it results from more than one flood driver, also referred 

to as transition zone.  495 
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4.3 Limitations and recommendations 

While the model framework based on global open-source datasets comes with large benefits in terms of global applicability, 

the accuracy of the input data is an important consideration. River and estuarine bathymetry are a relatively large source of 

uncertainty in the current model setup. As bathymetry cannot be directly observed remotely, it needs to be approximated in 

data-scarce areas where no local measurements are available. This approximation can have a large effect on the result of 500 

(compound) inundation simulations (Harrison et al., 2021; Neal et al., 2012; Sampson et al., 2015). Better methods to estimate 

bathymetry, such as the recently published gradual varying flow theory based method (Neal et al., 2021; Garambois and 

Monnier, 2015) and new data such as expected from the surface water and ocean topography (SWOT) mission (Andreadis et 

al., 2020), are expected to be useful to further reduce this uncertainty. For streams smaller than the model resolution, a subgrid 

schematization could further improve the model (Neal et al., 2012; Volp et al., 2013). A subgrid schematization has recently 505 

been implemented in SFINCS (Leijnse et al., 2021) and has been applied by Röbke et al. (2021) for tsunami flood modeling. 

Furthermore, uncertainties in the global DEM (Hawker et al., 2018a; Hinkel et al., 2021) and the absence of information on 

flood defense structures in many areas (Scussolini et al., 2016; Wing et al., 2019) may have large implications for the accuracy 

of the flood simulations. The framework is set up such that datasets can easily be replaced by better (local) datasets which also 

facilitates the update of new datasets in future model versions, such as the recently published FABDEM, which is a for 510 

vegetation and building bias corrected version of the 30m resolution Copernicus DEM (Hawker et al., 2022). 

Forcing data are an important source of uncertainty for flood modeling in ungauged areas (Hoch et al., 2019; Wing et al., 

2020). For the selected case study ground observations are very scarce and comparisons with simulated discharge and total sea 

levels are conducted qualitatively, see Section 5.3.1. We recommend investigating whether remote sensing, e.g. satellite laser 

or radar altimetry data, can be used to validate extreme inland and nearshore water levels (Andreadis et al., 2020; O’Loughlin 515 

et al., 2016; Urban et al., 2008). The hydrodynamic model was validated based on flood extent for two events as observed by 

the Sentinel-1 satellites. However, flood extents based on SAR data are known to have limitations in observing obstructed 

flooding such as in wetland or urban areas (Yang et al., 2021). To further increase the credibility of the model it should be 

validated against a larger set of flood events, for instance using the recently published Global Flood Database based on MODIS 

data (Tellman et al., 2021) or the RAPID sentinel-1 database over the continental United States (Yang et al., 2021).  520 

Furthermore, both events are characterized by a large significant height of wind waves (wave setup component amounts to 

24.4% for Idai and 16.3% for Eloise of total water levels), indicating that wave setup could not be ignored. In this study we 

used a simple approach to estimate wave setup justified by our aim to make the framework globally applicable. The wave 

setup component could potentially be improved using alternative methods which use additional wave and morphological 

parameters (e.g. Stockdon et al., 2006), possibly in combination with a recently published dataset on nearshore slopes 525 

(Athanasiou et al., 2019). The large computational costs of wave models due to the high required spatiotemporal resolution 

still prohibits their direct application on large spatial scales (Hinkel et al., 2021). However, these models can still be leveraged 
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for large-scale flood risk applications by developing large synthetic databases of model results for many different plausible 

cross sections under varying forcing conditions (van Zelst et al., 2021; Pearson et al., 2017). Finally, depending on the wind 

direction and orientation of the estuary, wind shear can have a significant (but often local) effect on flood levels in coastal 530 

environments and can be modelled with SFINCS (Leijnse et al., 2021; Sebastian et al., 2021). This potential driver of 

compound flooding in coastal environments should be considered in future studies. 

5. Conclusions 

In this study we present an automated framework to model compound flooding anywhere on the globe in a reproducible and 

transparent manner; we evaluate its suitability and use it to identify compound flood drivers. The framework is comprised of 535 

the high-resolution 2D flood model SFINCS, set up based on global datasets and forced by global models at its boundaries. 

For two historical compound flood events in the Sofala province of Mozambique, we compared the skill of the globally-

applicable flood model with the global quasi-2D CaMa-Flood model. The validation against flood extents from satellites shows 

a good model performance. The SFINCS model shows slightly better skill compared to CaMa-Flood in terms of critical success 

index but large differences exist in the simulated flood maps. Firstly, the globally-applicable model can accommodate for 540 

direct coastal and pluvial flooding as well as interactions between coastal, pluvial, and fluvial drivers, thereby providing a 

more comprehensive description of flooding in coastal deltas compared to the global model resulting in a higher hit rate. 

Secondly, while the multiple downstream connectivity (or bifurcation) scheme largely improves the results of the global model, 

the floodplain connectivity is still limited, resulting in higher flood levels and smaller flood extents. Thirdly, pluvial flooding 

is likely overestimated in the globally-applicable model as small streams are not represented in the model underestimating the 545 

drainage capacity. We hypothesize that this will improve with the recently implemented subgrid schematization in SFINCS in 

combination with higher resolution DEMs. Finally, we show that the globally-applicable model can be used to analyze the 

effect of interactions between flood drivers, here for the first time presented with joint fluvial, pluvial, and coastal flood drivers. 

We find that the transition zones between flood drivers vary significantly between flood events due to differences in the relative 

timing between and magnitude of each driver. As the identification of these zones is important to understand flood preparedness 550 

and response, their identification should therefore be based on a large number of plausible flood events. We also reiterate the 

importance of observed water levels for a more comprehensive comparison of flood simulations. 

 

The automated model setup is available through the open–source python package HydroMT-SFINCS and allows for a fast and 

reproducible setup of compound flood hazard models. With sufficient computational resources, the framework therefore has 555 

the potential to be scaled up to large spatial scales by setting up many high-resolution models in river and coastal floodplains 

but could also rapidly be employed for disaster response.  

  



27 

 

Data and code availability 

The scripts and data used to setup the experiments in this study are available from Zenodo at 560 

https://zenodo.org/record/7274465#.Y2KQjXbMIuU 

Author contributions 

DE, HI, and PJW conceived the idea for this study; DE designed and executed the experiments with important inputs from 

PJW, HC and AC; JD & SM provided the necessary GTSM simulations; DY provided the CaMa-Flood model; AH processed 

the Sentinel-1 images; DE, TL & HC developed the HydroMT-SFINCS plugin which is at the basis of the experiment; DE 565 

wrote the manuscript with input from all authors. 

Competing interests 

The authors declare that they have no conflict of interest. 

Acknowledgements 

We would like to thank Antonia Sebastian and two anonymous reviewers for their constructive feedback on the manuscript. 570 

The research leading to these results received funding from the Netherlands Organization for Scientific Research (NWO) in 

the form of a VIDI grant (Grant No. 016.161.324) and internal SO research funding by Deltares. PJW received funding from 

the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101003276 (MYRIAD-

EU). SM received funding from the research programme MOSAIC with project number ASDI.2018.036, which is financed by 

NWO. Contributions of DY and HI are supported by JSPS KAKENHI 21H05002 575 



28 

 

Appendix A - Supporting figures 

 

Figure A1: Comparison of observed water levels and simulated water depths during Tropical Cyclone Idai in the Buzi (top) and 

Pungwe (bottom) river. Note that the comparison is based on approximate locations as the precise locations could not be retrieved. 

Furthermore, as the vertical datum of the observations is unknown these are plotted on a second y-axis. 580 
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Figure A2: Simulated maximum flood depths from CaMa-Flood (left panels) and SFINCS (right panels) for Tropical Cyclone Idai 

at March 19 (top panels) and March 20 (bottom panels). The grey areas indicate permanent water and the hatched areas are 

excluded. 
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 585 
Figure A3: Simulated maximum flood depths from CaMa-Flood (left panels) and SFINCS (right panels) for Tropical Cyclone Eloise 

at January 25 (top panels) and January 26 (bottom panels). The grey areas indicate permanent water and the hatched areas are 

excluded. 
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 590 
Figure A4: Sensitivity analysis of compound flood dynamics simulation based on 150% river depth during Idai (left) and Eloise 

(right) illustrated by the difference between water levels from the compound flood scenario and the maximum of all single driver 

scenarios (top panels); and the main flood driver based on the single driver scenario with the maximum water level (bottom panels). 

The main driver is indicated with light colors where the water level results for a single flood driver and dark colors where it results 

from more than one flood driver, also referred to as transition zone.  595 
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Appendix B - HydroMT configuration 

Table B1: Example HydroMT-SFINCS configuration file used to setup the SFINCS model schematization (see Section 3.2.1). Each 

section corresponds to a step in the automatic model building process. Options ending with _fn (filename) correspond to data from 

the data catalog, see Table B2. 

[setup_config] 

alpha = 0.5 

qinf = 0.0 

dtout = 86400 

 

[setup_topobathy] 

topobathy_fn = merit_hydro 

crs = utm 

 

[setup_river_hydrography] 

hydrography_fn = merit_hydro 

adjust_dem = True 

outlets=edge 

 

[setup_river_bathymetry] 

river_geom_fn = rivers_lin2019_v1 

river_mask_fn = grwl_mask 

rivwth_method = mask 

rivdph_method = gvf   

river_upa = 100 

constrain_estuary = True 

rivbank = True 

 

[setup_mask] 

drop_area = 1000 

reset_mask = True 

 

[setup_river_inflow] 

river_upa = 100             

river_len = 10e3 

 

[setup_bounds] 

btype = waterlevel   

mask_fn = osm_coastlines 

mask_buffer = 200 

 



33 

 

[setup_river_outflow] 

river_upa=10 

outflow_width=1e3 

 

[setup_gauges] 

gauges_fn=obs_locs.geojson 

 600 

Table B2: Data catalog (yaml) file used to set up the SFINCS model schematization (see Section 3.2.1). Each entry corresponds to a 

dataset and contains information about how to read it and which preprocessing steps (such as renaming) are required. 

grwl_mask: 

  data_type: RasterDataset 

  driver: raster 

  meta: 

    paper_doi: 10.1126/science.aat0636 

    paper_ref: Allen and Pavelsky (2018) 

    source_license: CC BY 4.0 

    source_url: https://doi.org/10.5281/zenodo.1297434 

    source_version: 1.01 

  nodata: 0 

  path: grwl_mask.tif 

mdt_cnes_cls18: 

  crs: 4326 

  data_type: RasterDataset 

  driver: raster 

  meta: 

    paper_doi: 10.5194/os-17-789-2021 

    paper_ref: Mulet et al (2021) 

    source_url: https://www.aviso.altimetry.fr/en/data/products/auxilia[..] 

    source_version: 18 

    unit: m+GOCO05S 

  path: mdt_cnes_cls18.tif 

merit_hydro: 

  crs: 4326 

  data_type: RasterDataset 

  driver: raster 

  meta: 

    paper_doi: 10.1029/2019WR024873 

    paper_ref: Yamazaki et al. (2019) 

    source_license: CC-BY-NC 4.0 or ODbL 1.0 

    source_url: http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro 
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    source_version: 1.0 

  path: merit_hydro\{variable}.tif 

osm_coastlines: 

  crs: 4326 

  data_type: GeoDataFrame 

  driver: vector 

  meta: 

    source_author: OpenStreetMap 

    source_info: OpenStreetMap coastlines water polygons, last updated 2020-01-09T05:29 

    source_license: ODbL 

    source_url: https://osmdata.openstreetmap.de/data/coastlines.html 

    source_version: 1.0 

  path: osm_coastlines.gpkg 

rivers_lin2019_v1: 

  data_type: GeoDataFrame 

  driver: vector 

  meta: 

    paper_doi: 10.5281/zenodo.3552776 

    paper_ref: Lin et al. (2019) 

    source_license: CC-BY-NC 4.0 

    source_url: https://zenodo.org/record/3552776#.YVbOrppByUk 

    source_version: 1 

  path: rivers_lin2019_v1.gpkg 

  rename: 

    width_m: rivwth 

    Q2: qbankfull 

 

 

605 
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