
We thank the reviewers for the careful comments that helped improve the manuscript. 
We have revised the manuscript accordingly. Below is the point-to-point response to 
each comment, where our responses are in blue. 
Reviewer#1 
General comments: 
The paper titled “Elucidating ozone and PM2.5 pollution in Fenwei Plain reveals the 
co-benefits of controlling precursor gas emissions in winter haze” by Lin et al. 
evaluates the status of ozone and PM2.5 pollution in a typical megacity of the Fenwei 
Plain, one of the most polluted regions in China, which reported a general trend of 
increasing secondary pollution (ozone and SOA) in winter haze, and the causes of this 
trend and the possible measures in controlling the complex pollution by O3 and PM2.5 
were further studies and discussed. With this, the authors claimed that the co-benefits 
of reducing NOx and VOCs simultaneously in reducing ozone and SOA, that would be 
also suitable for other polluted regions of China suffering ozone and PM2.5 currently. 
The manuscript was well written and presented clearly. Therefore I recommend the 
publication of Lin et al. work after some issues were properly revised and improved. 
Response: We thank the reviewer for the positive comments. We provide a point-to-
point response to each comment below. 
 
Specific and technical comments: 
Method, more details in the calibration of PTR-MS should be provided. In addition, 
What kinds of VOCs species were used in the standard mixture? Please list the VOCs 
species that calculated from the kinetic rate constant, and the uncertainty on the 
calculated VOCs should be discussed. 
Response: We have now provided more details regarding the Vocus-PTR-MS 
calibration. We have listed all the VOC species that were used for calibration in the 
revised Table S1. VOC species with the kinetic rate constant was listed and the 
uncertainties on the calculated VOCs were discussed. 
In the revised Section 2.1, it now reads, “…Vocus-PTR was calibrated with VOC/OVOC 
standard mixture (Table S1). The sensitivity of Vocus-PTR towards uncalibrated VOC 
compounds was calculated from the kinetic rate constant following Krechmer et al. 
(2018). Uncertainties for the calibrated VOC/OVOC species were 15%, while the 
uncertainty was 30% for the uncalibrated VOC compounds (Table S2) with known 
reaction rate constant (kPTR) (https://kb.tofwerk.com/tofware/; last access: 1 March 
2023). Due to the low transmission efficiency for low-mass molecules that caused high 
uncertainties in quantification, formaldehyde (HCHO) was scaled to the mean 
concentration of the surface HCHO based on satellite observation using the empirical 
relationship (Zhang et al., 2012)…” 
 
 
 
 
 
 



 
 
Table S1. A list of the VOC species, the proton transfer reaction rate coefficients (kPTR) between 
the hydronium ion (H3O+) and selected VOCs, and the obtained sensitivities during calibration.  

VOC species kPTR (10-9 molec cm-3 s-

1) 
Sensitivity (cps ppbv-1) 

Benzene 1.93 2,351 
Toluene 2.08 2,446 
m-Xylene 2.27 3,066 
1,2,4-Trimethylbenzene 
(TMB) 

2.4 
2,835 

Acetone 3.44 6,773 
Methyl ethyl ketone (MEK) 3.39 5,191 
Acetonitrile 4.2 1,481 
Acetaldehyde 3.24 1697 

 
Line 109-112, it is better to provide more details for NR-PM2.5 monitored by an AMS 
which usually measured NR-PM1. I note that a novel PM2.5 was firstly equipped with 
AMS for the winter campaign in 2014 (Elser et al., 2014), It is unclear for the other 
winter campaigns. 
Response: We agree and have provided more details for NR-PM2.5 monitored by the 
deployed AMS with a PM2.5 inlet in the revised manuscript.  
Elser et al., (2016) first applied a PM2.5 ToF-AMS in Xi’an in 2014 and evaluated the 
performance of PM2.5 inlet comprehensively. Later at the same sampling site in 2019 
and 2022, an LToF SP-AMS with a PM2.5 inlet was deployed with satisfactory 
performance as detailed in Duan et al. (2021). The deployed PM2.5 inlet shared the 
same design as that in Elser et al. (2016). The time series of the measured NR-PM2.5 
concentrations were in good agreement with the PM2.5 monitored at a nearby 
environmental monitoring site (see Fig. S1 in Duan et al. (2021) and Fig. S3 in Lin et 
al. (2021)) 
In the revised Section 2.1, it now reads, “For AMS measurement, Elser et al. (2016) 
first deployed an AMS with a PM2.5 inlet and comprehensively evaluated its 
performance during the winter campaign in Xi’an. Based on the same design, a soot 
particle AMS (SP-AMS) equipped with a PM2.5 inlet was recently deployed at the same 
sampling site, quantifying PM2.5 chemical composition with high mass and temporal 
resolution (Lin et al., 2021; Duan et al., 2022).” 
 
Line 121-122, why the reduction in NO2 for the observation sites was not used? Which 
would be more precisely than the satellite image. 
Response: We agree that site observations of NO2 were more precise than satellite 
images. In this study, we have simulated a range of NO2 reduction scenarios with a 
reduction of 20-70%. This range of reduction scenarios covered the lower and upper 
limits of NO2 reduction from observation sites and satellite images. To avoid confusion, 
this sentence has been removed. 



 
Line 144-146, please list the VOC/VOCs information that used as input data for box 
model. I note that HCHO was not used to constrain the model, how about the other 
OVOCs? Considering the OVOCs was also from secondary formation. In addition, I 
am concerns on the model performance in the ozone simulations, as the majority of 
alkanes was unavailable in the model if only the VOC/VOCs measured by the PTR-
MS. As least, the authors should provided more details in the performance of the box 
model and the analysis in the uncertainty. 
Response: We have now added Table S2 to list all the VOC/OVOCs information that 
was used as input in the box model. Details of OVOCs other than HCHO were also 
shown in Table S2. 
The performance and uncertainties of the box model are now discussed in the revised 
Sect 2.4. It now reads, “…Surface observational data were averaged for the 
overlapping period with OVOC measurements to get the diurnal profiles of each 
pollutant. The averaged air pollutants, including NO2, O3 (not included when it was 
simulated, Fig. S10), CO, and the measured VOC/OVOCs (Table S2) were used to 
constrain the model at hourly resolution (base run). The box model reproduced the 
measured ozone reasonably well (Fig. S10) after optimizing the correction of the 
simulated photolysis rate. However, due to the uncertainties of the box model which 
did not consider factors like regional transport and heterogenous chemistry, as well as 
the parameterized ozone deposition, the modeling results were only used to 
understand the atmospheric chemistry involving OVOCs by comparing different 
scenarios. Note that HCHO was not included when it was being simulated…” 
 
Table S2. A list of VOC/OVOC species that were included in the box model. 

Formula Assignment Mean (ppb) 
HCHOH Formaldehydea 4.16 
C3H6OH acetone 3.39 
C4H6O2H butanedione 1.63 
C2H4OH acetaldehyde 1.20 
C6H6H benzene 1.19 

C6H6OH phenol 0.85 
C7H8H toluene 0.76 

C3H6O2H Methyl acetate 0.35 
C4H8OH Butyraldehyde 0.29 
C4H6OH MEK 0.29 

C5H9 Isoprene 0.23 
C3H4O2H Propanal 0.13 
C4H6OH MVK 0.10 
C3H4OH Acrolein 0.10 
C9H13 TMB 0.03 

 



 
Figure S10. Diurnal of the simulated (Sim) and observed O3 during the VOC/OVOC 
sampling period. The shaded area represents one standard deviation. 
 
Line 200-202, I do not agree that the secondary formation could be the major source 
of formaldehyde, as the measured and modelled formaldehyde showed different 
diurnal pattern. The similar level may suggest large uncertainty in the modelled 
formaldehyde. 
Response: We agree. In Sect. 3.2, it now reads, “…Compared to the mixing ratio of 
the measured formaldehyde, the model reproduced the measured formaldehyde at a 
similar level of around 4.2 ppb. However, compared to the simulated formaldehyde, 
the elevated concentration of the observed formaldehyde in the evening and morning 
(22:00 – 8:00) was likely associated with the primary emission from biomass and fossil 
fuel combustion, coupled with a shallow boundary layer (Fig. S15)…”.  
 
Line 245-247, the significant reduction in primary fossil fuel OA (77%) from 2012-2014 
to 2019-2021 could be expected, due to the implementation of the clean air act in 2013. 
The more magnitude of reduction in cooking OA (84%) is interesting, more evidence 
should provided and discussed here. 
Response: We agree that the reduction in fossil fuel OA was expected. Regarding the 
reduction in Cooking OA, it could be related to upgraded kitchen facilities, as well as 
the uncertainties in comparing the changes in COA. We have now discussed the 
uncertainties in the comparison. In the revised manuscript it now reads, “…The 5 
datasets obtained at the same sampling site were averaged to gain insights into the 
changes in chemical composition and OA factors over these years, although it is noted 
that measurements were not conducted at the same period in each year with the same 
duration. The one standard deviation (sd) (Table S4) ranged from 1.8 to 78.5 μg m-3, 
or 13-110% for the NR-PM species and from 0.7 to 29.4 μg m-3, or 14-88% for the OA 
factors. …” and “…The reduction in fossil fuel and biomass burning was consistent 
with the reduction in CO and SO2 as discussed above. Similarly, the primary cooking 
OA factor was also largely reduced by 84% (16.4 μg m-3). The reduction in cooking 
emissions could be partly due to upgraded kitchen facilities (Liu et al., 2022), although 
we note that the sampling time and duration of the compiled studies were not the same 
(Table S3), causing uncertainties in the evaluations of changes in OA factors years. 
Future studies with long-term continuous measurements e.g., using ACSM (Chen et 



al., 2022), will improve the understanding of trends in OA factors in this region…”  
 
 
Rewiewer#2 
Review on “Elucidating ozone and PM2.5 pollution in Fenwei Plain reveals the co-
benefits of controlling precursor gas emissions in winter haze” by Lin et al. 
The study looks into the pollution patterns, sources, and formation mechanism of 
PM2.5 and ozone. The analysis of 7 years data reveals the severity of air pollution. 
The author found that increased ozone was due to the constantly elevated reactive 
OVOCs and the reduced NO2, and then stimulated the increase of particle pollution. A 
0-box model was applied to investigated the co-benefits of reducing NOx and VOCs 
simultaneously in reducing ozone and SOA. Finally, the atmospheric implication helps 
for developing cost-effective mitigation policies in the future. The results are important 
for the scientific community to increase their understanding of the O3-PM2.5 
interaction. The paper is well written, and the literature is broadly cited. I recommended 
a minor revision before publication. 
Response: We thank this reviewer for the positive comments. 
 
Comments: 
Line 40: the font size needs to be constant 
Response: Corrected.  
 
Line 115: More detail of the 5 datasets should be provided in this paper, including the 
sampling time in a year. Since the PM2.5 and OA obviously vary in different seasons, 
the correction or uncertainty analysis should be presented in the paper. 
Response: We have now provided more details (Table S3) about the sampling time 
and have discussed the uncertainties in the revised manuscript (also see the response 
to reviewer #1).  
In the revised text, it now reads, “…The 5 datasets obtained at the same sampling site 
were averaged to gain insights into the changes in chemical composition and OA 
factors over these years, although it is noted that measurements were not conducted 
at the same period in each year with the same duration. The one standard deviation 
(sd) (Table S4) ranged from 1.8 to 78.5 μg m-3, or 13-110% for the NR-PM species and 
from 0.7 to 29.4 μg m-3, or 14-88% for the OA factors. …” and “…The reduction in fossil 
fuel and biomass burning was consistent with the reduction in CO and SO2 as 
discussed above. Similarly, the primary cooking OA factor was also largely reduced by 
84% (16.4 μg m-3). The reduction in cooking emissions could be partly due to upgraded 
kitchen facilities (Liu et al., 2022), although we note that the sampling time and duration 
of the compiled studies were not the same (Table S3), causing uncertainties in the 
evaluations of changes in OA factors years. Future studies with long-term continuous 
measurements e.g., using ACSM (Chen et al., 2022), will improve the understanding 
of trends in OA factors in this region…”  
 
 



Table S3. Sampling time and instruments at the same urban sampling site in Xi’an.  
Sampling time Season Instrument References 
2012.11.15 – 2013.2.21 2012-2013 

winter 
PM1-ACSM Zhong et al. (2020) 

2013.12.13 – 2014.1.6 2013-2014 
winter 

PM2.5-AMS Elser et al. (2016) 

2018.12.4 – 2019.3.15 2018-2019 
winter 

PM2.5-SP-
AMS 

Duan et al. (2022) 

2020.1.18 – 2020.1.31 2019-2020 
winter 

PM2.5-SP-
AMS 

Duan et al. (2021) 

2021.1.14 – 2021.2.6 2020-2021 
winter 

PM2.5-SP-
AMS 

This study 

 
 
Line 134-136: What is the advantage of developed random forest model compared to 
previous de-weathered RF model? mean meteorological variables ? To average the 
meteorological data at a specific time point during each year? 
Response: We have now discussed the advantages of our de-weathered RF model. 
In the revised Sect 2.3. It now reads, “Random Forest (RF) - based meteorological 
normalization was first introduced by Grange and Carslaw (2019). However, it is not 
straightforward to investigate the seasonal variation in the trends of de-weathered air 
pollutants using the proposed normalization method (Grange and Carslaw, 2019). Vu 
et al. (2019) enhanced the meteorological normalization procedure by repeatedly 
resampling the meteorological variables for a particular time point within a four-week 
period and the resampled variables were fed to the developed RF model. The 
meteorological normalization method proposed by Vu et al. (2019), is widely applied in 
different sampling sites (Dai et al., 2021; Shi et al., 2021). In this study, we resampled 
the meteorological variables by averaging the meteorological variables for the same 
time point across 7 years. Our proposed method was more straightforward and subject 
to less variation given that meteorological variables varied a lot over a four-week period 
(e.g., see the comparison between the resampled and observed temperatures in Fig. 
S9). Also, our method is less time-consuming. Therefore, the meteorological 
normalization technology assumed the meteorological variables were invariant across 
the years. In this scenario, the predicted values represent the changes in air pollutant 
concentrations that were not affected by meteorological variables (i.e., de-weathered 
pollutants).” 



 
Figure S9. Monthly variation of observed (a) and resampled (b) air temperatures (air_temp in 
oC) for 2015-2021. The resampled air temperatures were invariant across the years, in contrast 
to that for the observed temperatures.  
 
Line 142-148: The detailed species of VOC/OVOCs, instead of only top 10 species, 
should be provided, since these precursors influence the results of the 0-box model. 
The input data are averaged diurnal profiles or the total time series? If the averaged 
diurnal data were applied, how the uncertainties of the model change? More 
importantly, the verification of the 0-box model is missing. For example, the comparison 
between measured and predicted concentration of ozone, which was the main object 
in this study. 
Response: We have now listed all the VOC/OVOCs that were used as box model input 
in Table S2 (also see the reply to Reviewer #1). We have compared the measured and 
predicted Ozone using averaged diurnal profiles as model input. Using the averaged 
diurnal profiles is expected to reduce the uncertainty caused by occasional data flaws 
and data gaps due to instrument maintenance. 

(a) Observed 

(b) Resampled 



In the revised Sect 2.4, it now reads, “…Surface observational data were averaged for 
the overlapping period with OVOC measurements to get the diurnal profiles of each 
pollutant. The averaged air pollutants, including NO2, O3 (not included when it was 
simulated, Fig. S10), CO, and the measured VOC/OVOCs (Table S2) were used to 
constrain the model at hourly resolution (base run). The box model reproduced the 
measured ozone reasonably well (Fig. S10) after optimizing the correction of the 
simulated photolysis rate. However, due to the uncertainties of the box model which 
did not consider factors like regional transport and heterogenous chemistry, as well as 
the parameterized ozone deposition, the modelling results were only used to 
understand the atmospheric chemistry involving OVOCs by comparing different 
scenarios. Note that HCHO was not included when it was being simulated…” 
 
Table S2. A list of VOC/OVOC species that were included in the box model. 

Formula Assignment Mean (ppb) 
HCHOH Formaldehydea 4.16 
C3H6OH acetone 3.39 
C4H6O2H butanedione 1.63 
C2H4OH acetaldehyde 1.20 
C6H6H benzene 1.19 

C6H6OH phenol 0.85 
C7H8H toluene 0.76 

C3H6O2H Methyl acetate 0.35 
C4H8OH Butyraldehyde 0.29 
C4H6OH MEK 0.29 

C5H9 Isoprene 0.23 
C3H4O2H Propanal 0.13 
C4H6OH MVK 0.10 
C3H4OH Acrolein 0.10 
C9H13 TMB 0.03 

 

 
Figure S10. Diurnal of the simulated (Sim) and observed O3 during the VOC/OVOC 
sampling period. The shade area represents one standard deviation. 
 
Line 167-170: It seen that only 1-2 days difference found between the two period may 



not always support the authors’ conclusion. What about the ozone exceedance in each 
year during 2015-2021? Or what about the uncertainty/standard deviation for the 
averaged data? 
Response: Actually, the difference between the two periods was 1-4 days in January 
and February. We have updated Figure 1 because our previous calculation treated 
months with no exceedance as “not a number” (nan) that were not included in the 
calculation.  
Ozone exceedance in each year during 2015-2021 is now added as Figure S14 and 
discussed in the revised text. The one standard deviation (sd) is now included in the 
updated Figure 1. 
It now reads, “…In contrast to the slightly decreasing trend of PM2.5, the observed 
exceedances of ozone standard even increased by 1-4 days month-1 for January and 
February in 2019-2021 when compared to 2015-2018 (Fig. 1b and Fig. S14)…” 

 
Figure 1. Observed exceedance frequency (in days month-1) of PM2.5 (a); Ozone (b); 
Ozone or PM2.5 (c) standard (NAAQS level-1) in the biggest city (i.e., Xi’an) in Fenwei 
Plain, averaged over 2015-2018 and 2019-2021. Ozone and PM2.5 were averaged from 
13 monitoring sites in Xi’an. Error bar represents one standard deviation. 

 



 
Figure S14. Observed exceedance frequency (in days month-1) of Ozone or PM2.5 

standard (NAAQS level-1) in the biggest city (i.e., Xi’an) in Fenwei Plain from 2015 to 
2021. Ozone and PM2.5 were averaged from 13 monitoring sites in Xi’an. 
 
 
Line 175: The reference or topographic map for the topography favoring the build-up 
of air pollutants should be provided. 
Response: We have now added a reference to support our claim. It now reads, “…the 
topography of the Fenwei Plain (Cao and Cui, 2021), favoring the build-up of air 
pollutants….” 
 
Line 177-178: The BLH highlights very obvious difference between afternoon and other 
time period. The author could correct the PM2.5 by BLH to verified whether the 
reduced emission appears or not. 
Response: We agree. CO is a tracer of primary emission, and the reduction in CO in 
the afternoon coincided with the increase in BLH. Correction of BLH is often performed 
by correction of ∆CO since it has a relatively long lifetime than aerosol (Lin et al., 2020). 
We have performed ∆CO correction.  
It now reads, “…The decrease in the afternoon was likely due to the reduced primary 
emission and increased boundary layer height (BLH). The increasing BLH in the 
afternoon diluted the air pollutants, which was confirmed by the decreased CO at the 
same time (Fig. S16). The ∆CO corrected PM2.5 first showed an increase at noon and 
decreased afterward probably (Fig. S16) because the PM2.5 emissions and/or 
secondary formation were insufficient to make up the diluting effects in the afternoon…” 



 

 
Figure S16. Diurnals of CO (a); observed and ∆CO corrected PM2.5 for 2015-2018 (b) and 
2019-2021 (c). PM2.5 concentrations were normalized to the first hour of the day.  
 
Line 191: (Sect. 21) ? or Sect 2.1 
Response: Corrected. 
 
Line 233-234: Figure 4？ 
Response: Corrected. 
 
Line 242-244: More information of OA source apportionment by the PMF in this study 
(2021) should be provided to make the conclusion robust, referring to Feng T, et al. 
Atmos. Chem. Phys., 2023, 23: 611-636. 
Response: We have now provided more information about OA source apportionment 
using PMF. And the study by Feng et al., (2023) is now cited. 
In the revised text, it now reads, “…For AMS measurement, Elser et al. (2016) first 
deployed an AMS with a PM2.5 inlet and comprehensively evaluated its performance 
during the winter campaign in Xi’an. Based on the same design, a soot particle AMS 
(SP-AMS) equipped with a PM2.5 inlet was recently deployed at the same sampling site, 
quantifying PM2.5 chemical composition with high mass and temporal resolution (Lin et 
al., 2021; Duan et al., 2022). OA factors were apportioned using the Positive Matrix 
Factorization (PMF) with the Multilinear Engine (ME-2) (Elser et al., 2016; Zhong et al., 
2020; Duan et al., 2021; Duan et al., 2022), Similarly, OA source apportionment was 
performed for the 2021 dataset using the Igor Pro (WaveMetrics Inc.) - based  
interface of SoFi  (version 8.2.1) (Canonaco et al., 2013). The apportioned factors 



explained the input OA matrix well (Fig. S4-S6)…” 
also “…The increase in secondary OA was consistently observed in other areas in 
China (Li et al., 2022; Nie et al., 2022), which may change of volatility and viscosity of 
OA (Feng et al., 2023)…” 
 

 
Figure S3. Time series of the NR-PM2.5 species and the mean PM2.5 concentrations 
from January 14 to February 6, 2021.  
 

 
Figure S4. (a) The value of Q/Qexp (Canonaco et al., 2013) as a function of the number of 
factors (nb. Of factors) with the circle highlighting the number of 5 factors that best represented 
the current dataset; and (b) scatter plot between the sum of all OA factors (5-factor solution) 
and the PMF input with the slope and determination of correlation (r2) being close to unity.  
 

a b 



 
Figure S5. Normalized mass spectra of the OA factors. MO-OOA and LO-OOA were summed 
up as one OOA in the main text for better comparison across different years. OM:OC, O:C, and 
H:C ratios are calculated using the improved-ambient (IA) method (Canagaratna et al., 2015). 
 

 

Figure S6. Time series of the OA factors for the 5-factor solution. 



 
Line 246: How do the authors explain the large reduction of COA? Dose it mean that 
the cooking frequency is lower than before or the cooking method change or other 
reasons? 
Response: We have now discussed the reduction in COA (also see the response to 
Reviewer #1). Regarding the reduction in Cooking OA, it could be related to upgraded 
kitchen facilities, as well as the uncertainties in comparing the changes in COA. We 
have now discussed the uncertainties in the comparison. In the revised manuscript it 
now reads, “…The 5 datasets obtained at the same sampling site were averaged to 
gain insights into the changes in chemical composition and OA factors over these years, 
although it is noted that measurements were not conducted at the same period in each 
year with the same duration. The one standard deviation (sd) (Table S4) ranged from 
1.8 to 78.5 μg m-3, or 13-110% for the NR-PM species and from 0.7 to 29.4 μg m-3, or 
14-88% for the OA factors. …” and “…The reduction in fossil fuel and biomass burning 
was consistent with the reduction in CO and SO2 as discussed above. Similarly, the 
primary cooking OA factor was also largely reduced by 84% (16.4 μg m-3). The 
reduction in cooking emissions could be partly due to upgraded kitchen facilities (Liu 
et al., 2022), although we note that the sampling time and duration of the compiled 
studies were not the same (Table S3), causing uncertainties in the evaluations of 
changes in OA factors years. Future studies with long-term continuous measurements 
e.g., using ACSM (Chen et al., 2022),  will improve the understanding of trends in OA 
factors in this region…” 
Line 290-291: The self-reaction between peroxy radicals can produce SOA, but the 
reaction between NOx/NO3 and peroxy radicals has the same effect. The branch ration 
between these two pathways can influence the level of increasing or decreasing SOA 
formation. More explanation could add here. 
Response: We agree that the reaction between NOx/NO3 and peroxy radicals can also 
produce SOA. However, because NOx was largely reduced (by 70%) during the Covid 
period, this formation pathway is reduced compared to the self-reaction between 
peroxy radicals. We have added more explanation here. It now reads, “…In addition to 
the self-reaction, some of the reactions between NOx/NO3 and peroxy radicals can also 
produce organic nitrate that could partition to the particle phase (Lin et al., 2021). 
However, such reaction pathways were likely playing a less important role when NOx 
were largely reduced…” 
 
 
Comments for Figures 
Figure 2: Deep and light color were applied for figure a/c and b/d, but detailed legends 
should be provided. 
Response: We have now revised the figure accordingly. 



 
Figure 2. Observed and deweathered diurnal patterns for PM2.5 (a,c) and O3 (b, d) for 
January-February in 2015-2018 and 2019-2021 

 
Figure S2: The x-axis labeling is ambiguous. 2015-2021? 
Response: We have now labeled the Figures with more detail to avoid confusion. 

 
Figure S2. Time series of PM2.5 and O3 at the 13 sampling sites from 2015 to 2021. The 
abbreviation for the sampling site is the same as in Figure S1. Data were averaged at 2 weeks 
for clarity reasons. 
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