All about Nitrite: Exploring Nitrite Sources and Sinks in the Eastern Tropical North
Pacific Oxygen Minimum Zone

John C. Tracey1,2, Andrew R. Babbin3, Elizabeth Wallace1, Xin Sun1,4, Katherine L. DuRussel1, 5, Claudia Frey1,6, Donald E. Martocello III3, Tyler Tamasi3, Sergey Oleynik1, and Bess B. Ward1

1Department of Geosciences, Princeton University, Guyot Hall, Princeton, NJ, USA 08544
2Department of Biology and Paleo Environment, Lamont Doherty Earth Observatory, Columbia University, Palisades, NY, USA 10964
3Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA 02138
4Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA 94305
5Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA 60208
6Department of Environmental Sciences, University of Basel, Bernoullistrasse 30, 4056 Basel, Switzerland

Correspondence to: John C. Tracey (jt16@princeton.edu)
Abstract

Oxygen minimum zones (OMZs), due to their large volumes of perennially deoxygenated waters, are critical regions for understanding how the interplay between anaerobic and aerobic nitrogen (N) cycling microbial pathways affects the marine N budget. Here we present a suite of measurements of the most significant OMZ N cycling rates, which all involve nitrite (NO$_2^-$) as a product, reactant, or intermediate, in the Eastern Tropical North Pacific (ETNP) OMZ. These measurements and comparisons to data from previously published OMZ cruises present additional evidence that NO$_3^-$ reduction is the predominant OMZ N flux, followed by NO$_2^-$ oxidation back to NO$_3^-$. The combined rates of both of these N recycling processes were observed to be much greater (up to nearly 200x) than the combined rates of the N loss processes of anammox and denitrification, especially in waters near the anoxic / oxic interface. We also show that NO$_2^-$ oxidation can occur when O$_2$ is maintained near 1 nM by a continuous purge system, NO$_2^-$ oxidation and O$_2$ measurements that further strengthen the case for truly anaerobic NO$_2^-$ oxidation. We also evaluate the possibility that NO$_2^-$ dismutation provides the oxidative power for anaerobic NO$_2^-$ oxidation. The partitioning of N loss between anammox and denitrification differed widely from stoichiometric predictions of at most 29% anammox; in fact, N loss rates at many depths were entirely due to anammox. Our new NO$_3^-$ reduction, NO$_2^-$ oxidation, dismutation, and N loss data shed light on many open questions in OMZ N cycling research, especially the possibility of truly anaerobic NO$_2^-$ oxidation.

1. Introduction

Nitrogen (N) is essential for life because of its prominent role in DNA, RNA, and protein chemistry. As a result, N limits biological productivity in many marine environments. The
dissimilatory biological N loss and recycling pathways are traditionally understood to be strictly
separated by O$_2$ tolerance. The N loss processes of denitrification, the stepwise reduction of
NO$_3^-$ to N$_2$, and anaerobic ammonium oxidation (anammox), the oxidation of NH$_4^+$ with NO$_2^-$ to
make N$_2$, require low O$_2$ while the N recycling pathways of NH$_4^+$ oxidation to NO$_2^-$ and NO$_2^-$
oxidation to NO$_3^-$ are viewed as obligately aerobic. Importantly, NO$_2^-$ is a product, reactant, or
intermediate in all these pathways. Therefore, developing an understanding of NO$_2^-$ sources and
sinks is essential for a complete understanding of marine N biogeochemistry.

Oxygen minimum zones (OMZs) and sediments are the two main marine environments
where N loss occurs. There are three major OMZs, the Eastern Tropical North Pacific (ETNP),
the Eastern Tropical South Pacific (ETSP), and the Arabian Sea, which occupy 0.1 - 1% of total
ocean volume, depending on the O$_2$ threshold used (Codispoti and Richards, 1976; Naqvi, 1987;
Bange et al., 2000; Codispoti et al., 2005; Lam and Kuypers, 2011). Importantly, the OMZ water
column is not completely deoxygenated from top to bottom; OMZs are characterized by an
oxygenated surface, a depth interval of steeply declining O$_2$ around the mixed layer depth, called
the oxycline, an oxygen deficient zone (ODZ) spanning several hundred meters where O$_2$
declines below the detection limit of common shipboard CTD O$_2$ sensors, and then a second,
gradual, oxycline that transitions to oxygenated deep water. Despite OMZ regions’ small size,
they are responsible for 30-50 % of total marine N loss (DeVries et al., 2013), a magnitude
significant for the global marine N budget. In this work, in order to answer several open
questions about OMZs and marine N cycling, we conducted a suite of 15N stable isotope
measurements of the most important N cycling microbial pathways in OMZs. We report the N
loss rates of anammox and denitrification, as well as the N recycling rates of NO$_3^-$ reduction,
NO$_2^-$ oxidation, and NH$_4^+$ oxidation, all of which involve NO$_2^-$.
A distinctive feature of OMZs is a secondary nitrite maximum (SNM) (Codispoti et al., 2001; Brandhorst, 1959; Codispoti and Packard, 1980). The highest nitrite concentrations within the SNM can reach 10 µM, much higher than the peak values found in the primary nitrite maximum at the base of the photic zone, which average ~100 nM globally (Lomas and Lipschultz, 2006). Several recent works have shown or argued that the SNM’s NO$_2^-$ is supplied via high rates of the first step of denitrification, NO$_3^-$ reduction to NO$_2^-$ (Lam et al., 2009; Lam and Kuypers, 2011; Kalvelage et al., 2013; Babbin et al., 2017, 2020). NO$_3^-$ reduction has been proposed (Anderson et al., 1982) to be one-half of a rapid loop where NO$_3^-$ and NO$_2^-$ are recycled through simultaneously occurring NO$_3^-$ reduction and NO$_2^-$ oxidation. This loop has been supported through experimental measurements of both rates (Babbin et al., 2017, 2020; Kalvelage et al., 2013; Lipschultz et al., 1990). In this view, elevated NO$_3^-$ reduction also generates NH$_4^+$, via organic matter (OM) remineralization, which enhances anammox at the expense of denitrification in oxycline and upper ODZ waters (Babbin et al., 2020). In this study, we conducted tests to further document this rapid loop’s existence and role in enhancing anammox.

Recent measurements of NO$_2^-$ oxidation have returned significant rates from both the oxycline and the ODZ, findings that challenge the paradigm that NO$_2^-$ oxidation is an obligately aerobic process. Evidence for high, widespread NO$_2^-$ oxidation rates in low O$_2$ waters has accumulated from direct rate measurements via 15N tracers (Füssel et al., 2011; Lipschultz et al., 1990; Peng et al., 2015, 2016; Ward et al., 1989; Kalvelage et al., 2013; Tsementzi et al., 2016; Sun et al., 2017, 2021a; Babbin et al., 2017, 2020), models (Buchwald et al., 2015), and 15N natural abundance measurements (Casciotti et al., 2013). Many explanations have been proposed including microaerophilic nitrite oxidizing bacteria (NOB) adapted to low but non-zero
O₂ conditions (Penn et al., 2016; Bristow et al., 2016; Tsmentzi et al., 2016; Bristow et al., 2017) where the O₂ for these NOB is transiently supplied to previously deoxygenated waters by (1) vertical or horizontal mixing of the ocean surface or nearby oxic water (Casciotti et al., 2013; Tiano et al., 2014; Bristow et al., 2016; Ulloa et al., 2012), even into the anoxic ODZ (Margolskee et al., 2019), or (2) a cryptic O₂ cycle where low-light adapted phototrophs produce O₂ that is consumed by NOB (Garcia-Robledo et al., 2017; Fuchsman et al., 2019).

Despite the power of these explanations, they do not preclude the possibility of widespread NOB capable of truly anaerobic NO₂⁻ oxidation, especially in waters from the deep, dark, and deoxygenated ODZ core. This possibility is bolstered by sequencing data that show the presence of an NOB metagenome assembled genome (MAG) with a preference for the deoxygenated ODZ core in the ETSP (Sun et al., 2019) and ODZ core kinetics experiments where O₂ concentrations above 5 µM inhibit NO₂⁻ oxidation (Sun et al., 2021a). Here we build on past stable isotope experimental results by performing additional depth profile experiments with purged waters from the ODZ and O₂ manipulation ¹⁵N tracer experiments across a gradient of O₂ concentrations from 1 nM to 10 µM. Our O₂ manipulation experiments, unlike previous studies, were conducted in vessels that were continuously purged throughout each incubation with a precisely calibrated mixture of N₂, O₂, and CO₂. This experimental design allowed us to continuously maintain low O₂ conditions. In addition, our oxygen concentrations in these assays were verified via a LUMOS sensor, a sensor class with a detection limit of 0.5 nM O₂ (Lehner et al., 2015). Together, these method improvements convincingly show that the O₂ contamination observed to occur in Niskin sampling (Garcia-Robledo et al., 2016, 2021) is removed and that vanishingly low O₂ is maintained throughout the experiment.
Anaerobic NO$_2^-$ oxidation would require an alternative oxidant other than O$_2$. Many candidates have been proposed (Sun et al., 2023) for this oxidant including IO$_3^-$ (Babbin et al., 2017), Mn$^{4+}$, Fe$^{3+}$ (Sun et al., 2021a), the anammox core metabolism (Sun et al., 2021a), the observed reversibility of the nitrite oxidoreductase enzyme (Wunderlich et al., 2013; Kemeny et al., 2016; Koch et al., 2015; Buchwald and Wankel, 2022), and NO$_2^-$ dismutation (Babbin et al., 2020; Füssel et al., 2011; Sun et al., 2021a). Due to multiple considerations such as very low IO$_3^-$ in the ODZ core (Moriyasu et al., 2020), low favorability of Mn$^{4+}$ or Fe$^{3+}$ mediated NO$_2^-$ oxidation at marine pH values (Luther, 2010), low anammox rates that do not explain the observed stoichiometry of NO$_2^-$ oxidation to anammox (Kalvelage et al., 2013; Babbin et al., 2020; Sun et al., 2021a), and the inability of the enzyme hypothesis to account for structural and phylogenetic differences in the NXRs of the four NOB genera (Buchwald and Wankel, 2022; Sun et al., 2019), we conducted experiments to test the remaining most plausible hypothesis: NO$_2^-$ dismutation.

NO$_2^-$ dismutation (Eq. (R4)) is energetically favorable (Strohm et al., 2007; Van de Leemput et al., 2011) although it has not been detected in nature. The reaction is proposed to occur in three steps (Eq. (R1-3)) (Babbin et al., 2020) and DNA sequences that encode possible enzymes for steps two and three (Eqs. (R2, R3)) have been found in ODZ core metagenomic reads and MAGs (Padilla et al., 2016; Babbin et al., 2020). While these sequences were not classified as NOB, they do indicate that parts of the pathway could occur in OMZs. If discovered in OMZs, NO$_2^-$ dismutation would be another N loss pathway, albeit one indistinguishable from denitrification since the 15N atoms in 30N$_2$ come from 15NO$_2^-$ in both pathways. Here we evaluate the hypothesis that NO$_2^-$ dismutation is a significant mechanism for NO$_2^-$ oxidation under low O$_2$, by searching for product inhibition, the inhibition of both NO$_2^-$
oxidation and $^{30}\text{N}_2$ production (i.e. denitrification) in response to addition of NO$_3^-$, substrate stimulation (increases in both $^{30}\text{N}_2$ production and NO$_2^-$ oxidation in response to addition of $^{15}\text{NO}_2^-$), and by comparing the NO$_2^-$ oxidation to the produced $^{30}\text{N}_2$ ratio. A ratio near the 3:1 stoichiometry of dismutation (3 NO$_3^-$: 1 N$_2$, Eq. (R4)) would indicate that dismutation could explain the NO$_2^-$ oxidation measured in the ODZ core.

\[3\text{NO}_2^- + 2\text{H}^+ \rightarrow \text{NO}_3^- + 2\text{NO} + \text{H}_2\text{O}\]
\[2\text{NO} \rightarrow \text{N}_2 + \text{O}_2\]
\[2\text{NO}_2^- + \text{O}_2 \rightarrow 2\text{NO}_3^-\]
\[5\text{NO}_2^- + 2\text{H}^+ \rightarrow \text{N}_2 + 3\text{NO}_3^- + \text{H}_2\text{O}\]

A final area of OMZ biogeochemistry that we investigate is the relative balance between anammox and denitrification and these pathways’ relationships to the rapid NO$_2^-$ oxidation / NO$_3^-$ reduction loop. After the discovery of anammox, many OMZ studies (Kalvelage et al., 2013; Kuypers et al., 2005; Hamersley et al., 2007; Jensen et al., 2011; Thamdrup et al., 2006; Lam et al., 2009), but not all (Ward et al., 2009; Bulow et al., 2010; Dalsgaard et al., 2012) have reported that anammox is the dominant N loss flux in OMZs, a surprising difference from the stoichiometric based prediction that OMZ N loss should be at most 29% anammox (Dalsgaard et al., 2003). While the first wave of these studies did not realize that vial septa were introducing O$_2$ into the incubations, many studies after this discovery observed the same result (Kalvelage et al., 2013; Jensen et al., 2011; Babbin et al., 2020). The prediction of a 29% anammox partition assumes that all NH$_4^+$ for anammox was derived from remineralization of OM with a mean marine C:N ratio through complete denitrification of NO$_3^-$ to N$_2$ (Dalsgaard et al., 2003, 2012). Anammox rates exceeding 29% of total N loss would therefore require an additional source of NH$_4^+$ beyond current observations of denitrification and the resulting NH$_4^+$ remineralization.
The best supported explanations for elevated anammox are that (1) denitrification is the NH$_4^+$ source, but that complete denitrification peaks episodically in response to OM quality while anammox occurs at a slow, consistent, low rate (Ward et al., 2008; Thamdrup et al., 2006; Babbin et al., 2014; Dalsgaard et al., 2012). The snapshots afforded by isotopic incubations on cruises could therefore easily miss episodes of high complete denitrification. (2) Denitrifiers have a strong preference for particles (Ganesh et al., 2013, 2015; Fuchsman et al., 2017) and CTD samples do not capture marine particles very well (Suter et al., 2017). As a result, differences from the expected percent N loss partition in water column samples are due to missing denitrifiers. (3) The rapid loop between NO$_3^-$ and NO$_2^-$ described previously functions as an “engine” to generate NH$_4^+$ for anammox at the expense of denitrification. The observed magnitudes of NO$_3^-$ reduction and NO$_2^-$ oxidation and these processes’ ability to produce NH$_4^+$ from the remineralization of OM with standard C:N ratios without complete denitrification make this an additional logical hypothesis.

The third hypothesis, the NO$_2^-$/NO$_3^-$ loop, is supported by several pieces of evidence. Firstly, ‘omics studies have revealed widespread modular denitrification in OMZs (Sun et al., 2021b; Fuchsman et al., 2017). Furthermore, experimental studies have shown that as NO$_3^-$ reduction increases near the coast, anammox rates also increase (Kalvelage et al., 2013). Our study’s considerable number of data points, as well as our ability to compare results to rate measurements obtained from identical methods on previous cruises offers a unique chance to test both the variable denitrification and rapid loop hypotheses for elevated anammox rates.

OMZs are essential regions for the marine N cycle; however, the biogeochemistry of OMZs may currently be in flux due to anthropogenic pressures. Observational studies have reported decreases in O$_2$ across the Pacific (Ito et al., 2017) and the expansion of denitrification
and anoxia in the ETNP (Horak et al., 2016). Modeling studies suggest that OMZ volume will continue to grow in the near future, with uncertain impacts (Stramma et al., 2008; Keeling et al., 2010; Busecke et al., 2022). As a result, it is important to develop a thorough understanding of OMZ N cycling to be able to predict any changes in marine productivity as deoxygenated regions grow. This study contributes towards this goal through examining four open research questions in OMZ biogeochemistry:

1. Is the rapid cycle hypothesis correct, i.e., that NO$_3^-$ reduction and NO$_2^-$ oxidation rates are much greater than N loss rates, especially in the oxycline and ODZ top?

2. Does truly anaerobic NO$_2^-$ oxidation occur in OMZ regions?

3. If yes, is NO$_2^-$ dismutation the mechanism by which it occurs?

4. Is anammox the dominant N loss flux? If yes, what is the explanation?
Figure 1: Sampling locations during 2018 cruises to the ETNP OMZ. SR1805 stations (spring 2018) are shown in yellow while FK180624 (summer 2018) stations are shown in cyan. Stations PS1 and 18 are located in more oxic environments on the boundary of the OMZ region. The remaining FK180624 stations occur along a gradient towards the center of the OMZ region, represented by stations PS2 and FK180624 stations 2 and 3. These three stations are referred to as OMZ core stations. Station PS3 (referred to as coastal) represents a final biogeochemical subregion due to its proximity to the coast.

2. Methods

2.1 NO$_2^-$, NO$_3^-$, and NH$_4^+$ concentration measurements

Nutrient measurements on all cruises were conducted as follows. Ambient NO$_2^-$ concentrations were measured on each vessel using the sulfanilimide and NED colorimetric technique with a spectrophotometer (Strickland and Parsons, 1972). NO$_3^-$ profile samples were frozen onboard each ship, then thawed and measured immediately using the chemiluminescence method upon return to the Ward laboratory (Braman and Hendrix, 1989). Ambient NH$_4^+$ concentrations were measured on each ship using the OPA method (Holmes et al., 1999; Taylor et al., 2007; ASTM International, 2006). In some cases, NO$_2^-$ and NH$_4^+$ were measured on different casts than those of the rate measurements. In these cases, figures and calculations use interpolated nutrient values based on the potential density of nutrient sampling and rate measurement depths. Interpolations were performed with the Matlab pchip function.

2.2 NH$_4^+$ oxidation and NO$_3^-$ reduction rates

Incubation experiments were performed on board the R/V Sally Ride in March and April 2018 (SR1805). NH$_4^+$ oxidation and NO$_3^-$ reduction rates were measured at three stations: PS1 (open ocean OMZ boundary), PS2 (open ocean, OMZ), and PS3 (coastal OMZ) (Fig. 1). Rates were measured throughout the water column at ten depths per station (see supplemental Table S1 for depths). Water was directly sampled from the CTD into 60 mL serum vials. After overflowing three times, bottles were sealed with a rubber stopper and crimped with an
aluminum seal. After this, a 3 mL headspace of He was introduced and samples from below the oxygenated surface depths were purged for 15 min with He at a flow rate of 0.4 L min\(^{-1}\). This flow rate exchanged the volume of each bottle one hundred times. Immediately after this, 0.1 mL of tracer solution was added to all bottles. \(^{15}\text{NH}_4^+\) and \(^{15}\text{NO}_3^-\) tracers were added to reach final concentrations of 0.5 \(\mu\text{M}\) and 3 \(\mu\text{M}\), respectively. Five bottles were incubated per time course and incubations were ended at 0 (one bottle), 12, and 24 hours (two bottles each) via addition of 0.2 mL of saturated ZnCl\(_2\). Samples were analyzed at the University of Basel using a custom-built gas bench connected by a Conflow IV interface to a Delta V plus IRMS (Thermo Fisher Scientific). Five mL of the sample were used to convert \(\text{NO}_2^-\) to \(\text{N}_2\text{O}\) using the azide method (McIlvin and Altabet, 2005). A linear increase of \(^{15}\text{N}-\text{NO}_2^-\) over time, along with a standard curve to convert from peak area units to nmol N was used to calculate the \(\text{NO}_2^-\) production rates according to Eq. (5) and (6) below,

\[
\text{Ammonium oxidation rate} = \frac{d\,^{15}\text{NO}_2^-}{dt\,(F_{\text{NH}_4^+})} \tag{5}
\]

\[
\text{Nitrate reduction rate} = \frac{d\,^{15}\text{NO}_2^-}{dt\,(F_{\text{NO}_3^-})} \tag{6}
\]

where:

\[
\frac{d\,^{15}\text{NO}_2^-}{dt} \] is the slope of \(^{15}\text{NO}_2^-\) produced over time and

\(F_{\text{NH}_4^+}\) and \(F_{\text{NO}_3^-}\) are the fraction of the \(\text{NO}_3^-\) and \(\text{NH}_4^+\) pools that are labelled with \(^{15}\text{N}\).

The significance of the rates was evaluated using a Student’s t test with a significance level of 0.05. The reported error bars are the standard error of the regression. The \(\text{NH}_4^+\) oxidation rates reported here were previously published and the experimental method used is more thoroughly described in this previous publication (Frey et al., 2022).
2.3 Anammox and denitrification rates depth profiles

Incubation experiments were performed during SR1805 in March and April 2018 and on the R/V Falkor (FK180624) during June and July 2018. As above, rates were measured at PS1, PS2, and PS3 at ten depths per station (see Supplementary Table S1 for sampling depths) during SR1805. On FK180624, rates were measured at eight stations that spanned a gradient from the core of the OMZ region to its edges (see Supplementary Table S2 for sampling depths). At all stations and depths water was directly sampled from the CTD into 320 mL borosilicate ground glass stoppered bottles. After overflowing three times, bottles were stoppered with precision ground glass caps specifically produced to prevent gas flow. The bottles were transferred to a glove bag and amended with the following treatments: 3 µM each of 15NO$_2^-$ and 14NH$_4^+$ (denitrification and anammox) and 3 µM each of 15NH$_4^+$ and 14NO$_2^-$ (anammox) on SR1805. 2 µM amendments of 15NO$_2^-$ and 14NH$_4^+$ were used on FK180624. It should be noted that at many depths our tracer additions were far above in situ values. Due to this, all anammox and denitrification rates with high changes from baseline nutrient concentrations represent potential rates. Eight mL of tracer amended seawater was aliquoted into 12 mL exetainers (Labco). Exetainers were sealed in a glove bag with butyl septa and plastic screw caps that had been stored under helium for at least one month, removed and then purged for 5 min at 3 psi with helium gas to remove any O$_2$ that accumulated during sampling and processing. This step is another reason our anammox and denitrification rates sourced from partially or fully oxygenated waters should be regarded as potential rates.

Rates for each sampled depth were calculated using a five-timepoint time course with three replicates at each point. Incubations were ended by injecting 50 µL saturated ZnCl$_2$ and
vials were stored upside down to prevent the headspace from leaking through the vial cap during storage and transit. Six months after the cruise, samples were analyzed using a Europa 22-20 IRMS (Sercon). Raw data values were corrected for instrument drift due to run position and total N₂ mass. Drift corrected values and standard curves to convert from peak area units to nmol N₂ were used to calculate rates according to the equations below (Thamdrup et al., 2006; Thamdrup and Dalsgaard, 2000, 2002) (for more details see supplemental material),

Denitrification (from \(^{15}\)NO₂⁻)

\[
\text{Denitrification Rate} = \frac{d^{30}\text{N}_2}{dt(F_{\text{NO}_2})^2}
\]

(7)

Anammox (from \(^{15}\)NO₂⁻)

\[
\text{Anammox Rate} = \frac{d^{29}\text{N}_2}{dt F_{\text{NO}_2}} - 2D(1 - F_{\text{NO}_2})
\]

(8)

Anammox (from \(^{15}\)NH₄⁺)

\[
\text{Anammox Rate} = \frac{d^{29}\text{N}_2}{dt F_{\text{NH}_4}}
\]

(9)

where:

\[
\frac{d^{30 \text{ or } 29}\text{N}_2}{dt}
\]

is the slope of the regression of the amount of \(^{30 \text{ or } 29}\text{N}_2\) vs. time,

\(F_{\text{NO}_2}\) and \(F_{\text{NH}_4}\) are the fraction of the \(\text{NO}_2^–\) and \(\text{NH}_4^+\) pools labelled as \(^{15}\text{N},\) and

\(D\) is the denitrification rate calculated according to Eq. (7).

A Student’s t test with a significance level of 0.05 was used to evaluate all rates. The reported error bars are the standard error of the regression. Since the anammox rates measured via both tracers on the SR1805 cruise were similar in magnitude (Supplementary Table S3), anammox values reported in Figs. 2, 3, 6, 7, 8, and 9 are based on a combination of these values (see
supplementary material for more information). Previously published (Babbin et al., 2020) anammox and denitrification rates are sourced from four stations occupied during the R/V *Thomas G. Thompson’s* March and April 2012 cruise to the ETNP (TN278) and the RVIB *Nathaniel B. Palmer’s* June and July 2013 ETSP cruise (NBP1305) and were conducted in the same manner as the SR1805 and FK180624 incubations. Crucially, the same mass spectrometer was used to measure N loss rates across the 2012, 2013, and 2018 cruises. Station locations for the 2012 and 2013 cruises were as follows: TN278 ETNP coastal (20° 00’ N, 106° 00´ W), ETNP offshore (16° 31´ N, 107° 06´ W) and NBP1305 ETSP coastal (20° 40´ S, 70° 41´ W), ETSP offshore (13° 57´ S, 81° 14´ W).

2.4 SR1805 NO_2^- oxidation depth profiles

Nitrite oxidation depth profiles were measured in the same exetainers used to measure anammox and denitrification depth profiles ($^{15}\text{NO}_2^-$ treatment only). The rate of NO_2^- oxidation was determined by converting the NO_3^- produced during the incubations to N_2O using the denitrifier method (Weigand et al., 2016; Granger, J., & Sigman, 2009) (see supplemental material for methods details). The samples were stored at room temperature in the dark until analysis on a Delta V (Thermo Fisher Scientific) mass spectrometer that measures the isotopic content of N in N_2O (Weigand et al., 2016). Samples were corrected for instrument drift due to run position and total N_2 mass (for more details see supplemental materials). Drift corrected $\delta^{15}\text{N}$ values and a standard curve were then used to calculate the rate as follows,

$$
\frac{^{15}\text{N}}{^{14}\text{N}} = \left[\frac{\delta^{15}\text{N}}{1000} + 1 \right] \times 0.003667 \overline{1 - 0.003667}
$$

(10)
\[\text{NO}_2^\text{oxygen}\text{ rate} = \frac{d}{dt} \left[\frac{^{15}\text{N}}{^{14}\text{N}} \times ^{44}\text{N}_2\text{O}_{\text{area}} \right] \]

(11)

where Eq. (10) is a rearrangement of the definition of \(\delta^{15}\text{N} \):

\[\delta^{15}\text{N} = \left[\frac{^{15}\text{N}_{\text{sample}}}{^{15}\text{N}_{\text{air}}} \right] \times 1000 \]

(12)

and \(^{44}\text{N}_2\text{O}_{\text{area}}\) is the amount of \(^{44}\text{N}_2\text{O}\) measured as sample peak area in \(\text{V} \cdot \text{sec} \). 0.003667 is the natural abundance of \(^{15}\text{N}\) in air. A Student’s t test with a significance level of 0.05 was used to evaluate all rates. Reported error bars are the standard error of the regression. Previously published (Babbin et al., 2020) \(\text{NO}_2^- \) oxidation rates are from the previously mentioned TN278 and NBP1305 cruises and were conducted at the same four stations where N loss rates were measured. These \(\text{NO}_2^- \) oxidation rate measurements were conducted according to the same procedures used for the SR1805 depth profiles.

2.5 \(\text{NO}_2^- \) oxidation and \(\text{O}_2 \) manipulation experiments

Experiments were conducted during cruises SR1805 and FK180624 in spring and summer 2018. Wide-mouthed Pyrex round media bottles (800 mL total volume, 500 mL working volume; Corning, USA; product code 1397-500) were used for all incubations. These bottles were modified to include three stainless steel bulkhead fittings (Swagelok, USA) secured to the interior of the lid with a Viton rubber gasket and stainless-steel washer between the lid and the sealing nut. The three ports consisted of two one-eighth inch fluidic ports (inflow and outflow) and one one-quarter inch sampling port. The fluidic ports were fitted with one-eighth inch nylon tubing, with the inflow line penetrating to the base of the bottle. The one-quarter inch
sampling port had a butyl rubber septum between the Swagelok stem and nut. This setup permitted continuous gas purging of the bottles while maintaining an otherwise closed system.

For each depth and O$_2$ treatment, three bottles were filled to 500 mL with sample water from a Niskin bottle and closed. Sample water for all experiments except station 18 on the FK180624 cruise was drawn from water below 2.2 µM O$_2$ (See Table S4 for all ambient O$_2$ values). Highly precise digital mass flow controllers (Alicat) were then used to establish the desired O$_2$ concentrations in each bottle. Mixing ratios were calculated to create a range of O$_2$ concentrations spanning 1 nM, 10 nM, 100 nM, 1 µM, and 10 µM. The gas mixture modified by the mass flow controllers was a zero-air gas mixture (Airgas) consisting of 21% O$_2$ and 79% N$_2$ and 1000 ppm pCO$_2$ (the approximate in situ value). Initial gas flow was 1 L min$^{-1}$ for 1 hour to equilibrate the seawater followed by 100 mL min$^{-1}$ for the remainder of the experiment. Bottles were daisy-chained together to maintain the same flow rate among them (two bottles on SR1805, six on FK180624). As in the depth profile experiments, 3 µM 15NO$_2^-$ amendments were added prior to purging. Incubations were conducted in the dark at 12ºC in a cold room (SR1805) or beverage cooler (FK180624). At the beginning of the experiments, after purging for one hour, O$_2$ was checked with a LUMOS optode with a detection limit of 0.5 nM (Lehner et al., 2015) and CO$_2$ was checked by measuring pH using the colorimetric meta-cresol purple method. The LUMOS optode confirmed that O$_2$ concentrations were within a few nM of the calculated values.

While our use of high precision digital mass flow controllers and this qualitative O$_2$ check provide confidence that our O$_2$ concentrations are accurate, due to the fact that O$_2$ was not continuously monitored through the time course, we refer to each O$_2$ concentration as a “putative” concentration for the remainder of this manuscript. Samples (50 mL) were withdrawn every 12 hours for two days with a four inch hypodermic needle attached to a 60 mL disposable
plastic syringe. Samples were ejected into acid-cleaned HDPE bottles pre-amended with 200 µL of saturated ZnCl₂ solution. Bottles were screwed closed and wrapped with parafilm. Samples from each of the three initially collected bottles were collected to create triplicates at each time point.

2.6 NO₂⁻ dismutation experiments

Nitrite dismutation experiments were performed during SR1805 at Station PS3 (coastal waters) at two deoxygenated depths: 60 m and 160 m. Incubations were performed in the same manner as the above anammox, denitrification, and NO₂⁻ oxidation experiments where all three rates were measured in the same exetainers. Experiments consisted of eight total treatments: four varying ^1⁵NO₂⁻ tracer concentrations (1.125, 5.25, 10.5, and 20.25 µM for 160 m and 0.75, 1.5, 3.75, and 7.5 µM for 60 m) and two ^1⁴NO₃⁻ treatments (0 or 20 µM). As above, both ^3⁰N₂ and NO₃⁻ production via the denitrifier method (Weigand et al., 2016) were measured. In order to test our hypothesis that, if dismutation is occurring, the unexplained NO₂⁻ oxidation rate (the difference between the measured NO₂⁻ oxidation and the NO₂⁻ oxidation due to anammox) and the denitrification rate (i.e. the ^3⁰N₂ production rate) should have a 3:1 ratio, a previously published anammox stoichiometry (Eq. (4) (Kuenen, 2008)) was used to calculate the NO₂⁻ oxidation due to anammox. The anammox rates used for this calculation are included in the supplementary material (Fig. S4).

2.7 Calculation of N loss from NH₄⁺ oxidation

The calculation of the maximum possible N loss from NH₄⁺ oxidation via NO disproportionation by ammonium oxidizing archaea (AOA) in Supplementary Table S5 was
carried out by dividing the measured NH$_4^+$ oxidation rate by two in accordance with the stoichiometry of NH$_4^+$ oxidation and NO disproportionation proposed in a previous study (Kraft et al., 2022). It should be noted that this operation represents the extreme case where all 15NO$_2^-$ produced in NH$_4^+$ oxidation is converted to N$_2$. We acknowledge this as an unrealistic assumption used to evaluate the extreme limits of the amount of total N loss attributable to NH$_4^+$ oxidation. This operation was carried out for all depths where NH$_4^+$ oxidation, anammox, and denitrification rates were measured, irrespective of O$_2$ concentration.

2.8 Redundancy analysis (RDA), Principle component analysis (PCA), and statistics

All RDA, PCA, redundancy, and correlation analyses were performed with the available packages in R (v4.2.1 “Funny-Looking Kid”) (R: A language and environment for statistical computing). All data were first normalized around zero before calculating the Pearson’s correlation coefficient. Gene abundances (nirS and amoA) from qPCR analyses used for the RDA and correlation analyses were measured as previously described (Peng et al., 2015; Jayakumar et al., 2009; Tang et al., 2022).

2.9 Definition of shallow boundary and ODZ core nomenclature

In the results and discussion sections, results are classified as shallow boundary or ODZ core waters according to a previously published threshold (Babbin et al., 2020) where shallow boundary samples have an in situ potential density < 26.4. This method is based on a global profile of OMZ waters meant to delineate shallow boundary samples as waters that are oxic or may be influenced by O$_2$ intrusions (the surface, the oxycline, and the ODZ top) from those that are not normally influenced by O$_2$ intrusions (ODZ core). Due to the fact that the potential
density threshold is based on a global average, a few depths that are clearly in the deep oxycline based on the SR1805 O$_2$ depth profiles are classified as ODZ core ($\sigma_\theta > 26.4$) by the potential density threshold. Despite this caveat we used this naming scheme throughout the remainder of the manuscript to enable comparisons to previous literature (Babbin et al., 2020).

<table>
<thead>
<tr>
<th>Depth</th>
<th>σ_θ</th>
<th>OMZ features</th>
<th>O_2 intrusions?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shallow boundary waters</td>
<td>< 26.4</td>
<td>Surface, oxycline, ODZ top</td>
<td>Yes</td>
</tr>
<tr>
<td>ODZ core</td>
<td>> 26.4</td>
<td>ODZ core</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 1: Explanation of shallow boundary waters and ODZ core potential density based nomenclature (Babbin et al., 2020).

3. Results

3.1 2018 depth profiles of all N cycling rates

N cycling depth profile experiments were conducted on two cruises (SR1805 and FK180624) during spring and summer 2018. These two cruises sampled stations along a gradient from the edge of the OMZ region to near the coast. Physical and chemical conditions varied among stations PS1, PS2, and PS3 on the SR1805 cruise (spring 2018) and across all FK180624 stations (summer 2018) (Fig. 2, Fig. S1). Broadly speaking, the vertical span of the ODZ increased and the top of the ODZ shoaled as distance to shore decreased. Deep SNM were observed at almost all stations with the only exceptions being the furthest offshore stations, stations 11 and 18 from the FK180624 cruise (Fig. S1) and station PS1 from SR1805 (Fig. 2A). Peak NO$_2^-$ values for all SNM were on the lower side of the range of previous ETNP observations (Horak et al., 2016), between 1.4 – 2.6 μM.

Of the five N cycling processes measured on the SR1805 cruise, NO$_3^-$ reduction rates had the greatest magnitude at most depths. This trend was most pronounced within the upper ODZ, where NO$_3^-$ reduction rates peaked at station PS2, and the oxycline where NO$_3^-$ reduction rates
peaked at stations PS1 and PS3 (Fig. 2). Rates of \(\text{NO}_2^- \) oxidation closely tracked \(\text{NO}_3^- \) reduction in distribution; in fact, peak \(\text{NO}_2^- \) oxidation rates co-occurred with peak \(\text{NO}_3^- \) reduction rates at all three SR1805 stations, reaching maxima of \(\sim 40 \) (\(\text{NO}_2^- \) oxidation) and \(\sim 300 \) (\(\text{NO}_3^- \) reduction) nM N d\(^{-1}\) at PS3. However, the magnitudes of \(\text{NO}_2^- \) oxidation rates were usually lower than \(\text{NO}_3^- \) reduction rates, sometimes by as much as eightfold. The third N recycling process, NH\(_4^+\) oxidation, peaked at or above the oxycline, with peaks of 10 nM N d\(^{-1}\) or less. NH\(_4^+\) oxidation was consistently measured to be zero or near-zero throughout the rest of the water column.
Figure 2: SR1805 depth profiles of physical parameters and N cycling rates. (A) From left to right, O$_2$ (μM) and NO$_3^-$ (μM) respectively in blue and black, NH$_4^+$ (nM) and NO$_2^-$ (μM) respectively in purple and black, temperature (°C) and σ$_\theta$ (kg m$^{-3}$) respectively in pink and black, NO$_2^-$ oxidation and NO$_3^-$ reduction rates (nM N d$^{-1}$) respectively in cyan and black, anammox and denitrification rates (nM N$_2$ d$^{-1}$) respectively in black and green, NH$_4^+$ oxidation rates (nM N d$^{-1}$), and percent anammox respectively in coral and black for station PS1 (offshore). (B) As above but for station PS2 (OMZ). (C) As above but for station PS3 (coastal). Rates that are significantly different from zero are shown as filled circles, open circles signify rates not significantly different from zero. Error bars are the standard error of the regression. Grey dotted lines indicate upper and lower ODZ boundaries at the time of sampling.

Across all SR1805 and FK180624 stations, the magnitude of the N loss processes of anammox and denitrification was almost always less than 10 nM N$_2$ d$^{-1}$, a much lower magnitude than the N recycling processes of NO$_3^-$ reduction and NO$_2^-$ oxidation. Like NO$_3^-$ reduction and NO$_2^-$ oxidation, the two N loss rates peaked in the upper ODZ or right at the oxycline in all three SR1805 stations, although a deep peak (850 m) in anammox was observed at station PS2 (Fig. 2B). This peak occurred near the bottom of the ODZ at an O$_2$ concentration of 1.5 μM. N loss rates also peaked near the oxycline in the three FK180624 stations with broad coverage of the ODZ water column, stations 2, 9 (6 July sampling), and 9 (9 July sampling) (Fig. S1). The relative balance between the two N loss processes as measured by percent anammox varied widely across the water column but largely deviated from the expected partitioning of at most 29% anammox (Dalsgaard et al., 2003, 2012). A striking example of this is that 100% anammox values were observed in both ODZ core and shallow boundary (see Table 1 for definitions) samples at many of the SR1805 and FK180624 stations (Fig. 2, Fig. S1).

3.2 Anaerobic NO$_2^-$ oxidation and O$_2$ manipulation experiments

Significant NO$_2^-$ oxidation rates were detected in depth profiles across a range of suboxic O$_2$ concentrations (1 – 5 μM) (definition from (Berg et al., 2022)) across all SR1805 stations, often at the same depths and in the same vials where the obligately anaerobic processes of
anammox and denitrification were occurring (Fig. 2, Fig. 3A-C, Fig. S2). In order to contextualize our observations, we compared our results to previously published measurements from the TN278 and NBP1305 cruises performed with identical procedures (Babbin et al., 2020). The highest rates were observed in shallow boundary waters across all three cruises (Fig. 3A-C, Fig. S2). Since low but significant levels of O$_2$ can still support aerobic NO$_2^-$ oxidation, a series of O$_2$ manipulation experiments was carried out on both the SR1805 (spring) and FK180624 (summer) 2018 cruises (Fig. 4A-F and Fig. S3). In these experiments, anoxic conditions were checked using a LUMOS O$_2$ optode with a detection limit of 0.5 nM (Lehner et al., 2015). We observed significant NO$_2^-$ oxidation, as well as NO$_3^-$ reduction at putative concentrations as low as 1 nM. Notably, compared to previous experiments, gas flushing was constant, with a refresh time of 8 min, so as to maintain O$_2$ levels within the incubation even while organisms were respiring. At 1 nM, O$_2$ is so scarce that such waters are usually classified as functionally anoxic, for example, a recent review paper defined 3 nM as the threshold below which O$_2$ cannot play biological or biogeochemical roles (Berg et al., 2022). As a result, these experiments present convincing additional evidence for the occurrence of NO$_2^-$ oxidation up to ~100 nM N d$^{-1}$ at O$_2$ concentrations too low to support aerobic metabolisms.
Figure 3: NO$_2^-$ oxidation rates (nM N d$^{-1}$) from the 2018 SR1805 (squares), 2012 ETNP TN278 (circles), and 2013 ETSP NBP1305 (diamonds) cruises vs. (A) O$_2$ concentration (µM) from shipboard CTD sensors, (B) anammox rates (nM N$_2$ d$^{-1}$), and (C) denitrification rates (nM N$_2$ d$^{-1}$). O$_2$ concentrations were normalized across cruises. In A, rates that are significantly different from zero as assessed via a Student T-test (p value < 0.05) are displayed as filled symbols, while insignificant NO$_2^-$ oxidation rates are shown as open symbols. Rates measured in shallow boundary waters are colored orange while rates from the ODZ core and below are colored teal. 2012 and 2013 data are republished (Babbin et al., 2020).
Figure 4: Oxygen manipulation experiments that show NO$_2^-$ oxidation (purple) (A-C) and NO$_3^-$ reduction (green) (D-F) rates (nM N d$^{-1}$) measured across putative O$_2$ concentrations from 1 to 10,000 nM during the SR1805 cruise. Experiments were conducted with waters from the ODZ top: 93 – 110m (PS1) (A, D), 113 – 130m (PS2) (B, E), and 45 – 60m (PS3) (C, F). Error bars are the standard error of the regression. All rates were significantly different from zero.

3.3 NO$_2^-$ dismutation

In order to investigate the mechanism for the observed anaerobic NO$_2^-$ oxidation, experiments were conducted to search for evidence of NO$_2^-$ dismutation. If NO$_2^-$ dismutation is the dominant explanation for the observed anaerobic NO$_2^-$ oxidation, we hypothesized that (1) adding NO$_3^-$ should suppress both 30N$_2$ and NO$_3^-$ production by LeChatelier’s principle, (2) increasing 15NO$_2^-$ concentration should increase both denitrification (the 30N$_2$ production rate) and NO$_2^-$ oxidation especially when no additional NO$_3^-$ was added, and (3) that the ratio between the “unexplained NO$_2^-$ oxidation,” i.e., the difference between the observed NO$_2^-$
oxidation and the NO$_2^-$ oxidation due to anammox, and the observed denitrification (30N$_2$ production) rate should be close to 3:1. In experiments with He-purged water from two deoxygenated depths (60 and 160 m at station PS3, see table S5 for O$_2$ values) during the SR1805 cruise we observed that adding 20 µM NO$_3^-$ suppressed NO$_2^-$ oxidation across nearly all pairs of 0 and 20 µM NO$_3^-$ experiments where the NO$_2^-$ concentration was identical (Fig. 5). However, we did not observe a simultaneous suppression of N$_2$ production due to the fact that the measured denitrification rate was low and insignificantly different from zero in most of our 16 treatments (Fig. 5). The lack of an observed response in N$_2$ production could be due to already elevated ambient NO$_3^-$ concentrations, 26 µM and 22.2 µM at 60 m and 160 m respectively. Roughly doubling the amount of NO$_3^-$ would have little effect on the denitrification rate if the relevant enzymes were already saturated, as is plausible at those concentrations. As a result of our inability to observe denitrification, our first hypothesis yielded little evidence of dismutation.

Across all four 60 m 0 µM added NO$_3^-$ treatments (Fig. 5A), adding NO$_2^-$ did increase NO$_2^-$ oxidation; however, we did not observe an increase in denitrification. Surprisingly, across the four 60 m 20 µM added NO$_3^-$ treatments, adding NO$_2^-$ decreased NO$_2^-$ oxidation, the reverse of our hypothesis (Fig. 5). Across all four 160 m 0 µM added NO$_3^-$ treatments, we also observed an increase in NO$_2^-$ oxidation at higher NO$_2^-$ concentrations but did not observe an increase in the measured denitrification rate (Fig. 5B). In the four 160 m 20 µM added NO$_3^-$ treatments, NO$_2^-$ oxidation and denitrification did not increase with NO$_2^-$ concentration (Fig. 5B). Due to the consistently low and insignificant denitrification rates our test of the NO$_2^-$ addition hypothesis also yielded little evidence for dismutation.
Figure 5: NO$_2^-$ dismutation tests conducted in deoxygenated waters from 60m (A) and 160m (B) at station PS3 during the SR1805 cruise. Measured NO$_2^-$ oxidation rates (nM N d$^{-1}$) are displayed in blue, unexplained NO$_2^-$ oxidation rates, the difference between the measured NO$_2^-$ oxidation and the NO$_2^-$ oxidation due to anammox (nM N d$^{-1}$), are shown in purple. The predicted denitrification (nM 30N$_2$ d$^{-1}$) if all the unexplained NO$_2^-$ oxidation was due to NO$_2^-$ dismutation is shown in green. The measured denitrification rate (nM 30N$_2$ d$^{-1}$) is shown in yellow where filled circles indicate significant rates and open circles indicate rates that are not significantly different from zero. All bars filled with colors indicate significant rates (i.e. the white bar for the 60 m 1.5 µM 15NO$_2^-$, 0 µM NO$_3^-$ treatment NO$_2^-$ oxidation rate denotes an
insignificant rate). Error bars are the standard error of the regression for NO$_2^-$ oxidation, or are calculated based on the rules of error propagation from the standard error of the regressions for the NO$_2^-$ oxidation and anammox rates. (+) NO$_3^-$ treatments received 20 µM 14NO$_3^-$ additions while the (-) NO$_3^-$ treatments received no addition. Anammox rates used to calculate the unexplained NO$_2^-$ oxidation rate are shown in the supplementary material.

We were also unable to observe evidence for the ratio hypothesis due to the paucity of significant denitrification (30N$_2$ production) rates (Fig. 5). Since denitrification rates were consistently low or insignificantly different from zero, the ratio of NO$_2^-$ oxidation to denitrification deviated from the 3:1 ratio expected if NO$_2^-$ dismutation accounts for most of the observed NO$_2^-$ oxidation. The only slight exception to this is the 60 m treatment with 0.75 µM 15NO$_2^-$ and 0 µM added NO$_3^-$, the treatment closest to in situ conditions. In this treatment, the measured denitrification rate, while insignificantly different from zero on the basis of the p value of the regression, agrees with the predicted denitrification rate based on the 3:1 stoichiometry of dismutation. While our dismutation experiments as a whole suggest that NO$_2^-$ dismutation is not a likely explanation for observed anaerobic NO$_2^-$ oxidation, results from the 60 m 0.75 µM 15NO$_2^-$, 0 µM NO$_3^-$ treatment provide slight justification to continue tests of this hypothesis.

4. Discussion

4.1 Rapid NO$_2^-$ / NO$_3^-$ cycle

Depth profiles of N transformation rates obtained on the SR1805 cruise show that the rates of NO$_2^-$ oxidation and NO$_3^-$ reduction are far greater than rates of the N loss processes of anammox and denitrification, especially in shallow boundary (see Table 1 for definition) waters (Fig. 2, Fig. 6A – B). In fact, when the combined N recycling pathways of NO$_2^-$ oxidation and NO$_3^-$ reduction are compared to the total N loss, the N recycling pathways are 3.2 – 192.8 times larger than the total N loss. That the minimum ratio is ~3 strongly emphasizes the
preponderance of NO$_2^-$ oxidation and NO$_3^-$ reduction above N loss processes. As expected due to the oligotrophic nature of the offshore ETNP (Fuchsman et al., 2019) and as previously found in an ETSP N cycling study (Kalvelage et al., 2013), NO$_2^-$ oxidation and NO$_3^-$ reduction generally increased from the offshore station (PS1) towards the coast. We observed NO$_3^-$ reduction rates of a similar magnitude to previously reported ETSP studies (Kalvelage et al., 2013; Babbin et al., 2017), a finding that generalizes the predominance of NO$_3^-$ reduction to NO$_2^-$ to the ETNP. Thus, our work supports several recent studies (Babbin et al., 2020, 2017; Peters et al., 2016) suggesting that most nitrogen within OMZ regions is continuously recycled between NO$_2^-$ and NO$_3^-$ by rapid NO$_2^-$ oxidation and NO$_3^-$ reduction, especially in shallow boundary waters.

A previous work (Babbin et al., 2017) predicted that NO$_3^-$ reduction should follow a Martin curve (Martin et al., 1987) power law distribution across the water column due to its dependence on the OM flux from shallower waters. Such a distribution was observed at stations PS1 and PS3; however, NO$_3^-$ reduction at station PS2 did not follow a classical Martin curve profile since the NO$_3^-$ production peak is well below the oxycline. This exception could be due to zooplankton which have been observed to migrate into the ODZ on a daily basis (Bianchi et al., 2014). Due to the fact that migrating zooplankton funnel surface OM to the mesopelagic (Cram et al., 2022), such a transfer would move OM in a pattern not consistent with the Martin curve. The transferred OM could then support the observed peak in NO$_3^-$ reduction (Fig. 2).

These results are consistent with the idea, also supported by many recent studies (Kalvelage et al., 2013; Lam and Kuypers, 2011; Lam et al., 2009; Babbin et al., 2020, 2017; Füssel et al., 2011; Lam et al., 2011), that the accumulated NO$_2^-$ in the SNM usually results from an imbalance between NO$_3^-$ reduction and other N cycling pathways. We further investigated
this hypothesis by constructing a net NO$_2^-$ budget derived from the five microbial N cycling
metabolisms measured on the SR1805 cruise (Fig. 7). Summing the depth profiles of NO$_2^-$
consumption (anammox, denitrification, and NO$_2^-$ oxidation) and production (NH$_4^+$ oxidation
and NO$_3^-$ reduction) pathways revealed that net depth integrated NO$_2^-$ production across the
sampled OMZ water column depths is on the order of tens of millimoles of NO$_2^-$ per square
meter per day at all three stations (8.19 at PS1, 14.49 at PS2, and 28.97 mmol NO$_2^-$ m$^{-2}$ d$^{-1}$ at
PS3). This excess NO$_2^-$ is driven by NO$_3^-$ reduction, which across all stations is of a much
greater magnitude than all other measured N cycling processes (Fig. 2 and Fig. 7).

These budget calculations take the reported rates at face value, ignoring the likelihood
that some of them are potential rates. For example, anammox might have been enhanced by the
addition of 3 µM NH$_4^+$. Denitrification is less likely to be stimulated by the addition of NO$_2^-$
because it is generally limited by organic matter availability (Ward et al. 2008, Babbin et al
2014). Thus, the relative importance of anammox and denitrification might be perturbed due to
differential responses of the two rates to tracer additions. Analogously, NO$_2^-$ oxidation was
likely stimulated by addition of NO$_2^-$ tracer (Sun et al. 2017), but NO$_3^-$ reduction less so by
addition of NO$_3^-$ tracer because the latter is a heterotrophic process, and as a component of the
complete denitrification pathway, likely limited by organic matter availability. These differential
limitations by substrate probably mean that the calculated budget of Figure 7 is not completely
accurate, but the relative importance of the processes is robust. If anything, the dominance of
anammox over denitrification is probably less than that observed, and the excess of NO$_3^-$
reduction over NO$_2^-$ oxidation greater than observed. Overall, the dominance of the NO$_3^-$ / NO$_2^-$
loop over the N loss pathways and the overwhelming importance of NO$_3^-$ reduction are both
supported by these considerations.
Additional support that \(\text{NO}_3^- \) reduction supplies the accumulated \(\text{NO}_2^- \) in the SNM can be found by comparing the net \(\text{NO}_2^- \) production rates with the measured \(\text{NO}_2^- \) concentrations along the SR1805 cruise track from offshore station PS1 to coastal station PS3. As would be expected if the SNM depended on \(\text{NO}_2^- \) derived from \(\text{NO}_3^- \) reduction, the peak net \(\text{NO}_2^- \) production value across all depths at each station, the depth integrated \(\text{NO}_2^- \) production values for each station, and the magnitude of the SNM peak \(\text{NO}_2^- \) concentrations all increase together from offshore station PS1 to coastal station PS3. Importantly, we did not take into account water column mixing in both vertical and horizontal directions that would carry away produced \(\text{NO}_2^- \) or \(\text{NO}_3^- \) assimilation into OM, and we recommend follow up studies that include parameterizations for these values in OMZ N Cycling modeling.
Figure 6: (A) NO$_3^-$ reduction (nM N d$^{-1}$) vs. Total N loss (the sum of denitrification and anammox in nM N$_2$ d$^{-1}$) from the SR1805 cruise. (B) NO$_2^-$ oxidation (nM N d$^{-1}$) vs. Total N loss from the SR1805 cruise. (C) NO$_2^-$ oxidation vs. NO$_3^-$ reduction. Regression lines and statistics are shown for the significant rates from shallow boundary waters only (orange), ODZ core waters only (teal), and all significant data (grey). All points from shallow boundary waters are colored orange while all points from the ODZ core or below are colored teal. Open circles indicate points where the NO$_3^-$ reduction rate (A), NO$_2^-$ oxidation rate (B), or in (C) either NO$_3^-$ reduction or NO$_2^-$ oxidation rate is not significantly different from zero while filled circles indicates rates significantly different from zero.
Figure 7: NO$_2^-$ budget profiles from the SR1805 cruise. Plots are a combination of the NO$_2^-$ production pathways of NO$_3^-$ reduction (cyan), NH$_4^+$ oxidation (dark purple) and the NO$_2^-$ consumption pathways of anammox (light green), denitrification (bright purple), and NO$_2^-$ oxidation (dark green). Consumption pathways are reported as negative numbers. All rates are reported in nM NO$_2^-$ d$^{-1}$. The net NO$_2^-$ production or consumption rate (nM NO$_2^-$ d$^{-1}$) is represented as a grey line for each depth. Grey boxes indicate the completely deoxygenated ODZ region at each station at the time of sampling. (A) PS1, (B) PS2, and (C) PS3.
4.2 NO$_2^-$ oxidation – distribution and magnitude in comparison to previous studies

The high rates of observed NO$_3^-$ reduction provide sufficient NO$_2^-$ to support NO$_2^-$ oxidation both in the oxycline and in the ODZ, as previously proposed (Anderson et al., 1982). Our observations also further confirm isotopic studies that suggested high NO$_2^-$ oxidation rates because rapid re-oxidation of NO$_2^-$ back to NO$_3^-$ was necessary to achieve isotopic mass balance (Buchwald et al., 2015; Casciotti et al., 2013; Granger and Wankel, 2016). Our results also align with previous experimental observations of high NO$_2^-$ oxidation rates (Kalvelage et al., 2013; Babbin et al., 2020; Lipschultz et al., 1990). Support for a closely connected rapid cycle between the two processes can be seen in the strong correlation between NO$_2^-$ oxidation and NO$_3^-$ reduction observed in all SR1805 cruise samples, especially those from shallow boundary waters (Fig. 6C, Fig. 8). Similarly to some previous ETSP papers (Babbin et al., 2017, 2020; Frey et al., 2020) and two ETNP studies (Peng et al., 2015; Sun et al., 2017) we observed that rates of NO$_2^-$ oxidation, like rates of NO$_3^-$ reduction, peaked in the oxycline or in the ODZ top (Fig. 2) and then declined throughout the ODZ. Unlike some stations in these studies (Babbin et al., 2020, 2017) we did not observe a second peak in NO$_2^-$ oxidation near the deep oxycline. In addition to observing a similar distribution, we also observed that NO$_2^-$ oxidation occurs at a similar magnitude to some stations in previous ETSP studies (Babbin et al., 2020, 2017; Peng et al., 2016) and ETNP (Peng et al., 2015), although our highest rates (25 – 40 nM N d$^{-1}$) were much lower than the peaks measured at other stations in most of these reports (Babbin et al., 2020; Peng et al., 2015, 2016), which reached as high as ~600 nM N d$^{-1}$ (Peng et al., 2015; Lipschultz et al., 1990).
Figure 8: (A) Redundancy analysis of all environmental variables and microbial rates measured on the SR1805 cruise. Points are color-coded by station, black (PS1), yellow (PS2), and cyan (PS3). Variables names and arrows are color coded so that environmental variables are blue and rate measurements are red. (B) Correlation analysis for all environmental variables and microbial N cycle rates from the SR1805 cruise. More positive correlations are shaded to become bluer as significance grows while negative correlations are shaded to become whiter as significance grows. Abbreviations used are as follows: O2 (oxygen concentration normalized across different sensors), PAR (photosynthetically active radiation normalized across sensors), NH4ox (NH$_4^+$ oxidation rate), Fl (chlorophyll fluorescense normalized across different sensors), NH4 (NH$_4^+$ concentration), amoA (amoA abundance), NO3reduce (NO$_3^-$ reduction rate), NO2ox
(NOO_2^- oxidation rate), AMXrate (anammox rate), NO3 (NOO_3^- concentration), DNrate (denitrification rate), NO2 (NOO_2^- concentration), and nirS (nirS abundance).

4.3 NOO_2^- oxidation – can it occur anaerobically?

NOO_2^- oxidation depth profiles (Figs. 2, 3) and O$_2$ manipulation experiments (Fig. 4) provide further evidence that NOO_2^- oxidation can occur even when O$_2$ is as low as ~1 nM. While our O$_2$ manipulation experiments provide the most convincing evidence of anaerobic NOO_2^- oxidation, several factors argue that the NOO_2^- oxidation observed in our depth profile incubations may be O$_2$ independent. As argued previously (Babbin et al., 2020):

1. The pre-incubation He purging step in our depth profile method removes more than 99% of the N$_2$ present in exetainers (Babbin et al., 2020). If it is assumed that O$_2$ is removed at identical efficiency, a reasonable proposition since O$_2$ equilibrates faster than N$_2$ (Wanninkhof, 1992), the introduction during sample processing of as much as 1 µM O$_2$ would result in a ~10 nM contamination. As a result, if NO$_2$ oxidation is observed in samples from the deoxygenated ODZ core, contamination during sampling would be kept very small by our purging step. This conclusion was further validated by direct O$_2$ measurements using Lumos sensors in exetainers. These tests of our purging method showed that O$_2$ was reduced to less than 10 nM in 5 minutes (Sun et al. unpublished data).

2. Linear timecourses across all timepoints were observed in some of our experiments, including many from deoxygenated depths at station PS3 (Supplemental Figs. S7-9). If NO$_2^-$ oxidation depended on O$_2$, an initial acceleration (due to O$_2$ contamination that sparked NO$_2^-$ oxidation) or later steep drop (due to the exhaustion of O$_2$ by aerobic NOB) in NO$_2^-$ oxidation would be expected, not a consistent linear slope.
Metagenomic evidence has revealed distinct NOB communities in oxic surface waters, the oxycline and ODZ top, and the ODZ core in OMZ regions (Sun et al., 2019). In addition we observed decreasing NO$_2^-$ oxidation rates with increasing in situ O$_2$ in the SR1805 incubations as well as the TN278 and NBP1305 incubations (Fig. 3A). These observations are consistent with the hypothesis that aerobic NOB from oxic depths are ill-equipped to oxidize NO$_2^-$ in deoxygenated conditions but that the unique MAGs recently identified in draft genomes from the ODZ top and core (Sun et al., 2019), are adapted to perform anaerobic NO$_2^-$ oxidation.

Through plotting O$_2$ concentrations against the ratio between NO$_3^-$ reduction and NO$_2^-$ oxidation at all SR1805 depths with significant, positive NO$_2^-$ oxidation rates, we observed that the known anaerobic process of NO$_3^-$ reduction and NO$_2^-$ oxidation did not exhibit differential regulation by O$_2$ as would be expected if NO$_2^-$ oxidation was an obligately aerobic process (Fig. S5).

Previous studies have shown that O$_2$ additions to purged incubations of ODZ waters can inhibit NO$_2^-$ oxidation (Sun et al., 2017, 2021a) and that NO$_2^-$ oxidation can occur in the absence of O$_2$ consumption (Sun et al., 2021a). However, another kinetics study has reported O$_2$ stimulation of NO$_2^-$ oxidation in OMZ waters (Bristow et al., 2016) and concluded that NO$_2^-$ oxidation is fundamentally an aerobic process. This apparent contradiction might be explained by several details in the experimental process of that study (Bristow et al., 2016):

1. The study site is at the farthest edge of the ETSP OMZ in a location that is only anoxic in the austral summer.

2. The cruise was conducted as austral summer turned to fall (March 20 – 26th), a period where O$_2$ intrusions would be more likely.
(3) O₂ data from the study’s cruise (Tiano et al., 2014) show that the depths from which NO₂⁻ oxidation O₂ kinetics samples were sourced experienced O₂ concentrations of 2 µM (50 m), 10 µM (40 m), and > 60 µM (30 m) either during sampling or a few days prior to sampling. As a result, we argue that the observed stimulation of NO₂⁻ oxidation by O₂ (Bristow et al., 2016) occurred not because all OMZ NOB are aerobic NO₂⁻ oxidizers, but instead because the location, season, and levels of O₂ of the sampled station selected for aerobic NOB in the source water for the purged incubations. Thus, as suggested by (Sun et al., 2017, 2021a), different NOB populations with different historical exposures to O₂ and adaptations likely respond differently to O₂ manipulations.

Here we built on the above previous tests of anaerobic NO₂⁻ oxidation by conducting a series of incubations across an O₂ gradient from ~1 nM to 10 µM. Site waters for these incubations were drawn from the ODZ top at each SR1805 station (Table S4). We did not observe a clear inhibitory or stimulatory response of NO₂⁻ oxidation to O₂ within the SR1805 or FK180624 stations; however, this lack of a clear response is in itself a revealing result - a lack of consistent stimulation by O₂ implies at least some anaerobic NOB were present. In addition, we consistently observed significant NO₂⁻ oxidation at all putative O₂ concentrations, including 1 nM, a concentration usually considered functionally anoxic. Since the O₂ in the incubations was continuously supplied by a mass flow controller and subsequently checked via an extremely sensitive O₂ sensor for all incubations, these results provide additional evidence that truly anaerobic NO₂⁻ oxidation can occur.

One argument against our characterization of the NO₂⁻ oxidation observed at ~1 nM O₂ as functionally anoxic is that the Kₘ of NO₂⁻ oxidation has been calculated to be as low as 0.5 nM (Bristow et al., 2016). However, the data used to calculate this value have the same
qualifications discussed previously: (1) the study site is at a location only anoxic during the austral summer, (2) the cruise was conducted during a time when \(\text{O}_2 \) intrusions would be more likely, and (3) the sampled waters experienced \(\text{O}_2 \) concentrations as high as 60 \(\mu \text{M} \) prior to sampling. Such conditions would favor aerobic NOB and the expression of high affinity \(\text{NO}_2^- \) oxidation enzymes by these organisms when exposed to low \(\text{O}_2 \) conditions in incubations. As a result, we argue that the modeled \(K_m \) value of 0.5 nM only applies when NOB with higher \(\text{O}_2 \) niches are placed in sub-micromolar \(\text{O}_2 \) conditions. This value does not apply to NOB observed to prefer ODZ conditions (Sun et al., 2019), which we assume would be favored under our 1 nM treatment.

These \(\text{O}_2 \) manipulation experiments also provided an opportunity to investigate the response of \(\text{NO}_3^- \) reduction to \(\text{O}_2 \). The only clear intra-station pattern that emerged from these experiments was that at station PS3, \(\text{NO}_3^- \) reduction displayed possible inhibition by \(\text{O}_2 \), as would be expected. Due to the small number of data points in our data set we did not attempt a kinetics fitting for this data. Interestingly, the disparity observed in depth profile experiments between the magnitudes of the \(\text{NO}_3^- \) reduction and \(\text{NO}_2^- \) oxidation rates was not observed in the \(\text{O}_2 \) manipulations across many \(\text{O}_2 \) concentrations at stations PS1 and PS2. At station PS3 a large disparity in the magnitudes of these processes as well as the highest overall \(\text{NO}_3^- \) reduction rates were observed, as in the depth profile experiments (Fig. 4, 7). A few of the FK180624 data points also exhibited \(\text{NO}_3^- \) reduction rates that were elevated far above \(\text{NO}_2^- \) oxidation (Fig. S3). These results confirm the importance of \(\text{NO}_3^- \) reduction for the rapid recycling cycle as well as the source of \(\text{NO}_2^- \) for the SNM.

4.4 \(\text{NO}_2^- \) dismutation
In the absence of O\textsubscript{2}, NO\textsubscript{2}− oxidation would require another oxidant. Many candidate oxidants have been suggested. For example, iodate (IO\textsubscript{3}−), an abundant marine species with global average marine concentrations of ∼0.5 μM (Nozaki, 1997; Lam and Kuypers, 2011), has been proposed and shown to stimulate NO\textsubscript{2}− oxidation (Babbin et al., 2017). However, since IO\textsubscript{3}− is usually absent within the ODZ core (Moriyasu et al., 2020), its low concentration makes IO\textsubscript{3}− mediated anaerobic NO\textsubscript{2}− oxidation in that location unlikely (Babbin et al., 2020). NO\textsubscript{2}− oxidation via Mn4+ or Fe3+ is thermodynamically feasible, but only at low pH (<6) (Luther, 2010; Luther and Popp, 2002). This pH constraint, combined with the fact that concentrations of these ions are on the order of a few nM in OMZs (Kondo and Moffett, 2015; Vedamati et al., 2015), makes these mechanisms unrealistic for the ODZ core. Another proposed mechanism is that the observed NO\textsubscript{2}− oxidation is due to anammox, which if true should result in an observed NO\textsubscript{2}− oxidation to anammox ratio of 0.16 – 0.3 (Kuenen, 2008; Strous et al., 1998; Oshiki et al., 2016). Instead, the observed ratio is sometimes more than 10x this range and NO\textsubscript{2}− oxidation is rarely observed to be less than anammox (Kalvelage et al., 2013; Babbin et al., 2020; Sun et al., 2021a).

Another alternative hypothesis is based on the reversibility of the nitrite oxidoreductase (NXR) enzyme. Since this enzyme has been suggested to both oxidize NO\textsubscript{2}− and reduce NO\textsubscript{3}− (Kemeny et al., 2016; Koch et al., 2015; Wunderlich et al., 2013), NO\textsubscript{3}− reduction by NXR could over time enrich the 15N-NO\textsubscript{3}− pool since lighter 14NO\textsubscript{3}− would be favored (Casciotti, 2009). Even in 15NO\textsubscript{2}− tracer experiments, in which the NO\textsubscript{2}− pool is highly labeled, this reversibility at the enzyme site could lead to an apparent transfer of 15N from the NO\textsubscript{2}− to the NO\textsubscript{3}− pool if NXR mediated NO\textsubscript{3}− reduction was occurring. This hypothesis is supported by observations of NO\textsubscript{3}− reduction under low O\textsubscript{2} in cultures from the NOB genera \textit{Nitrobacter} (Freitag et al., 1987; Bock et al., 1990), \textit{Nitrospira} (Koch et al., 2015), and in pure cultures of \textit{Nitrococcus mobilis} (Füssel...
et al., 2017). In addition, a recent study presented natural abundance isotopic evidence in pure
Nitrococcus mobilis cultures consistent with this mechanism (Buchwald and Wankel, 2022).

However, NXR reversibility has not been demonstrated for the abundant (Füssel et al.,
2011; Mincer et al., 2007) and sometimes dominant (Beman et al., 2013) OMZ NOB genera
Nitrospina. Furthermore, the sole source of the isotopic evidence for the enzyme reversibility
hypothesis, *Nitrococcus mobilis*, has a cytoplasm facing NXR substrate binding domain
(Buchwald and Wankel, 2022), a feature found to have an established evolutionary relationship
to NAR (the known NO$_3^-$ reductase enzyme family) in other *Nitrobacter* studies (Starkenburg et
al., 2008; Kirstein and Bock, 1993). The NXR substrate binding domains in *Nitrospina* are
oriented towards the periplasm and are not evolutionarily related to enzymes for NO$_3^-$ reduction
(Buchwald and Wankel, 2022; Sun et al., 2019). Due to these structural and phylogenetic
differences among NOB NXR, it is possible that the *Nitrospina* NXR may be unable to perform
NO$_3^-$ reduction as easily as other NOB genera. For all these reasons, it is not yet clear if the
enzyme reversibility hypothesis can explain all NO$_2^-$ oxidation measured under low O$_2$
conditions and other hypotheses should continue to be explored.

As a result of the above proposals’ shortcomings, this paper focused on the remaining,
most plausible hypothesis: NO$_2^-$ dismutation. Our tests for dismutation rested on three
hypotheses: (1) that NO$_3^-$ additions would inhibit both NO$_2^-$ oxidation and 30N$_2$ production by
LeChatelier’s principle, (2) that increasing 15NO$_2^-$ should energetically favor dismutation,
especially in treatments with no additional NO$_3^-$, and (3) that the ratio of non-anammox
mediated NO$_2^-$ oxidation to denitrification (30N$_2$ production) should be close to 3:1 if NO$_2^-$
dismutation explains most of the observed NO$_2^-$ oxidation. We observed repeated inhibition of
NO$_2^-$ oxidation by NO$_3^-$ but no inhibition of 30N$_2$ production due to the fact that denitrification
was consistently low and insignificantly different from zero across all treatments. In treatments with 0 µM added NO$_3^-$, increasing NO$_2^-$ generally increased NO$_2^-$ oxidation, but not denitrification. In addition, the ratio of anammox corrected NO$_2^-$ oxidation to observed denitrification deviated from dismutation’s 3:1 stoichiometry in almost all treatments. However, we did observe simultaneous inhibition of N$_2$ and NO$_3^-$ production as well as good agreement between the anammox corrected NO$_2^-$ oxidation / denitrification ratio to the NO$_2^-$ dismutation stoichiometry in one treatment - the treatment most similar to in situ conditions (60m, 0.75 µM 15NO$_2^-$, 0 µM NO$_3^-$). As a result, while our results show little evidence for dismutation overall, we recommend additional experiments at tracer levels similar to 0.75 µM 15NO$_2^-$ to further test for NO$_2^-$ dismutation.

4.5 Relative balance of anammox and denitrification

4.5.1 Are results consistent with past observations of slow, low, and steady anammox elevated above the predicted maximum of 29% of total N loss?

According to predictions based on the composition of average marine OM (Dalsgaard et al., 2003, 2012) anammox should account for at most 29% of the total N loss flux in OMZ regions. To test this hypothesis under a variety of conditions, regressions of denitrification vs. anammox rates were calculated for all samples from the SR1805, FK180624, TN278, and NBP1305 cruises. In order to compare our new data to a previous study (Babbin et al., 2020), which observed variations in the ratio of anammox and denitrification between samples from the ODZ top or above ($\sigma_0 < 26.4$, “shallow boundary waters,” (Babbin et al., 2020)) and samples from the deoxygenated ODZ core or below ($\sigma_0 > 26.4$, “ODZ core,” (Babbin et al., 2020)), regressions for all data (ODZ core), all data (shallow boundary), 2018 only (ODZ core), 2018
only (shallow boundary), 2012-13 (TN278, and NBP1305) only (ODZ core), and 2012-13 only (shallow boundary) were calculated (Table S6). All regressions deviated from the predicted 29% maximum anammox contour, although the regression from the 2012-13 cruises’ ODZ core samples was closest to the 30% anammox contour (Fig. 9A). We observed large differences in the percent anammox contours near 2012-13 and 2018 regressions. ODZ core samples from 2012-13 regressed onto a line between the 40 and 50% anammox contours while ODZ core samples from 2018 regressed onto a line between the 70% and 80% anammox contours. Differences in contouring were smaller for the shallow boundary samples, although the 2018 samples still regressed to a higher contour (just under 80%) than the 2013-13 samples (60%) (Fig. 9A). Our observations that all year and density based regressions fell within contours well above the theoretical prediction (Fig. 9A) and that anammox accounted for as much as 100% of the total N loss at many depths in 2018 samples (Fig. 2, Fig. 9B) is consistent with the many previous studies that observed anammox as the predominant OMZ N loss pathway (Lam et al., 2009; Thamdrup et al., 2006; Kuypers et al., 2005; Hamersley et al., 2007; Jensen et al., 2011).

Our new 2018 results do not contradict the idea (Dalsgaard et al., 2012) that anammox is often measured to be the bulk of total N loss but that large, episodic occurrences of denitrification can dwarf the consistent albeit low anammox contribution to total N loss. Under this view, these eruptions in denitrification return the time integrated balance of anammox and denitrification to its expected 29 and 71% values. In this scenario, our cruises’ sampling, like many but not all others, did not coincide with episodic high rates of denitrification.
Figure 9: (A) All 2012, 2013, and 2018 denitrification and anammox rates (nM N₂ d⁻¹), color-coded by σθ. ODZ core samples and lines are teal (σθ > 26.4) while shallow boundary samples and lines are orange (σθ < 26.4). Solid, dashed, and dotted lines respectively show regressions for all data, 2018 only, and 2012-13 data only. Dashed grey lines depict contours for percent anammox values. See Supplementary Table S6 for regression statistics. (B) Percent anammox vs. ambient NO₂⁻ for 2018 samples (left) and republished 2012 and 2013 samples (Babbin et al., 2020) (right). Points are colored according to the same scheme as panel A. Lines show the average percent anammox values in shallow boundary waters (orange) and the deoxygenated ODZ core (teal). (C) Percent anammox vs. all anammox (blue) and all denitrification (red) rates (nM N₂ d⁻¹). Regression lines shown for % AMX vs. anammox and denitrification rates follow the same color scheme as the data points. Error bars represent the standard error of the regression. (D) Percent anammox vs. anammox (blue) and denitrification (red) rates (nM N₂ d⁻¹) for 2018 only (left) and 2012-13 (right). Points and regression lines follow the same color scheme as in panel C. Data shown in the 2012-13 only panel are republished (Babbin et al., 2020).

4.5.2 Do results support a connection between rapid NO₃⁻ reduction and elevated anammox?

Our 2018 results question the previously proposed view (Babbin et al., 2020) that rapid NO₃⁻ reduction produces NH₄⁺ that in turn elevates anammox in oxycline and upper ODZ waters. While our data (Fig. 2) did find high rates of NO₃⁻ reduction in shallow boundary
waters, the 2018 N loss data do not show elevated shallow boundary (as compared to ODZ core) percent anammox values as would be expected if high NO$_3^-$ reduction were fueling elevated anammox in the oxycline and ODZ top. This difference between our 2018 data and some previous data (Babbin et al., 2020) in support of a connection between rapid NO$_3^-$ reduction and elevated anammox in the oxycline and ODZ top can be seen through a comparison of shallow boundary ($\sigma_0 < 26.4$ (Babbin et al., 2020)) and ODZ core ($\sigma_0 > 26.4$ (Babbin et al., 2020)) percent anammox values in the 2018 SR1805 and FK180624 cruises against the 2012-13 TN278 and NBP1305 cruises (Fig. 9B). 2012-13 samples showed a clear partitioning between the ODZ core and shallow boundary waters in terms of percent anammox values. In 2012-13, as would be expected if high oxycline and ODZ top NO$_3^-$ reduction were supplying NH$_4^+$ to anammox, shallow boundary samples have a higher average percent anammox value than ODZ core samples (Fig. 9B). In 2018, this partitioning was not present - the difference between the average percent anammox values in ODZ core and shallow boundary samples was much smaller (Fig. 9B). Interestingly, the total number of samples found to be 100% anammox also sharply diverged between 2012-13 and 2018. In the 2012-13 samples, only one shallow boundary sample was found to be 100% anammox. In 2018, many samples from both shallow boundary waters and the ODZ core were 100% anammox (Fig. 9B, Fig. S6).

These observed differences in the partitioning of anammox and denitrification between shallow boundary waters and the ODZ core across different years and places do not support the view that NH$_4^+$ from rapid NO$_3^-$ reduction of oxycline and ODZ top OM always elevates anammox rates. Instead, they suggest that other factors play an important role in setting the balance of anammox and denitrification. Interestingly, NO$_2^-$ concentrations spanned a much narrower range in the two 2018 SR1805 and FK180624 cruises than the 2012-13 TN278 and
NBP1305 cruises (Fig. 9B), a clue that the biogeochemical environment of the OMZ is subject to interannual variability. Observed differences in environmental variables like NO$_2^-$ and percent anammox partitioning between 2012, 2013, and 2018 suggest that the partitioning of total N loss must depend on additional yet to be identified environmental or biological interactions.

4.5.3 Correlations of percent anammox values to anammox and denitrification rates - comparison to previous literature

In order to re-examine the result (Babbin et al., 2020) that enhanced fractions of anammox are correlated to greater anammox rates and not lower denitrification (Fig. 9D right), we created percent anammox vs. anammox and denitrification regressions with the 2018 SR1805 and FK180624 data. In 2018, unlike in 2012-13 (Babbin et al., 2020), we observed significant relationships between percent anammox values and both the anammox and denitrification rates (Fig. 9D left). Regressions for the 2012-13 data showed that increases in % anammox values are correlated only to increases in anammox values, not decreases in denitrification (Babbin et al., 2020) (Fig. 9D right). The 2018 regressions, on the other hand, indicate that increases in % anammox are correlated with both increasing anammox and decreasing denitrification rates. The influence of this difference in the 2018 samples can be seen in regressions of % anammox against anammox and denitrification from all three cruises where a similar pattern to the 2018 data is observed (Fig. 9C). As above, this indicates a clear difference in the partitioning of anammox and denitrification between the 2018 SR1805 and FK180624 ETNP cruises and the 2012-13 TN278 and NBP1305 cruises to the ETNP and ETSP. Despite the significance of the relationships, the low R2 values indicate that these relationships do not explain most of the
variation in the anammox to denitrification ratio. As above, the causal mechanisms behind this variability remains to be elucidated.

4.5.4 Caveats about measurements of anammox and denitrification rates

One bias of our sampling scheme for N loss rates is that we do not capture particle adhering denitrifiers. Most denitrifiers that encode the last two steps of denitrification are found on large particles (Ganesh et al., 2013, 2015; Fuchsman et al., 2017). As a result, measurements of complete denitrification from 15NO$_2^-$ to 30N$_2$ that do not capture large particle communities will underestimate the rate. Unfortunately, due to the hydrodynamics of the CTD rosette it is unlikely that large particles will be trapped inside the Niskin bottle. In addition, the nipple of each Niskin is above the bottom of the bottle. As a result, the large particles that are successfully sampled by the CTD sink to the bottom of the Niskin and are not transferred into the experiment (Suter et al., 2017).

Another important caveat to some of the above conclusions in section 4.5 is that the detection limits for anammox and denitrification rates are not identical. It is easier to detect anammox for a variety of reasons. For example, anammox from a 15NH$_4^+$ tracer is more easily detected due to low background NH$_4^+$ across most of the OMZ. Anammox from the 15NO$_2^-$ tracer is more detectible due to its reliance on incorporation of only a single 15N atom into the 20N$_2$ product. Denitrification, on the other hand, is more difficult to detect because of higher background NO$_2^-$ concentrations and because definitive denitrification requires the rarer combination of two 15NO$_2^-$ molecules (Babbin et al., 2017).

We suspect that our sampling bias against particle based denitrification and denitrification’s higher detection limit may have played a role in our observations of
denitrification rates in the 2012, 2013, and 2018 cruises where, for example, significant
denitrification rates were only detected at four of the thirty depths sampled during SR1805
(Supplementary Table S3). As a result, while the comparisons made above are helpful to examine differences in N biogeochemistry across years and stations, the true biogeochemical role of denitrification is likely greater than our tracer experiments suggest.

An additional important consideration is the possibility that anammox was stimulated by our tracer additions, which substantially enriched the NO$_2^-$ and especially the NH$_4^+$ concentrations above their in situ values (see Table S7 for enrichment factors for these two nutrients’ concentrations). As mentioned above, the differential control of anammox and denitrification by substrate concentration may affect the observed ratio of the two rates in tracer incubations. Tracer additions above ambient nutrient levels are necessary to detect a mass spectrometric signal but often can result in rates above true in situ levels. Data on the kinetic responses of anammox and denitrification are scarce, yet another area where further research would be very useful.

4.6 Possibility of N loss via AOA and other N cycling processes

A recent paper (Kraft et al., 2022) reported that dense cultures of the ammonium oxidizing archaea (AOA) *Nitrosopumilus maritimus* can support the O$_2$ dependent process of NH$_4^+$ oxidation in deoxygenated waters via NO disproportionation to O$_2$ and N$_2$. This mechanism would be a third N loss process that, if occurring in OMZs, would be measured as anammox or denitrification. In order to investigate the possible significance of this N loss pathway in ODZ waters, we calculated the maximum possible N loss from NH$_4^+$ oxidation – the N loss that would result if all of the 15N-NO$_2^-$ produced in our NH$_4^+$ oxidation experiments was
converted into N$_2$ via the proposed NO disproportionation reaction. These maximum NH$_4^+$ oxidation derived N loss rates were a small fraction of the total N loss rates at most depths (Supplementary Table S5). As a result, even these unrealistically high estimates of N$_2$ production from AOA do not suggest that AOA are significant agents for fixed N loss. The depths where this was not the case are all either oxic or upper oxycline depths where NH$_4^+$ oxidation rates peak and do not require NO disproportionation to supply O$_2$, or depths where equally low NH$_4^+$ oxidation, anammox, and denitrification rates would allow a higher percentage of the total N loss to be due to NH$_4^+$ oxidation. As a result, our calculation argues that N loss derived from NH$_4^+$ oxidation is not a significant N loss flux in ODZs. Thus, we argue that our conclusions regarding the relative balance of anammox and denitrification, as well as the relationship of these two N loss processes to other parts of the N cycle, do not need to be revised to account for N loss via NO disproportionation in AOA.

We note that an additional N recycling pathway, dissimilatory nitrate/nitrite reduction to ammonium (DNRA) can occur under low O$_2$ conditions similar to those preferred by anammox and denitrification. While some OMZ studies have found rates and *nrfA* abundances comparable to anammox, denitrification, and NH$_4^+$ oxidation rates and marker gene abundances (Lam et al., 2009; Jensen et al., 2011), DNRA is best described as an extremely variable process. Other past OMZ studies have often found negligible rates (De Brabandere et al., 2014; Kalvelage et al., 2013; Füssel et al., 2011) and little genetic evidence for DNRA (Kalvelage et al., 2013; Fuchsman et al., 2017). Due to this variability we chose to focus this study on what are arguably the most consistently relevant rates for OMZ N biogeochemistry.

5 Conclusions
Nitrogen is an essential component of life and as a result, its availability can function as a cap on biological productivity in many marine ecosystems. Since all the ocean is linked through an intricate web of currents that span the globe, the N biogeochemistry of small regions can affect the biogeochemistry of the rest of the ocean. Although OMZs account for just 0.1 - 1% of the ocean’s total volume (Lam and Kuypers, 2011; Codispoti and Richards, 1976; Naqvi, 1987; Bange et al., 2000; Codispoti et al., 2005) they account for 30-50% of all total marine N loss (DeVries et al., 2013). As a result, developing an understanding of N cycling within OMZs is critical for comprehending the total marine N budget. Here we presented measurements from the ETNP OMZ of five microbial N cycling metabolisms, all of which have NO$_2^-$ as a product, reactant, or intermediate. Understanding the magnitudes of these rates is key to determining the OMZ inventory of N species as well as an important piece of understanding the marine N budget.

Our results add to the growing evidence that the N recycling process of NO$_3^-$ reduction is the largest OMZ N flux followed by the recycling process of NO$_2^-$ oxidation back to NO$_3^-$. These two processes peaked in the oxycline or ODZ top and were usually much greater than the two N loss processes of anammox and denitrification, a departure from the established view that understanding N loss processes alone is the key to understanding OMZ biogeochemistry. We also add further evidence to the body of literature that supports the occurrence of anaerobic NO$_2^-$ oxidation in OMZ regions, most strikingly through a series of O$_2$ manipulation experiments that show NO$_2^-$ oxidation at putative O$_2$ concentrations as low as 1 nM. We conducted experiments on waters from two deoxygenated depths to evaluate if NO$_2^-$ dismutation provides the oxidative power for observed anaerobic NO$_2^-$ oxidation and found no evidence of NO$_2^-$ dismutation except in one treatment – the closest to in situ NO$_2^-$ conditions. Further exploration of the dismutation
hypothesis might therefore usefully focus on conditions near in situ NO$_2^-$ concentrations. Across our experiments, the percent of N loss due to anammox was consistently above the theoretical prediction of at most 29% anammox. Our observations that NO$_3^-$ reduction and NO$_2^-$ oxidation greatly surpass N loss, especially in shallow boundary waters, further reinforce the view that NO$_2^-$ in the SNM is sourced from NO$_3^-$ reduction.

Together, these observations provide additional data that supports several new views of OMZ biogeochemistry. We hope that our work inspires additional isotopic experiments, culturing efforts, or genomic studies, especially those that seek to further test the occurrence of NO$_2^-$ oxidation under functionally anoxic conditions and to examine alternative oxidants for this process. In addition, we emphasize the importance of integrating our experimental results into future OMZ N and C biogeochemical models, especially our results showing the predominance of NO$_3^-$ reduction and NO$_2^-$ oxidation over N loss. The development of an accurate model of OMZ N cycling is essential towards forecasting future changes in marine productivity and ecology as OMZs respond to climate change and other anthropogenic environmental changes.

Author contributions

XS, CF and BBW designed, and CF performed, measured, and calculated the NO$_3^-$ reduction and NH$_4^+$ oxidation rates. BBW and JCT designed, BBW and JCT performed, and JCT measured and calculated the anammox and denitrification depth profile experiments. BBW and XS designed, JCT, BBW, and XS performed, XS and KD measured, and KD, EW, and JCT calculated the NO$_2^-$ oxidation depth profiles. TT and ARB designed, TT performed, DEM and JCT measured, and EW and JCT calculated the anammox and denitrification profiles from the FK180624 cruise. TT and ARB designed, and TT performed, measured, and calculated the NO$_2^-$
oxidation O₂ variation experiments. ARB and TT designed, TT performed, EW, XS, and JCT measured, and EW and JCT calculated the dismutation experiments. SO provided critical help in running the mass spectrometer to measure all samples except the oxygen variation experiments. BBW performed the correlation and RDA analyses. JCT drafted the paper with inputs from all authors.

Competing Interests

The authors declare that they have no conflicts of interest.

Data Availability

All data discussed in this manuscript is archived at 10.5281/zenodo.7920778.

Acknowledgments

We would like to acknowledge the crew and scientists of the R/V Sally Ride and the R/V Falkor for logistical and scientific support during our 2018 cruises. We thank Amal Jayakumar for providing amoA and nirS gene abundances for the RDA and PCA analyses. We thank Emilio Robledo-Garcia for assistance using the LUMOS sensor for the NO₂⁻ oxidation O₂ gradient experiments. We thank Matthias Spieler for supporting NO₃⁻ reduction rate measurements in Basel. We thank Patrick Boduch for his aid in reviewing graphics before submission. We also acknowledge the Schmidt Ocean Institute which provided R/V Falkor ship time to ARB. We thank the Simons Foundation and National Science Foundation for supporting ARB, TT, and DEM on Simons Foundation grant 622065 and NSF grants OCE-2138890 and OCE-2142998 as well as support for BBW, CF, JCT, and XS through NSF grant OCE-1657663.
References

How low can they go? Aerobic respiration by microorganisms under apparent anoxia, FEMS

Bianchi, D., Babbin, A. R., and Galbraith, E. D.: Enhancement of anammox by the excretion of
diel vertical migrators, Proc. Natl. Acad. Sci., 111, 15653–15658,

bacterium, Nitrobacter vulgaris sp. nov., Arch. Microbiol. 1990 1532, 153, 105–110,

oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters, Proc. Natl.

Bristow, L. A., Callbeck, C. M., Larsen, M., Altabet, M. A., Dekaezemacker, J., Forth, M.,

nitrite reduction to ammonium, ISME J. 2011 510, 5, 1660–1670,

Kalvelage, T., Lavik, G., Lam, P., Contreras, S., Arteaga, L., Löscher, C. R., Oschlies, A.,
export in the South Pacific oxygen minimum zone, 55812, https://doi.org/10.1038/NGEO1739,
2013.

Sigman, D. M.: Enzyme-level interconversion of nitrate and nitrite in the fall mixed layer of the
Antarctic Ocean, Global Biogeochem. Cycles, 30, 1069–1085,

Kirstein, K. and Bock, E.: Close genetic relationship between Nitrobacter hamburgensis nitrite

Koch, H., Lücker, S., Albertsen, M., Kitzinger, K., Herbold, C., Spieck, E., Nielsen, P. H.,
Wagner, M., and Daims, H.: Expanded metabolic versatility of ubiquitous nitrite-oxidizing

Kondo, Y. and Moffett, J. W.: Iron redox cycling and subsurface offshore transport in the eastern
tropical South Pacific oxygen minimum zone, Mar. Chem., 168, 95–103,

Kraft, B., Jehmlich, N., Larsen, M., Bristow, L. A., Könneke, M., Thamdrup, B., and Canfield,
D. E.: Oxygen and nitrogen product by an ammonia-oxidizing archaeon, Science (80-)., 375, 97–100,
Lehner, P., Larndorfer, C., Garcia-Robledo, E., Larsen, M., Borisov, S. M., Revsbech, N. P.,

McIlvin, M. R. and Altabet, M. A.: Chemical conversion of nitrate and nitrite to nitrous oxide for

R: A language and environment for statistical computing:

Tsementzi, D., Wu, J., Deutsch, S., Nath, S., Rodriguez-R, L. M., Burns, A. S., Ranjan, P.,
Sarode, N., Malmstrom, R. R., Padilla, C. C., Stone, B. K., Bristow, L. A., Larsen, M., Glass, J.
B., Thamdrup, B., Woyke, T., Konstantinidis, K. T., and Stewart, F. J.: SAR11 bacteria linked to
ocean anoxia and nitrogen loss, Nature, 536, 179–183, https://doi.org/10.1038/nature19068,
2016.
Vedamati, J., Chan, C., and Moffett, J. W.: Distribution of dissolved manganese in the Peruvian
Upwelling and Oxygen Minimum Zone, Geochim. Cosmochim. Acta, 156, 222–240,
Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean, J. Geophys.
Ward, B. B., Glover, H. E., and Lipschultz, F.: Chemoautotrophic activity and nitrification in the
carbon, and not copper, controls denitrification in oxygen minimum zones of the ocean, Deep
2008.
Jayakumar, A.: Denitrification as the dominant nitrogen loss process in the Arabian Sea, Nat.