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Abstract. Kinetic multi-layer models of aerosols and films have become the state-of-the-art method of describing complex 10 

aerosol processes at the particle and film level. We present MultilayerPy: an open-source framework for building, running and 

optimising kinetic multi-layer models – namely the kinetic multi-layer model of aerosol surface and bulk chemistry (KM-

SUB), and the kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP). The modular nature of 

this package allows the user to iterate through various reaction schemes, diffusion regimes and experimental conditions in a 

systematic way. In this way, models can be customised and the raw model code itself, produced in a readable way by 15 

MultilayerPy, is fully customisable. Optimisation to experimental data using local or global optimisation algorithms is included 

in the package along with the option to carry out statistical sampling and Bayesian inference of model parameters with a 

Markov Chain Monte Carlo (MCMC) sampler (via the emcee Python package). MultilayerPy abstracts the model building 

process into separate building blocks, increasing the reproducibility of results and minimising human error. This paper 

describes the general functionality of MultilayerPy and demonstrates this with use cases based on the oleic acid-ozone 20 

heterogeneous reaction system. The tutorials in the source code (written as Jupyter notebooks) and the documentation aim to 

encourage users to take advantage of this tool, which is intended to be developed in conjunction with the user base. 

1 Introduction 

Aerosols are an important atmospheric component and contribute to air quality (indoors and outdoors), public health and the 

climate (Abbatt and Wang, 2020; Pöschl, 2005). The composition and physical state of aerosols can affect their ability to take 25 

up water to form cloud droplets (Schill et al., 2015; Shiraiwa et al., 2011). Understanding how an aerosol particle or film 

interacts with common atmospheric trace gasses, some of which are reactive, affords a better description of atmospheric aerosol 

processes.  

Kinetic multi-layer models of heterogeneous interactions of aerosols with trace gases have become popular in the last 

decade. In particular, those based on the Pöschl-Rudich-Ammann (PRA) framework (Pöschl et al., 2007) such as the kinetic 30 



2 
 

multi-layer model of surface and bulk chemistry (KM-SUB) (Shiraiwa et al., 2010) and the kinetic multi-layer model of gas-

particle interactions (KM-GAP) (Shiraiwa et al., 2012) have been applied in a wide range of studies, providing particle-level 

insights which are often not possible to obtain experimentally. For example, KM-SUB models have highlighted the impact of 

crust formation and viscosity on particle and film reaction kinetics, lengthening the chemical lifetime of particle and film 

constituents with potential impacts on the climate, air pollution and human health (Milsom et al., 2022b; Mu et al., 2018; 35 

Pfrang et al., 2011; Zhou et al., 2019). KM-GAP has been coupled with the aerosol inorganic-organic mixtures functional 

groups activity coefficients (AIOMFAC) thermodynamic model (Zuend et al., 2008, 2011) to calculate equilibration timescales 

between aerosol particles and surrounding organic and inorganic vapours in a study of liquid-liquid phase separation (Huang 

et al., 2021).   

Software packages facilitating the creation and running of box models (e.g. PyBox (Topping et al., 2018), JlBox 40 

(Huang and Topping, 2021) and AtChem, Sommariva et al., 2020), aerosol chamber experiments (e.g PyCHAM, O’Meara et 

al., 2021) and indoor chemistry (INCHEMPy, Shaw and Carslaw, 2021) have recently gained popularity and nurture a more 

accessible modelling environment, enabling more reproducible and reliable results.  

This paper describes MultilayerPy, a package written in Python which is designed to facilitate the creation and 

optimisation of kinetic multi-layer models (namely KM-SUB and KM-GAP) in a modular and reproducible way. The key 45 

features are presented along with use cases focussing on the well-studied oleic acid-ozone heterogeneous reaction system 

(Berkemeier et al., 2021; Gallimore et al., 2017; King et al., 2004, 2020; Milsom et al., 2021b, 2021a, 2022b; Pfrang et al., 

2011, 2017; Woden et al., 2021; Zahardis and Petrucci, 2007b). An educational tool has recently been created which creates 

and runs simple kinetic multi-layer models with two reactants (Hua et al., 2022). MultilayerPy is intended for research use and 

can be used to create and optimise more complex kinetic multi-layer models.  50 

It is envisaged that this paper, along with the accompanying supporting information in the form of Jupyter notebooks 

in the source code, will encourage new users to use and eventually contribute to this project.   

2 Purpose and scientific basis 

Currently, the creation of a kinetic multi-layer model requires the researcher to manually construct specific computer code 

which describes the set of ordinary differential equations (ODEs) which describe the model. For a basic system (e.g. A reacts 55 

with B to make C) this method is satisfactory. However, for more complex systems involving many model components, 

composition-dependent diffusivity and the inverse modelling of experimental data, this manual method quickly becomes 

cumbersome and prone to human error.  

MultilayerPy provides a framework for constructing kinetic multi-layer models so that the model code is produced 

automatically for the user, removing potential human error in typing out the model code. This code is written in a readable 60 

way, enabling the code to be shared with an associated publication and encouraging more reproducible results. This is further 
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supported through the Jupyter notebook (Perkel, 2018), which is a document that incorporates both Python code and markdown 

text and is gaining popularity as a way of sharing and describing scientific code.  

Abstracting the model building, running and optimisation process in this way quickens this time-consuming part of a 

modelling study and allows the researcher to focus more on the science behind any modelling decisions made. MultilayerPy 65 

provides the utility for model parameter evolution via the inclusion of additional user-defined parameters not present in the 

original model and including time-dependent changes in model parameters (e.g. changes in temperature or the gas phase 

concentration of a component). There is also scope for model customisation. The model code can be edited and re-incorporated 

into the MultilayerPy framework. This allows researchers to incorporate conditions or processes which are unique to their 

specific system.     70 

A challenge at the outset of a modelling study is deciding on a reaction scheme to use. This is illustrated by the 

modelling of oleic acid ozonolysis where different reaction schemes have been used in the literature (Berkemeier et al., 2021; 

Hosny et al., 2016; Shiraiwa et al., 2010). Manually iterating through different reaction schemes can be time consuming. The 

object-oriented approach of MultilayerPy, where model components are treated as discrete objects, allows the researcher to 

create and test various model reaction schemes in a few lines of code. Selection of the most suitable model reaction scheme is 75 

then feasible. 
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Figure 1. KM-SUB and KM-GAP model visualisation. A particle or film is split into sorption, quasi-static surface and n bulk layers. 
KM-SUB explicitly splits components into volatile (X) and non-volatile (Y), whereas KM-GAP treats all model components as the 
same and they are symbolised by Z by convention. 80 

A detailed description of the KM-SUB and KM-GAP models is presented in their respective publications (Shiraiwa 

et al., 2010, 2012). Figure 1 illustrates the main concept behind the two models. Essentially, the models split the particle or 

film into a number of shells or layers. The diffusion of reactants between each layer and the reaction of each component within 

each layer are resolved. Surface chemistry and the adsorption and desorption of gaseous species are resolved. Additionally, 

KM-GAP allows the thickness of model layers to change over time, accounting for the evaporation of volatile components in 85 

the model and to follow changes in film thickness or particle size during the model run. This means that all model components 

can partition into and out of the film or particle. 
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3 MultilayerPy structure and features 

Figure 2. High-level schematic outline of MultilayerPy. Circled numbers correspond to the numbered steps of the model building 

and optimisation process described in the main text.  90 

MultilayerPy is organised so that different combinations of reaction schemes, diffusion regimes and model types are possible 

and can be realised in a clear, reproducible way (Fig. 2). This is possible because of the object-oriented programming (OOP) 

paradigm in which this software is written. Essentially, each component of a multi-layer model is represented by an object (or 

class) which has its own attributes and methods. The user sets these attributes and uses the methods associated with these 
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objects to carry out model construction, simulation and optimisation. In relatively few lines of code, the user is able to construct 95 

this pipeline and run it.   

Below is an outline of a typical model build, run and optimisation experiment. These steps are expanded on in the 

subsequent sections: 

1. Selection of the model type which informs how the model is constructed (KM-SUB or KM-GAP). 

2. Creation of a reaction scheme and diffusion regime represented in the model. Reactions and diffusion regimes (i.e. 100 

composition-dependent diffusion) are optional. 

3. Creation of the model components (chemical species).  

4. Model construction by combining the reaction scheme, diffusion regime and model components. Creation of the 

model code. 

5. Model simulator object creation to run and save model outputs. There is potential to add custom model 105 

parameterisation (see Case study 3).  

6. Optimisation of the model fit to experimental data. Determination of optimised model parameters. Optional Markov 

Chain Monte Carlo (MCMC) sampling of the parameter space.  

This modular approach to model creation and optimisation is flexible and enables the user to experiment with and iterate 

through different model designs. One could imagine creating a set of reaction schemes and iterating through them in order to 110 

find the one which best describes the data and satisfies the goals of a particular study.  

Only a basic knowledge of Python is required to use MultilayerPy and its main features. This is another advantage of 

abstracting the model building process into the basic building blocks described in Fig. 2.  

To encourage new users, the source code for MultilayerPy comes with Jupyter Notebooks which provide example uses 

that can also be used as templates. A good starting point would be to work through the crash course notebook available in the 115 

repository. More detailed documentation is included in .html format in the source code along with instructions on how to install 

and test the package before use in a separate readme file. The easiest way to install the software is to either download the 

source code from the repository (see code availability) or run a pip install as described in the readme. The documentation will 

be updated with each update to the software. 

3.1 Model construction 120 

The first step of model construction is to define the model type and fundamental geometry (spherical particle or planar film). 

Currently, KM-SUB and KM-GAP models are available in MultilayerPy. Once defined, reaction scheme and diffusion regime 

are created taking into account the model type and model components, which are instantiated as separate model component 

objects. It is possible for the user to display the reaction scheme to check that the desired reaction scheme has been defined.  

Many reaction schemes, such as the oleic acid-ozone system, have an uneven product distribution which can be 125 

described by a branching ratio. MultilayerPy allows the user to apply a branching ratio to a reaction scheme to account for this.   
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Composition-dependent bulk diffusion is made possible by the diffusion regime defined by the user. Three different 

parameterisations are currently available in MultilayerPy: (i) Vignes-type (default) (Vignes, 1966); (ii) obstruction theory 

(Stroeve, 1975); (iii) linear combination (Pöschl et al., 2007; Shiraiwa et al., 2010). The evolution of particle diffusivity is of 

interest to the community and has been highlighted in the kinetic multi-layer modelling and experimental literature (e.g. (semi-130 

) solid crust formation) (Milsom et al., 2021b, 2021a, 2022a; Nash et al., 2006; Pfrang et al., 2011; Zhou et al., 2019). If a 

simpler well-mixed system is modelled, diffusion evolution as a function of particle composition can be turned off by supplying 

a “null” argument to the diffusion regime object (see examples in the Jupyter notebooks in the source code repository).  

Once the model type, model components, reaction scheme and diffusion regime are defined, the model can be 

constructed. The building blocks (objects) are supplied to a model builder object. Invoking the build method of this object has 135 

two main functions: (i) it writes the model code (ODE function) to a separate .py file; and (ii) it defines a list of required 

parameters for the model to run (see next section).  

The model code defining the system of ODEs for each component in each layer is automatically generated. This is a 

key utility of MultilayerPy, especially when considering a complex multi-component system. Writing many lines of code 

manually is error prone. The removal of this risk, along with the readable nature of the model code, enhances the reproducibility 140 

and reliability of the results. This file is, however, customisable should the user want to add or remove specific processes in 

this template framework. Custom modifications should be checked thoroughly.  

3.2 Running the model 

Once constructed, the model can be run by incorporation into a simulate object, which also requires input model parameters 

supplied as a Python dictionary. The simulate object can also contain experimental data for optimisation.  145 

Before the model can be run, the number of model bulk layers, initial concentration of each component in each layer, 

initial layer volume, initial layer surface area and initial layer thickness need to be supplied to the simulate object. MultilayerPy 

has utility functions which make this process straightforward. The number of model bulk layers is particularly important when 

modelling viscous systems because bulk diffusion gradients need to be resolved to describe the system sufficiently – the 

assumption in KM-SUB and KM-GAP models is that each bulk layer is well-mixed.  150 

After running the model for the desired time span the model output, consisting of spatially and temporally resolved 

number concentration arrays for each model component, is saved and associated with the simulate object. The user can access 

these outputs easily for further analysis and visualisation.  

Simple plotting methods are available which will quickly plot the model output including surface concentrations or 

the total number of each component in the model as a function of simulation time. Summary heat map plots of component 155 

bulk concentrations are also accessible via a plotting function. This allows the user to quickly visualise a model run and decide 

on the next course of action.    
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If a KM-GAP model is implemented, the volume, surface area and thickness of each bulk layer as a function of time 

can be accessed via the simulate object. From this, the user can plot the change in particle diameter and volume as a function 

of time. An example of this is presented in the corresponding KM-GAP Jupyter Notebook in the source code.  160 

Sometimes modification of model input parameters is required. For example, the concentration of a reactive gas can 

be changed partway through an experiment. This can be implemented in the MultilayerPy framework by supplying a function 

which changes the concentration of the reactive gas after a certain time point (see the “parameter evolution” Jupyter Notebook 

in the source code for an example). This is possible for any of the model input parameters. Additionally, extra input parameters 

can be supplied to the model in this manner. These parameters can themselves be optimised.  165 

3.3 Model optimisation 

After constructing and running the kinetic multi-layer model, the user may want to optimise the model input parameters. Data 

can be associated with the simulate object which was created to run the model. Optimisation requires a minimum of a simulate 

object with data associated with it.  

Currently, the built-in cost function is the mean squared error (MSE), which is defined in Eq. 1: 170 

𝑀𝑆𝐸 =	 !
"
∑ 𝑤#(𝑌$%&%,# −	𝑌()$*+,#),"
#-!        (1) 

where n is the number of datapoints, Ydata and Ymodel are the experimental and model datapoints, respectively. A weighting 

factor (wi) is applied if there are uncertainties associated with the data and is equivalent to the inverse square of the uncertainty. 

This is equal to one if no uncertainties are provided. The user can supply their own cost function if desired.  

There are two main methods of model optimisation available in MultilayerPy: (i) local optimisation (least-squares 175 

simplex method); (ii) global optimisation (differential evolution method). Both methods use the implementations found in the 

SciPy Python package (Virtanen et al., 2020).  

Local optimisation is the least computationally expensive way of optimising the model. However, as the name implies, 

only a local minimum in the cost function will be found (though this could also be the global minimum). This algorithm does 

not search the entire parameter space looking for a global minimum and will only settle in the nearest local minimum. The 180 

user must therefore be confident that the initial model parameters are close to what represents their system.  

Global optimisation is more computationally expensive. A description of the Monte Carlo Genetic Algorithm 

(MCGA) has been presented by Berkemeier et al. in the context of kinetic multi-layer modelling (Berkemeier et al., 2017). 

The implementation in MultilayerPy is similar, with an initial Latin Hypercube sampling step (instead of a Monte Carlo 

sampling step), followed by a differential evolution algorithm implementation which searches the parameter space and applies 185 

concepts of natural selection to mutate and select each successive generation of parameter sets (Storn and Price, 1997). 
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3.4 Estimating parameter uncertainty with a Markov Chain Monte Carlo (MCMC) method 

A range of model outputs could be considered consistent with experimental data due to the uncertainty associated with each 

datapoint. Global optimisation algorithms, such as differential evolution, focus on achieving a single parameter set with the 190 

lowest cost function. However, running the same global optimisation algorithm multiple times can return optimised parameter 

sets with different values. This is indeed the case with the MCGA algorithm where uncertainties in the optimised parameters 

are presented as the distribution of optimised parameter values after a set number of MCGA runs (Berkemeier et al., 2017).  

MCMC sampling seeks to define the probability distribution for each model parameter by finding the region of highest 

probability in a given parameter space. First, a parameter set is initiated within pre-defined bounds. Then the parameter set is 195 

allowed to “walk” around the parameter space. The likelihood of the next proposed step being accepted is dependent on the 

likelihood of the current position in the parameter space (i.e., the goodness of the model-data fit). This means that the chain 

will tend towards regions of higher probability. This is the Markov Chain aspect of the MCMC algorithm. The Monte Carlo 

aspect arises from the randomness associated the proposed next step in the chain, the next sample. When a run is successful, 

the chain of samples will equilibrate around the region of highest probability. A probability distribution for each varying model 200 

parameter can be obtained from the values returned by this equilibrated chain of samples (see Fig. 4(c) later for an example).  

The MCMC algorithm infers the posterior probability distribution function, p(θ|D). This is the probability of the 

model parameters (θ) given the data (D). This is calculated via Bayes’ rule (Eq. 2). 

𝑝(𝜃|𝐷) = !
.
𝑝(𝐷|𝜃)𝑝(𝜃)          (2) 

p(θ|D) is proportional to the likelihood (p(D|θ) – essentially the goodness of fit) and the prior probability for the parameters 205 

(p(θ)) which is normally set to 1 (uniform) if the prior probability distribution function for each parameter is unknown. The 

evidence (Z) is a constant which is generally hard to calculate and is ignored in MCMC as it is constant for a given model-

experiment system and does not affect the outcome of an MCMC sampling run. Because of this, MCMC cannot be used to 

select the best of two different models applied to the same data as p(D|θ) would not be normalised to the same scale. Though 

it is possible to compare parameter estimations from different models. For a more detailed description of MCMC sampling 210 

and best practices, a paper by Hogg and Foreman-Mackey walks the reader through the algorithm and troubleshoots common 

problems (Hogg and Foreman-Mackey, 2018).  

MultilayerPy employs the well-established emcee python package for MCMC sampling (Foreman-Mackey et al., 

2013). This is an ensemble sampler which initiates a number of walkers in the parameter space. The ensemble of walkers can 

then proceed with the MCMC routine. Parallelisation of the algorithm can be implemented as each walker can be iterated 215 

independently. An example of this is given in the “MCMC sampling” Jupyter notebook.  

Though MCMC can technically be used as a global optimiser, this is not recommended as there are dedicated global 

optimisation algorithms which are much more efficient at finding the global minimum, such as the differential evolution 

algorithm employed in MultilayerPy.  
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In practice, the model-data system can be optimised (locally or globally) before initiating the walkers in a tight 220 

gaussian “ball” around the optimum point in the parameter space. Initialising the walkers in this way can reduce the time for 

them to equilibrate. This is the recommended procedure in MultilayerPy and is the way presented in the “MCMC sampling” 

Jupyter notebook associated with the source code. 

An example of how MCMC sampling is implemented in MultilayerPy is presented in the oleic acid monolayer case 

study (see case study 2).  225 

4 Case studies: oleic acid ozonolysis 

The oleic acid-ozone reaction system is a well-established model compound for heterogeneous reactions of organic aerosols 

due to its prevalence as a cooking emission tracer (Lyu et al., 2021; Vicente et al., 2021; Wang et al., 2020) and has been the 

subject of numerous experimental studies (Dennis-Smither et al., 2012; González-Labrada et al., 2007; Hearn and Smith, 2004; 

Hosny et al., 2013; Hung et al., 2005; King et al., 2004, 2020; Knopf et al., 2005; Milsom et al., 2021b, 2021a; Pfrang et al., 230 

2017; Sebastiani et al., 2018; Smith et al., 2002; Woden et al., 2021; Zahardis and Petrucci, 2007). For this reason, it has been 

a popular system to model (Berkemeier et al., 2021; Gallimore et al., 2017; Milsom et al., 2022b; Pfrang et al., 2010, 2011; 

Shiraiwa et al., 2010, 2012). The precise reaction scheme is still not constrained, especially when considering the impact of 

reactive intermediates, although recent work has advanced our understanding of this system and highlighted experimental gaps 

to be filled (Berkemeier et al., 2021). Here, we use the oleic acid-ozone system as a case study. Case study 1 demonstrates 235 

fitting a KM-SUB and KM-GAP model to the same oleic acid particle ozonolysis dataset. Case study 2 demonstrates an 

application to an insoluble oleic acid monolayer and the MCMC sampling procedure employed in MultilayerPy in order to 

estimate the uncertainty associated with a model parameter.  

4.1 Case study 1: fitting KM-SUB and KM-GAP to oleic acid particle ozonolysis data 

In this case study, KM-SUB and KM-GAP models are fitted experimental data for the ozonolysis of oleic acid particles from 240 

Ziemann (2005). This is the same example case study used in the kinetic double-layer model (K2-SUB) (Pfrang et al., 2010), 

KM-SUB (Shiraiwa et al., 2010) and KM-GAP (Shiraiwa et al., 2012) papers.  

The radius of the particles was 0.2 µm and the gas phase ozone concentration was 7.0 × 1013 cm-3 (2.8 ppm at 101325 Pa). 10 

bulk layers were initiated in our case study. A table with all other optimised parameters along with bounds for varied parameters 

is presented in the Supplement (Table S1).  245 

 

 

 

 

 250 
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Figure 3. Model optimisation to experimental data from Ziemann (Ziemann, 2005) using the MultilayerPy model building and 
optimisation tool. (a) The initial model output before optimisation. (b) KM-SUB model output optimised by varying αs,0,ozone; KM-255 
GAP model output optimised by varying αs,0,ozone and the desorption lifetime of the ozonolysis product nonanal (τd,nonanal). The radius 
of the particle (rp) from the KM-GAP output is also plotted as a dotted line (rp does not change in the KM-SUB model since particle 
size changes are not described). (c) Depth-resolved oleic acid concentration profile for the optimised KM-SUB model. (d) Depth-
resolved oleic acid concentration profile for the optimised KM-GAP model. 

A modelling experiment was carried out using MultilayerPy with the data from Ziemann (Ziemann, 2005) (Fig. 3). 260 

The code used to generate these outputs is available in “crash course” and “KM-GAP model creation” Jupyter notebooks 

within the source code which also describe each step of the model building process.  

The differential evolution algorithm was used as the global optimiser for the KM-SUB and KM-GAP model runs in 

this case study (Storn and Price, 1997). The surface accommodation coefficient of ozone on a free surface (αs,0,ozone) was varied 

in the KM-SUB model. Fig. 3(b) demonstrates good fits to the experimental data, especially using the KM-SUB model. The 265 

parameters for the fitted KM-SUB model presented here are identical to those used to fit to the same dataset in the KM-SUB 

model description paper (Shiraiwa et al., 2010).  

Nonanal was assumed to be volatile in the KM-GAP reaction scheme as it is the only product known to be volatile 

(Vesna et al., 2009). The desorption lifetime of nonanal (τd,nonanal) and αs,0,ozone were varied in this case study. As KM-GAP 

resolves changes in particle size via the loss or gain of volatile species to the particle, τd,nonanal will have an impact on the size 270 

of the particle during the model run. Time-resolved particle size information is not known for this experiment. This will affect 

the number concentration of oleic acid in the particle in the KM-GAP model, which considers nonanal evaporation and 
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resulting particle size change, accounting for the significant differences seen between the KM-SUB and KM-GAP outputs, 

especially at times greater than the last experimental datapoint (~17 min).  

In both KM-SUB and KM-GAP models presented here the bulk phase is well-mixed, demonstrated by the lack of 275 

oleic acid concentration gradient occurring throughout the particle during ozonolysis (Fig. 3(c)&(d)). The concentration of 

oleic acid in each model layer is generally higher in the KM-GAP output compared with KM-SUB due to the shrinking of the 

model layers accounted for in KM-GAP and caused by the removal of nonanal from the particle. 

4.2 Case study 2: fitting a KM-SUB model to oleic acid monolayer ozonolysis data, including MCMC sampling 

Woden et al. ozonised insoluble floating monolayers of oleic acid deposited on water (Woden et al., 2021). The reaction 280 

kinetics were followed using neutron reflectometry (NR) and fitted parameters from an interfacial model applied to the NR 

data – a common method of extracting kinetic information from NR experiments (King et al., 2009, 2020; Pfrang et al., 2014; 

Sebastiani et al., 2018; Woden et al., 2018, 2021). The ozone concentration for the example model-data system was 323 ± 29 

ppb. The construction of this case study is presented in the “insoluble monolayers” Jupyter notebook and the MCMC sampling 

for this case study is presented in the “MCMC sampling” Jupyter notebook.  285 

The dissolution of oleic acid and products into the aqueous phase was turned off in the model building process by 

setting bulk diffusion parameters to 0. The model in this case was particularly sensitive to αs,0,ozone. This was selected as the 

fitting parameter.  

αs,0,ozone can range between 0 – 1. This was set as the fitting bound for both the differential evolution (global) 

optimisation algorithm and the MCMC sampling procedure.  290 

An initial differential evolution procedure was carried out on this model-data system. This optimised value of αs,0,ozone 

was then used to initialise the ensemble of walkers for the MCMC sampling procedure – this is handled by MultilayerPy. The 

MCMC algorithm can then be run in series or in parallel. The result of this MCMC sampling procedure is presented in Fig. 4. 

 

 295 
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Figure 4. Result of the global optimisation-MCMC sampling procedure. (a) 200 model outputs sampled from the MCMC sampling 
procedure, showing the range of model outputs consistent with the data. (b) A plot of αs,0,ozone vs. iteration number of the MCMC 300 
algorithm for a converged set of walkers (Markov chains). 100 samples were discarded (burn-in step) before chains converged. (c) 
The histogram of αs,0,ozone values derived from the walkers presented in panel (b). Vertical dashed lines represent the interval in 
which 95 % of the data lie. 

The mean value of αs,0,ozone obtained from MCMC sampling is (2.35 ± 0.14) × 10-3. In this case, the distribution of 

αs,0,ozone is Gaussian (Fig. 4(c)). For other distributions, quoting an interquartile range may be more representative. The lower 305 

and upper bound for each optimised parameter is included when the user exports their modelling results. In this case, the lower 

and upper bounds of the inter-quartile range for αs,0,ozone are 2.36 × 10-3 and 2.44 × 10-3, respectively.  

Constraining model input parameters experimentally remains the best way to improve the estimation of unknown 

model parameters. For example, simultaneously varying the desorption lifetime of ozone (τd,ozone), the surface reaction rate 

coefficient (ksurf) and αs,0,ozone returns a range of possible combinations of these three parameters – all of which are associated 310 

with surface processes. This is demonstrated by the strong correlation observed between these parameters during MCMC 

sampling (Fig. S1, the Supplement). MultilayerPy could be used to identify which experimental parameters should be 

constrained and inform experimental work.  

 

 315 
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Case study 3: visualising concentration gradients and custom parameterisation 

A key feature of kinetic multi-layer modelling is its ability to visualise concentration gradients in particles and films. This case 

study demonstrates how this is achieved using MultilayerPy by reproducing the concentration gradient modelled in a film of 

semi-solid (self-organised lamellar) form of oleic acid exposed to ozone (Milsom et al., 2022b). The experimental and 320 

modelling conditions are outlined in Milsom et al. and the corresponding “lamellar phase oleic acid” Jupyter notebook, which 

reproduces figure 5.  

Figure 5. The concentration profile of a film of semi-solid (self-organised lamellar) oleic acid during ozonolysis. The film is 0.98 µm 
thick and 77 ppm ozone was applied to the model.  

In this model, condensed phase molecular diffusivity is affected by the formation of high-molecular-weight oligomers. This 325 

was implemented using the diffusion regime object pictured in Fig. 2 using a Vignes-type parameterisation of molecular 

diffusivity, where molecular diffusion depends on the proportion of oligomer in the particle (Milsom et al., 2022b; Vignes, 

1966).  

The diffusivity of the dimer and trimer oligomers were related to each other via Eq. 2. 

𝐷&/# = 𝐷$#(
0!"
0#$"

)1!"%%         (2) 330 

Where Ddi and Dtri are the diffusion coefficients of the dimer and trimer products, respectively; Mdi and Mtri are the molecular 

masses of the dimer and trimer products, respectively; and fdiff is a scaling factor used as a fitting parameter in the model 

optimisation (Hosny et al., 2016; Milsom et al., 2022b).  

This custom parameterisation of oligomer diffusivity is possible in MultilayerPy via a parameter evolution function 

that the user can supply: a tutorial for which is found in the “parameter evolution” Jupyter notebook in the source code along 335 

with this specific example in the “lamellar phase oleic acid” Jupyter notebook. The parameter evolution function could be used 

to introduce changes in experimental conditions during the model simulation (e.g. slowly increasing the concentration of a 

reactive gas or introducing a temperature profile, making certain parameters temperature dependent). There is sufficient 

flexibility in the MultilayerPy framework for the user to incorporate more complex model parameterisations.  
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5 Conclusions: summary and future developments 340 

This open-source model construction framework represents a first step towards more reproducible kinetic multi-layer 

modelling of atmospheric aerosols and films. The way that models are constructed and the ease with which model code can be 

generated in MultilayerPy encourage the user to share their models with the community.  

MultilayerPy provides a simple model construction and optimisation pipeline for the user to follow with a few lines 

of code needed to produce results. This is a major practical advance compared to manually typing out ODEs – which can be 345 

an unnecessary source of error and is time consuming. There is sufficient flexibility to suit more complex systems with 

parameterisation of model input parameters, along with customisation of the source model code “under the hood”.   

The trade-off when integrating systems of ODEs written in a high-level programming language such as Python or 

MATLAB is that, compared with C/C++ and FORTRAN, these integrations are relatively slow. Future work will consider 

ways of speeding up ODE integration. This is partially addressed via the ability to parallelise the global optimisation and 350 

MCMC algorithms. The Julia programming language is also an attractive proposition, allowing human-readable code to be 

written and run at speeds faster than that of Python and MATLAB. Indeed, Julia has recently been applied in an atmospheric 

context to construct box models (Huang and Topping, 2021). These are feasible options for the direction of MultilayerPy 

development in the future.  

The modular way in which MultilayerPy is constructed makes future modular developments relatively 355 

straightforward. Other modelling systems based on the kinetic multi-layer model presented here (KM-SUB and KM-GAP) 

have been developed and include other “compartments” such as the skin (KM-SUB-skin) (Lakey et al., 2017), indoor air 

boundary layer (KM-BL) (Morrison et al., 2019), film formation and growth (KM-FILM) (Lakey et al., 2021), and epithelial 

lining fluid (KM-SUB-ELF) (Lelieveld et al., 2021). Future iterations of MultilayerPy could incorporate such multi-

compartment models, coupling different processes occurring in various environments and contexts.   360 

As an open-source project, contributions from the particle and film modelling community are strongly encouraged 

and will help push the project forward and achieve collective goals. This will also facilitate scientific collaboration and 

encourage more reproducible modelling studies as a result.  

 

 365 
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Appendix 

A. List of acronyms  370 

Parameter name Description (units) 
delta_1 molecular diameter of component 1 (cm) 

w_1 mean thermal velocity of component 1 in the gas phase (cm s-1) 
H_1 Henry's law coefficient (mol cm-3 atm-1) 

alpha_s_0_1 Surface accommodation coefficient of component 1 on a clear surface 
Db_1 Bulk diffusion coefficient of component 1 (cm2 s-1) 

Db_1_2 Bulk diffusion coefficient of component 1 in component 2 (cm2 s-1) 
T Temperature (K) 

k_1_2 Second-order rate coefficient for the bulk reaction of component 1 and 
component 2 (cm3 s-1) 

k_1_2_surf Second-order rate coefficient for the surface reaction of component 1 and 
component 2 (cm2 s-1) 

k1_1 first order decay constant for component 1 (s-1) 
Xgs_1 Near-surface gas phase concentration of component 1 (cm-3) 

Zgs_1 Near-surface gas phase concentration of component 1 with KM-GAP notation 
(cm-3) 

p_1 equilibrium vapour pressure of component 1 (Pa) 
Td_1 Desorption lifetime of component 1 (s) 

scale_bulk_to_surf scaling factor applied to bulk reaction rate coefficient to return the surface 
reaction rate coefficient (cm) 

Table A1. Table of variable names, descriptions and units supplied to models created in MultilayerPy. *The unit of length in these 
models is cm and the units for surface and bulk concentrations of model components are cm-2 and cm-3, respectively. 

B. Basic package installation instructions 

This package was developed using the standard Anaconda Python distribution and this distribution is recommended for the 

novice user. For basic “plug and play” use, the Zenodo repository can be downloaded and extracted (see Code availability). 375 

This places the source code into the extraction directory and any work with the package must be carried out in that directory 

because the package has not been installed into the Python environment. This is the best way for the user to get started quickly 

and learn how to use the package.   

 To install the package into the user’s Python environment, a “pip install multilayerpy” command in the Anaconda 

terminal window is required. This will install the latest built distribution of MultilayerPy which is stored on the Python Package 380 

Index (PyPI). After this method of installation, the user can use MultilayerPy anywhere on their system and is not limited to a 

particular working directory.  

Full installation instructions and package dependencies are listed and updated on the project repository (see Code availablilty). 
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It is recommended that a new user starts by working through the “MultilayerPy crash course” tutorial notebook to learn how 

the package works. This notebook can also be a template for the user’s own projects. 385 

Code availability  

The MultilayerPy software, including tutorials and documentation, is available at https://github.com/tintin554/kinetic-

multilayer-model-builder (last access: 27 April 2022) and https://doi.org/10.5281/zenodo.6411188 (Milsom et al., 2022b). The 

code is released under the GPL v3.0 license. 

Author contribution 390 

AM designed, wrote and tested MultilayerPy and the manuscript. AL tested and helped optimise the software. CP supervised 

the project, contributed to the discussion and manuscript. AMS co-supervised the project and contributed to the discussion and 

manuscript. 
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