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Abstract. Ocean color remote sensing has been used for more than two decades to estimate primary productivity. Approaches

have also been developed to disentangle phytoplankton community structure based on spectral data from space, in particular

when combined with in situ measurements of photosynthetic pigments. Here, we propose a new ocean color algorithm to de-

rive the relative cell abundance of seven phytoplankton groups, as well as their contribution to total chlorophyll-a (Chla) at the

global scale. Our algorithm is based on machine learning and has been trained using remotely-sensed parameters (reflectance,5

backscattering, and attenuation coefficients at different wavelengths, plus temperature and Chla) combined with an omics-based

biomarker developed using Tara Oceans data representing a single-copy gene encoding a component of the photosynthetic ma-

chinery that is present across all phytoplankton, including both prokaryotes and eukaryotes. It differs from previous methods

which rely on diagnostic pigments to derive phytoplankton groups. Our methodology provides robust estimates of the phy-

toplankton community structure in terms of relative cell abundance and contribution to total Chla concentration. The newly10

generated datasets yield complementary information about different aspects of phytoplankton that are valuable for assessing

the contributions of different phytoplankton groups to primary productivity and inferring community assembly processes. This

makes remote sensing observations excellent tools to collect Essential Biodiversity Variables and provide a foundation for

developing marine biodiversity forecasts.

1 Introduction15

The production of organic matter (i.e., productivity) in marine ecosystems relies largely on phytoplankton. These unicellular

photosynthetic microorganisms are evolutionarily diverse and exhibit a wide range of cell morphologies, sizes, photosynthetic

accessory pigments, elemental requirements, and biogeochemical and trophic functions (Pierella Karlusich et al., 2020). They
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play a key role in regulating ocean biogeochemistry (Fuhrman, 2009) and global climate, partly through the absorption of

atmospheric CO2 and export of carbon to the deep ocean (Guidi et al., 2009; Tilman et al., 2014; Tara Ocean Foundation,20

2022).

In order to investigate the potential impacts of environmental changes on marine ecosystem functioning (Ibarbalz et al.,

2019; Henson et al., 2021), high-resolution, real-time, and global scale data on phytoplankton community structure are required

(Pereira et al., 2013). However, existing knowledge about the global distribution of phytoplankton communities from in-situ

observations is highly fragmented, spatially disparate, and temporally punctual. It is furthermore limited by both the challenges25

of in situ data collection and by the associated costs of measurement techniques, which range from microorganism imaging,

flow cytometry, to DNA sequencing (Hillebrand and Azovsky, 2001; Irigoien et al., 2004; Smith, 2007; Rodríguez-Ramos

et al., 2015; Powell and Glazier, 2017; Righetti et al., 2019; Dutkiewicz et al., 2020; Pierella Karlusich et al., 2020).

Ocean color remote sensing offers an interesting alternative to map the global distribution of phytoplankton communities at

the sea surface at a high spatio-temporal resolution. Since 1978, ocean color satellites have been used to observe the concen-30

tration of the main phytoplankton pigment, chlorophyll-a (Chla), considered as a proxy of phytoplankton biomass (O’Reilly

et al., 1998; Sathyendranath et al., 2014). Recently, ocean color data have also been used to gain information about phyto-

plankton communities, such as their size structure, and their taxonomic or functional composition. This interest has facilitated

the integration of the concept of phytoplankton functional types (PFT) into studies of a range of ecological and biogeochem-

ical problems (Le Quéré et al., 2005; Hood et al., 2006). Functional types correspond to categories linked to biogeochemical35

processes (e.g., silicifiers, calcifiers) and physiological adaptations to environmental factors (e.g., light, nutrients, turbulence),

or to more practical categories quantified using a particular analytical technique (e.g., pigment types) (IOCCG report N 14).

Specialized algorithms applied to ocean color data have consequently been developed to detect specific taxa with distinctive

optical characteristics (Brown, 1995; Iglesias-Rodríguez et al., 2002), or the abundance of phytoplankton functional types and

size classes (Alvain et al., 2005; Uitz et al., 2006; Aiken et al., 2009; Bracher et al., 2009; Hirata et al., 2011; Chase et al.,40

2020; Ben Mustapha et al., 2013; Alvain et al., 2008).

The diagnostic pigment analysis method (DPA, Vidussi et al. (2001)) relies on the association of secondary phytoplankton

pigments with different broad taxonomic phytoplankton groups. DPA classification was later refined by Uitz et al. (2006) who

gave different weightings to the diagnostic pigments to retrieve three phytoplankton size classes (PSC) from total Chla. The

advantage of this method is that phytoplankton pigments can be measured in a cost-effective manner through high performance45

liquid chromatography (HPLC). Today, large in-situ HPLC datasets are available with broad spatial and temporal coverage.

These HPLC datasets have enabled the development of several DPA-based ocean color algorithms, which has made it possible

to evaluate the abundance of different phytoplankton groups and size classes from ocean color satellite data (Uitz et al., 2006;

Hirata et al., 2008, 2011; Soppa et al., 2014; Di Cicco et al., 2017; Organelli et al., 2013; El Hourany et al., 2019a, b; Xi et al.,

2020) . However, the limitation of the DPA approach is that it is associated with large uncertainties in the classification of50

phytoplankton due to the presence of certain pigments in different phytoplankton taxa and cell size classes, which also vary

with acclimation to light, temperature, and nutrient availability (Brewin et al., 2014; Chase et al., 2020).
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In this work, we propose an alternate approach to develop an ocean color algorithm for phytoplankton group detection

from in-situ metagenomic observations. The approach is ground-truthed on data collected by Tara Oceans, which constitutes

the most comprehensive and harmonized molecular dataset available on phytoplankton taxonomic community structure on55

a global scale. More specifically, we used metagenomics reads to extract the global-scale distribution and abundance of the

single-copy gene psbO, which is present across all phytoplankton groups and that provides an unbiased picture of phytoplank-

ton cell abundances (Pierella Karlusich et al., 2022). We used these data, together with satellite-derived optical, physical and

biogeochemical parameters to train an unsupervised machine learning algorithm able to discern the non-linear relationship be-

tween phytoplankton taxonomic community structure and data derived from satellites. This new algorithm allowed us to derive60

the spatio-temporal variability of seven phytoplankton groups between 1997 and 2021. We then compared the performance of

this new algorithm with that of two previous DPA-based algorithms (El Hourany et al., 2019a; Xi et al., 2020).

2 Materials

In this section, we present the datasets that were used for training the algorithm and for evaluating the outputs. The input dataset

includes the in-situ distribution and abundance of phytoplankton groups inferred from metagenomics data from Tara Oceans65

and their associated satellite matchups. The outputs of the new algorithm are compared to a global dataset of in-situ HPLC

diagnostic pigments, as well as with estimates from two DPA-based remote sensing algorithms.

2.1 Input dataset

2.1.1 Metagenomic read abundance of the psbO gene

The psbO gene encodes the manganese-stabilizing protein, of around 270 amino acids, which constitutes a core subunit of70

photosystem II (PSII) and is unique to organisms carrying out oxygenic photosynthesis. The psbO gene is a single-copy gene

in the vast majority of eukaryotes and prokaryotes. We used psbO reads from the metagenomes generated from the Tara Oceans

expedition as a proxy of phytoplankton relative cell abundance (Pierella Karlusich et al., 2022). Among the 211 Tara Oceans

stations, 145 stations sampled psbO reads in different ocean regimes from oligotrophic to eutrophic waters (Chla from 0.01

to 10 mg.m−3, median at 0.3 mg.m−3), from 2009 to 2013. Seawater samples were filtered in order to differentiate five75

planktonic size fractions (0.22-3um, 0.8-5um, 5-20um, 20-180 um, 180-2000 um). For the purpose of this study, we pooled

the five size fractions into a single aggregated sample, correcting by the different sampling volumes for each size fraction, and

discarded stations where not all size fractions were available, to avoid biasing the results.

psbO data enabled us to taxonomically differentiate seven phytoplankton groups: diatoms, dinoflagellates, green algae,

haptophytes, pelagophytes, cryptophytes, and prokaryotes (Cyanobacteria) (Fig. 1). The psbO read abundances of these seven80

groups are expressed as relative phytoplankton cell abundance (%). Phytoplankton that were not assigned to any of these seven

groups (Unclassified) represented less than 5% of the total phytoplankton community.
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In addition to the use of psbO as a proxy of relative cell abundance, we also estimated the Chla proportion of the most

abundant phytoplankton groups. For this, the relative psbO read abundances were weighted by their size fraction and then

multiplied by the in-situ value of Chla measured at each Tara Oceans station. This conversion from psbO reads to Chla gives85

the contribution of each phytoplankton group to the total Chla, by accounting for cell size. We should note however that

filters may retain cells smaller than the nominal pore size because of net clogging, being trapped in fecal pellets, as well as

being present as symbioses and colonies. This has been observed with prokaryotic pico-sized cells such as Synechococcus

and Prochloroccocus being over-represented in the 180-2000 um size fraction (Fig. 2). To minimize this impact, we based our

size-weighting on 4 size-fractions, while excluding the 180-2000 um size range following the protocol in Sommeria-Klein et90

al., 2021. Chla fraction per group is expressed as follows:

Chla fractionPFT =
Chlain-situ ·

(∑4
s=1(psbOPFT · sizes)

)
∑4

s=1

∑7
PFT=1(psbOPFT · sizes)

where PFT is a designated phytoplankton group, and size is the four used size fractions.

There are hence two levels of information derived from the molecular dataset; relative abundance of psbO reads as a proxy

of relative cell abundance, and the fraction of Chla that each group represents. Both types of information have different im-95

plications. Chla is often used as a proxy of biomass, which is a relevant parameter for energy and matter fluxes (e.g., food

webs, biogeochemical cycles), while cell abundance corresponds to species abundance for unicellular organisms, which is an

important measure for inferring community assembly processes.

2.1.2 Satellite datasets

We used ocean color products from the Globcolour project (R2019, full archive reprocessed, 2020) from 1997 to the present100

day, downloaded from the Globcolour portal. These products were constructed by merging data from various satellite sensors:

Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS), Visible In-

frared Imaging Radiometer Suite (VIIRS), Medium Resolution Imaging Spectrometer (MERIS), and Ocean and Land Colour

Instrument (OLCI). We used sixteen Globcolour products: Chlorophyll-a concentration (Chla, product name: CHL1-AVW),

Remote sensing reflectances (Rrs) at 11 wavelengths (412 till 670 nm), light attenuation coefficient at 490 nm (Kd490), pho-105

tosynthesis available radiation (PAR), Normalized fluorescence light height (NFLH) and particulate backscattering at 443 nm

(bbp). These products have daily and 4km spatio-temporal resolution. In addition, we used the Climate Change Initiative Sea

Surface Temperature (SST) product at 4 km resolution and daily frequency distributed by the Copernicus Marine Services

(CMEMS) portal.

2.2 HPLC datasets110

To compare psbO-derived phytoplankton group distributions with more conventional, DPA-based products, we compiled a

global HPLC dataset regrouping 12 000 HPLC observations from several HPLC datasets between 1997 and 2014 (Fig. 3):
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Figure 1. Global biogeographical patterns of marine phytoplankton relative cell abundance and Chla fraction per group based on psbO reads

obtained from metagenomes from seawater samples collected during the Tara Oceans expeditions.

Figure 2. Relative abundance of psbO reads as a proxy of phytoplankton group cell abundance observed in each size fraction. The boxplots

represent the distribution of each group and each panel shows the different size fractions.

MAREDAT, NOMAD, SeaBASS, and other oceanographic campaigns: Labrador, Gep&co, Polarstern, BROKE-West, SAZ-

Sense Voyage (Luo et al., 2012; Werdell and Bailey, 2005; Dandonneau et al., 2004; Bracher et al., 2015; Fragoso et al., 2016;

Peloquin et al., 2013; Wright et al., 2010; de Salas et al., 2011). This HPLC dataset was collocated with satellite Globcolor and115

CCI matchups. It depicts the abundance of the pigments most widely used to identify major phytoplankton groups: Fucoxanthin
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(Fuco), Peridinin (Perid), Alloxanthin (Allo), Zeaxanthin (Zea), Chlorophyll-b (Chlb), 19’-Hexanoyloxyfucoxanthin (19HF),

and 19’-Butanoyloxyfucoxanthin (19BF) (Table 1). To estimate Chla fraction for each phytoplankton group, namely diatoms,

dinoflagellates, haptophytes, green algae, cryptophytes, pelgophytes and prokaryotes, diagnostic pigments were used. The Chla

fraction per group is expressed by:120

ChlaPFT =
DP ·α∑
DP ·α

where a is a coefficient associated with a diagnostic pigment (DP) for a specific PFT.

Three sets of coefficients a are proposed for a global ocean application and are presented in Table 1 (Uitz et al., 2006; Soppa

et al., 2014; Brewin et al., 2015). Therefore we calculated an average Chla fraction value for each phytoplankton group using

the three sets of coefficients.125

Simultaneously, Tara Oceans HPLC measurements (Pesant et al., 2015), which are available for the same stations and

sampling time as for psbO, were considered to evaluate the correspondence between pigments and psbO-derived phytoplankton

groups.

Figure 3. Geographical location of the global HPLC dataset stations regrouping observations from 1997 and 2014. The right panel represents

a comparison between in-situ HPLC Chla measurement and its matchup using Globcolour Chla product.

2.3 PFT satellite products

In order to compare the outputs of our method to those of existing DPA-based remote sensing algorithms, we used two of them:130

2.3.1 CMEMS phytoplankton Chla fraction

This Globcolour product contains the concentration of each phytoplankton functional type (expressed in terms of Chla con-

centration fraction) based on the Xi et al. (2020) algorithm, processed from 1997 to present. This algorithm estimates the Chla
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Table 1. Phytoplankton groups and size classes associated with their diagnostic pigments and coefficients.

Phytoplankton

size class
Phytoplankton group

Diagnostic Pigment

(DP)

Coefficients (a)*

Uitz et

al., 2006

Soppa et

al., 2014

Brewin et

al., 2015

Micro

Diatoms, Haptophytes, Chrysophytes,

Dinoflagellates

Fucoxanthin (Fuco) (Jeffrey,

1980)

1.41 1.55 1.51

Dinoflagellates Peridinin (Perid) (Jeffrey,

1980; Jeffrey and Hallegraeff,

1987)

1.41 0.41 1.35

Nano

Haptophytes, Chrysophytes,

Dinoflagellates

19’-Hexanoyloxyfucoxanthin

(19HF) (Wright and Jeffrey,

1987)

1.27 0.86 0.95

Green algae, Prasinophytes Chlorophyll-b (Chlb)

(Vidussi et al., 2001)

1.01 1.17 0.85

Cryptophytes Alloxanthin (Allo) (Gieskes

and Kraay, 1983)

0.6 2.39 2.71

Pelagophytes, Haptophytes 19’-Butanoyloxyfucoxanthin

(19BF) (Wright and Jeffrey,

1987)

0.35 1.06 1.27

Pico Prokaryotes (Cyanobacteria), Green

algae, Prasinophytes, Chrysophytes,

Euglenophytes

Zeaxanthin (Dandonneau et

al., 2004; Guillard et al.,

1985)

0.86 2.04 0.93

Coefficients based on global HPLC dataset corresponding to the sum of the weighted diagnostic pigments to the total Chla;

Chla=
∑

aDP
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concentration of diatoms, dinoflagellates, haptophytes, green algae, and prokaryotes. The algorithm was implemented using

HPLC-based phytoplankton groups using the DPA approach (Soppa et al., 2014) and satellite reflectance in the visible spec-135

trum (15 bands comprised between 400 and 709 nm) with empirical orthogonal function (EOF). This dataset is distributed by

CMEMS (product number: OCEANCOLOUR_GLO_BGC_L3_MY_009_103).

2.3.2 SOM phytoplankton pigments

SOM-Pigments (El Hourany et al., 2019a) is a machine learning-based algorithm that allows the estimation of phytoplankton

pigment concentrations in oceanic waters from satellite ocean color data (Chla, Rrs at four wavelengths: 412, 443, 490 and140

555nm) and SST. This algorithm is based on the use of Self-Organizing Maps (SOMs), an unsupervised neural network, and

was calibrated using the HPLC dataset described above.

The SOM-Pigments algorithm applied to Globcolour products allowed us to estimate the concentration of ten phytoplankton

pigments (Chlorophyll-a (Chla), Divinyl-Chlorophyll-a (DVChla), Chlorophyll-b (Chlb), Divinyl-Chlorophyll-b (DVChlb),

19’Hexfucoxanthin (19HF), 19’Butfucoxanthin (19BF), Fucoxanthin (Fuco), Peridinin (Perid), Alloxanthin (Allo), Zeaxanthin145

(Zea)) at the global scale from 1997 to 2021. We then used the coefficients in Table 1 to convert pigments into the Chla

concentration of five phytoplankton groups, namely diatoms, dinoflagellates, haptophytes, green algae and prokaryotes.

3 Methods

Several machine learning algorithms were used in this study. The algorithm to estimate phytoplankton groups from satellite

data was built using SOM (Kohonen, 2013) and topology-constrained organization. This allowed us to confirm the non-linear150

relationships between phytoplankton group composition and satellite data through topology conservation. Next, we used the

Ascending Hierarchical clustering algorithm to identify the large scale patterns generated by SOM. This allowed us to em-

phasize the predominant data structure learned by SOM and to characterize phytoplankton biomes. Finally, to characterize the

differences between the DPA- and psbO-based approaches, we used Random Forest models to highlight the cumulative impor-

tance of a pigment composition to estimate a phytoplankton group abundance. In the following section, each methodology and155

algorithm are explained in detail.

3.1 Structure of the training and test databases

The initial dataset (D) consists of the 145 Tara Oceans observations of psbO relative abundance of the seven defined phyto-

plankton groups, the Chla fraction per group, and the associated matchups of 21 satellite-derived parameters (Chla, SST, Rrs at

15 wavelengths from 412 to 709nm, NFLH, Kd at 490m, PAR, and bbp at 443nm). The unclassified phytoplankton fraction was160

also considered, despite negligible values, to ensure coherence of the total phytoplankton pool. The matchups between satellite

observations and in-situ observations were selected by considering 3x3 pixel boxes around the in-situ coordinates and +/- 1 day

around the day of the in-situ measurement (El Hourany et al., 2019a, b). We built two sub-datasets, the first (DRCA) relating

psbO-derived relative cell abundance of the seven defined phytoplankton groups to the 17 satellite-derived parameters, and the
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Table 2. Percentage of missing values within the initial database.

Tara Oceans psbO Sat

D (145 stations) Relative cell abundance Chla fraction per group Chla Rrs 412-709 nm SST bbp443 Kd490 NFLH PAR

Percentage of missing values - 7% 18% 43-53% 30% 55% 53% 37% 14%

second (DChlF ) joining psbO-derived Chla fraction per phytoplankton group and the same 17 satellite-derived parameters. We165

then constructed two algorithms, using either DRCA or DChlF , both based on the same SOM methodology described below.

Following the positioning of Tara Ocean’s stations, and the distribution of Chla values within both datasets (Fig. A1), both

algorithms are suitable for case 1 waters applications ( i.e. open ocean).

All variables were normalized by their variance to homogenize weights. The rationale behind this is that the phytoplankton

community should be treated as a whole; consequently, the variability of each phytoplankton group is dependent on each other170

in a relative way. DRCA and DChlF both present missing values (Table 2), most likely due to cloud coverage or coastal/ice

presence/proximity. In-situ psbO-based observations also contained missing values due to an absence of certain measurements

at a given station. Since the in-situ dataset contains a low number of observations (145 stations), every observation is valuable.

In order to overcome the several limitations faced with this training dataset, we used the SOM algorithm that can deal with

missing values and allow a robust generalization in the case of limited observations (Jouini et al., 2013).175

3.2 Self-Organizing map applied to Tara Oceans psbO data

3.2.1 General concept of SOM

The SOM algorithm is utilized for clustering multidimensional databases by assigning them to classes represented by a fixed

network of neurons known as the SOM map. The SOM map consists of a rectangular grid of p x q neurons and defines a discrete

distance between neurons, enabling the partitioning of the dataset. Each cluster is associated with a neuron and represented by180

a prototype vector. Observations in the dataset are assigned to the nearest neuron based on the Euclidean Norm. A key feature

of SOM is its ability to provide topological ordering, where close neurons on the map correspond to similar observations in the

data space. The estimation of a neuron’s vector and the topological order is determined through a minimization process of a

cost function that depends on the distance between the neuron and its assigned observation. SOMs have been widely employed

to complete missing data, utilizing the truncated distance (TD) that considers only the existing components of the observation’s185

vector, thus allowing for the integration of incomplete information.

3.2.2 Training phase

The implementation of the SOM methodology is summarized in Fig. 4 and 5. Briefly, we first split the Tara Oceans psbO

datasets so as to obtain 80% of the data to train the SOM, and 20% of the data as a test set, the latter consisting of 30

observations with complete psbO information. We did this separately for DRCA and DChlF sub-datasets so as to generate190
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SOMRCA, which stands for the algorithm specialized in relative cell abundance estimation, and SOMChlF for the algorithm

specialized in Chla fraction per phytoplankton group.

During the SOM training, different combinations of satellite variables were used to determine the best set of variables to es-

timate the 7 phytoplankton groups in terms of relative cell abundance and Chla fraction. For each combination of variables, we

increased the number of neurons from 10 to 1000 neurons to determine the optimal size of the SOM. For each SOM obtained,195

we quantified quantization and topographic errors. The quantization error represents the difference between an observation

and its closest neuron. This error is monitored during the training procedure until it reaches stability at a minimum value with

increasing training epochs. This is where the training should stop to prevent overfitting. The quantization error is expressed as

follows:

qe=
1

n

n∑
i=1

∥xi −wci∥200

where xi is the vector of an input observation i; wci is the vector of the closest neuron c of a sample xi; n is the number of

observations.

However, the topographic error is a representation of having, for each observation of the database, distant first and second

best-matching neurons and is expressed as follows:

te=
1

n

n∑
i=1

d(xi)205

where d(xi) = 1 if the first and second closest neuron to xi are not adjacent, else d(xi)=0.

Minimizing this quantity is important to ensure the preservation of the topological order within the SOM map with an

increasing number of interpolated neurons. A one leave-out cross-validation procedure was performed to assign performance

metrics (R2 and RMSE) to help choose the best combination of SOM size and satellite variables. At each iteration of the

cross-validation procedure, we chose randomly one observation as a test, whereas the other observations served to train the210

SOM with the given grid size. We calculated the closest neuron to the test observation based on its satellite variables only and

associated these latter with the neuron’s seven phytoplankton groups vector. When all the observations were used as a test,

we calculated a mean R2 and an RMSE, associated with the given size map, while comparing the estimated and observed

phytoplankton group values. The best SOM configuration and variable combination are based on an optimum where te, qe,

and the RMSE are in low ranges while avoiding overfitting. The chosen SOM was tested using the 20% test set, providing215

independent performance metrics to evaluate the generalization of the chosen SOM. As a result, we present in the paper the

performance metrics of the chosen SOM configuration based on the cross-validation procedure and the test set.

The optimal combination of satellite parameters for the SOMRCA and SOMChlF algorithms was determined to be Chla,

SST, Rrs at four wavelengths (412, 443, 490, and 555 nm), bbp, and Kd490. The grid size for SOMRCA was set at 242 neurons,

while SOMChlF had a grid size of 222 neurons. This selection was based on several factors, including a high regression220

coefficient between estimated and observed phytoplankton values, low error values of quantization and topographic error, and
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a low global RMSE encompassing all phytoplankton groups. The choice of Rrs bands aligns with previous work conducted

on the PHYSAT method by Alvain et al. (2005) and Ben Mustapha et al. (2013). The PHYSAT method utilizes reflectance

anomalies in the same four selected bands to identify dominant phytoplankton functional types. It should be noted that the Rrs

bands selected, including the additional 670 nm band, are commonly measured by all sensors used to build the Rrs product of225

Globcolour. This overlapping of different sensors enhances data availability and coverage, thus increasing the importance of

these Rrs bands within the initial dataset. The inclusion of the Rrs at 670 nm did not significantly impact the performance of

either SOMRCA or SOMChlF, primarily due to the open ocean nature of the dataset. In the clear open ocean, the information

contained in the remote sensing reflectance (Rrs) bands beyond 555 nm is limited due to the strong absorption by water, as

noted by Xi et al. (2015).230

Through the iterative training process described above, the results show a significant increase in the general performance of

the method when the number of neurons increases to a certain extent (Fig. 6). Using a number of neurons larger than the training

dataset still allows a refined discretization. In this case, some neurons will capture a sample of the database, which permits to

define a referent vector for these neurons. When the neuron did not capture any data observation, the discrete distance between

the neighboring neurons was used to determine the referent vector w of each neuron that has not captured any data (Sarzeaud235

and Stephan, 2000; El Hourany et al., 2019a). This leads to preserving the topological order provided by new interpolated

neurons. However, the quantization error’s lowest values above 350 neurons might indicate overfitting.

Figure 4. General flowchart of the SOM methodology applied on both DRCA and DChlF to construct SOMRCA and SOMChlF.
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Figure 5. Detailed training procedure of the SOM methodology applied on both DRCA and DChlF .

3.2.3 Operational phase

During the operational phase, we estimated the phytoplankton group variability using the best combination of satellite param-

eters. The set of parameters of a pixel was projected onto the SOM. In doing so, the parameters at each pixel were normalized240

by the variance of that same parameter within the initial training dataset to maintain an equal weight among the parameters and

were assigned with the closest best-matching neuron using the truncated distance. At the end of the assignment phase, each

pixel was associated with a referent vector corresponding to the best matching neuron, which includes the seven phytoplankton

groups as a function of relative cell abundance in the case of SOMRCA, or Chla fraction in the case of SOMChlF. Since the

training was undergone for the whole phytoplankton community at once, alongside the total Chla information, the SOM allows245

the inherent structure of the data to be preserved.

For this phase, level 3 mapped 4 km daily images were used to estimate the phytoplankton groups at the same spatio-temporal

resolution.
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Figure 6. Quality assessment based on the quantization and topographic error related to the training of the SOMChlF and SOMRCA as a

function of increasing SOM size (number of neurons) using Chla, SST, Rrs at 4 wavelengths (412, 443, 490 and 555 nm), bbp and Kd490.

In parallel, the average regression coefficient and the root mean squared error as a function of increasing SOM size were calculated through

a “one-leave out” cross-validation procedure. The dashed black and red lines correspond, respectively, to the R2 and the RMSE using the

“K-nearest neighbor” algorithm. Finally, the dotted lines correspond to the chosen SOM size for SOMChlF=242 neurons and SOMRCA=222

neurons.

3.2.4 Masking and uncertainty evaluation

Given that our initial dataset is of limited size, it is possible that it does not contain certain naturally occurring cases. In250

order to prevent abnormal predictions for cases not observed in the initial dataset, we conducted a quality evaluation of the

method’s output. This evaluation involved quantifying a reliability index by comparing the set of satellite parameters’ values

at a particular pixel with the values of the same parameters in the initial dataset. If a satellite variable’s value fell outside

the range defined within the initial dataset by the mean value of the same variable’s distribution plus or minus two standard

deviations, it was considered distant. This evaluation was performed for all satellite variables per pixel, and the reliability index255

was determined by dividing the number of accepted variables by the total number of existing variables. A higher reliability

index indicates greater reliability of the method, while regions with lower reliability index values require additional attention.

In the context of the global ocean, numerous uncertainties are associated with satellite parameters and regions. The SOM

algorithm is known to effectively reduce noise and mitigate the impact of uncertainties within the dataset (da Silva and Costa,

2013). However, the main source of uncertainty in the estimation process stems from selecting the best matching neuron. This260

involves finding and associating the closest neuron in the SOM with a new or unfamiliar observation, such as a satellite pixel.
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Due to the topology conservation, a pixel could be assigned to several close neurons, forming a neighborhood along a distance

gradient. Consequently, a single satellite observation can represent various probabilities of phytoplankton group combinations.

To account for all uncertainties in the estimations, we opted to associate each pixel and phytoplankton group (based on

relative cell abundance or Chla fraction) with a weighted standard deviation derived from the values of the ten closest neurons.265

The weights were determined by the distances between the first ten matching neurons and the pixel. This approach allowed

us to incorporate uncertainties into the assignment process and provide a confidence measure for each pixel’s assignment. By

considering both the reliability index and the weighted standard deviation, we could assess the influence of uncertainties in the

satellite variables.

3.3 Characterisation of phytoplankton biomes270

To emphasize the predominant data structure learned by SOMChlF, the Ascending Hierarchical Clustering algorithm (AHC)

was used to characterize phytoplankton biomes on the basis of their Chla fractions (a proxy of a phytoplankton group’s biomass)

and optical signature.

The HAC is a bottom-up clustering algorithm. The HAC starts with individuals and combines them according to their

similarity (with respect to the chosen distance) to obtain new clusters. The exact number of biomes is not known a priori but275

at the end of the SOM+HAC procedure, several possibilities of a number of clusters to be taken into account were revealed.

A compromise was made between the number of clusters we could explain from a physical point of view and the number of

clusters for which we needed to include the maximum of information embedded in the dataset. This procedure has been used

with success in several studies (Reygondeau et al., 2014; Richardson et al., 2003; Rossi et al., 2014; Sawadogo et al., 2009; El

Hourany et al., 2021). At the end of the HAC clustering phase, each neuron of the SOMChlF was associated with a cluster. The280

association of several neurons in a cluster allows us to identify common phytoplankton community structures, and therefore

characterize phytoplankton biomes. Upon applying SOMChlF as described in the operational phase section, each pixel of a

satellite image could be associated with a cluster.

3.4 Evaluation of pigments to estimate phytoplankton groups

Each phytoplankton group’s psbO abundance was associated with its corresponding HPLC pigments measurement performed285

on the same Tara Oceans station. The ability of pigments to predict phytoplankton groups was evaluated using a bagged random

forest algorithm (number of learners set to 200), following the permutation-based importance method.

The bagged random forest algorithm is a set of decision trees, each constituted of internal nodes and leaves. In the internal

node, the selected feature (i.e., pigment in this case) was used to make a decision on how to divide the dataset into separate

sets with similar responses in terms of a given phytoplankton group. Since this algorithm is used in a case of regression, the290

decision is evaluated while monitoring the error decrease between the real phytoplankton group abundance and the predicted

one, which corresponds to the value of a divided set. The permutation-based importance method will randomly shuffle each

pigment and compute the change in the model’s performance to predict the abundance of a phytoplankton group.
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Table 3. Results of the cross-validation and test exercises of SOMRCA and SOMChlF based on the regression coefficient (R2) and the

root-mean-squared-error (RMSE).

SOMRCA

Relative cell abundance (%)

SOMChlF

Phytoplankton chlorophyll-a fraction (mg m-3)

Cross-val Test Cross-val TestPhytoplankton group

R2 RMSE (%) R2 RMSE (%) R2 RMSE (mg.m−3) R2 RMSE (mg.m−3)

Diatoms 0.65 2.70 0.72 2.00 0.66 0.25 0.86 0.04

Dinoflagellates 0.79 5.45 0.83 6.15 0.65 0.09 0.61 0.04

Green Algae 0.61 5.64 0.67 4.32 0.71 0.03 0.62 0.01

Haptophytes 0.66 3.42 0.33 3.04 0.76 0.07 0.68 0.01

Prokaryotes 0.60 19.27 0.67 20.53 0.57 0.05 0.76 0.09

Cryptophytes 0.62 1.98 0.78 1.98 0.70 0.03 0.77 0.01

Pelagophytes 0.64 2.60 0.36 1.96 0.68 0.02 0.74 0.01

Chlorophyll-a 0.83 0.23 0.72 0.31

Using this method, a pigment composition of the seven major phytoplankton pigments cited in Table 1 was tested to predict

the abundance of each psbO-derived phytoplankton group, and therefore estimate their importance. The concentration of each295

pigment was evaluated in terms of pigment ratios, a ratio relative to the sum of all pigments’ concentration, and in parallel, the

psbO-derived relative abundance was used.

4 Results and discussion

4.1 Cross-validation, performances, and spatial limitation of the SOMRCA and SOMChlF algorithms

Cross-validation of different combinations of satellite data and SOM grid size revealed a performance of an average R2 of300

0.68 for SOMRCA and of 0.74 for SOMChlF (Fig. 7, table 3). Upon summing all Chla fractions, the cross-validation analysis

shows a satisfying agreement between estimated total Chla and in-situ values (R2= 0.83) and therefore a preservation of the

initial phytoplankton quantity expressed in total Chla.

To evaluate the quality of the representation of the inter-variable relationships within the input data by the SOM, the cor-

relation coefficients and phytoplankton group value distributions were compared between the vectors constituting the neurons305

of SOMRCA and SOMChlF with DRCA and DChlF , respectively. This analysis showed that the correlation coefficients were

not altered within SOMRCA nor SOMChlF, and neither was the shape of the distribution of the values while compared to the

initial dataset. These results highlight the capacity of SOM to preserve the characteristics of the initial dataset after the training

procedure (Fig. A1 and A2).
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Figure 7. Results of the two-step cross-validation (blue) and test (red) procedures for SOMChlF (left) and SOMRCA (right) with the chosen

best combination of satellite parameters and a SOM grid, respectively, of 242 and 222 neurons. For the cross-validation, each observation,

among 80% of the initial data, was used iteratively as a training set and as a test set until all observations served as tests (blue dots). This

procedure was used to identify the best satellite combination and SOM grid size. Finally, the remaining 20% was used as a test to evaluate

the generalization capacity of the SOM with the chosen configuration (red dots).

However, given the limited size of the initial dataset, applying SOMRCA and SOMChlF to the global satellite data must310

be done with caution. For each pixel and at each time step between 1997 to 2021, we performed the quality control described

in section 3.2.3 to provide a measure of the applicability of this method (Fig. 8). Regions of low confidence can be identified

where the value of the reliability index does not exceed 40% throughout the time series. These regions are mainly found in

coastal and turbid waters, as well as the South Pacific Ocean gyre, and are characterized either by very high or very low Chla

values. This result is expected because the SOM algorithm is mainly adapted for case 1 waters and cannot extrapolate beyond315

the distribution of values in the initial dataset. Furthermore, moderate confidence regions in which around 20% of the pixels fall

out of the accepted bounds, are highlighted by a reliability index under 80%. These regions are mainly found at high latitudes,

especially in the Southern Ocean, mainly due to the limited number of available samples in the area and the particular optical

characteristics of that region (Mitchell et al., 1991).
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Uncertainty values reached 20% relative cell abundance for SOMRCA and 0.15 mg.m−3 of Chla SOMChlF, respectively,320

and in each case displayed regional patterns. Generally, uncertainty values followed the concentration gradient in Chla fraction

and cell abundance per group. High latitudes exhibited the highest uncertainties for diatoms, green algae, and haptophyte

relative cell abundances, while the Southern Ocean showed the highest uncertainties for prokaryotic cell abundance. The

elevated uncertainty in prokaryotes within the Southern Ocean can be attributed to the limited sampling in this area, resulting

in greater dissimilarity between satellite data in this region and the data sampled in the initial dataset, corroborating the findings325

of the reliability index. This is also consistent with the very low abundance of cyanobacteria in the area (Flombaum et al., 2013),

for which model uncertainty may be higher.

Figure 8. Applicability of the satellite psbO-based method. The geographical (left) and values distribution (right) of the reliability index

were calculated between 1997 and 2021 by testing the set of satellite parameters at a given pixel against the values in the original dataset (D).

4.2 Comparison with global HPLC pigment dataset

The global in-situ HPLC dataset was then used to estimate Chla fractions for each phytoplankton group using the diagnos-

tic pigment approach (DPA). This dataset was compared to the Chla fraction matching each phytoplankton group that was330

estimated by SOMChlF (Fig. 9). Evaluating the sum of Chla fractions and comparing it with in-situ Chla can be considered

as a baseline evaluation of this method. This comparison showed a satisfying correspondence score of R2=0.72. Relatively

good correspondence is noted for diatoms and haptophytes, showing an R2=0.64 between in-situ and SOMChlF for diatoms

and 0.65 for haptophytes. Moderate correspondence was found for green algae, cryptophytes, and pelagophytes, with an R2

ranging between 0.43 and 0.39. Prokaryotes and dinoflagellates had the lowest correspondence between both outputs. The335

comparison between DPA-based phytoplankton groups and SOMChlF estimates is highly uncertain. It compares two types of

information indicating the same phytoplankton group, with different underlying assumptions about how to define and describe

a certain group. For some of the groups, these results are coherent. For example, the diatom Chla fraction is well captured

by the latter, and the values agree with those estimated using HPLC observations; however, we noted a major overestimation

within the HPLC DPA method. For prokaryotes, this comparison leads us to say that the use of zeaxanthin as an indicator of340

the cyanobacterial contribution to Chla may not be entirely representative of this group.
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The permutation-based importance analysis using Random Forest, performed on the in-situ Tara Oceans psbO and HPLC

measurements, emphasizes the necessity of a multivariate approach for predicting phytoplankton community structure based on

pigments (see Fig. 10). Notably, the diagnostic pigments mentioned in Table 1 exhibited dominant importance in determining

the relative abundance of their respective assigned phytoplankton groups. For instance, peridinin represented dinoflagellates,345

Chlorophyll-b characterized green algae, and zeaxanthin indicated prokaryotes (Table 1). These pigments demonstrated the

highest importance for their respective groups, as illustrated in Fig. 10, accompanied by a positive Spearman correlation. How-

ever, individually, these pigments accounted for less than 25% of the variance in their respective groups. Conversely, in the

case of cryptophytes, diatoms, and haptophytes, no pigment stood out in terms of importance, and the observed correlations

were related to co-variation between pigments (e.g., Chlb and Fuco in diatoms), possibly influenced by Chla variability. There-350

fore, the variability within each group is best explained not by a single diagnostic pigment, but rather by the overall pigment

composition. It is crucial to consider how natural variability can influence the interpretation of pigment composition in rela-

tion to phytoplankton community structure. Pigment ratios not only vary with phytoplankton composition but also reflect the

diverse strategies employed by different phytoplankton types to acclimate to environmental factors such as light, temperature,

nutrients, and other variables.355

4.3 Global patterns of satellite-derived phytoplankton groups

We then applied our method to Glocolour satellite data to generate a daily database spanning from 1997 to 2021, capturing the

relative cell abundance and Chla fraction of seven phytoplankton groups of interest. Fig. 101 presents the annual patterns of

relative cell abundance and Chla fraction for each phytoplankton group, derived from this satellite dataset.

Regarding relative cell abundance, the prokaryotes stand out as a dominant group. This group largely dominated tropical360

regions, with a relative abundance of up to 80% in subtropical gyres. Haptophytes, green algae, and diatoms exhibited higher

abundance in mid and high latitudes as well as the equatorial region, showing a maximum relative abundance of 30%. The

remaining three phytoplankton groups displayed relative abundances that barely exceeded 10% of the total phytoplankton

community. Pelagophytes and dinoflagellates were primarily observed in mid and subtropical latitudes, while cryptophytes

were found in coastal areas and high latitudes.365

Examination of how each phytoplankton group contributed to total Chla revealed that diatoms had a significant contribution

at high latitudes and equatorial regions. Prokaryotes, on the other hand, had an overall low to moderate contribution to total

Chla.

Qualitatively, the information captured by SOMChlF was clustered into five groups, each characterized by a distinct remote

sensing reflectance spectrum that corresponded to the phytoplankton community structure (Fig. 112). To illustrate the link be-370

tween each group’s contribution to total Chla concentration and relative cell abundance, we depicted the latter while evaluating

the pixel’s assigned relative abundance values for each of the five clusters. This approach revealed that three out of the five

clusters are dominated by prokaryotes in terms of cell abundance (C1, C2, and C3). However, based on their relative contribu-

tion to Chla, C1 was found to be dominated by prokaryotes and dinoflagellates, C2 exhibited a mixed composition, C3, and C4
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Figure 9. Comparison between the outputs of SOMChlF and the DPA approach applied on an in-situ global HPLC dataset.

represented diatoms and other eukaryotes, whereas C5 was predominantly composed of diatoms. The shift from relative cell375

abundance to size-integrated relative Chla fraction illustrates how cell size influences Chla contribution and variability.

Each cluster is characterized by a specific optical signature in terms of Rrs spectra. The Rrs values per wavelength were

normalized based on their corresponding variance, enabling intercomparison regardless of magnitude. For instance, C1, which

exhibits higher reflectance in the blue wavelength, represents clear, oligotrophic waters. In such environments with low nu-

trients and high surface stratification, picophytoplankton groups like cyanobacteria thrive due to their high surface-to-size380

ratio (Raven, 1998; Chisholm, 1992). C2 represents normalized Rrs spectra with insignificant differences between normalized

bands, suggesting an average state where the phytoplankton community appears mixed. In C3 and C4, we observed an increase

in normalized Rrs values in the green compared to the blue wavebands, indicating higher Chla in these environments. Given

that C3 and C4 are located in high-latitude regions with ample nutrient resources and exceptional seasonal variability of light

intensity, larger cell-sized phytoplankton groups, including diatoms, are favored, leading to increased biomass and Chla con-385
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Figure 10. Evaluation of secondary pigment weighting for the estimation of different phytoplankton groups. The left panel represents

the percentage of variance of each phytoplankton group explained by a set of frequently used phytoplankton secondary pigments. This

analysis has been done using a random forest algorithm applied to the in-situ Tara Oceans psbO and HPLC datasets. A Spearman correlation

coefficient has been calculated between each pigment and the phytoplankton groups (right panel).

tribution (Brun et al., 2015). C5, with the greatest difference between Rrs in the blue and green, represents eutrophic waters,

known for their high productivity and diatom-dominated blooms (Brun et al., 2015).

Based on the global distributions of these clusters, several biomes can be defined. C1 is centered in subtropical gyres, C2 is

found in transitional zones such as mid-latitude regions and the equatorial region, C3 is observed in the Southern Ocean, C4

corresponds to high-latitude regions, and C5 is prevalent in coastal and eutrophic waters.390

Different temporal variability is evident for each cluster across different latitudinal bands. In northern high latitudes, an

increase in C5 indicates maximal productivity occurring in that region around May. At mid-latitudes, the winter maximum

is marked by an increase in C5 and C4 clusters. A secondary, less pronounced peak can be observed in autumn, attributed

to the break in the thermocline and remineralization processes. During summer, C1 dominates the mid-latitude regions. In

tropical regions, C1 is predominant, with a cyclic increase of C2 suggesting coastal influences, likely due to the proximity of395

C2 to nutrient-rich zones like upwelling systems. In contrast to northern high latitudes, the Southern Ocean exhibits a different

temporal variability. The presence of prokaryotes is signified by C1 in this region, whereas C3 dominates during the bloom
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season in January. This analysis confirms the Antarctic nature of C3 in contrast to C4, highlighting differences in water types

between the two regions based on phytoplankton community structure and satellite data.

This division into parallel and transitional biomes underscores the significant influence of latitudinal physical gradients,400

including light availability and temperature, on the structuring of the phytoplankton community in terms of types and size.

These findings align with previous global phytoplankton studies conducted in situ (Ibarbalz et al., 2019; Sommeria-Klein

et al., 2021) as well as satellite estimates (Alvain et al., 2006; Hirata et al., 2011; Ben Mustapha et al., 2013; El Hourany et al.,

2019a; Xi et al., 2020).

4.4 Intercomparison of satellite-derived phytoplankton group products405

A comparison was performed between SOMChlF’s output, and two operational products based on Xi et al., 2020 and SOM-

Pigments (El Hourany et al., 2019a) algorithms. We based this on the five phytoplankton groups common to all three algorithms:

diatoms, dinoflagellates, green algae, haptophytes, and prokaryotes. The annual patterns show a substantial agreement between

all three satellite-derived phytoplankton estimates (Fig. 13). However, some differences between the estimated quantities of

Chla phytoplankton groups can be noted. For diatoms, the outputs based on El Hourany et al. (2019a) and SOMChlF exhibit410

higher Chla values, while those based on Xi et al. (2020) show low values near the equatorial latitudes. For green algae and

haptophytes, the three products show matching latitudinal variability, with only minor discrepancies in values at high and

subtropical latitudes. For prokaryotes, the outputs of Xi et al. (2020) show higher estimates, particularly near the Arctic and

equatorial regions. Lastly, for dinoflagellates, the SOM-Pigments method yielded lower Chla values, especially in subtropical

gyres, whereas SOMChlF showed the highest Chla estimates for this taxonomic group.415

Addressing the differences between the outputs referring to the same phytoplankton group is not a straightforward task.

Two methods are based on the DPA approach, which displays uncertainties related to the choice of pigments to delimit certain

groups. For instance, several studies showed that the DPA approach tends to overestimate diatoms Brewin et al. (2014); Chase

et al. (2020). This approach may compromise the relevance of satellite images when used. However, the added value of such an

approach resides in the availability of the large HPLC dataset, which allows the development of robust algorithms. On the other420

hand, the method described in this paper and the generated outputs are based for the first time on a complete and harmonized

database of phytoplankton taxonomic community structure on a global scale; an approach that provides an unbiased picture of

phytoplankton cell abundances. However, the major limitation of this approach at this time is the low number of observations

from which the metric has been derived.

5 Conclusions425

By employing an alternative approach utilizing in-situ metagenomic observations, a reliable ocean color algorithm for detect-

ing phytoplankton groups was developed in this work. This achievement is noteworthy considering the limited availability of

omics data used in our analysis. The successful implementation was made possible by leveraging machine learning techniques

and preserving the data structure using Self-Organizing Maps. The methodology demonstrated satisfactory performance in
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Figure 11. Annual composites of the relative abundances and Chl fractions of the seven psbO-derived phytoplankton groups based on satellite

data (compiled using data from 1997-2021). The uncertainties related to each group and each method are because of their different possible

combinations through the weighted standard deviations, as described in Section 3.2.3. We note that the scales for uncertainty are smaller than

those in the abundance and Chla columns.

producing robust estimates for the seven major phytoplankton groups, albeit with some limitations in terms of global general-430

ization due to the limited availability of data. For instance, it is important to exercise caution when interpreting estimates for

regions such as the subtropical gyres. As DNA sequencing costs continue to decrease and new expeditions generate molecular

data from undersampled ocean regions, we expect the training datasets to increase rapidly in future years, which should further
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Figure 12. Satellite-derived biomes of phytoplankton communities, obtained by unsupervised clustering (Hierarchical clustering) of SOM-

ChlF neurons. Normalized relative cell abundances and original Rrs spectra were also derived. The global map shows the most frequent

community structure recorded during the 1997-2021 period. A spatio-temporal analysis was conducted to highlight latitudinal patterns.

increase the accuracy of our method. Furthermore, this study presents a new global dataset of the relative cell abundances of

the seven phytoplankton groups and their contributions to total Chla. These two types of information carry different implica-435

tions. Chla serves as a biomass proxy, which is crucial for energy and matter fluxes in various ecological and biogeochemical

processes. On the other hand, cell abundance represents species abundance for unicellular organisms, providing insights into

community assembly processes.

This dataset opens up possibilities for inter-comparisons with existing approaches, such as DPA-based methods using in-situ

and satellite data. The results provide coherent yet distinct information about phytoplankton communities, contributing to a440

better understanding of their composition. While our focus was on seven broad phytoplankton groups, it is worth mentioning

that the deep taxonomic resolution achievable through molecular methods allows for species-level monitoring, which can be

an interesting avenue for future implementation.
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Figure 13. intercomparison of five satellite-derived phytoplankton group Chla fractions based on SOMChlF, SOM-Pigments (El Hourany

et al., 2019a), and Xi et al. (2020) algorithms. The average per latitude of each Chla fraction is calculated to reveal latitudinal patterns (right

panels).

The methodology presented in this work provides a unique opportunity to observe in real-time and high-resolution the state

of the major phytoplankton groups at the global scale. This makes remote sensing observations excellent tools to collect EBVs,445

play the role of broker between monitoring initiatives and decision-makers, and provide a foundation for developing marine

biodiversity forecasts under different policy and management scenarios. To reach this objective, remote sensing data inherently

needs to be validated with in-situ observations as well. Of further interest is the impending PACE mission launch, a strategic

climate continuity mission that will make global hyperspectral ocean color measurements possible. This will allow extended

24



data records on ocean ecology and global biogeochemistry, revolutionizing the detection of phytoplankton communities from450

space. From the perspective of PACE, this study is a step towards further understanding the effect of environmental changes

on phytoplankton community structure and diversity.

Code and data availability. psbO dataset: https://www.ebi.ac.uk/biostudies/studies/S-BSST761;

Globcolour dataset: https://www.globcolour.info/, https://hermes.acri.fr/.SSTCCIdataset: https://data.marine.copernicus.eu/product/SST_

GLO_SST_L4_REP_OBSERVATIONS_010_024/description. Global HPLC pigment dataset: MAREDAT, POLERSTERN data, Labrador455

Sea expeditions data, and Tara Oceans Expedition data, all available on https://pangaea.de/, GeP&Co database (accessed at http://www.

obs-vlfr.fr/proof/php/x_datalist.php?xxop=gepco&xxcamp=gepco), and finally the NOMAD: NASA bio-Optical Marine Algorithm Dataset,

and the numerous campaigns found on the NASA SeaBASS portal were accessed at (https://seabass.gsfc.nasa.gov/). Following best prac-

tices, the two SOM algorithms will be deposited into a public domain repository accessible upon publication. Prerequisite software library

SOM Toolbox 2.0 for Matlab is required, implementing the self-organizing map and Hierarchical Ascending Classification algorithm, Copy-460

right (C) 1999 by Esa Alhoniemi, Johan Himberg, Jukka Parviainen, and Juha Vesanto and accessible at https://github.com/ilarinieminen/

SOMToolbox. Matlab function for Random Forest algorithm was used to run the algorithm. MATLAB version R2020b, Statistics and Ma-

chine Learning Toolbox-Functions.
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