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Abstract. Ocean color remote sensing has been used for more than two decades to estimate primary productivity. Approaches

have also been developed to disentangle phytoplankton community structure based on spectral data from space, in particular

when combined with in situ measurements of photosynthetic pigments. Here, we propose a new ocean color algorithm to de-

rive the relative cell abundance of seven phytoplankton groups, as well as their contribution to total chlorophyll-a (Chla) at the

global scale. Our algorithm is based on machine learning and has been trained using remotely-sensed parameters (reflectance,5

backscattering, and attenuation coefficients at different wavelengths, plus temperature and Chla) combined with an omics-based

biomarker developed using Tara Oceans data representing a single-copy gene encoding a component of the photosynthetic ma-

chinery that is present across all phytoplankton, including both prokaryotes and eukaryotes. It differs from previous methods

which rely on diagnostic pigments to derive phytoplankton groups. Our methodology provides robust estimates of the phy-

toplankton community structure in terms of relative cell abundance and contribution to total Chla concentration. The newly10

generated datasets yield complementary information about different aspects of phytoplankton that are valuable for assessing

the contributions of different phytoplankton groups to primary productivity and inferring community assembly processes. This

makes remote sensing observations excellent tools to collect Essential Biodiversity Variables and provide a foundation for

developing marine biodiversity forecasts.

1 Introduction15

The production of organic matter (i.e., productivity) in marine ecosystems relies largely on phytoplankton. These unicellular

photosynthetic microorganisms are evolutionarily diverse and exhibit a wide range of cell morphologies, sizes, photosynthetic
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accessory pigments, elemental requirements, and biogeochemical and trophic functions (Pierella Karlusich et al., 2020). They

play a key role in regulating ocean biogeochemistry (Fuhrman, 2009) and global climate, partly through the absorption of

atmospheric CO2 and export of carbon to the deep ocean (Guidi et al., 2009; Tilman et al., 2014; Tara Ocean Foundation,20

2022).

In order to investigate the potential impacts of environmental changes on marine ecosystem functioning (Ibarbalz et al.,

2019; Henson et al., 2021), high-resolution, real-time, and global scale data on phytoplankton community structure are required

(Pereira et al., 2013). However, existing knowledge about the global distribution of phytoplankton communities from in-situ

observations is highly fragmented, spatially disparate, and temporally punctual. It is furthermore limited by both the challenges25

of in situ data collection and by the associated costs of measurement techniques, which range from microorganism imaging,

and flow cytometry, to DNA sequencing (Hillebrand and Azovsky, 2001; Irigoien et al., 2004; Smith, 2007; Rodríguez-Ramos

et al., 2015; Powell and Glazier, 2017; Righetti et al., 2019; Dutkiewicz et al., 2020; Pierella Karlusich et al., 2020).

Ocean color remote sensing offers an interesting alternative to map the global distribution of phytoplankton communities at

the sea surface at a high spatio-temporal resolution. Since 1978, ocean color satellites have been used to observe the concen-30

tration of the main phytoplankton pigment, chlorophyll-a (Chla), considered as a proxy of phytoplankton biomass (O’Reilly

et al., 1998; Sathyendranath et al., 2014). Recently, ocean color data have also been used to gain information about phytoplank-

ton communities, such as their size structure, and their taxonomic or functional composition. This interest has facilitated the

integration of the concept of phytoplankton functional types (PFT) and taxonomic groups (PG) into studies exploring various

ecological and biogeochemical aspects (Le Quéré et al., 2005; Hood et al., 2006). Functional types refer to distinct categories35

associated with biogeochemical processes (e.g., silicifiers, calcifiers) and physiological adaptations to environmental factors

(e.g., light, nutrients, turbulence), or to more practical categories identified through specific analytical techniques (e.g., pig-

ment types) (IOCCG report N 14). On the other hand, phytoplankton groups correspond to taxonomic classes (e.g., diatoms,

haptophytes, cyanobacteria). It is important to note that phytoplankton from different taxonomic groups can perform the same

ecosystem function, e.g., both diatoms and silicoflagellates can biosilicify but represent different taxonomic groups. Special-40

ized algorithms applied to ocean color data have consequently been developed to detect specific taxa with distinctive optical

characteristics, e.g., Brown (1995) and Iglesias-Rodríguez et al. (2002), or the dominance of phytoplankton functional types

e.g., Alvain et al. (2005), or the relative abundance of phytoplankton groups and size classes in term of their contribution to the

Chla e.g., Hirata et al. (2011) and Xi et al. (2020, 2021) and lately, plankton assemblages and communities e.g., Kaneko et al.

(2023), (Sathyendranath et al., 2014; Bracher et al., 2017; Mouw et al., 2017).45

The diagnostic pigment analysis method (DPA, Vidussi et al. (2001)) relies on the association of secondary phytoplankton

pigments with different broad taxonomic phytoplankton groups. DPA classification was later refined by Uitz et al. (2006) who

gave different weightings to the diagnostic pigments to retrieve three phytoplankton size classes (PSC) from total Chla. The

advantage of this method is that phytoplankton pigments can be measured in a cost-effective manner through high-performance

liquid chromatography (HPLC). Today, large in-situ HPLC datasets are available with broad spatial and temporal coverage.50

These HPLC datasets have enabled the development of several DPA-based ocean color algorithms, which has made it possible

to evaluate the abundance of different phytoplankton groups and size classes from ocean color satellite data e.g. Uitz et al.
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(2006); Hirata et al. (2008, 2011); Soppa et al. (2014); Di Cicco et al. (2017); Organelli et al. (2013); El Hourany et al.

(2019a, b); Brewin et al. (2010); Xi et al. (2021). However, the limitation of the DPA approach is that it is associated with large

uncertainties in the classification of phytoplankton due to the presence of certain pigments in different phytoplankton taxa and55

cell size classes, which also vary with acclimation to light, temperature, and nutrient availability (Brewin et al., 2015; Chase

et al., 2020).

In this work, we propose an alternate approach to develop an ocean color algorithm for phytoplankton group detection from

in-situ metagenomic observations. The approach is ground-truthed on data collected by Tara Oceans, which constitutes the

most comprehensive and harmonized molecular dataset available on phytoplankton taxonomic community structure on a global60

scale. More specifically, we used metagenomics reads to extract the global-scale distribution and abundance of the single-

copy gene psbO, which is present across all phytoplankton groups and that provides an unbiased picture of phytoplankton

cell abundances (Pierella Karlusich et al., 2022). We used these data, together with satellite-derived optical, physical, and

biogeochemical parameters to train an unsupervised machine learning algorithm able to discern the non-linear relationship

between phytoplankton taxonomic community structure and data derived from satellites. This new algorithm allowed us to65

derive the spatio-temporal variability of seven phytoplankton groups (PG) between 1997 and 2021. We then compared the

performance of this new algorithm with that of two previous DPA-based algorithms (El Hourany et al., 2019a; Xi et al., 2021).

2 Materials

In this section, we present the datasets that were used for training the algorithm and for evaluating the outputs. The input dataset

includes the in-situ distribution and abundance of phytoplankton groups inferred from metagenomics data from Tara Oceans70

and their associated satellite matchups. The outputs of the new algorithm are compared to a global dataset of in-situ HPLC

diagnostic pigments, as well as with estimates from two DPA-based remote sensing algorithms.

2.1 Input dataset

2.1.1 Metagenomic read abundance of the psbO gene

The psbO gene encodes the manganese-stabilizing protein, of around 270 amino acids, which constitutes a core subunit of75

photosystem II (PSII) and is unique to organisms carrying out oxygenic photosynthesis. The psbO gene is a single-copy gene

in the vast majority of eukaryotes and prokaryotes. We used psbO reads from the metagenomes generated from the Tara Oceans

expedition as a proxy of phytoplankton relative cell abundance (Pierella Karlusich et al., 2022). Among the 210 Tara Oceans

stations, 145 stations sampled psbO reads in different ocean regimes from oligotrophic to eutrophic waters (Chla from 0.01

to 10 mg.m−3, median at 0.3 mg.m−3), from 2009 to 2013. Seawater samples were filtered in order to differentiate five80

planktonic size fractions (0.22-3 µm, 0.8-5 µm, 5-20 µm, 20-180 µm, 180-2000 µm). For the purpose of this study, we pooled

the five size fractions into a single aggregated sample.

3



The psbO data enabled us to taxonomically differentiate seven phytoplankton groups: diatoms, dinoflagellates, green algae,

haptophytes, pelagophytes, cryptophytes, and prokaryotes (Cyanobacteria) (Fig. 1). The psbO read abundances of these seven

groups are expressed as relative phytoplankton cell abundance (%). Phytoplankton that were not assigned to any of these seven85

groups (Unclassified) represented less than 5% of the total relative cell abundance among all size classes.

The psbO measurements are proxies of relative cell abundance since this protein-encoding gene is generally present as a

single-copy and is found in all phytoplankton groups. For example, if we take a huge diatom compared to a tiny Synechococcus,

both have one psbO gene and therefore are counted as one within the psbO quantification. However, we know that a diatom’s

Chla content is way greater than that of Synechococcus (Agustí, 1991; Fujiki and Taguchi, 2002; Dairiki et al., 2020; Bock90

et al., 2022). This is where the conversion via size-dependent weights is essential in the case of Chla content estimation.

We should note however that filters may retain cells smaller than the nominal pore size because of net clogging, being trapped

in fecal pellets, as well as being present as symbioses and colonies. This has been observed with prokaryotic pico-sized cells

such as Synechococcus and Prochloroccocus being over-represented in the 180-2000 µm size fraction (Fig. 2). To minimize

this impact, we based our size-weighting on 4 size-fractions, while excluding the 180-2000 µm size range. Chla fraction per95

group is expressed as follows:

Chla fractionPG =
Chlain-situ ·

(∑4
s=1(psbOPG

s · sizes)
)

∑4
s=1

∑7
PG=1(psbOPG

s · sizes)
(1)

where psbOPG
s is the psbO read abundance for a specific phytoplankton group (PG) and for one of the four size fractions (s),

and size corresponds to the mid-value of the corresponding size range, following the protocol in Sommeria-Klein et al. (2021),

i.e., x0.9 for the [0.6-1.2] size class, x2.9 for the [0.8-5] size class, x12.5 for the [5-20] size class, and x100 for the [20-180]100

size class. Applying equation 1 pools all size fractions per group while considering the psbO read values and the size factors

mentioned above.

There are hence two levels of information derived from the molecular dataset; relative abundance of psbO reads as a proxy

of relative cell abundance, and the fraction of Chla that each group represents. Both types of information have different im-

plications. Chla is often used as a proxy of biomass, which is a relevant parameter for energy and matter fluxes (e.g., food105

webs, biogeochemical cycles), while cell abundance corresponds to species abundance for unicellular organisms, which is an

important measure for inferring community assembly processes.

2.1.2 Satellite datasets

We used ocean color products from the GlobColour project (R2019, full archive reprocessed, 2020) from 1997 to the present

day, downloaded from the GlobColour portal. These products were constructed by merging data from various satellite sensors:110

Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS), Visible In-

frared Imaging Radiometer Suite (VIIRS), Medium Resolution Imaging Spectrometer (MERIS), and Ocean and Land Colour

Instrument (OLCI). We used sixteen GlobColour products: Chlorophyll-a concentration (Chla, product name: CHL1-AVW),

Remote sensing reflectances (Rrs) at 11 wavelengths (412, 443, 469, 490, 510, 531, 547, 555, 620, 645, and 670 nm), light
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Figure 1. Global biogeographical patterns of marine phytoplankton relative cell abundance and Chla fraction per group based on psbO

reads obtained from metagenomes from seawater samples collected during the Tara Oceans expeditions. Two sub-datasets are represented

in this figure, the first, DRCA constituted of psbO-derived relative cell abundance and the second DChlF psbO-derived Chla fraction per

phytoplankton group.

Figure 2. Relative abundance of psbO reads as a proxy of phytoplankton group cell abundance observed in each size fraction. The boxplots

represent the distribution of each group and each panel shows the different size fractions. The equivalent plots for the psbO read values

normalized by sequencing depth are displayed in supplementary Fig. S1’.
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attenuation coefficient at 490 nm (Kd490), photosynthetically available radiation (PAR), Normalized fluorescence light height115

(NFLH) and particulate backscattering at 443 nm (bbp). These products have daily and 4km spatio-temporal resolution. In

addition, we used the Climate Change Initiative (CCI) Sea Surface Temperature (SST) product at 4 km resolution and daily

frequency distributed by the Copernicus Marine Services (CMEMS) portal.

2.2 HPLC datasets

To compare psbO-derived phytoplankton group distributions with more conventional, DPA-based products, we compiled a120

global HPLC dataset regrouping 12 000 HPLC observations from several HPLC datasets between 1997 and 2014 (Fig. 3):

MAREDAT, NOMAD, SeaBASS, and other oceanographic campaigns: Labrador, Gep&co, Polarstern, BROKE-West, SAZ-

Sense Voyage (Luo et al., 2012; Werdell and Bailey, 2005; Dandonneau et al., 2004; Bracher et al., 2015; Fragoso et al.,

2016; Peloquin et al., 2013; Wright et al., 2010; de Salas et al., 2011). This HPLC dataset was collocated with satellite Glob-

Colour and the CCI SST product matchups. It depicts the abundance of the pigments most widely used to identify major125

phytoplankton groups: Fucoxanthin (Fuco), Peridinin (Perid), Alloxanthin (Allo), Zeaxanthin (Zea), Chlorophyll-b (Chlb),

19’-Hexanoyloxyfucoxanthin (19HF), and 19’-Butanoyloxyfucoxanthin (19BF) (Table 1). To estimate Chla fraction for each

phytoplankton group, namely diatoms, dinoflagellates, haptophytes, green algae, cryptophytes, pelgophytes and prokaryotes,

diagnostic pigments were used. The Chla fraction per group is expressed by:

ChlaPG = Chlain−situ ·
DP ·α∑
DP ·α

(2)130

where a is a coefficient associated with a diagnostic pigment (DP) for a specific PG.

Four sets of coefficients a are proposed for a global ocean application and are presented in Table 1 (Uitz et al., 2006; Soppa

et al., 2014; Brewin et al., 2015; Losa et al., 2017). An examination of the values assigned to the coefficients by these four

studies reveals disparities that do not consistently align across all pigments. Notably, while the coefficients for diatoms exhibit

similarity across the four sets, differences arise, for instance, in the case of dinoflagellates, only Uitz et al. (2006) and Brewin135

et al. (2015) show close coefficients associated to Perid, while in the case of haptophytes, where Brewin et al. (2015), Soppa

et al. (2014), and Losa et al. (2017) estimates close coefficients attributed to 19HF. The discrepancies can be attributed to

variations in the datasets utilized for coefficient estimation and differences in the methodologies employed. We chose to do an

average of the output of the four sets of coefficients to increase the robustness of the results while considering the different

outputs of the utilization of these coefficients.140

Simultaneously, Tara Oceans HPLC measurements (Pesant et al., 2015), which are available for the same stations and

sampling time as for psbO, were considered to evaluate the correspondence between pigments and psbO-derived phytoplankton

groups.

2.3 Phytoplankton groups satellite products

In order to compare the outputs of our method to those of existing DPA-based remote sensing algorithms, we used two previ-145

ously published algorithms:
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Table 1. Phytoplankton groups and size classes associated with their diagnostic pigments and coefficients α.

Phytoplankton

size class

Phytoplankton group Diagnostic Pigment (DP) Uitz et al., 2006 Soppa et al., 2014 Brewin et al., 2015 Losa et al., 2017

Micro
Diatoms, Haptophytes,

Chrysophytes, Di-

noflagellates

Fucoxanthin (Fuco) (Jeffrey,

1980)

1.41 1.55 1.51 1.27

Dinoflagellates Peridinin (Perid) (Jeffrey, 1980;

Jeffrey and Hallegraeff, 1987)

1.41 0.41 1.35 2.43

Nano

Haptophytes, Chryso-

phytes, Dinoflagellates

19’-Hexanoyloxyfucoxanthin

(19HF) (Wright and Jeffrey,

1987)

1.27 0.86 0.95 1.07

Green algae, Prasino-

phytes

Chlorophyll-b (Chlb) (Vidussi

et al., 2001)

1.01 1.17 0.85 1.30

Cryptophytes Alloxanthin (Allo) (Gieskes

and Kraay, 1983)

0.6 2.39 2.71 2.06

Pelagophytes, Hapto-

phytes

19’-Butanoyloxyfucoxanthin

(19BF) (Wright and Jeffrey,

1987)

0.35 1.06 1.27 -

Pico
Prokaryotes

(Cyanobacteria),

Green algae, Prasino-

phytes, Chrysophytes,

Euglenophytes

Zeaxanthin (Dandonneau et al.,

2004; Guillard et al., 1985)

0.86 2.04 0.93 2.36

Coefficients based on global HPLC dataset corresponding to the sum of the weighted diagnostic pigments to the total Chla; Chla=
∑

αDP

Figure 3. Geographical location of the global HPLC dataset stations regrouping observations from 1997 and 2014. The right panel represents

a comparison between in-situ HPLC Chla measurement and its matchup using GlobColour Chla product.
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2.3.1 CMEMS phytoplankton Chla fraction

This daily GlobColour product contains the concentration of each phytoplankton group (expressed in terms of Chla concentra-

tion fraction) based on the Xi et al. (2021) algorithm, from 2002 to the present at the global scale and with a 4km resolution.

This algorithm estimates the Chla concentration of diatoms, dinoflagellates, haptophytes, green algae, and prokaryotes. The150

algorithm was implemented using HPLC-based phytoplankton groups using the DPA approach (Soppa et al., 2014) merged to

ocean color (OC) Rrs products (412, 443, 490, 510, 531, 547, 555, 670, and 678 nm) and accounting for the influence of SST

on the derived PG quantities. (product number: OCEANCOLOUR_GLO_BGC_L3_MY_009_103).

2.3.2 SOM phytoplankton pigments

SOM-Pigments (El Hourany et al., 2019a) is a machine learning-based algorithm that allows the estimation of phytoplankton155

pigment concentrations in oceanic waters from satellite ocean color data (Chla, Rrs at four wavelengths: 412, 443, 490, and

555nm) and SST. This algorithm is based on the use of Self-Organizing Maps (SOMs), an unsupervised neural network, and

was calibrated using the HPLC dataset described above.

The SOM-Pigments algorithm applied to GlobColour products allows to estimate the daily concentration of ten phy-

toplankton pigments (Chlorophyll-a (Chla), Divinyl-Chlorophyll-a (DVChla), Chlorophyll-b (Chlb), Divinyl-Chlorophyll-b160

(DVChlb), 19’Hexfucoxanthin (19HF), 19’Butfucoxanthin (19BF), Fucoxanthin (Fuco), Peridinin (Perid), Alloxanthin (Allo),

Zeaxanthin (Zea)) at the global scale from 1997 to the present and with a resolution of 4km. We then used the coefficients in

Table 1 of Uitz et al. (2006),Soppa et al. (2014) and Brewin et al. (2015) to convert pigments into the Chla concentration of

five phytoplankton groups, namely diatoms, dinoflagellates, haptophytes, green algae, and prokaryotes.

3 Methods165

The algorithm we built to estimate phytoplankton groups from satellite data was built using SOM (Kohonen, 2013) and

topology-constrained organization. This allowed us to confirm the non-linear relationships between phytoplankton group com-

position and satellite data through topology conservation. Next, we used the Ascending Hierarchical clustering algorithm to

identify the large scale patterns generated by SOM. This allowed us to emphasize the predominant data structure learned by

SOM and to characterize phytoplankton biomes. The steps of the training and operational phase of the SOM methodology170

were illustrated in flowcharts found in the supplementary materials (Fig. S2 to S4). Finally, to characterize the differences

between the DPA- and psbO-based approaches, we used Random Forest models to highlight the cumulative importance of a

pigment composition to estimate a phytoplankton group abundance. In the following section, each methodology and algorithm

are explained in detail.
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Table 2. Percentage of missing values within the initial database.

Tara Oceans psbO Sat

D (145 stations) Relative cell abundance Chla fraction per group Chla Rrs 412-709 nm SST bbp443 Kd490 NFLH PAR

Percentage of missing values - 7% 18% 43-53% 30% 55% 53% 37% 14%

3.1 Structure of the training and test databases175

The initial dataset (D) consists of the 145 Tara Oceans observations of psbO relative abundance of the seven defined phyto-

plankton groups, the Chla fraction per group, and the associated matchups of 21 satellite-derived parameters (Chla, SST, Rrs

at 15 wavelengths from 412 to 709nm, NFLH, Kd at 490m, PAR, and bbp at 443nm). The unclassified phytoplankton fraction

was also considered, despite negligible values, to ensure coherence of the total phytoplankton pool. To extract the match-up

for a given observation, a 3x3 pixel box was employed, centered around the observation’s coordinates on the same day. The180

average of the non-outlier pixels was computed. If this approach was unproductive due to a low number of pixels within the

3x3 box or the absence of any pixel, a 3x3 pixel extraction was performed for the adjacent days (+1 and -1) (El Hourany et al.,

2019a, b). Following these match-up exercises, we performed a baseline comparison between in-situ Chlorophyll-a (Chla) and

satellite-derived Chla. This comparison is deemed satisfactory, with an average error rate of 33%.

We built two sub-datasets, the first (DRCA) relating psbO-derived relative cell abundance of the seven defined phytoplankton185

groups to the 17 satellite-derived parameters, and the second (DChlF ) joining psbO-derived Chla fraction per phytoplankton

group and the same 17 satellite-derived parameters. We then constructed two algorithms, using either DRCA or DChlF , both

based on the same SOM methodology described below. Following the positioning of Tara Ocean’s stations, and the distribution

of Chla values within both datasets (Fig. S5 and S6), both algorithms are suitable for case 1 water applications ( i.e. open ocean).

The rationale behind this is that the phytoplankton community should be treated as a whole; consequently, the variability190

of each phytoplankton group is dependent on each other in a relative way. DRCA and DChlF both present missing values

(Table 2), most likely due to cloud coverage or coastal/ice presence/proximity. In-situ psbO-based observations also contained

missing values due to an absence of certain measurements at a given station. Since the in-situ dataset contains a low number of

observations (145 stations), every observation is valuable. In order to overcome the several limitations faced with this training

dataset, we used the SOM algorithm that can deal with missing values and allow a robust generalization in the case of limited195

observations (Jouini et al., 2013). Before applying the SOM, we ensured that all variables, phytoplankton observations, and

satellite parameters were weighted alike while normalizing their values by their variance.

3.2 Self-Organizing map applied to Tara Oceans psbO data

3.2.1 General concept of SOM

The SOM algorithm is utilized for clustering multidimensional databases by assigning them to classes represented by a fixed200

network of neurons known as the SOM map. The SOM map consists of a rectangular grid of p x q neurons and defines a discrete
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distance between neurons, enabling the partitioning of the dataset. Each cluster is associated with a neuron and represented by

a prototype vector. Observations in the dataset are assigned to the nearest neuron based on the Euclidean Norm. A key feature

of SOM is its ability to provide topological ordering, where close neurons on the map correspond to similar observations in

the data space. The estimation of a neuron’s vector and the topological order is determined through a minimization process205

of a cost function that depends on the distance between the neuron and its assigned observation. SOMs have been widely

employed to complete missing data, utilizing the truncated distance (Folguera et al., 2015; Charantonis et al., 2015; Saitoh,

2016; Rejeb et al., 2022). The truncated distance is defined as a modification of the standard Euclidean distance between two

observations that accounts only for the existing components of the vectors. This modification of the distance measure allows

for the comparison of observations with incomplete information by considering only the existing components and effectively210

handling missing data. The SOM algorithm can then use this truncated distance measure in its learning process to complete

missing data and integrate incomplete information, enabling more robust analysis and visualization of the data.

3.2.2 Training phase

Briefly, we first split the Tara Oceans psbO datasets so as to obtain 80% of the data to train the SOM, and 20% of the data as a

test set, the latter consisting of 30 observations with complete psbO information. We did this separately for DRCA and DChlF215

sub-datasets so as to generate SOMRCA, which stands for the algorithm specialized in relative cell abundance estimation, and

SOMChlF for the algorithm specialized in Chla fraction per phytoplankton group.

During the SOM training, different combinations of satellite variables were used to determine the best set of variables to

estimate the 7 phytoplankton groups in terms of relative cell abundance and Chla fraction. For each combination of variables,

we increased the number of neurons from 10 to 1000 neurons, with an interval of 10 neurons, to determine the optimal size220

of the SOM. For each SOM obtained, we quantified quantization and topographic errors. The quantization error represents the

difference between an observation and its closest neuron. This error is monitored during the training procedure until it reaches

stability at a minimum value with increasing training epochs. This is where the training should stop to prevent overfitting. The

quantization error is expressed as follows:

qe=
1

n

n∑
i=1

∥xi −wci∥ (3)225

where xi is the vector of an input observation i; wci is the vector of the closest neuron c of a sample xi; n is the number of

observations.

However, the topographic error is a representation of having, for each observation of the database, distant first and second

best-matching neurons and is expressed as follows:

te=
1

n

n∑
i=1

d(xi) (4)230

where d(xi) = 1 if the first and second closest neuron to xi are not adjacent, else d(xi)=0.
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Minimizing this quantity is important to ensure the preservation of the topological order within the SOM map with an

increasing number of interpolated neurons. A one leave-out cross-validation procedure was performed to assign three per-

formance metrics to help choose the best combination of SOM size and satellite variables: Regression coefficient (R2) and

Root-mean-squared error (RMSE). One should note that, for SOMChlF, the R2 was calculated using log-transformed Chla235

values, and RMSE was calculated using real Chla values. At each iteration of the cross-validation procedure, we chose ran-

domly one observation as a test, whereas the other observations served to train the SOM with the given grid size. We calculated

the closest neuron to the test observation based on its satellite variables only and associated these latter with the neuron’s seven

phytoplankton groups vector. When all the observations were used as a test, we calculated a mean R2 and an RMSE, associated

with the given size map, while comparing the estimated and observed phytoplankton group values. The best SOM configuration240

and variable combination are based on an optimum where te, qe, and the RMSE are in low ranges while avoiding overfitting.

The chosen SOM was tested using the 20% test set, providing independent performance metrics to evaluate the generalization

of the chosen SOM. As a result, we present in the paper the performance metrics of the chosen SOM configuration based on

the cross-validation procedure and the test set.

The optimal combination of satellite parameters for the SOMRCA and SOMChlF algorithms was determined to be Chla,245

SST, Rrs at four wavelengths (412, 443, 490, and 555 nm), bbp, and Kd490. The grid size for SOMRCA was set at 242 neurons,

while SOMChlF had a grid size of 222 neurons. This selection was based on several factors, including a high regression

coefficient between estimated and observed phytoplankton values, low error values of quantization and topographic error, and

a low global RMSE encompassing all phytoplankton groups. The choice of Rrs bands aligns with previous work conducted

on the PHYSAT method by Alvain et al. (2005) and Ben Mustapha et al. (2013). The PHYSAT method utilizes reflectance250

anomalies in the same four selected bands to identify dominant phytoplankton functional types. In the clear open ocean, the

information contained in the remote sensing reflectance (Rrs) bands beyond 555 nm is limited due to the strong absorption by

water (Torrecilla et al., 2011; Taylor et al., 2011). It should be noted that the Rrs bands selected are commonly measured by

all sensors used to build the Rrs product of GlobColour. This overlapping of different sensors enhances data availability and

coverage, thus increasing the importance of these Rrs bands within the initial dataset.255

Through the iterative training process described above, the results show a significant increase in the general performance of

the method when the number of neurons increases to a certain extent (Fig. 4). Using a number of neurons larger than the training

dataset still allows a refined discretization. In this case, some neurons will capture a sample of the database, which permits to

define a referent vector for these neurons. When the neuron did not capture any data observation, the discrete distance between

the neighboring neurons was used to determine the referent vector w of each neuron that has not captured any data (Sarzeaud260

and Stephan, 2000; El Hourany et al., 2019a). This leads to preserving the topological order provided by new interpolated

neurons. However, the quantization error’s lowest values above 350 neurons might indicate overfitting.

3.2.3 Operational phase

During the operational phase, we estimated the phytoplankton group variability using the best combination of satellite param-

eters. The set of parameters of a pixel was projected onto the SOM. In doing so, the parameters at each pixel were normalized265

11



Figure 4. Quality assessment based on the quantization and topographic error related to the training of the SOMChlF and SOMRCA as a

function of increasing SOM size (number of neurons) using Chla, SST, Rrs at 4 wavelengths (412, 443, 490 and 555 nm), bbp and Kd490.

In parallel, the average regression coefficient and the root mean squared error as a function of increasing SOM size were calculated through

a “one-leave out” cross-validation procedure. The dashed black and red lines correspond, respectively, to the R2 and the RMSE using the

“K-nearest neighbor” algorithm. Finally, the dotted lines correspond to the chosen SOM size for SOMChlF=242 neurons and SOMRCA=222

neurons.

by the variance of that same parameter within the initial training dataset to maintain an equal weight among the parameters and

were assigned with the closest best-matching neuron using the truncated distance. At the end of the assignment phase, each

pixel was associated with a referent vector corresponding to the best matching neuron, which includes the seven phytoplankton

groups as a function of relative cell abundance in the case of SOMRCA, or Chla fraction in the case of SOMChlF. Since the

training was undergone for the whole phytoplankton community at once, alongside the total Chla information, the SOM allows270

the inherent structure of the data to be preserved.

For this phase, level 3 mapped 4 km daily images were used to estimate the phytoplankton groups at the same spatio-temporal

resolution.

3.2.4 Masking and uncertainty evaluation

Given that our initial dataset is of limited size, it is possible that it does not contain certain naturally occurring cases. In275

order to prevent abnormal predictions for cases not observed in the initial dataset, we conducted a quality evaluation of the

method’s output. This evaluation involved quantifying a reliability index by comparing the set of satellite parameters’ values
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at a particular pixel with the values of the same parameters in the initial dataset. If a satellite variable’s value fell outside

the range defined within the initial dataset by the mean value of the same variable’s distribution plus or minus two standard

deviations, it was considered distant. This evaluation was performed for all satellite variables per pixel, and the reliability index280

was determined by dividing the number of accepted variables by the total number of existing variables. A higher reliability

index indicates greater reliability of the method, while regions with lower reliability index values require additional attention.

In the context of the global ocean, numerous uncertainties are associated with in-situ measurements, model parameteriza-

tion, satellite parameters, and regions. The SOM algorithm is known to effectively reduce noise and mitigate the impact of

uncertainties within the dataset (da Silva and Costa, 2013). However, the main source of uncertainty in the estimation process285

stems from selecting the best matching neuron. This involves finding and associating the closest neuron in the SOM with a

new or unfamiliar observation, such as a satellite pixel. Due to the topology conservation, a pixel could be assigned to several

close neurons, forming a neighborhood along a distance gradient. Consequently, a single satellite observation can represent

various probabilities of phytoplankton group combinations influenced, to a certain extent, by the uncertainties of the satellite

parameter.290

To account for uncertainties in the estimations, we opted to associate each pixel and phytoplankton group (based on relative

cell abundance or Chla fraction) with a weighted standard deviation derived from the values of the ten closest neurons. The

weights were determined by the distances between the first ten matching neurons and the pixel. This approach allowed us

to incorporate uncertainties into the assignment process and provide a confidence measure for each pixel’s assignment. By

considering both the reliability index and the weighted standard deviation, we could assess the influence of uncertainties in the295

satellite variables.

However, we should acknowledge the importance of addressing the uncertainties in the psbO measurements and their po-

tential impacts on the algorithm’s outputs, that are not taken into account in this study. This exclusion is primarily due to

the absence of a comprehensive framework that accounts for all the associated steps in the quantification of psbO, including

aspects such as filtration, extraction, and the accuracy of psbO analysis. Pierella Karlusich et al. (2022) conducted a thorough300

comparative study, evaluating psbO quantities against data obtained from confocal and optical microscopy, as well as cytome-

try, revealing an agreement of 70% (Spearman’s Rho =0.64–0.71, p-value <.001). However, it is essential to recognize that like

psbO, every quantification method is subject to uncertainties stemming from the various steps of the quantification process,

emphasizing the necessity of comprehensive assessments within every in-situ measurement protocol.

3.3 Characterisation of phytoplankton biomes305

To emphasize the predominant data structure learned by SOMChlF, the Ascending Hierarchical Clustering algorithm (AHC)

was used to characterize phytoplankton biomes on the basis of their Chla fractions (a proxy of a phytoplankton group’s biomass)

and optical signature.

The HAC is a bottom-up clustering algorithm. The HAC starts with individuals and combines them according to their

similarity (with respect to the chosen distance) to obtain new clusters. The exact number of biomes is not known a priori but310

at the end of the SOM+HAC procedure, several possibilities of a number of clusters to be taken into account were revealed.
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A compromise was made between the number of clusters we could explain from a physical point of view and the number of

clusters for which we needed to include the maximum of information embedded in the dataset. This procedure has been used

with success in several studies (Reygondeau et al., 2014; Richardson et al., 2003; Rossi et al., 2014; Sawadogo et al., 2009; El

Hourany et al., 2021). At the end of the HAC clustering phase, each neuron of the SOMChlF was associated with a cluster. The315

association of several neurons in a cluster allows us to identify common phytoplankton community structures, and therefore

characterize phytoplankton biomes. Upon applying SOMChlF as described in the operational phase section, each pixel of a

satellite image could be associated with a cluster.

3.4 Evaluation of pigments to estimate phytoplankton groups

Each phytoplankton group’s psbO abundance was associated with its corresponding HPLC pigment measurements performed320

on the same Tara Oceans station. The ability of pigments to predict a specific phytoplankton group was evaluated using a

bagged random forest algorithm (number of learners set to 200), following the permutation-based importance method.

Using this method, a pigment composition of the seven major phytoplankton pigments cited in Table 1 was tested to predict

the abundance of each of the seven psbO-derived phytoplankton groups, and therefore estimate their importance relative to

each group. The concentration of each pigment was converted in terms of pigment ratios, a ratio relative to the sum of all325

pigment concentrations, and in parallel, the psbO-derived relative abundance was used.

The bagged random forest algorithm is a set of decision trees, each constituted of internal nodes and leaves. Within the

internal nodes, the algorithm uses pigment data as the predictor variable to partition the dataset into subsets based on pigment

characteristics. These subsets are then utilized to predict the abundance of specific phytoplankton groups, enabling effective

analysis of the importance of pigments to describe the variability of a phytoplankton group. Since this algorithm is used in a330

case of regression, the training is done while minimizing the error between the psbO-derived phytoplankton group abundance

and the predicted one. The permutation-based importance method will randomly shuffle each pigment and compute the change

in the model’s performance to predict the abundance of a phytoplankton group.

4 Results and discussion

4.1 Performances, uncertainties and spatial limitation of the SOMRCA and SOMChlF algorithms335

To assess the integrity of inter-variable relationships within the input data represented by the Self-Organizing Map (SOM),

a comparison of correlation coefficients and distributions of phytoplankton group values was conducted between SOMRCA

and SOMChlF with their respective measures, DRCA and DChlF . This analysis indicated that the correlation coefficients and

value distributions remained unaffected within both SOMRCA and SOMChlF compared to the initial dataset, illustrating the

capacity of SOM to retain the characteristics of the original dataset post-training (Fig. S5 and S6).340

The cross-validation and test exercises demonstrated an average R2 of 0.68 for SOMRCA and 0.74 for SOMChlF across all

phytoplankton groups (Fig. 5, table 3). Aggregating all Chla fractions showcased a satisfactory agreement between estimated
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total Chla and in-situ values (R2= 0.83), indicating the preservation of the initial phytoplankton quantity expressed in total

Chla. For SOMRCA, the RMSE ranged between 2% and 24% in the test set and between 2% and 19% in cross-validation. The

highest errors were observed for Prokaryotes, reaching 24% due to their high relative cell abundance in the initial dataset. In the345

case of SOMChlF, the RMSE ranged between 0.02 and 0.24 mg.m−3 in cross-validation and 0.02 and 0.31 in the test set, with

the highest error associated with the estimation of Chla, stemming from the cumulative Chla fractions of phytoplankton groups.

Notably, the largest RMSE among phytoplankton groups was observed for Diatoms’ Chla fraction, attributed to their substantial

Chla content and its exponential relationship with total Chla. The MRD highlighted a distinct contrast between SOMRCA and

SOMChlF performance. Notably, SOMRCA exhibited a significantly higher median relative deviation, approximately three350

times that of SOMChlF’s MRD. The MRD for SOMRCA fluctuated between 0.36 and 0.81 for cross-validation and between

0.28 and 0.92 for the test set, with Dinoflagellates exhibiting the highest MRD. In contrast, SOMChlF’s MRD per group

ranged between 0.13 and 0.24 for phytoplankton Chla fraction and 0.33 for Chla in the test set. This discrepancy emphasizes

the complexity of determining the phytoplankton community structure in terms of relative cell abundance, indicating the

likelihood of diverse community structures responding to the same satellite-derived environmental context.355

Given the limited size of the initial dataset, applying SOMRCA and SOMChlF to the global satellite data must be done with

caution. For each pixel and at each time step between 1997 to 2021, we performed the quality control described in section

3.2.3 to provide a measure of the applicability of this method (Fig. 6). Regions of low confidence can be identified where the

value of the reliability index does not exceed 60% throughout the time series (Threshold arbitrarily chosen while evaluating the

frequency histogram of this index’s values in Fig. 6. A value of 60% roughly translates to the exclusion of 3 out of 8 satellite360

parameters’ values considered outliers at a certain pixel). These regions are mainly found in coastal and turbid waters, as well

as the South Pacific Ocean gyre, and are characterized either by very high or very low Chla values. This result is expected

because the SOM algorithm is mainly adapted for case 1 waters and cannot extrapolate beyond the distribution of values in the

initial dataset. Furthermore, moderate confidence regions in which around 20% of the pixels fall out of the accepted bounds,

are highlighted by a reliability index under 80%. These regions are mainly found at high latitudes, especially in the Southern365

Ocean, mainly due to the limited number of available samples in the area and the particular optical characteristics of that region

(Mitchell et al., 1991).

Uncertainty values reached 30% relative cell abundance for SOMRCA and 0.15 mg.m−3 of Chla for SOMChlF, revealing

distinct regional patterns in both cases. Notably, the observed uncertainties generally aligned with the concentration gradient

in Chla fraction and cell abundance per group. The uncertainty associated with SOMRCA’s outputs corresponded to the high370

relative deviation noted in the test and cross-validation, suggesting the potential acceptance of multiple community structures

represented by the neurons of SOMRCA for a single satellite pixel, thus contributing to increased uncertainty levels. Regions

at high latitudes exhibited the highest uncertainties for diatoms, green algae, and haptophyte relative cell abundances, while

the Southern Ocean displayed heightened uncertainties specifically for prokaryotic cell abundance.

The increased uncertainty within the Southern Ocean, particularly for prokaryotes, could be attributed to the limited sampling375

conducted in this geographical region. This limitation resulted in a notable dissimilarity between satellite data collected in this

area and the data sampled in the initial dataset, aligning with the findings of the reliability index. This finding is consistent with
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Table 3. Results of the cross-validation and test exercises of SOMRCA and SOMChlF based on the regression coefficient (R2), the root-

mean-squared-error (RMSE), and the median relative deviation (MRD). One should note that, for SOMChlF, the R2 and MRD were calcu-

lated using log-transformed Chla values and RMSE was calculated using real Chla values

SOMRCA Relative cell abundance (%) SOMChlF Phytoplankton chlorophyll-a fraction (mg.m−3)

Cross-validation

n=115

Test

n=30

Cross-validation

n=115

Test

n=30

R2 RMSE (%) MRD R2 RMSE (%) MRD R2 RMSE (mg.m−3) MRD R2 RMSE (mg.m−3) MRD

Diatoms 0.65 2.7 0.74 0.72 2 0.58 0.66 0.24 0.18 0.86 0.12 0.20

Dinoflagellates 0.79 5.45 0.81 0.83 6.15 0.92 0.65 0.06 0.26 0.61 0.07 0.16

Green algae 0.61 5.64 0.61 0.67 4.32 0.47 0.71 0.08 0.20 0.62 0.19 0.23

Haptophytes 0.66 3.42 0.36 0.33 3.04 0.28 0.76 0.07 0.16 0.68 0.05 0.13

Prokaryotes 0.6 19.27 0.59 0.67 20.53 0.76 0.57 0.05 0.25 0.76 0.10 0.23

Cryptophytes 0.62 1.98 0.45 0.78 1.98 0.61 0.7 0.05 0.16 0.77 0.04 0.10

Pelagophytes 0.64 2.6 0.78 0.36 1.96 0.65 0.68 0.02 0.21 0.74 0.02 0.24

Chlorophyll-a 0.83 0.23 0.24 0.72 0.31 0.33

the documented very low abundance of cyanobacteria in the Southern Ocean (Flombaum et al., 2013), which may contribute

to heightened model uncertainty for this particular region.

4.2 Comparison with global HPLC pigment dataset380

The global in-situ HPLC dataset was then used to estimate Chla fractions for each phytoplankton group using the diagnostic

pigment approach (DPA). This dataset was compared to the Chla fraction matching each phytoplankton group that was esti-

mated by SOMChlF (Fig. 7). A total of 2671 matchups were found following the same procedure described in 3.1. Evaluating

the sum of Chla fractions and comparing it with in-situ Chla can be considered as a baseline evaluation of this method. This

comparison showed a satisfying correspondence score of R2=0.72. Relatively good correspondence is noted for diatoms and385

haptophytes, showing an R2=0.64 between in-situ and SOMChlF for diatoms and 0.65 for haptophytes. Moderate correspon-

dence was found for green algae, cryptophytes, and pelagophytes, with an R2 ranging between 0.43 and 0.39. Prokaryotes

and dinoflagellates had the lowest correspondence between both outputs. The comparison between DPA-based phytoplankton

groups and SOMChlF estimates is highly uncertain. It compares two types of information indicating the same phytoplankton

group, with different underlying assumptions about how to define and describe a certain group. For some of the groups, these390

results are coherent. For example, the diatom Chla fraction is well captured by the latter, and the values agree with those esti-

mated using HPLC observations; however, we noted a major overestimation within the HPLC DPA method. For prokaryotes,

this comparison leads us to say that using zeaxanthin as an indicator of the cyanobacterial contribution to Chla may not entirely

represent this group.

The permutation-based importance analysis using Random Forest, performed on the in-situ Tara Oceans psbO and HPLC395

measurements, emphasizes the necessity of a multivariate approach for predicting phytoplankton community structure based
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Figure 5. Results of the two-step cross-validation (blue) and test (red) procedures for SOMChlF (left) and SOMRCA (right) with the chosen

best combination of satellite parameters and a SOM grid, respectively, of 242 and 222 neurons. From the initial dataset consisting of 145

observations, two sets were split: 80% to be used in a one-leave-out cross-validation procedure, and 20% as an independent test. For the

cross-validation, each observation among the 115 observations, was used iteratively as a training set and as a test set until all observations

served as tests (blue dots). This procedure was used to identify the best satellite combination and SOM grid size. Finally, the remaining 30

observations were used as a test to evaluate the generalization capacity of the SOM with the chosen configuration (red dots). One should note

that, for SOMChlF, the R2 was calculated using log-transformed Chla values. For complete evaluation metrics refer to Table 3.

on pigments (see Fig. 8). Notably, the diagnostic pigments mentioned in Table 1 exhibited dominant importance in determining

the relative abundance of their respective assigned phytoplankton groups. For instance, peridinin represented dinoflagellates,

Chlorophyll-b characterized green algae, and zeaxanthin indicated prokaryotes (Table 1). These pigments demonstrated the

highest importance for their respective groups, as illustrated in Fig. 8, accompanied by a positive Spearman correlation. How-400

ever, individually, these pigments accounted for less than 25% of the variance in their respective groups. Conversely, in the

case of cryptophytes, diatoms, and haptophytes, no pigment stood out in terms of importance, and the observed correlations

were related to co-variation between pigments (e.g., Chlb and Fuco in diatoms), possibly influenced by Chla variability. There-

fore, the variability within each group is best explained not by a single diagnostic pigment, but rather by the overall pigment
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Figure 6. Applicability of the satellite psbO-based method. The geographical (left) and values distribution (right) of the reliability index

were calculated between 1997 and 2021 by testing the set of satellite parameters at a given pixel against the values in the original dataset (D).

composition. It is crucial to consider how natural variability can influence the interpretation of pigment composition in rela-405

tion to phytoplankton community structure. Pigment ratios not only vary with phytoplankton composition but also reflect the

diverse strategies employed by different phytoplankton types to acclimate to environmental factors such as light, temperature,

nutrients, and other variables.

4.3 Global patterns of satellite-derived phytoplankton groups

We then applied our method to Glocolour satellite data to generate a daily database spanning from 1997 to 2021, capturing410

the relative cell abundance and Chla fraction of seven phytoplankton groups of interest. Fig. 9 presents the annual patterns of

relative cell abundance and Chla fraction for each phytoplankton group, derived from this satellite dataset.

Regarding relative cell abundance, the prokaryotes stand out as a dominant group. This group largely dominated tropical

regions, with a relative abundance of up to 80% in subtropical gyres. Haptophytes, green algae, and diatoms exhibited higher

abundance in mid and high latitudes as well as the equatorial region, showing a maximum relative abundance of 30%. The415

remaining three phytoplankton groups displayed relative abundances that barely exceeded 10% of the total phytoplankton

community. Pelagophytes and dinoflagellates were primarily observed in mid and subtropical latitudes, while cryptophytes

were found in coastal areas and high latitudes.

Examination of how each phytoplankton group contributed to total Chla revealed that diatoms had a significant contribution

at high latitudes and equatorial regions. Prokaryotes, on the other hand, had an overall low to moderate contribution to total420

Chla.

Qualitatively, the information captured by SOMChlF was clustered into five groups, each characterized by a distinct remote

sensing reflectance spectrum that corresponded to the phytoplankton community structure (Fig. 10). To illustrate the link be-

tween each group’s contribution to total Chla concentration and relative cell abundance, we depicted the latter while evaluating

the pixel’s assigned relative abundance values for each of the five clusters. This approach revealed that three out of the five425

clusters are dominated by prokaryotes in terms of cell abundance (C1, C2, and C3). However, based on their relative contribu-

18



Figure 7. Comparison between the outputs of SOMChlF and the DPA approach applied on an in-situ global HPLC dataset. 2672 matchups

were found between the outputs of SOMChlF and the in-situ dataset and analyzed in this figure. The R2 and MRD result from calculations

based on log-transformed data, and RMSE is based on non-log-transformed data.

tion to Chla, C1 was found to be dominated by prokaryotes and dinoflagellates, C2 exhibited a mixed composition, C3, and C4

represented diatoms and other eukaryotes, whereas C5 was predominantly composed of diatoms. The shift from relative cell

abundance to size-integrated relative Chla fraction illustrates how cell size influences Chla contribution and variability.

Each cluster is characterized by a specific optical signature in terms of Rrs spectra. The Rrs values per wavelength were430

normalized based on their corresponding variance, enabling intercomparison regardless of magnitude. For instance, C1, which

exhibits higher reflectance in the blue wavelength, represents clear, oligotrophic waters. In such environments with low nu-
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Figure 8. Evaluation of secondary pigment weighting for the estimation of different phytoplankton groups. The left panel represents the per-

centage of variance of each phytoplankton group explained by a set of frequently used phytoplankton secondary pigments. This analysis has

been done using a random forest algorithm applied to the in-situ Tara Oceans psbO and HPLC datasets. A Spearman correlation coefficient

has been calculated between each pigment and the phytoplankton groups (right panel).

trients and high surface stratification, picophytoplankton groups like cyanobacteria thrive due to their high surface-to-size

ratio (Raven, 1998; Chisholm, 1992). C2 represents normalized Rrs spectra with insignificant differences between normalized

bands, suggesting an average state where the phytoplankton community appears mixed. In C3 and C4, we observed an increase435

in normalized Rrs values in the green compared to the blue wavebands, indicating higher Chla in these environments. Given

that C3 and C4 are located in high-latitude regions with ample nutrient resources and exceptional seasonal variability of light

intensity, larger cell-sized phytoplankton groups, including diatoms, are favored, leading to increased biomass and Chla con-

tribution (Brun et al., 2015). C5, with the greatest difference between Rrs in the blue and green, represents eutrophic waters,

known for their high productivity and diatom-dominated blooms (Brun et al., 2015).440

Based on the global distributions of these clusters, several biomes can be defined. C1 is centered in subtropical gyres, C2 is

found in transitional zones such as mid-latitude regions and the equatorial region, C3 is observed in the Southern Ocean, C4

corresponds to high-latitude regions, and C5 is prevalent in coastal and eutrophic waters.

Different temporal variability is evident for each cluster across different latitudinal bands. In northern high latitudes, an

increase in C5 indicates maximal productivity occurring in that region around May. At mid-latitudes, the winter maximum445
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is marked by an increase in C5 and C4 clusters. A secondary, less pronounced peak can be observed in autumn, attributed

to the break in the thermocline and remineralization processes. During summer, C1 dominates the mid-latitude regions. In

tropical regions, C1 is predominant, with a cyclic increase of C2 suggesting coastal influences, likely due to the proximity of

C2 to nutrient-rich zones like upwelling systems. In contrast to northern high latitudes, the Southern Ocean exhibits a different

temporal variability. The presence of prokaryotes is signified by C1 in this region, whereas C3 dominates during the bloom450

season in January. This analysis confirms the Antarctic nature of C3 in contrast to C4, highlighting differences in water types

between the two regions based on phytoplankton community structure and satellite data.

This division into parallel and transitional biomes underscores the significant influence of latitudinal physical gradients,

including light availability and temperature, on the structuring of the phytoplankton community in terms of types and size.

These findings align with previous global phytoplankton studies conducted in situ (Ibarbalz et al., 2019; Sommeria-Klein455

et al., 2021) as well as satellite estimates (Alvain et al., 2006; Hirata et al., 2011; Ben Mustapha et al., 2013; El Hourany et al.,

2019a; Xi et al., 2020, 2021).

4.4 Intercomparison of satellite-derived phytoplankton group products

A comparison was performed between SOMChlF’s output and two operational products based on Xi et al., 2021 and SOM-

Pigments (El Hourany et al., 2019a) algorithms. We based this on the five phytoplankton groups common to all three algorithms:460

diatoms, dinoflagellates, green algae, haptophytes, and prokaryotes for the year 2020. The annual patterns show a substantial

agreement between all three satellite-derived phytoplankton estimates (Fig. 11). However, some differences between the esti-

mated quantities of Chla phytoplankton groups can be noted. For diatoms, the outputs based on El Hourany et al. (2019a) and

SOMChlF exhibit higher Chla values, while those based on Xi et al. (2021) show low values near the equatorial latitudes. For

green algae and haptophytes, the three products show matching latitudinal variability, with only minor discrepancies in values465

at high and subtropical latitudes. For prokaryotes, the outputs of Xi et al. (2021) show higher estimates, particularly near the

Arctic and equatorial regions. Lastly, for dinoflagellates, the SOM-Pigments method yielded lower Chla values, especially in

subtropical gyres, whereas SOMChlF showed the highest Chla estimates for this taxonomic group.

Upon comparing the uncertainty patterns with those observed in Xi et al. (2021), similar trends were identified for the

Chla fraction of eukaryotic phytoplankton, displaying consistency in following the Chla concentration gradient as seen in our470

study. Notably, regions such as the gyres exhibited lower uncertainties, whereas higher uncertainties were evident in high-

latitude regions and marginal seas. Conversely, when examining the uncertainty in the retrieval of prokaryote Chla by Xi et al.

(2021), lower uncertainties were noted in polar regions, contrasting with higher uncertainties observed in low-latitude regions.

Similarly, in Brewin et al. (2017), the uncertainty maps for diatoms and dinoflagellates depicted distribution patterns akin to

our uncertainty estimations in the North Atlantic Ocean.475

This coherence in uncertainty patterns between HPLC-based products and our psbO-based product can be attributed to the

direct relationship between DPA pigment concentration and total Chla, as well as between psbO-derived Chla fractions and

total Chla. Consequently, similar patterns in predictions, as well as in the uncertainties, emerge.
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Figure 9. Annual composites of the relative abundances and Chl fractions of the seven psbO-derived phytoplankton groups based on satellite

data (compiled using data from 1997-2021). The uncertainties related to each group and each method are because of their different possible

combinations through the weighted standard deviations, as described in Section 3.2.3. We note that the scales for uncertainty are smaller than

those in the abundance and Chla columns.

However, addressing the similarities and differences between the outputs of the above-cited methods referring to the same

phytoplankton group is not a straightforward task. These methods are based on distinct assumptions and resolutions of phy-480

toplankton groups; The estimation of phytoplankton groups using pigments is inherently imperfect and relies on assumptions

that introduce considerable variability and bias in determining the contribution of specific pigments to the assessment of phy-

toplankton groups. For instance, several studies showed that the DPA approach tends to overestimate diatoms Brewin et al.
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Figure 10. Satellite-derived biomes of phytoplankton communities, obtained by unsupervised clustering (Hierarchical clustering) of SOM-

ChlF neurons. Relative cell abundances per phytoplankton group and normalized and denormalized Rrs spectra were also derived. The global

map shows the most frequent community structure recorded during the 1997-2021 period. A spatio-temporal analysis was conducted to high-

light latitudinal patterns.

(2014); Chase et al. (2020). This approach may compromise the relevance of satellite images when used. However, the added

value of such an approach resides in the availability of the large HPLC dataset, which allows the development of robust al-485

gorithms. On the other hand, the method described in this paper and the generated outputs are based for the first time on a

complete and harmonized database of phytoplankton taxonomic community structure on a global scale; an approach that pro-

vides an unbiased picture of phytoplankton cell abundances. However, the major limitation of this approach at this time is the

low number of observations from which the metric has been derived.
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Figure 11. Intercomparison of five satellite-derived phytoplankton group Chla fractions based on SOMChlF, SOM-Pigments (El Hourany

et al., 2019a), and Xi et al. (2021) algorithms for the year 2020. The annual average and the average per latitude of each Chla fraction are

calculated to reveal global and latitudinal patterns.

5 Conclusions490

By employing an alternative approach utilizing in-situ metagenomic observations, a reliable ocean color algorithm for detect-

ing phytoplankton groups was developed in this work. This achievement is noteworthy considering the limited availability of

omics data used in our analysis. The successful implementation was made possible by leveraging machine learning techniques

and preserving the data structure using Self-Organizing Maps. The methodology demonstrated satisfactory performance in

producing robust estimates for the seven major phytoplankton groups, albeit with some limitations in terms of global general-495

ization due to the limited availability of data. For instance, it is important to exercise caution when interpreting estimates for

24



regions such as the subtropical gyres. As DNA sequencing costs continue to decrease and new expeditions generate molecular

data from undersampled ocean regions, we expect the training datasets to increase rapidly in future years, which should further

increase the accuracy of our method. Furthermore, this study presents a new global dataset of the relative cell abundances of

the seven phytoplankton groups and their contributions to total Chla. These two types of information carry different implica-500

tions. Chla serves as a biomass proxy, which is crucial for energy and matter fluxes in various ecological and biogeochemical

processes. On the other hand, cell abundance represents species abundance for unicellular organisms, providing insights into

community assembly processes.

This dataset opens up possibilities for inter-comparisons with existing approaches, such as DPA-based methods using in-situ

and satellite data. The results provide coherent yet distinct information about phytoplankton communities, contributing to a505

better understanding of their composition. While our focus was on seven broad phytoplankton groups, it is worth mentioning

that the deep taxonomic resolution achievable through molecular methods allows for species-level monitoring, which can be

an interesting avenue for future implementation.

The methodology presented in this work provides a unique opportunity to observe in real-time and high-resolution the state

of the major phytoplankton groups at the global scale. This makes remote sensing observations excellent tools to collect EBVs,510

play the role of broker between monitoring initiatives and decision-makers, and provide a foundation for developing marine

biodiversity forecasts under different policy and management scenarios. To reach this objective, remote sensing data inherently

needs to be validated with in-situ observations as well. Of further interest is the launch of NASA’s Plankton, Aerosol, Cloud,

ocean Ecosystem (PACE) mission, a strategic climate continuity mission that will make global hyperspectral ocean color

measurements possible. This will allow extended data records on ocean ecology and global biogeochemistry, revolutionizing515

the detection of phytoplankton communities from space. From the perspective of the PACE mission, this study is a step towards

further understanding the effect of environmental changes on phytoplankton community structure and diversity.

Code and data availability. psbO dataset: https://www.ebi.ac.uk/biostudies/studies/S-BSST761;

GlobColour dataset: https://www.globcolour.info/, https://hermes.acri.fr/.SSTCCIdataset: https://data.marine.copernicus.eu/product/SST_

GLO_SST_L4_REP_OBSERVATIONS_010_024/description. Global HPLC pigment dataset: MAREDAT, POLERSTERN data, Labrador520

Sea expeditions data, and Tara Oceans Expedition data, all available on https://pangaea.de/, GeP&Co database (accessed at http://www.

obs-vlfr.fr/proof/php/x_datalist.php?xxop=gepco&xxcamp=gepco), and finally the NOMAD: NASA bio-Optical Marine Algorithm Dataset,

and the numerous campaigns found on the NASA SeaBASS portal were accessed at (https://seabass.gsfc.nasa.gov/). Following best prac-

tices, the two SOM algorithms will be deposited into a public domain repository accessible upon publication. Prerequisite software library

SOM Toolbox 2.0 for Matlab is required, implementing the self-organizing map and Hierarchical Ascending Classification algorithm, Copy-525

right (C) 1999 by Esa Alhoniemi, Johan Himberg, Jukka Parviainen, and Juha Vesanto and accessible at https://github.com/ilarinieminen/

SOMToolbox. Matlab function for Random Forest algorithm was used to run the algorithm. MATLAB version R2020b, Statistics and Ma-

chine Learning Toolbox-Functions.
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Table 4. List of acronyms

Acronym Definition Acronym Definition

PFT Phytoplankton Functional Type OLCI Ocean and Land Colour Instrument

PG Phytoplankton taxonomic group PACE Plankton, Aerosol, Cloud, ocean Ecosystem mission

PSC Phytoplankton Size Class IOCCG International Ocean Colour Coordinating Group

HPLC High Performance Liquid Chromathography CCI Climate Change initiative

DPA Diagnostic Pigment Analysis CMEMS Copernicus Marine Environment Monitoring Service

DP Diagnostic pigment Rrs Remote sensing reflectance

Chla Chlorophyll-a Kd490 Attenuation coefficient at 490 nm

Fuco Fucoxanthin PAR Photosynthetically available radiation

Perid Peridinin NFLH Normalized fluorescence line hight

Allo Alloxanthin bbp Particulate backscattering coefficient

Zea Zeaxanthin SST Sea surface Temperature

Chlb Chlorophyll-b SOM Self-Organizing Maps

19HF 19’-Hexanoyloxyfucoxanthin AHC Ascending Hierarchical Clustering

19BF 19’-Butanoyloxyfucoxanthin TD Truncated distance

DVChla Divynil-Chlorophyll-a D Initial dataset

DVChlb Divynil-Chlorophyll-b DRCA Phytoplankton groups’ relative cell abundance sub-dataset to train SOMRCA

MAREDAT MARine Ecosystem DATa DChlF Phytoplankton groups’ chlorophyll-a fraction per group sub-dataset to train SOMChlF

PSII Photosystem II SOMRCA SOM algorithm dedicated to estimating phytoplankton groups’ relative cell abundance

OC Ocean color SOMChlF SOM algorithm dedicated to estimating phytoplankton groups’ Chla fraction

SeaWiFs Sea-viewing Wide Field-of-view Sensor RMSE Root-mean-squared error

MODIS Moderate Resolution Imaging Spectroradiometer R2 Regression coefficient

VIIRS Visible Infrared Imaging Radiometer Suite MRD Median relative deviation

MERIS Medium Resolution Imaging Spectrometer
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