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Abstract 

Ocean color remote sensing offershas been used for more than two decades-long time series of information on 

phytoplankton abundance. However, determining the structure of the  to estimate primary productivity. 

Approaches have also been developed to disentangle phytoplankton community structure based on spectral data 

from this signal is not straightforward, and many uncertainties remain to be evaluated, despite multiple 

intercomparison efforts of the different available algorithms. Here, we use remote sensing and machine learning 

to infer the space, in particular when combined with in situ measurements of photosynthetic pigments. Here, we 

propose a new ocean color algorithm to derive the relative cell abundance of seven phytoplankton groups at global 

scale based on a new molecular method from Tara Oceans. Our dataset is to our knowledge the most 

comprehensive and complete, available , as well as their contribution to describe phytoplankton community 

structure at global scale using a molecular marker that defines relative abundances of all phytoplankton groups 

simultaneously. The methodology shows satisfying performances to provide robust estimates of phytoplankton 

groups using satellite data, with few limitations regarding the global generalization of the method. Furthermore, 

this new satellite-based methodology allows a valuable global intercomparison with the pigment-based approach 

used in in-situ and satellite data to identify phytoplankton groups. Nevertheless, these datasets show different, yet 

coherent information on the phytoplankton, valuable for the understanding of community structure.total 

chlorophyll-a (Chla) at the global scale. Our algorithm is based on machine learning and has been trained using 

remotely-sensed parameters (reflectance, backscattering and attenuation coefficients at different wavelengths, 

plus temperature and Chla) combined with an omics-based biomarker developed using Tara Oceans data 

representing a single-copy gene encoding a component of the photosynthetic machinery that is present across all 
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phytoplankton, including both prokaryotes and eukaryotes. It differs from previous methods which rely on 

diagnostic pigments to derive phytoplankton groups. Our methodology provides robust estimates of the 

phytoplankton community structure in terms of relative cell abundance and contribution to total Chla 

concentration. The new generated datasets yield complementary information about different aspects of 

phytoplankton that are valuable for assessing the contributions of different phytoplankton groups to primary 

productivity and inferring community assembly processes. This makes remote sensing observations excellent 

tools to collect Essential Biodiversity Variables and provide a foundation for developing marine biodiversity 

forecasts. 

1. Introduction 

In marine ecosystems, the production of organic matter (i.e., productivity) relies largely on phytoplankton. These 

unicellular photosynthetic microorganisms are evolutionarily diverse and exhibit a wide range of cell 

morphologies, sizes, photosynthetic accessory pigments, elemental requirements, and biogeochemical and trophic 

functions (Pierella Karlusich et al., 2020). They play a key role in regulating ocean biogeochemistry (Fuhrman, 

2009), including the export of organic matter to the deep ocean (Guidi et al., 2009; Tilman et al., 2014), which 

contributes to the modulation of atmospheric CO2 levels and climate.  

In a continuously changing environment, it is important to investigate the potential impacts of increased climatic 

variation and the effect of environmental fluctuations on planktonic biodiversity and marine ecosystem 

functioning (Ibarbalz et al., 2019; Henson et al., 2021). Such investigation requires the acquisition of high-

resolution, real-time, and global scale data on phytoplankton community structure that can additionally inform 

about the state of its associated ecosystem functions often referred to as Essential Biodiversity Variables (Pereira 

et al., 2013). Numerous studies aimed at understanding or predicting global marine phytoplankton patterns based 

on various in-situ techniques, from microscopy to DNA sequencing-based methods (Hillebrand and Azovsky, 

2001; Irigoien et al., 2004; Smith, 2007; Rodríguez-Ramos et al., 2015; Powell and Glazier, 2017; Righetti et al., 

2019; Dutkiewicz et al., 2020; Pierella Karlusich et al., 2020). However, this existing knowledge relies on highly 

fragmented, spatially disparate, and temporally punctual observations, limited by the challenges of in situ data 

collection.  

Ocean color remote sensing is an effective alternative to observe the global spatio-temporal distribution of 

phytoplankton at the sea surface at a high resolution. Since 1978, ocean color satellites have been quantifying 

chlorophyll-a (Chla) concentrations as a proxy of phytoplankton biomass (O’Reilly et al., 1998; Sathyendranath 

et al., 2014). This focus continues to the present with Chla concentration being by far the most utilized product 

from ocean-color satellites (Sathyendranath et al. 2014, IOCCG report N 14). It is only recently that these images 

have begun to be used to retrieve additional information about phytoplankton communities, such as their size 

structure, and their taxonomic or functional composition. This interest has paralleled the incorporation of the 

concept of phytoplankton functional types (PFT) into studies of a range of ecological and biogeochemical 

problems (Le Quéré et al., 2005; Hood et al., 2006). Functional types are defined according to the scientific 

questions being considered and the observational capabilities available or required to address them. The 

approaches span from categories related to biochemical processes (e.g., silicifiers, calcifiers) and physiological 

adaptations towards environmental factors (e.g., light, nutrients, turbulence) to practical categories that can be 
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quantified with a particular analytical technique (e.g., pigment types) (IOCCG report N 14). Many of these efforts 

have focused on specialized algorithms to detect a single taxon with distinctive optical characteristics (Brown, 

1995; Iglesias-Rodríguez et al., 2002), while other algorithms have also targeted a variety of phytoplankton based 

on pigments (diagnostic pigment analysis, DPA) (Alvain et al., 2005; Uitz et al., 2006; Aiken et al., 2009; Bracher 

et al., 2009; Hirata et al., 2011; Chase et al., 2020; Ben Mustapha et al., 2013; Alvain et al., 2008). These 

algorithms can detect concentrations of three size classes of pico-, nano-, and microplankton (Phytoplankton size 

class, PSC, (Uitz et al., 2006; Hirata et al., 2011; Chase et al., 2020) or flag the dominant functional group within 

a total of five (Alvain et al., 2005; Ben Mustapha et al., 2013; Alvain et al., 2008).  

Pigment-based phytoplankton groups have received increasing interest from the ocean color community over the 

past decade due to the existence of large datasets of HPLC measurements with long time series and broad spatial 

coverage. The DPA approach was first proposed by Vidussi et al. (2001), based on the use of phytoplankton 

pigment information measured by high-performance liquid chromatography (HPLC) analysis as an alternative to 

more costly in-situ methods.  This approach is based on the association of secondary phytoplankton pigments with 

broad taxonomic phytoplankton groups.  Pigments contained within phytoplankton taxonomic groups are in turn 

assumed to be associated with one of the three size classes. The method of using diagnostic accessory pigments 

was further developed by Uitz et al. (2006), who applied weighting coefficients to diagnostic pigments to describe 

the respective proportion of three Phytoplankton Size Classes (PSC) to total Chla. From this study, several 

applications to satellite data emerged, linking DPA to remote sensing (Uitz et al., 2006; Hirata et al., 2008, 2011; 

Soppa et al., 2014; Di Cicco et al., 2017; Organelli et al., 2013; El Hourany et al., 2019a, b; Xi et al., 2020). 

However, the reliance of the DPA on links between pigments and phytoplankton taxa, as well as the size range of 

different phytoplankton taxonomic groups, is not trivial due to the presence of certain pigments across different 

phytoplankton size and taxa (Brewin et al., 2014; Chase et al., 2020). This aspect may compromise the relevance 

of satellite images to retrieve reliable/meaningful taxonomic or functional EBVs for this biological compartment. 

However, the limitation of this signal remains so far not properly quantified. 

One of the main reasons for the current uncertainties related to the relevance of satellite data to monitor planktonic 

diversity lies in the fact that current observational taxonomic and functional data on phytoplankton that could be 

used to validate the method is highly fragmentary and often obtained with inconsistent methodologies. In the 

following work, we address this limitation by using Tara Oceans’ phytoplankton observations. These data are, to 

date, the most comprehensive and harmonized data available on the phytoplankton taxonomic community 

structure on a global scale, as obtained from metagenomics reads of a single-copied gene present across all 

phytoplanktonic groups, an approach that provides an unbiased picture of phytoplankton cell abundances (Pierella 

Karlusich et al., 2022). We employ these data alongside satellite-derived parameters to train an unsupervised 

machine learning algorithm to discern the non-linear relationship between the phytoplankton taxonomic 

community structure and the optical signal perceived by the Ocean color satellite sensors, together with the 

physical environment. This new methodology allowed us to monitor the spatio-temporal variability of seven 

phytoplankton groups between 1997 and 2021. Furthermore, a comparison is performed  between this new 

algorithm and available satellite products (El Hourany et al., 2019a; Xi et al., 2020) which are based on the DPA 

pigment approach, to highlight common patterns, confidence, and limitations to estimating phytoplankton 

community structure using different sets of information. 
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2. Materials 

In this section, different datasets are presented, each playing an important role in either the training of the 

algorithm or the validation and evaluation of global patterns of the outputs. Therefore, three datasets are employed. 

The first is the input dataset which allies between the in-situ information on phytoplankton groups from the Tara 

Oceans expedition and their associated satellite matchups. The second corresponds to an independent dataset 

based on global in-situ HPLC measurements, used to compare the outputs of the presented algorithm and the DPA 

approach to estimate phytoplankton groups. And last, the third dataset compiles two operational satellite-derived 

products on phytoplankton groups' abundance and therefore are used to compare large scale patterns and evaluate 

any discrepancies. 

The production of organic matter (i.e., productivity) in marine ecosystems relies largely on phytoplankton. These 

unicellular photosynthetic microorganisms are evolutionarily diverse and exhibit a wide range of cell 

morphologies, sizes, photosynthetic accessory pigments, elemental requirements, and biogeochemical and trophic 

functions (Pierella Karlusich et al., 2020). They play a key role in regulating ocean biogeochemistry (Fuhrman, 

2009) and global climate, partly through the absorption of atmospheric CO2 and export of carbon to the deep 

ocean (Guidi et al., 2009; Tilman et al., 2014, Tara Ocean Foundation et al., 2022).  

In order to investigate the potential impacts of environmental changes on marine ecosystem functioning (Ibarbalz 

et al., 2019; Henson et al., 2021), high-resolution, real-time, and global scale data on phytoplankton community 

structure are required (Pereira et al., 2013). However, existing knowledge about the global distribution of 

phytoplankton communities from in-situ observations is  highly fragmented, spatially disparate, and temporally 

punctual. It is furthermore limited by both the challenges of in situ data collection and by the associated costs of 

measurement techniques, which range from microorganism imaging, flow cytometry, to DNA sequencing 

(Hillebrand and Azovsky, 2001; Irigoien et al., 2004; Smith, 2007; Rodríguez-Ramos et al., 2015; Powell and 

Glazier, 2017; Righetti et al., 2019; Dutkiewicz et al., 2020; Pierella Karlusich et al., 2020).  

Ocean color remote sensing offers an interesting alternative to map  the global distribution of phytoplankton 

communities at the sea surface at a high spatio-temporal resolution. Since 1978, ocean color satellites have been 

used to observe the concentration of the main phytoplankton pigment, chlorophyll-a (Chla), considered as a proxy 

of phytoplankton biomass (O’Reilly et al., 1998; Sathyendranath et al., 2014). Recently, ocean color data  have 

also been used to gain information about phytoplankton communities, such as their size structure, and their 

taxonomic or functional composition. This interest has facilitated the integration of the concept of phytoplankton 

functional types (PFT) into studies of a range of ecological and biogeochemical problems (Le Quéré et al., 2005; 

Hood et al., 2006). Functional types correspond to categories linked to biogeochemical processes (e.g., silicifiers, 

calcifiers) and physiological adaptations to environmental factors (e.g., light, nutrients, turbulence), or to more 

practical categories quantified using a particular analytical technique (e.g., pigment types) (IOCCG report N 14). 

Specialized algorithms applied to ocean color data have consequently been developed  to detect specific taxa with 

distinctive optical characteristics (Brown, 1995; Iglesias-Rodríguez et al., 2002), or  the abundance of 

phytoplankton functional types and size classes (Alvain et al., 2005; Uitz et al., 2006; Aiken et al., 2009; Bracher 

et al., 2009; Hirata et al., 2011; Chase et al., 2020; Ben Mustapha et al., 2013; Alvain et al., 2008). 
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The diagnostic pigment analysis method (DPA, Vidussi et al 2001) relies on the association of secondary 

phytoplankton pigments with different broad taxonomic phytoplankton groups. DPA classification was later 

refined by Uitz et al., (2006) who gave different weightings to the diagnostic pigments to retrieve three 

phytoplankton size classes (PSC) from total Chla. The advantage of this method is that phytoplankton pigments 

can be measured in a cost-effective manner through high performance liquid chromatography (HPLC). Today, 

large in-situ HPLC datasets are  available with broad spatial and temporal coverage. These  HPLC datasets have 

enabled the development of several DPA-based ocean color algorithms, which has made it possible to evaluate 

the abundance of different phytoplankton groups and size classes from ocean color satellite data (Uitz et al., 2006; 

Hirata et al., 2008, 2011; Soppa et al., 2014; Di Cicco et al., 2017; Organelli et al., 2013; El Hourany et al., 2019a, 

b; Xi et al., 2020). However, the limitation of the DPA approach is that it is associated with large uncertainties in 

the classification of phytoplankton due to the presence of certain pigments in different phytoplankton taxa and 

cell size classes, which also vary with acclimation to light, temperature, and nutrient availability (Brewin et al., 

2014; Chase et al., 2020).  

In this work, we propose an alternate approach to develop an ocean color algorithm for phytoplankton group 

detection from in-situ metagenomic observations. The approach is ground-truthed on data collected by Tara 

Oceans, which constitutes the most comprehensive and harmonized molecular dataset available on phytoplankton 

taxonomic community structure on a global scale. More specifically, we used metagenomics reads to extract the 

global-scale distribution and abundance of the single-copy gene psbO, which is present across all phytoplankton 

groups and that provides an unbiased picture of phytoplankton cell abundances (Pierella Karlusich et al., 2022). 

We used these data, together with satellite-derived optical, physical and biogeochemical parameters to train an 

unsupervised machine learning algorithm able to discern the non-linear relationship between phytoplankton 

taxonomic community structure and data derived from satellites. This new algorithm allowed us to derive the 

spatio-temporal variability of seven phytoplankton groups between 1997 and 2021. We then compared the 

performance of this new algorithm with that of two previous DPA-based algorithms  (El Hourany et al., 2019a; 

Xi et al., 2020). 

2. Material 

In this section, we present the datasets that were used for training the algorithm and for evaluating the outputs. 

The input dataset includes the in-situ distribution and abundance of phytoplankton groups inferred from 

metagenomics data from Tara Oceans and their associated satellite matchups.  The outputs of the new algorithm 

are compared to a global dataset of in-situ HPLC diagnostic pigments, as well as with estimates from two DPA-

based remote sensing algorithms. 

2.1. Input dataset 

2.1.1. MetagenomicIn-situ metagenomic read abundance of the psbO gene 

The psbO gene encodes the manganese-stabilizing protein, of around 270 amino acids, a core subunit of 

photosystem II (PSII) and unique to organisms carrying out oxygenic photosynthesis. The psbO gene is single 

copy in the vast majority of Eukaryotes and Prokaryotes. The reads mapping psbO were retrieved from the 

metagenomes and used as a proxy of phytoplankton relative cell abundance (Pierella Karlusich et al., 2022). Given 
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that five major organismal size fractions were collected by Tara Oceans (0.22-3um, 0.8-5um, 5-20um, 20-180um, 

180-2000um), we formatted the data into major phytoplankton groups based on their taxonomy. For every station, 

we pooled the results obtained for the five-size fractions into a single aggregated sample. We discarded the 

sampling stations where collected size fractions did not cover the full range of sizes so as not to bias the results. 

We then split this composite dataset composed by samples collected at 211 different stations into seven main 

phytoplankton groups based on DNA reads taxonomic assignation: diatoms (Bacillariophyta, hereafter referred to 

as Diat), dinoflagellates (Dinoflagellata, Dino), green algae (Chlorophyta, Green), haptophytes (Haptophytina, 

Hapto), pelagophytes (Pelagophyceae, Pelago), cryptophytes (Cryptophyta, Crypto), and prokaryotes mainly 

corresponding to Cyanobacteria (Fig. 1). The psbO read abundances of these main groups, which cover 

oligotrophic to eutrophic waters (Chla from 0.01 to 10 mg.m-3) were expressed as relative abundance (%) in 

relation to the total number of reads. Phytoplankton that were not assigned to any of the seven cited groups 

(Unclassified) represented less than 5% of the total phytoplankton community. 

 

The psbO gene encodes the manganese-stabilizing protein, of around 270 amino acids, which constitutes a core 

subunit of photosystem II (PSII) and is unique to organisms carrying out oxygenic photosynthesis. The psbO gene 

is a single-copy gene in the vast majority of eukaryotes and prokaryotes. We used psbO reads from the 

metagenomes generated from the Tara Oceans expedition as a proxy of phytoplankton relative cell abundance 

(Pierella Karlusich et al., 2022). Among the 211 Tara Oceans stations, 145 stations sampled psbO reads in 

different ocean regimes from oligotrophic to eutrophic waters (Chla from 0.01 to 10 mg.m-3, median at 0.3 mg.m-

3), from 2009 to 2013. Seawater samples were filtered in order to differentiate five planktonic size fractions (0.22-

3um, 0.8-5um, 5-20 um, 20-180 um, 180-2000 um). For the purpose of this study, we pooled the five size fractions 
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into a single aggregated sample, correcting by the different sampling volumes for each size fraction, and discarded 

stations where not all size fractions were available, to avoid biasing the results.  

 

psbO data enabled us to taxonomically differentiate seven phytoplankton groups: diatoms, dinoflagellates, green 

algae, haptophytes, pelagophytes, cryptophytes, and prokaryotes (Cyanobacteria) (Fig. 1). The psbO read 

abundances of these seven groups are expressed as relative phytoplankton cell abundance (%). Phytoplankton that 

were not assigned to any of these seven groups (Unclassified) represented less than 5% of the total phytoplankton 

community. 

 

 

Figure 1. Figure 1. Global biogeographical patterns of marine phytoplankton relative cell abundance and Chla 

fraction per group based on psbO metagenomic reads obtained from metagenomes from seawater samples 

collected byduring the  Tara Oceans expeditions.  Note that different color scales are used for  

In addition to the use of psbO as a proxy of relative cell abundance, we also estimated the Chla proportion of the 

most abundant phytoplankton groups (left panels) and . For this, the relative psbO read abundances were weighted 

by their size fraction and then multiplied by the in-situ value of Chla measured at each Tara Oceans station. This 

conversion from psbO reads to Chla gives the contribution of each phytoplankton group to the total Chla, by 

accounting for cell size. We should note however that filters may retain cells smaller than the nominal pore size 

because of net clogging, being trapped in fecal pellets, as well as being present as symbioses and colonies. This 

has been observed with prokaryotic pico-sized cells such as Synechococcus and Prochloroccocus being over-

represented in the 180-2000 um size fraction (Fig. 2). To minimize this impact, we based our size-weighting on 4 

size-fractions, while excluding the 180-2000 um size range following the protocol in Sommeria-Klein et al., 2021. 

Chla fraction per group is expressed as follows: 
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𝐶ℎ𝑙𝑎 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑃𝐹𝑇 = Chla𝑖𝑛−𝑠𝑖𝑡𝑢 ∗  

∑ (
𝑝𝑠𝑏𝑂𝑃𝐹𝑇 ∗ 𝑠𝑖𝑧𝑒𝑠

∑ (𝑝𝑠𝑏𝑂𝑃𝐹𝑇 ∗ 𝑠𝑖𝑧𝑒𝑠)7
𝑃𝐹𝑇=1

)4
𝑠=1

∑ ∑ (𝑝𝑠𝑏𝑂𝑃𝐹𝑇 ∗ 𝑠𝑖𝑧𝑒𝑠)7
𝑃𝐹𝑇=1

4
𝑠=1

 

where PFT is a designated phytoplankton group, and size is the four used size fractions. 

 

There are hence two levels of information derived from the molecular dataset; relative abundance of psbO reads 

as a proxy of relative cell abundance, and the fraction of Chla that each group represents. Both types of information 

have different implications. Chla is often used as a proxy of biomass, which is a relevant parameter for less 

abundant groups (right panels).energy and matter fluxes (e.g., food webs, biogeochemical cycles), while cell 

abundance corresponds to species abundance for unicellular organisms, which is an important measure for 

inferring community assembly processes. 

 

 

Figure 2. Relative abundance of psbO reads as a proxy of phytoplankton group cell abundance observed in each 

size fraction. The boxplots represent the distribution of each group and each panel shows the different size 

fractions. 

 

2.1.2. Satellite-derived Dataset datasets 

We used ocean color satellite dataproducts from the Globcolour project (R2019, full archive reprocessed, 2020), 

which consists of creating and maintaining a long time series of ocean color data from satellite measurements () 

from 1997 to the present). This database is the result of the fusion of day, downloaded from the Globcolour portal. 

These products were constructed by merging data from various satellite sensors: Sea-viewing Wide Field-of-view 

Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging 

Radiometer Suite (VIIRS), Medium Resolution Imaging Spectrometer (MERIS), and Ocean and Land Colour 

Instrument (OLCI).  NineWe used sixteen Globcolour products were used, at daily and at 4km spatio-temporal 

resolution:: Chlorophyll-a concentration (Chla), Remote sensing reflectances at 411 wavelengths (Rrs412, 

Rrs443, Rrs490, and Rrs555), satellite Chla,412 till 670 nm), light attenuation coefficient at 490 nm (Kd490), 

photosynthesis available radiation (PAR), Normalized fluorescence light height (NFLH) and particulate 

backscattering at 443 nm (bbp). These products have daily and 4km spatio-temporal resolution. In addition, we 

used the Climate Change Initiative Sea Surface Temperature (SST) dataproduct at 4 km resolution and at daily 

frequency available fromdistributed by the Copernicus Marine Services (CMEMS) portal. 

2.2. HPLC datasets 
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To compare psbO-derived phytoplankton group distributions with more conventional, DPA-based products, we 

compiled a global HPLC dataset regrouping 12 000 HPLC observations from several HPLC datasets between 

1997 and 2014 (Fig. 3): MAREDAT, NOMAD, SeaBASS, and other oceanographic campaigns: Labrador, 

Gep&co, Polarstern, BROKE-West, SAZ-Sense Voyage (Luo et al., 2012; Werdell and Bailey, 2005; Dandonneau 

et al., 2004; Bracher et al., 2015; Fragoso et al., 2016; Peloquin et al., 2013; Wright et al., 2010; de Salas et al., 

2011). This HPLC dataset was collocated with satellite Globcolor and CCI matchups. It depicts the abundance of 

the pigments most widely used to identify major phytoplankton groups: Fucoxanthin (Fuco), Peridinin (Perid), 

Alloxanthin (Allo), Zeaxanthin (Zea), Chlorophyll-b (Chlb), 19’-Hexanoyloxyfucoxanthin (19HF), and 19’-

Butanoyloxyfucoxanthin (19BF) (Table 1). To estimate Chla fraction for each phytoplankton group, namely 

diatoms, dinoflagellates, haptophytes, green algae, cryptophytes, pelgophytes and prokaryotes, diagnostic 

pigments were used. The Chla fraction per group is expressed by 𝐶ℎ𝑙𝑎𝑃𝐹𝑇 =  (𝐷𝑃 ∗ 𝛼 )/∑ 𝐷𝑃 ∗ 𝛼. Three sets of 

coefficients are proposed for a global ocean application and are presented in Table 1 (Uitz et al., 2006; Soppa et 

al., 2014; Brewin et al., 2015). Therefore we calculated an average Chla fraction value for each phytoplankton 

group using the three sets of coefficients. 

Simultaneously, Tara Oceans HPLC measurements (Pesant et al., 2015), which are available for the same stations 

and sampling time as for psbO, were considered to evaluate the correspondence between pigments and psbO-

derived phytoplankton groups. 

 

Figure 3: Geographical location of the global HPLC dataset stations regrouping observations from 1997 to 2014. 

The right panel shows the correlation between in-situ HPLC Chla measurements and its matchup in the 

Globcolour Chla product. 

2.3. PFT satellite products  

In order to compare the outputs of our method to those of  existing DPA-based remote sensing algorithms, we 

used two of them : 

2.3.1.  CMEMS  phytoplankton Chla fraction  

This Globcolour product contains the concentration of each phytoplankton functional type (expressed in terms of 

Chla concentration fraction) based on the Xi et al. (2020) algorithm, processed from 1997 to present. This 
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algorithm estimates the Chla concentration of diatoms, dinoflagellates, haptophytes, green algae, and prokaryotes. 

The algorithm was implemented using HPLC-based phytoplankton groups using the DPA approach (Soppa et al., 

2014) and satellite reflectance in the visible spectrum (bands comprise between 400 and 681 nm) with empirical 

orthogonal function (EOF). This dataset is distributed by CMEMS (product number: 

OCEANCOLOUR_GLO_BGC_L3_MY_009_103). 

2.3.2. SOM phytoplankton pigments 

SOM-Pigments (El Hourany et al., 2019a) is a machine learning-based algorithm that allows the estimation of 

phytoplankton pigment concentrations in oceanic waters from satellite ocean color data (Chla, Rrs at four 

wavelengths: 412, 443, 490 and 555nm) and SST. This algorithm is based on the use of Self-Organizing Maps 

(SOMs), an unsupervised neural network, and was calibrated using the HPLC dataset described above.  

The SOM-Pigments algorithm applied to Globcolour products  allowed us to estimate the concentration of ten 

phytoplankton pigments (Chlorophyll-a (Chla), Divinyl-Chlorophyll-a (DVChla), Chlorophyll-b (Chlb), Divinyl-

Chlorophyll-b (DVChlb), 19’Hexfucoxanthin (19HF), 19’Butfucoxanthin (19BF), Fucoxanthin (Fuco), Peridinin 

(Perid), Alloxanthin (Allo), Zeaxanthin (Zea)) at the global scale from 1997 to 2021. We then used the coefficients 

in Table 1 to convert pigments into the Chla concentration of five phytoplankton groups, namely diatoms, 

dinoflagellates, haptophytes, green algae and prokaryotes. 

Table 1. Phytoplankton groups and size classes associated with their diagnostic pigments and coefficients. 

Phytoplankton 

size class 
Phytoplankton group 

Diagnostic Pigment 

(DP) 

Coefficients (𝛼)* 

Uitz et al., 

2006 

Soppa et al., 

2014 

Brewin et 

al., 2015 

Micro 

Diatoms, Haptophytes, 
Chrysophytes, Dinoflagellates 

Fucoxanthin (Fuco) (Jeffrey, 1980) 1.41 1.55 1.51 

Dinoflagellates 
Peridinin (Perid) (Jeffrey, 1980; 

Jeffrey and Hallegraeff, 1987) 
1.41 0.41 1.35 

Nano 

Haptophytes, Chrysophytes, 

Dinoflagellates 

19’-Hexanoyloxyfucoxanthin (19HF) 

(Wright and Jeffrey, 1987) 
1.27 0.86 0.95 

Green algae, Prasinophytes 
Chlorophyll-b (Chlb) (Vidussi et al., 

2001) 
1.01 1.17 0.85 

Cryptophytes 
Alloxanthin (Allo) (Gieskes and 

Kraay, 1983) 
0.6 2.39 2.71 

Pelagophytes, Haptophytes 
19’-Butanoyloxyfucoxanthin (19BF) 

(Wright and Jeffrey, 1987) 
0.35 1.06 1.27 

Pico 

Prokaryotes 

(Cyanobacteria), Green algae, 

Prasinophytes, Chrysophytes, 
Euglenophytes 

Zeaxanthin (Dandonneau et al., 2004; 

Guillard et al., 1985) 
0.86 2.04 0.93 

Coefficients based on global HPLC dataset corresponding to the sum of the weighted diagnostic pigments to the total Chla; 

Chla=∑𝛼DP 

3. Methods  
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Several machine learning algorithms were used in this study. The algorithm to estimate phytoplankton groups 

from satellite data was built using SOM (Kohonen, 2013) and topology-constrained organization. This allowed 

us to confirm the non-linear relationships between phytoplankton group composition and satellite data through 

topology conservation. Next, we used the Ascending Hierarchical clustering algorithm to identify the  large scale 

patterns generated by SOM. This allowed  us to emphasize the predominant data structure learned by SOM and 

to characterize phytoplankton biomes. Finally, to  characterize  the differences  between the DPA- and psbO-

based approaches, we used  Random Forest models to highlight the cumulative importance of a pigment 

composition to estimate a phytoplankton group abundance. In the following section, each methodology and 

algorithm are explained in detail. 

2.1.3.3.1. Structure of the Trainingtraining and test databases: 

The initial dataset (D) is constitutedconsists of 211the 145 Tara Oceans psbO observations of thepsbO relative 

abundance of the seven defined phytoplankton groups with, the Chla fraction per group, and the associated 

matchups of 1017 satellite-derived parameters (Chla, SST, 411 Rrs (412, 443, 490, and 555 nm-645nm), NFLH, 

Kd490, PAR, and bbp). Even though the values are negligeable, theThe unclassified phytoplankton fraction was 

also addedconsidered, despite negligible values, to ensure coherence and preservation of the total phytoplankton 

pool. The matchups between satellite observations and in-situ observations were selected by considering 3x3 pixel 

boxes around the in-situ coordinates and +/- 1 day around the day of the in-situ measurement. Relative (El Hourany 

et al., 2019a, b).  

We built two sub-datasets, the first (DRCA) relating psbO-based abundances were multiplied by the in-situ 

valuederived relative cell abundance of Chla measured as well at each Tara Oceans station, expressing everythe 

seven defined phytoplankton groups to the 17 satellite-derived parameters, and the second (DChlF) joining psbO-

derived Chla fraction per phytoplankton group as a functionand the same 17 satellite-derived parameters. We then 

constructed two algorithms, using either DRCA or DChlF, both based on the same SOM methodology described 

below. Following the positioning of a Chla fraction. Tara Ocean’s stations, and the distribution of Chla values 

within both datasets (Fig. A2), both algorithms are suitable for case 1 waters applications ( i.e. open ocean). 

All variables were normalized by their variance to homogenize weights. The hypothesisrationale behind this is 

that the phytoplankton community should be treated as a whole, and therefore; consequently, the variability of 

each phytoplankton group is dependent on each other in a relative way. In parallel, D presentsDRCA and DChlF both 

present missing values (table 1); satellite missing values are usually linked to Table 2), most likely due to cloud 

coverage or masked data due to coastal/ice influence. However,presence/proximity. In-situ psbO-based 

observations also contained missing values within the in-situ observation are due to a lackan absence of certain 

measurements ofat a given station. And since DSince the in-situ dataset contains a low number of observations 

(211145 stations), every observation is valuable. Therefore,In order to tackle theseovercome the several 

limitations, it is essential to use a non-linear multivariate regression faced with this training dataset, we used the 

SOM algorithm that can deal with missing values and allow a robust generalization in the case of limited 

observations. (Jouini et al., 2013). 

Table 1:2. Percentage of missing values within the initial database (D). 
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Tara Oceans psbO Sat 

D (211145 

stations) 

Relative 

cell 

abundan

ce 

Chla 

fraction 

per 

group 

Chla 
Rrs 412-

645 nm 

Rrs 

443 

Rrs 

490 

Rrs 

555 SS

T 
bbp 

Kd4

90 

NFL

H 
PAR 

Percentage of 

missing 

values 

31- 7% 
18

% 

45 
43-53% 

43 43 
30

% 

55

% 
53% 37% 14% 

 

 

2.2. Global Phytoplankton HPLC pigment dataset 

In order to compare the output of our methodology with an independent dataset, a global HPLC dataset has been 

compiled, regrouping 12 000 HPLC observations originating from several HPLC datasets between 1997 and 2014 

(Fig. 2): MAREDAT, NOMAD, SeaBASS, and other oceanographic campaigns: Labrador, Gep&co, Polarstern 

(Luo et al., 2012; Werdell and Bailey, 2005; Dandonneau et al., 2004; Bracher et al., 2015; Fragoso et al., 2016; 

Peloquin et al., 2013). This HPLC dataset was collocated with satellite Globcolor and CCI matchups. This HPLC 

dataset contains the most used phytoplankton pigments to identify major phytoplankton groups; Fucoxanthin 

(Fuco), Peridinin (Perid), Alloxanthin (Allo), Zeaxanthin (Zea), Chlorophyll-b (Chlb), 19’-

Hexanoyloxyfucoxanthin (19HF), 19’-Butanoyloxyfucoxanthin (19BF). The different phytoplankton groups and 

their associated pigments are shown in table 2. The objective of this dataset is to allow an independent global 

comparison of diagnostic pigments (DPA) vs. Satellite estimated phytoplankton groups. An average Chla fraction 

value for each phytoplankton group was calculated using the three sets of coefficients presented in table 2 (Uitz 

et al., 2006; Soppa et al., 2014; Brewin et al., 2015). 

Tara Ocean’s HPLC measurements (Pesant et al., 2015) were excluded from this global dataset. Since these HPLC 

measurements were performed on the same stations as for psbO, they are used in this study to evaluate the 

correspondence between pigments and phytoplankton groups. 
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Figure 2: Geographical location of the global HPLC dataset stations regrouping observations from 1997 and 

2014. The right panel represents a comparison between in-situ HPLC Chla measurement and its matchup using 

Globcolour Chla product. 

2.3. Intercomparison with operational PFT satellite products  

It is essential in this study to assess the consistency of the results of the presented method and to identify potential 

differences in emerging patterns by comparing them to existing products. For this matter, two satellite products 

have been identified: 

2.3.1.  Satellite-derived phytoplankton Chla fraction (CMEMS/Globcolour dataset) 

This multi-sensor product contains the concentration of each phytoplankton functional type (expressed in terms 

of Chla concentration fraction) based on the Xi et al. (2020) algorithm, processed from 1997 till present. This 

algorithm allows an estimate of the Chla concentration of diatoms, dinoflagellates, haptophytes, green algae, and 

prokaryotes. The algorithm was implemented using HPLC-based phytoplankton groups (based on DPA approach, 

Soppa et al., 2014) and satellite reflectance in the visible spectrum (bands comprise between 400 and 681 nm) 

with empirical orthogonal function (EOF). This dataset is found on the CMEMS portal (product number: 

OCEANCOLOUR_GLO_BGC_L3_MY_009_103). 

2.3.2. Satellite-derived phytoplankton pigments: 

SOM-Pigments (El Hourany et al., 2019a) is a machine learning-based algorithm that allows the estimation of 

phytoplankton pigment concentrations in oceanic waters from satellite ocean color data (Chla, Rrs at four 

wavelengths: 412, 443, 490 and 555nm) and SST. this algorithm is based on the use of Self-Organizing maps 

(SOM) and was calibrated using a global HPLC dataset which includes 10 phytoplankton pigment concentrations: 

Chlorophyll-a (Chla), Divynil-Chlorophyll-a (DVChla), Chlorophyll-b (Chlb), Divynyl-Chlorophyll-b (DVChlb), 

19’Hexfucoxanthin (19HF), 19’Butfucoxanthin (19BF), Fucoxanthin (Fuco), Peridinin (Perid), Alloxanthin 

(Allo), Zeaxanthin (Zea). The results of the cross-validation procedure scored a regression coefficient of 0.75 and 

an average RMSE of 0.016 mg.m-3. Using pigment concentrations, it is possible to determine the relative 

abundance of several phytoplankton groups (table 2).  

The SOM-Pigments algorithm allowed us to estimate the 10 phytoplankton pigment concentrations cited above 

from satellite data on a global scale between 1997 and 2021. These pigments were used alongside the coefficients 

of Soppa et al., 2014 in table 2 to estimate five phytoplankton groups: Diatoms, dinoflagellates, haptophytes, 

green algae, pelagophytes, cryptophytes, and prokaryotes. We selected the above-mentioned set of coefficients 

for comparability reasons. 

Table 2. Phytoplankton groups and size classes associated with their diagnostic pigments and coefficients: 

Phytoplankton 

size class 
Phytoplankton group 

Diagnostic Pigment 

(DP) 

Coefficients (𝛼)* 

Uitz et al., 

2006 

Soppa et al., 

2014 

Brewin et 

al., 2015 
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Micro Diatoms Fucoxanthin (Fuco) (Jeffrey, 

1980) 

1.41 1.55 1.51 

Dinoflagellates Peridinin (Perid) (Jeffrey, 

1980; Jeffrey and Hallegraeff, 

1987) 

1.41 0.41 1.35 

Nano Haptophytes 19’-Hexanoyloxyfucoxanthin 

(19HF) (Wright and Jeffrey, 

1987) 

1.27 0.86 0.95 

Green algae Chlorophyll-b (Chlb) (Vidussi 
et al., 2001) 

0.35 1.17 0.85 

Cryptophytes Alloxanthin (Allo) (Gieskes 

and Kraay, 1983) 

0.6 2.39 2.71 

Pelagophytes 19’-Butanoyloxyfucoxanthin 

(19BF) (Wright and Jeffrey, 

1987) 

1.01 1.06 1.27 

Pico Prokaryotes Zeaxanthin (Dandonneau et 
al., 2004; Guillard et al., 1985) 

0.86 2.04 0.93 

Coefficients based on global HPLC dataset corresponding the sum of the weighted diagnostic pigments to the total Chla; 

Chla=∑𝛼DP 

3. Methods:  

To extract the most information of the above-mentioned datasets, several machine learning algorithms were used 

in this study. Developing an operational algorithm that estimates from satellite information the phytoplankton 

groups’ abundance was done using an unsupervised neural network called Self-Organizing map (SOM). The use 

of SOM and topology-constrained organization allowed us to uphold the non-linear relationships between 

phytoplankton group composition and satellite data through topology conservation. We tested different sets of 

learning hyperparameters and several combinations of satellite predictors to identify the optimal configuration of 

our algorithm. Once the training and the validation procedure have been done, the algorithm (called SOM-psbO) 

is operational and could be applied to satellite images to predict the phytoplankton groups' abundance on a global 

scale and daily from 1997 till the present. Following that, to identify global large scale patterns upheld by SOM-

psbO, a second algorithm was used, the Ascending Hierarchical clustering algorithm. This latter permitted us to 

emphasize the predominant data structure learned by the SOM-psbO and characterize phytoplankton biomes. To 

explain the potential divergence between DPA approach and psbO measurements, the last analysis serves to 

highlight the cumulative importance of a pigment composition to estimate a phytoplankton group abundance 

through a Random Forest approach. In the following section, each methodology and algorithm are explained in 

detail. 

3.1.3.2. Self-Organizing map applied to Tara Oceans psbO data (SOM-psbO): 

 

3.1.1.3.2.1. Training General concept of the SOM-psbO 

The SOM algorithm (Kohonen, 2013) aims to cluster a is utilized for clustering multidimensional database (D) 

intodatabases by assigning them to classes represented by a fixed network of neurons (the SOM map). This 

network is used to defineknown as the SOM map. The SOM map consists of a rectangular grid of p x q neurons 

and defines a discrete distance between the neurons of the map, which present the shortest path between two 

neurons. Moreover, SOM enables, enabling the partitionpartitioning of D in which eachthe dataset. Each cluster 

is associated with a neuron of the map and is represented by a prototype that is a synthetic multidimensional 

vector. Each observation of D will bevector. Observations in the dataset are assigned to the closestnearest neuron, 
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in the sense of based on the Euclidean Norm (EN).. A fundamental propertykey feature of a SOM is theits ability 

to provide topological ordering provided at the end of the clustering phase: two, where close neurons on the map 

represent data that are close correspond to similar observations in the data space. Indeed, the neurons are gathered 

so that two close observations of D (in the sense of EN) are assigned to two relatively close neurons on the map. 

The estimation of a neuron's vector and the topological order is achievedare determined through a minimization 

process dependingof a cost function that depends on the distance between the neuron and its assigned observation.  

SOMs have frequently been used in the context of completingwidely employed to complete missing data (Jouini 

et al., 2013). Under these conditions, the distance between an observation ϵ D and the neuron’s vectors of the map 

is the Euclidean distance, utilizing the truncated distance (TD) that considers only the existing components (the 

truncated distance or TD hereinafter). The use of the TD allowsof the observation's vector, thus allowing for 

considering thethe integration of incomplete information embedded in the incomplete data. 

Several experiments were made to find the ideal SOM size and have shown a significant increase in the general 

performance of the method at estimating pigment concentrations when the number of neurons increases to a 

certain extent. Using a number of neurons larger than the training data set allows discretization to be refined. In 

this case, some of them will capture a sample of the database, which permits to define a referent vector w for these 

neurons. When the neuron did not capture any data observation, the discrete distance between the neighboring 

neurons is used to determine the referent vector w of each neuron that has not captured any data (Sarzeaud and 

Stephan, 2000; El Hourany et al., 2019a). This leads to preserving the topological order provided by new 

interpolated neurons. 

Following that, the best map size was evaluated while calculating two sets of metrics for each increasing map 

size: 

3.2.2. a quantification error and a topographic error: the quantificationTraining phase 

The implementation of the SOM methodology is summarized in Fig. 4 and 5. Briefly, we first split the Tara 

Oceans psbO datasets so as to obtain 80% of the data to train the SOM, and 20% of the data as a test set, the latter 

consisting of 30 observations with complete psbO information. We did this separately for DRCA and DChlF sub-

datasets so as to generate SOMRCA, which stands for the algorithm specialized in relative cell abundance 

estimation, and SOMChlF for the algorithm specialized in Chla fraction per phytoplankton group.  

During the SOM training, different combinations of satellite variables were used to determine the best set of 

variables to estimate the 7 phytoplankton groups in terms of relative cell abundance and Chla fraction. For each 

combination of variables, we increased the number of neurons from 10 to 1000 neurons to determine the optimal 

size of the SOM. For each SOM obtained, we quantified quantization and topographic errors.  

The quantization error represents the difference between an observation D and its closest neuron. This error is 

monitored during the training procedure tilluntil it reaches stability at a minimum value with increasing training 

epochs. This is where the training should stop to prevent overfitting. The quantization error is expressed as 

follows: 
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𝑞𝑒 =
1

𝑛
∑

𝑛

𝑖=1

‖𝑥(𝑖) − 𝑤𝑐(𝑖)‖ 

where x(i) is the vector of an input observation i; wc(i) is the closest neuron’s vector of sample x(i); n is the 

number of observations. 

However, the topographic error is a representation of having, for each observation of the database, distant first 

and second best-matching neurons. This and is expressed as follows: 

𝑡𝑒 =
1

𝑛
∑

𝑛

𝑖=1

𝑑(𝑥(𝑖)) 

where d(x(i)) = 1 if the first and second closest neuron to x(i) are not adjacent, else d(x(i)) = 0. 

- Minimizing this quantity is important to monitor in order to ensure the preservation of the topological 

order within the SOM map with an increasing number of interpolated neurons. 

- Mean regression coefficient and RMSE: in this case, for each given map size, D is used to cross-validate 

the SOM map. This is done using aA one- leave-out procedure, where each observation of D is used iteratively 

either as a test or for training. Therefore, at each cross-validation procedure was performed to assign performance 

metrics (R2 and RMSE) to help choose the best combination of SOM size and satellite variables. At each iteration 

of the cross-validation procedure, we calculatechose randomly one observation as a test, whereas the other 

observations served to train the SOM with the given grid size. We calculated the closest neuron to the test 

observation based on basis of its satellite variables only and associateassociated these latter with the neuron’s 

seven phytoplankton groups vector. When all the observations were used as a test, we calculatecalculated a mean 

R2 and an RMSE, associated with the given size map, while comparing the estimated and predictedobserved 

phytoplankton group values. 

Therefore, we define the best size map as the size at which all errors are at their lowest and the R2 at its highest. 

3.1.2. Combination of satellite variables 

In order to choose the best set of satellite data to estimate the phytoplankton groups, several combinations of 

satellite parameters were tested following the training and cross-validation procedure described above. Ten 

combinations were undergone, and the results of the cross-validation tests were presented in Fig. 3. 

The Operational phasebest SOM configuration and variable combination are based on an optimum where te, qe 

and the RMSE are in low ranges while avoiding overfitting. The chosen SOM was tested using the 20% test set, 

providing independent performance metrics to evaluate the generalization of the chosen SOM. As a result, we 

present in the paper the performance metrics of the chosen SOM configuration based on the cross-validation 

procedure and the test set. 

The optimal combination of satellite parameters for the SOMRCA and SOMChlF algorithms was determined to 

be Chla, SST, Rrs at four wavelengths (412, 443, 490, and 555 nm), bbp, and Kd490. The grid size for SOMRCA 
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was set at 242 neurons, while SOMChlF had a grid size of 222 neurons. This selection was based on several 

factors, including a high regression coefficient between estimated and observed phytoplankton values, low error 

values of quantization and topographic error, and a low global RMSE encompassing all phytoplankton groups. 

The choice of Rrs bands aligns with previous work conducted on the PHYSAT method by Alvain et al., (2005) 

and Ben Mustapha et al. (2013). The PHYSAT method utilizes reflectance anomalies in the same four selected 

bands to identify dominant phytoplankton functional types. It should be noted that the Rrs bands selected, 

including the additional 670 nm band, are commonly measured by all sensors used to build the Rrs product of 

Globcolour. This overlapping of different sensors enhances data availability and coverage, thus increasing the 

importance of these Rrs bands within the initial dataset. The inclusion of the Rrs at 670 nm did not significantly 

impact the performance of either SOMRCA or SOMChlF, primarily due to the open ocean nature of the dataset. 

In the clear open ocean, the information contained in the remote sensing reflectance (Rrs) bands beyond 555 nm 

is limited due to the strong absorption by water, as noted by Xi et al. (2015). 

Through the iterative training process described above, the results show a significant increase in the general 

performance of the method when the number of neurons increases to a certain extent (Fig. 6). Using a number of 

neurons larger than the training dataset still allows a refined discretization. In this case, some neurons will capture 

a sample of the database, which permits to define a referent vector for these neurons. When the neuron did not 

capture any data observation, the discrete distance between the neighboring neurons was used to determine the 

referent vector w of each neuron that has not captured any data (Sarzeaud and Stephan, 2000; El Hourany et al., 

2019a). This leads to preserving the topological order provided by new interpolated neurons. However, the 

quantization error’s lowest values above 350 neurons might indicate overfitting.  

 

Figure 4. General flowchart of the SOM methodology applied on both DRCA and DChlF to construct SOMRCA 

and SOMChlF. 
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Figure 5. Detailed training procedure of the SOM methodology applied on both DRCA and DChlF.  

 

3.1.3. Figure 6.  

After the training phase is concluded and the best SOM configuration is set, the algorithm becomes operational. 

In the following, the operational algorithm should be designated as SOM-psbO. 
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In the second phase, which isQuality assessment based on the quantization and topographic error related to the 

training of the SOMChlF and SOMRCA as a function of increasing SOM size (number of neurons) using Chla, 

SST, Rrs at 4 wavelengths (412, 443, 490 and 555 nm), bbp and Kd490. In parallel, the average regression 

coefficient and the root mean squared error as a function of increasing SOM size were calculated through a “one-

leave out” cross-validation procedure. The dashed black and red lines correspond, respectively, to the R2 and the 

RMSE using the “K-nearest neighbor” algorithm. Finally, the dotted lines correspond to the chosen SOM size for 

SOMChlF=242 neurons and SOMRCA=222 neurons. 

3.2.3. Operational phase  

During the operational phase, we estimateestimated the phytoplankton group variability using different the best 

combination of satellite imagesparameters. The set of ocean satellite observationsparameters of a pixel iswas 

projected onto the SOM-psbO. In doing so, the projected parameters areat each pixel were normalized with the 

corresponding variances of Dby the variance of that same parameter within the initial training dataset to maintain 

an equal weight among the parameters and arewere assigned with the closest best-matching neuron using the 

truncated distance. At the end of the assignment phase, each pixel iswas associated with a referent vector 

corresponding to the best matching neuron, which includes the seven phytoplankton groups as a function of Chla 

fraction. In order to regain information on each group’s relativerelative cell abundance, each Chla fraction of a 

neuron is divided by in the totalcase of SOMRCA, or Chla valuefraction in the case of this same neuron.SOMChlF. 

Since the training was undergone usingfor  the whole phytoplankton structurecommunity at once, alongside the 

total Chla information, the SOM-psbO allows the inherent structure of the data to be preserved. 

For this phase, level 3 mapped 4 km daily images were used to estimate the phytoplankton group 

concentrationgroups at the same spatio-temporal resolution. 

3.2.4. However, sinceMasking and uncertainty evaluation 

Given that our initial dataset D is of limited to a short number of data,size, it is possible that it does not contain 

certain naturally occurring cases might be missed, and not considered while using such a dataset. A robust quality 

evaluation of the output of this method should be quantified. In order to prevent abnormal predictions tofor cases 

that are not seen within dataset D. A observed in the initial dataset, we  conducted a quality evaluation of the 

method's output. This evaluation involved quantifying a reliability index was calculated between 1997 and 2021 

by testingcomparing the set of satellite parameters’ values obtained forat a givenparticular pixel againstwith the 

values in the original dataset; if of the same parameters in the initial dataset. If a satellite variable's value of a 

variable falls out offell outside the bondrange defined within the initial dataset by the +-2 Std around the mean 

value of the same variable’s distribution, the variable is marked as  plus or minus two standard deviations, it was 

considered distant. This isevaluation was performed onfor all ten satellite variables per pixel. The, and the 

reliability index is calculatedwas determined by dividing the number of distantaccepted variables by the total 

number of existing variables to give an insight into how distant a pixel can be. With this definition, low values of 

the. A higher reliability index indicate that indicates greater reliability of the method is reliable, and more care 

should be given to , while regions where thewith lower reliability index is larger. values require additional 

attention. 
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In the context of the global ocean, numerous uncertainties are associated with satellite parameters and regions. 

The SOM algorithm is known to effectively reduce noise and mitigate the impact of uncertainties within the 

dataset (de Silva et al., 2013). However, the main source of uncertainty in the estimation process stems from 

selecting the best matching neuron. This involves finding and associating the closest neuron in the SOM with a 

new or unfamiliar observation, such as a satellite pixel. Due to the topology conservation, a pixel could be assigned 

to several close neurons, forming a neighborhood along a distance gradient. Consequently, a single satellite 

observation can represent various probabilities of phytoplankton group combinations. 

To account for all uncertainties in the estimations, we opted to associate each pixel and phytoplankton group 

(based on relative cell abundance or Chla fraction) with a weighted standard deviation derived from the values of 

the ten closest neurons. The weights were determined by the distances between the first ten matching neurons and 

the pixel. This approach allowed us to incorporate uncertainties into the assignment process and provide a 

confidence measure for each pixel's assignment. 

By considering both the reliability index and the weighted standard deviation, we could assess the influence of 

uncertainties in the satellite variables. 

3.3. Characterisation of phytoplankton biomes 

3.2. To emphasize the predominant data structure learned by SOMChlF, the Ascending Hierarchical 

Clustering applied on SOM-psbO 

A hierarchical ascending clustering (HACalgorithm (AHC) was used on SOM-psbO’s neurons; The reason behind 

this further clustering on the neurons is to emphasize major non-linear relationships observed in the database; in 

this case, the HAC is used to describe potential phytoplankton community biomes across the global ocean. to 

characterize phytoplankton biomes on the basis of their Chla fractions (a proxy of a phytoplankton group’s 

biomass) and optical signature. 

The HAC is a bottom-up algorithm for dataset clustering. The HAC starts from individuals and combines them 

according to their similarity (with respect to the chosen distance) to obtain new clusters. The exact number of 

biomes is not known a priori but at the end of the SOM+HAC procedure which suggests several possibilities of a 

number of clusters to be taken into account. A compromise is made between the number of clusters we can explain 

from a physical point of view and the number of clusters we need to include the maximum of information 

embedded in the dataset. This procedure has been used with success in several studies (Reygondeau et al., 2014; 

Richardson et al., 2003; Rossi et al., 2014; Sawadogo et al., 2009; El Hourany et al., 2021). At the end of the HAC 

clustering phase, each neuron of the SOM-psbO will be associated with a cluster. The association of several 

neurons in a cluster will allow us to identify common phytoplankton community structures, and therefore 

characterize phytoplankton biomes. Upon applying SOM-psbO as described in the operational phase section, each 

pixel of a satellite image will be associated with a cluster. 

The HAC is a bottom-up clustering algorithm. The HAC starts with individuals and combines them according to 

their similarity (with respect to the chosen distance) to obtain new clusters. The exact number of biomes is not 
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known a priori but at the end of the SOM+HAC procedure, several possibilities of a number of clusters to be taken 

into account were revealed. A compromise was made between the number of clusters we could explain from a 

physical point of view and the number of clusters for which we needed to include the maximum of information 

embedded in the dataset. This procedure has been used with success in several studies (Reygondeau et al., 2014; 

Richardson et al., 2003; Rossi et al., 2014; Sawadogo et al., 2009; El Hourany et al., 2021). At the end of the HAC 

clustering phase, each neuron of the SOMChlF was  associated with a cluster. The association of several neurons 

in a cluster allows us to identify common phytoplankton community structures, and therefore characterize 

phytoplankton biomes. Upon applying SOMChlF as described in the operational phase section, each pixel of a 

satellite image could be associated with a cluster. 

3.3.3.4. Evaluation of the importance of pigments to estimate phytoplankton groups using random 

forest 

Each psbO-derived phytoplankton group'sgroup’s psbO abundance was associated with its corresponding HPLC 

pigments measurement performed on the same Tara Ocean’sOceans station. The importanceability of pigments 

to predict phytoplankton groups was computedevaluated using a Bagged Random Forestbagged random forest 

algorithm (number of learners set to 200), following the permutation-based importance method. 

The bagged random forest algorithm is a set of Decision Treesdecision trees, each constituted of internal nodes 

and leaves. In the internal node, the selected feature (i.e.., pigment in this case) iswas used to make a decision on 

how to divide the dataset into separate sets with similar responses in terms of a given phytoplankton group. Since 

this algorithm is used in a case of regression, the decision is evaluated while monitoring the error decrease between 

the real phytoplankton group abundance and the predicted one, which corresponds to the value of a divided set. 

The permutation-based importance method will randomly shuffle each pigment and compute the change in the 

model’s performance to predict the abundance of a phytoplankton group. 

Using this method, a pigment composition of the seven major phytoplankton pigments cited in table 2Table 1 was 

tested to predict the abundance of each psbO-derived phytoplankton group, and therefore estimate their 

importance. The concentration of each pigment was evaluated in terms of pigment ratios, a ratio relative to the 

sum of all pigments’ concentration, and in parallel, the psbO-derived relative abundance was used. 

4. Results and discussion 

 

4.1. Cross-validation, performances, and spatial limitation of the SOM-psbO 

algorithmSOMRCA and SOMChlF algorithms 

TenCross-validation of different combinations of satellite parameters were explored to estimate phytoplankton 

groups from Tara Oceans data (Fig. 3). The best combination of satellite parameters was: Chla, SST, PAR, Rrs at 

4 wavelengths, bbp and Kd490. While using this set of satellite predictors, several SOM sizes were tested and the 

best set of maps with n ranging between 210 and 330 neurons was chosen based on the concordance of the 

maximum regression coefficient between estimated and observed phytoplankton values as well as the minimum 
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error values of Quantization and topographic error, and the global RMSE related to all phytoplankton groups (Fig. 

4). 

The cross-validation of the best combination showsgrid size revealed a performance of an average R2 of 0.71 

distributed between a maximal R2= 0.8668 for the green algae,SOMRCA and a minimal R2 =of 0.5674 for the 

dinoflagellates and cryptophytesSOMChlF (Fig. 57, table 3). Upon summing all Chla fractions, the cross-

validation analysis shows a satisfying agreement between estimated total Chla and in-situ values (R2= 0.8783) 

and therefore a preservation of the initial phytoplankton quantity expressed in total Chla.  
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Figure 3: Cross7. Results of the two-step cross-validation results expressed in terms of mean regression 

coefficient(blue) and mean relative RMSEtest (red) procedures for eachSOMChlF (left) and SOMRCA (right) 

with the chosen best combination of satellite parameters and for all the phytoplankton groups. The red dashed 

line delimits the standard deviation of the performances regarding different phytoplankton groups. The lowest 

error is shown at sensitivity test 9, regrouping the parameters Chla, bbp, Kd490, SST, and Rrs at 4 wavelengths. 
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a Figure 4. Panel 1) Quality assessment based on the quantization and topographic error related to the training 

of the SOM as a function of increasing SOM size. In parallel, panel 2) represents the average regression 

coefficient and the root mean squared error as a function of increasing SOM size, calculated through a “one-

leave out” cross-validation procedure between satellite-derived and in-situ psbO values. The dashed black and 

red line correspondsgrid, respectively to the R2 = 0.54 and the RMSE=0.029 mg m-3 using the “K-nearest 

neighbor” algorithm. 

 

, of 242 and 222 neurons. For the Figure 5. Results of the “one-leave out” cross-validation procedure. Each , 

each observation is, among 80% of the initial data, was used iteratively as a train ortraining set and as a test set 

until all observations serveserved as tests.  (blue dots).  This procedure was used to identify the best satellite 

combination and SOM grid size. Finally, the remaining 20% was used as a test to evaluate the generalization 

capacity of the SOM with the chosen configuration (red dots). 

 

Table 3: Results of the cross-validation of SOM-psbO, and the HPLC-based validationtest exercises of SOMRCA 

and SOMChlF based on different metrics; the regression coefficient (R2),) and the root-mean-squared-error 

(RMSE), mean absolute error (MAE) and the Spearman correlation coefficient (Rsp). 

Phytoplan

kton 

group 

Cross-validation 

Tara Oceans SOMRCA 

Relative cell abundance (%) 

HPLC-based Validation 

GlobalSOMChlF 

Phytoplankton chlorophyll-a fraction (mg m-3) 

Cross-val Test Cross-val Test 
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To evaluate the quality of the representation of the inter-variable relationships within the input data by the SOM, 

the correlation coefficients and phytoplankton groups valuesgroup value distributions were compared between 

the referent vectors (constituting the neurons) of the SOM SOMRCA and D.SOMChlF with DRCA and DChlF, 

respectively. This analysis showed that the correlation coefficients were not altered within the SOM, as well 

asSOMRCA nor SOMChlF, and neither was the shape of the distribution of the values while compared to the 

initial dataset. These results highlight the capacity of SOM to preserve the characteristics of Dthe initial dataset 

after the training procedure (Fig. 6A1 and A2). 
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Figure 6. Evaluation of the preservation of the initial dataset’s characteristics; Left panel) distribution of the 

values of psbO-derived Chla fraction for each phytoplankton group and the total Chla in the initial dataset D and 

SOM neurons (n=270). Right panel) Spearman correlation coefficient matrix comparing intra-correlations in the 

initial dataset D and SOM neurons. 

However, regardinggiven  the limited size of the initial dataset, one should be cautious when applying SOM-

psbOSOMRCA and SOMChlF to the global satellite data. Through  must be done with caution.  For each pixel 

and at each time step  between 1997 to 2021, we performed the quality control described in section 3 and 

performed on each pixel of the daily satellite image between 1997 to 2021, a global map was generated.2.3 to 

illustrate the extentprovide a measure of the applicability of this method (Fig. 78).  Regions of low confidence 

can be identified where more thanthe value of the reliability index does not exceed 40% of the pixels were masked 

throughout the time series between 1997 and 2021.. These regions are mainly shownfound in coastal and turbid 

waters, and inas well as the south pacificSouth Pacific Ocean gyre, and are characterized either by very high or 

very low Chla values. This result is expected sincebecause the SOM algorithm is not able tomainly adapted for 

case 1 waters and cannot extrapolate beyond the values' distribution of values in the initial dataset. Furthermore, 

moderate confidence regions can be defined in which around 2520% of the pixels fall out of the accepted bonds. 

And thesebounds, are highlighted by a reliability index under 80%. These regions are mainly concentrated infound 

at high latitudes, especially in the Southern Ocean, mainly due to the limited number of data points that sampled 

available samples in the area and the particular optical characteristics of that region (Mitchell et al., 

1991).(Mitchell et al., 1991).  
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Uncertainty values reached 20% relative cell abundance for SOMRCA and 0.15 mg m -3 of Chla SOMChlF, 

respectively, and in each case displayed regional patterns. Generally, uncertainty values followed the 

concentration gradient in Chla fraction and cell abundance per group. High latitudes exhibited the highest 

uncertainties for diatoms, green algae, and haptophyte relative cell abundances, while the Southern Ocean showed 

the highest uncertainties for prokaryotic cell abundance. The elevated uncertainty in prokaryotes within the 

Southern Ocean can be attributed to the limited sampling in this area, resulting in greater dissimilarity between 

satellite data in this region and the data sampled in the initial dataset, corroborating the findings of the reliability 

index. This is also consistent with the very low abundance of cyanobacteria in the area (Flombaum et al 2013), 

for which model uncertainty may be higher. 

 

Figure 78. Applicability of the satellite psbO-based method; Geographical. The geographical (left) and values 

distribution (right) of the reliability index were calculated between 1997 and 2021 by testing the set of values 

obtained forsatellite parameters at a given pixel against the values in the original dataset (D). 

4.1.1.4.2. Independent validation using Comparison with global HPLC pigment dataset 

 

The global in-situ HPLC dataset was then used to estimate Chla fractions for each phytoplankton group. using the 

diagnostic pigment approach (DPA). This dataset was compared to its matching phytoplankton group’sthe Chla 

fraction matching each phytoplankton group  that was estimated using SOM-psbO and satellite data by SOMChlF 

(Fig. 89). Evaluating the sum of Chla fractions and comparing it with in-situ Chla can be considered as a baseline 
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evaluation of this method. This comparison showsshowed a satisfying correspondence scoring anscore of R2=0.7 

with an RMSE of 0.17 mg m-3. A relatively72. Relatively good correspondence is noted for the diatoms and 

haptophytes, showing an R2=0.7864 between in-situ and SOM-psbO’sSOMChlF for diatoms Chla fraction.and 

0.65 for haptophytes. Moderate correspondence is notedwas found for dinoflagellates, green algae, haptophytes, 

cryptophytes, and pelagophytes, with an R2 ranging between 0.5743 and 0.49. The prokaryotes39. Prokaryotes 

and dinoflagellates had the lowest correspondence between both outputs. The comparison between DPA-based 

phytoplankton groups and SOM-psbO’sSOMChlF estimates is highly uncertain. It compares two types of 

information indicating the same phytoplankton group, with different underlying assumptions about how to define 

and describe a certain group. For some of the groups, these results are coherent with. For example, the cross-

validation performances of SOM-psbO. Diatomdiatom Chla fraction, is well captured by thisthe latter, and the 

values agree with the onesthose estimated using HPLC observations,; however, we notenoted a major over-

estimationoverestimation within the HPLC DPA method. For prokaryotes, the satisfying cross-validation 

performances of SOM-psbO leadthis comparison leads us to say that the use of zeaxanthin as an indicator of 

cyanobacteria’s abundancethe cyanobacterial contribution to Chla may not be entirely representative of this group.  

 

 

The permutation-based importance analysis using Random Forest, performed on the in-situ Tara Oceans psbO 

and HPLC measurements, emphasizes the necessity of a multivariate approach for predicting phytoplankton 

community structure based on pigments (see Fig. 10). Notably, the diagnostic pigments mentioned in Table 1 

exhibited dominant importance in determining the relative abundance of their respective assigned phytoplankton 
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groups. For instance, peridinin represented dinoflagellates, Chlorophyll-b characterized green algae, and 

zeaxanthin indicated prokaryotes (Table 1). These pigments demonstrated the highest importance for their 

respective groups, as illustrated in Fig. 10, accompanied by a positive Spearman correlation. However, 

individually, these pigments accounted for less than 25% of the variance in their respective groups. Conversely, 

in the case of cryptophytes, diatoms, and haptophytes, no pigment stood out in terms of importance, and the 

observed correlations were related to co-variation between pigments (e.g., Chlb and Fuco in diatoms), possibly 

influenced by Chla variability. Therefore, the variability within each group is best explained not by a single 

diagnostic pigment, but rather by the overall pigment composition. It is crucial to consider how natural variability 

can influence the interpretation of pigment composition in relation to phytoplankton community structure. 

Pigment ratios not only vary with phytoplankton composition but also reflect the diverse strategies employed by 

different phytoplankton types to acclimate to environmental factors such as light, temperature, nutrients, and other 

variables. 

 

 

Figure 8: Evaluation of SOM-psbO method while comparing9: Comparison between the outputs to of SOMChlF 

with the DPA approach applied on an in-situ global HPLC-based phytoplankton group measurements (DPA 

approach). dataset. 
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Figure 10. Evaluation of secondary pigment weighting for the estimation of different phytoplankton groups. The 

left panel represents the percentage of variance of each phytoplankton group explained by a set of frequently used 

phytoplankton secondary pigments. This analysis has been done using a random forest algorithm applied to the 

in-situ Tara Oceans psbO and HPLC datasets. A Spearman correlation coefficient has been calculated between 

each pigment and the phytoplankton groups (right panel). 

 

4.2.4.3. Global patterns of satellite-derived phytoplankton groups using SOM-psbO 

UsingWe then applied our method to Glocolour  satellite data, we generated to generate a daily database of the 

relative abundance of the seven focus phytoplankton groupsspanning from 1997 to 2021. From , capturing the 

relative cell abundance and Chla fraction of seven phytoplankton groups of interest. Fig. 101 presents the annual 

patterns of relative cell abundance and Chla fraction for each phytoplankton group, derived from this satellite-

derived dataset, we computed the seasonal relative abundance patterns for each phytoplankton group (Fig. 9). 

dataset. 

In terms ofRegarding relative cell abundance, we could distinguish twothe prokaryotes stand out as a dominant 

group. This group largely dominant groups with antagonist spatial distributions: haptophytes and prokaryotes. 

This latter dominates largely in dominated tropical regions all year round, reaching, with a relative abundance of 

70up to 80% in subtropical gyres. Such Haptophytes, green algae, and diatoms exhibited higher abundance in mid 

and high latitudes as well as the equatorial region, showing a maximum relative abundance of 30%. The remaining 

three phytoplankton groups displayed relative abundances that barely exceeded 10% of the total phytoplankton 

community. Pelagophytes and dinoflagellates were primarily observed in mid and subtropical latitudes, while 

cryptophytes were found in coastal areas and high latitudes. 
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Examination of  how each phytoplankton group contributed to total Chla revealed that diatoms had a significant 

contribution at high latitudes and equatorial regions. Prokaryotes, on the other hand, had  an overall low to 

moderate contribution to total Chla. 

Qualitatively, the information captured by SOMChlF was clustered into five groups, each characterized by a 

distinct remote sensing reflectance spectrum that corresponded to the phytoplankton community structure (Fig. 

112). To illustrate the link between each group's contribution to total Chla concentration and relative cell 

abundance, we depicted the latter while evaluating the pixel's assigned relative abundance values for each of the 

five clusters. This approach revealed that three out of the five clusters are dominated by prokaryotes in terms of 

cell abundance (C1, C2, and C3). However, based on their relative contribution to Chla, C1 was found to be 

dominated by prokaryotes and dinoflagellates, C2 exhibited a mixed composition, C3, and C4 represented diatoms 

and other eukaryotes, whereas C5 was predominantly composed of diatoms. The shift from relative cell abundance 

to size-integrated relative Chla fraction illustrates how cell size influences Chla contribution and variability. 

Each cluster is characterized by a specific optical signature in terms of Rrs spectra. The Rrs values per wavelength 

were normalized based on their corresponding variance, enabling intercomparison regardless of magnitude. For 

instance, C1, which exhibits higher reflectance in the blue wavelength, represents clear, oligotrophic waters. In 

such environments suffer from ultra-oligotrophy. In conditions where with low nutrients and high surface 

stratification prevail, picophytoplankton groups such aslike cyanobacteria strive withthrive due to their high 

biovolumesurface-to-size ratio making them adequate to dominate such regions (ref). Haptophytes are largely 

abundant at mid and high latitudes and in the equatorial region, showing a maximum relative abundance of 40% 

in the Southern Ocean from September to March and in the northern hemisphere from March to 

September.(Chisholm, 1992; Raven, 1998). C2 represents normalized Rrs spectra with insignificant differences 

between normalized bands, suggesting an average state where the phytoplankton community appears mixed. In 

C3 and C4, we observed an increase in normalized Rrs values in the green compared to the blue wavebands, 

indicating higher Chla in these environments. Given that C3 and C4 are located in high-latitude regions with 

ample nutrient resources and exceptional seasonal variability of light intensity, larger cell-sized phytoplankton 

groups, including diatoms, are favored, leading to increased biomass and Chla contribution (Brun et al. 2015). 

C5, with the greatest difference between Rrs in the blue and green, represents eutrophic waters, known for their 

high productivity and diatom-dominated blooms (Brun et al. 2015). 

Other groups have a mid-ranged relative abundance, such as Diatoms and Green algae, representing each up to 

30% of the total phytoplankton, blooming in the same way as Haptophytes, and dominating at high latitudes. 

High-latitude regions are characterized by high nutrient resources and exceptional seasonal variability of light 

intensity. This leads to an increase in phytoplankton groups with larger cell sizes, among them, the diatoms which 

are considered the most efficient and productive group among all the phytoplankton community (Loreau, 1998; 

Loreau and Hector, 2001). The three last phytoplankton groups have relative abundances barely exceeding 10% 

of the total phytoplankton community. Dinoflagellates and pelagophytes are observed mostly at mid and 

subtropical latitudes and cryptophytes in coastal areas and high latitudes. 

From a qualitative perspective, the information captured by the SOM-psbO was clustered into six groups, each 

characterized by a particular remote sensing reflectance spectrum, in response to a phytoplankton community 
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structure (Fig. 10). This application identifies clusters that are dominated by Eukaryotes (Diatoms, Haptophytes, 

and Green Algae, C1 and C2), a transitional cluster where Prokaryotes dominate with significant eukaryotic 

existence (C3), and three other clusters highly dominated by Prokaryotes (C4, C5, and C6).  Based on the 

distributionglobal distributions of these clusters on a global scale, we can define, several biomes, citing: can be 

defined. C1 is centered in subtropical gyres, C2 is found in transitional zones such as mid-latitude regions as well 

asand the equatorial region, C4C3 is shown onobserved in the edge of the subtropical Antarctic front, C5 for Polar 

and Southern Ocean, C4 corresponds to high latitudes-latitude regions, and C6 forC5 is prevalent in coastal and 

eutrophic waters.  

Different temporal variability is evident for each cluster across different latitudinal bands. In northern high 

latitudes, an increase in C5 indicates maximal productivity occurring in that region around May. At mid-latitudes, 

the winter maximum is marked by an increase in C5 and C4 clusters. A secondary, less pronounced peak can be 

observed in autumn, attributed to the break in the thermocline and remineralization processes. During summer, 

C1 dominates the mid-latitude regions. In tropical regions, C1 is predominant, with a cyclic increase of C2 

suggesting coastal influences, likely due to the proximity of C2 to nutrient-rich zones like upwelling systems. In 

contrast to northern high latitudes, the Southern Ocean exhibits a different temporal variability. The presence of 

prokaryotes is signified by C1 in this region, whereas C3 dominates during the bloom season in January. This 

analysis confirms the Antarctic nature of C3 in contrast to C4, highlighting differences in water types between the 

two regions based on phytoplankton community structure and satellite data. 

This structurationdivision into parallel and transitional biomes supportsunderscores the important effectsignificant 

influence of the latitudinal physical gradients on the structuration of the phytoplankton community (add Ref) such 

as , including light availability and temperature., on the structuring of the phytoplankton community in terms of 

types and size. These findings align with previous global phytoplankton studies conducted in situ (Ibarbalz et al., 

2019; Sommeria-Klein et al., 2021) as well as satellite estimates (Alvain et al., 2006; Hirata et al., 2011; Ben 

Mustapha et al., 2013; El Hourany et al., 2019a; Xi et al., 2020). 

These patterns are in agreement with global phytoplankton studies in-situ (Ibarbalz et al., 2019; Sommeria-Klein 

et al., 2021) and satellite estimates (Alvain et al., 2006; Hirata et al., 2011; Ben Mustapha et al., 2013; El Hourany 

et al., 2019a; Xi et al., 2020). 
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Figure 9. Mean monthly11. Annual composites of the relative abundances and Chl fractions of the seven satellite 

psbO-derived phytoplankton groups based on satellite data (compiled using data from 1997-2021). The 

uncertaintyuncertainties related to each group represents the relative standard deviation between all estimated 

values at different initialization of the SOM and at each “one-leave out” cross-validation iterationand each 

method is because of their different possible combinations through the weighted standard deviations, as described 

in Section 3.2.3. We not that the scales for uncertainty are smaller than those in the abundance and Chla columns. 
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Figure 1012: Satellite-derived biomes of phytoplanktonicphytoplankton communities, obtained by unsupervised 

clustering (Hierarchical clustering) on the SOM’s referent vectors. The normalized of SOMChlF neurons. 

Normalized relative cell abundances and original Rrs spectrum wasspectra were also derived to characterize 
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each cluster’s optical signature. The global map shows the most frequent community structure recorded during 

the 1997-2021 period. A spatio-temporal analysis was conducted to highlight latitudinal patterns. 

4.3.4.4. Intercomparison of satellite-derived phytoplankton groupsgroup products 

A comparison was performed between SOM-psbO’sSOMChlF’s output, and two operational products based on 

Xi et al., 2020 and SOM-Pigments (El Hourany et al., 2019) algorithms,. We based this on the five phytoplankton 

groups common to all three outputs: Diatoms, Dinoflagellatesalgorithms: diatoms, dinoflagellates, green algae, 

Haptophyteshaptophytes, and Prokaryotesprokaryotes. The annual patterns show a goodsubstantial agreement 

between all three satellite-derived phytoplankton estimates (Fig. 11).  

Some13). However, some differences between the estimated quantities of Chla phytoplankton groups fraction 

arecan be noted:. For diatoms, the outputs based on El Hourany et al., 2019 and SOMChlF exhibit higher Chla 

Diat values, and the oneswhile those based on Xi et al., 2020 show low values near the equatorial latitudes. 

However, for SOM-psbO, the diatoms Chla fraction shows an increase at equatorial latitudes, mainly highlighting 

the upwelling activity in this latitudinal band. For green algae and haptophytes, the three products show matching 

latitudinal variability, with only minor discrepancies in values at high and subtropical latitudes. For prokaryotes, 

the outputs of Xi et al., SOM-psbO records2020 show higher concentrations than the other two products which 

are relatively matchingestimates, particularly. For prokaryotes, the outputs of Xi et al., 2020 show higher 

estimation, accentuated near the arcticArctic and the equatorial region. And last, asregions. Lastly, for the 

dinoflagellates, the SOM-Pigments method showsyielded lower Chla values of Chla Dino, especially in 

subtropical gyres, whereas SOMChlF showed the highest Chla estimates for this taxonomic group. 

Addressing the differences between the outputs referring to the same phytoplankton group is not a straightforward 

task. Two methods are based on the DPA approach, the latter is not trivial due towhich displays uncertainties 

related to the choice of pigments to delimit certain groups. IndeedFor instance, several studies showed that the 

DPA approach tends to overestimate some groups such as diatoms (Brewin et al., 2014; Chase et al., 

2020).(Brewin et al., 2014; Chase et al., 2020). This approach may compromise the relevance of satellite images 

when used. However, the added value of such an approach resides in the availability of the large HPLC dataset  

allowing, which allows the development of robust algorithms. On the other hand, the method described in this 

paper and the generated outputs are based for the first time on a complete and harmonized database on theof 

phytoplankton taxonomic community structure on a global scale; an approach that provides an unbiased picture 

of phytoplankton cell abundances. But However,the major limitation of this approach at this time is the low 

number of observations from which makes the global generalization of such a method a major challengemetric 

has been derived.  

The random forest analysis, performed using the in-situ Tara Oceans’ psbO and HPLC measurements, highlights 

the need for a multivariate approach to predict the phytoplankton community structure from pigments (Fig. 12). 

Therefore, the variability of each group is best explained not only by one diagnostic pigment but the pigment 

composition as a whole. It is important to consider how natural variability may impact the interpretation of the 

pigment composition in terms of phytoplankton community structure. Pigment ratios not only vary with 

phytoplankton composition, but also with their acclimation to light, temperature, and nutrients.  
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Figure 1113: intercomparison of five satellite-derived phytoplankton group Chla fractions based on SOM-

psbOSOMChlF, SOM-Pigments (El hourany et al., 2019), and Xi et al., 2020 algorithms. The average per latitude 

of each Chla fraction is calculated to reveal latitudinal patterns. (right panels). 

 

 

Figure 12. Evaluation of secondary pigments’ importance regarding the estimation of phytoplankton groups. The 

left panel represents the percentage of the variance of each phytoplankton group explained by a set of frequently 

used phytoplankton secondary pigments. This analysis has been done using a random forest algorithm applied to 

the in-situ Tara Ocean’s psbO and HPLC dataset. A Spearman correlation coefficient has been calculated 

between each pigment and the phytoplankton groups (right panel). 

 

 

5. Conclusion: 

We foundBy employing an alternative approach utilizing in-situ metagenomic observations, a remarkable 

congruence betweenreliable ocean color algorithm for detecting phytoplankton groups was developed in this 

work. This achievement is noteworthy considering the data derived from satellites and omics, despite the relatively 

small numberlimited availability of omics data. used in our analysis. The link has beensuccessful implementation 

was made possible due to by leveraging machine learning techniques and the preservation ofpreserving the data 

structure using Self-Organizing mapsMaps. The methodology showed satisfying performances to provide 

demonstrated satisfactory performance in producing robust estimates offor the seven major phytoplankton groups, 

albeit with fewsome limitations regarding the in terms of global generalization of the method. The size of the 

training database is essential to provide a straightforward easy generalizable method. However, in this case,due 

to the limited availability of data. For instance, it is important to exercise caution when interpreting estimates infor 

regions likesuch as the subtropical gyres should be interpreted with caution.. As DNA sequencing costs continue 
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to decrease and new expeditions generate molecular data from undersampled ocean regions, we expect the training 

datasets to increase rapidly in future years, and thuswhich should further increase the accuracy of our method. 

Furthermore, this study presentedpresents a valuablenew global dataset of the relative quantities of phytoplankton 

groups based on a new molecular method, leading to uniquecell abundances of the seven phytoplankton groups 

and their contributions to total Chla. These two types of information carry different implications. Chla serves as 

a biomass proxy, which is crucial for energy and matter fluxes in various ecological and biogeochemical 

processes. On the other hand, cell abundance represents species abundance for unicellular organisms, providing 

insights into community assembly processes. 

This dataset opens up possibilities for inter-comparisoncomparisons with theexisting approaches, such as DPA-

based approach used onmethods using in-situ and satellite data to identify phytoplankton groups. Nevertheless, 

these datasets show different yet . The results provide coherent yet distinct information on theabout phytoplankton, 

valuable for the communities, contributing to a better understanding of the community structuretheir composition. 

While our focus was on seven broad phytoplankton groups, it is worth mentioning that the deep taxonomic 

resolution achievable through molecular methods allows for species-level monitoring, which can be an interesting 

avenue for future implementation. 

The methodology presented in this work provides a unique opportunity to observe in real-time and high-resolution 

the state of the major phytoplankton groups at the global scale. This makes remote sensing observations excellent 

tools to collect EBVs, play the role of broker between monitoring initiatives and decision-makers, and provide a 

foundation for developing marine biodiversity forecasts under different policy and management scenarios. To 

reach this objective, remote sensing data need inherently needs to be validated with in-situ observations as well. 

Few steps away fromOf further interest is the impending PACE mission launch, a strategic climate continuity 

mission that will make global hyperspectral ocean color measurements possible. This will allow extended data 

records on ocean ecology and global biogeochemistry, revolutionizing the detection of phytoplankton 

communities from space. From the perspective of PACE, this study is a step towards further understanding the 

effect of environmental changes on phytoplankton community structure and diversity.  

Data and Code availability. psbO dataset: https://www.ebi.ac.uk/biostudies/studies/S-BSST761psbO dataset: 

https://www.ebi.ac.uk/biostudies/studies/S-BSST761; Globcolour dataset: https://www.globcolour.info/, 

https://hermes.acri.fr/https://www.globcolour.info/, https://hermes.acri.fr/. SST CCI dataset: 

https://data.marine.copernicus.eu/product/SST_GLO_SST_L4_REP_OBSERVATIONS_010_024/description.h

ttps://data.marine.copernicus.eu/product/SST_GLO_SST_L4_REP_OBSERVATIONS_010_024/description. 

Global HPLC pigment dataset: MAREDAT, POLERSTERN data, Labrador Sea expeditions data, and Tara 

Oceans Expedition data, all available on https://pangaea.de/https://pangaea.de/, GeP&Co database (accessed at 

http://www.obs-vlfr.fr/proof/php/x_datalist.php?xxop=gepco&xxcamp=gepcohttp://www.obs-

vlfr.fr/proof/php/x_datalist.php?xxop=gepco&xxcamp=gepco), and finally the NOMAD: NASA bio‐Optical 

Marine Algorithm Dataset, and the numerous campaigns found on the NASA SeaBASS portal were accessed at 

(https://seabass.gsfc.nasa.gov/).https://seabass.gsfc.nasa.gov/). Following best practices, the SOM-

psbOSOMChlF and SOMRCA will be deposited into a public domain repository accessible upon publication 

alongside with the datasets generated in this study. Prerequisite software library SOM Toolbox 2.0 for Matlab is 
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required, implementing the self-organizing map and Hierarchical Ascending Classification algorithm, Copyright 

(C) 1999 by Esa Alhoniemi, Johan Himberg, Jukka Parviainen, and Juha Vesanto and accessible at 

https://github.com/ilarinieminen/SOMToolbox.https://github.com/ilarinieminen/SOMToolbox. Matlab function 

for Random Forest algorithm was used to run the algorithm. MATLAB version R2020b, Statistics and Machine 

Learning Toolbox-Functions. 
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Figure A1. Evaluation of the preservation of the initial dataset’s characteristics; distribution of the values within 

the initial dataset (DRCA and DChlF) and the SOMRCA and SOMChlF neurons. 

 

Figure A2. Evaluation of the preservation of the initial dataset’s characteristics; Spearman correlation coefficient 

matrix comparing intra-correlations in the initial datasets DRCA and DChlF and the SOMRCA and SOMChlF 

neurons respectively. 
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