
Dear Editors and Referees, 

We would like to express our sincere appreciation for the insightful comments and 

suggestions that have significantly contributed to improving our manuscript. We have 

carefully considered the referees’ feedback, and in this revised version, we have 

addressed the concerns and provided comprehensive clarifications as suggested. 

Specifically, we have restructured the referencing in line with the referee's 

recommendations, aiming to provide a more accessible and illustrative discussion rather 

than relying solely on specific algorithms. Responding to the referee's insightful 

suggestion, we have introduced metrics to evaluate our SOM methodology, which has 

shed light on the relative errors inherent in both psbO-based algorithms. This key insight 

underscores the complexities associated with the errors of SOMRCA in estimating 

phytoplankton relative abundances when compared to the estimation of Chla fractions 

per phytoplankton group using SOMChlF. Last, we have discussed the uncertainty 

associated with SOMRCA and SOMChlF, emphasizing its implications in contrast to 

previous studies that utilized the DPA approach. 

We have taken great care to ensure that the manuscript and the responses provided in 

this document are aligned and effectively address the concerns raised by the referees. 

  

Response to referee #1 

Hourany et al. have been developing a machine learning based algorithm trained on 

several remotely sensed products (RRS, bbp, Kd490, SST, CHL) combined with omics-

based biomarker developed from the RV Tara Ocean data set to obtain cell abundance 

and fraction to total Chla of seven major marine phytoplankton groups. They have 

evaluated their algorithm with cross-comparison, independent validation and 

intercomparison to similar satellite products. While I think overall the method development 

seems to be robust and documented, the manuscript lacks especially: 

a)     correctly referencing other work done in the field of phytoplankton measurements, 

analysis and especially PFT algorithm development, 

b)     several details in the two chapters “Materials” and “Methods”, and 

c)     discussion on their algorithm performance regarding pixel uncertainty, cross-

validation, independent validation and intercomparison results. 



Below I detail further these shortcomings. 

Because of this I think the manuscripts require in these aspects substantial revision 

before it can become accepted, while most of the other parts can mostly remain. 

Detailed comments: 

1.  It would be good also to have a list of abbreviations in the supplement. There are 

so many abbreviations used and parameters listed in the manuscript, it becomes 

confusing. 

We added a list of acronyms in the end of the main document (Table 4) 

2.  Introduction: at several sentences the references provided are not clear or 

correct or do not merit former work executed in the field: 

a)     Line 34-35: that is a very sloppy statement “… a range of ecological and 

biogeochemical problems” What is meant by problems? 

 

We meant by the use of the word “problems” to address various scientific questions 

This has been changed in the text to make it clearer:  

This interest has facilitated the integration of the concept of phytoplankton functional 

types (PFT) and taxonomic groups (PG) into studies exploring various ecological and 

biogeochemical aspects (Le Quéré et al., 2005; Hood et al., 2006). 

b)     Line 39 ff. it is not clear if the methods developed to detect “… abundance of PFT and 

SC are also meant to be based optical characteristics – since this is clearly stated for the 

“specific taxa” this should also be clarified here and the references provided then should 

match the specific method principle. I recommend then to cite here overview papers (see 

IOCCG 2014, Mouw et al. 2017, Bracher et al. 2017) or at least to put ”e.g.” since the 

citations provided are far from complete. In addition, Alvain et al. 2005 and Ben Mustapha 

et al. 2013 retrieve dominant groups and no abundances, and Chase et al. 2020 method 

does retrieve PSC from satellite ocean color data, it assessed the diagnostic pigment 

method based on in-situ data for phytoplankton size classes. 

The paragraph has been modified according to the referee’s suggestions. 

c)     Line 48 ff. : should also merit Brewin et al. 2010. A three-component model of 

phytoplankton size class for the Atlantic Ocean. Ecological Modelling, 221(11), pp.1472-

1483. – I would put “e.g.” since this list is far from complete! 



 

 The statement has been modified accordingly. 

d)     Line 52 should reference to Brewin at al. 2015 not 2014! 

The reference has been modified accordingly. 

e)     Line 62 (also Methods chapter 2.3.1): You say you downloaded the Xi et al. product 

from the Copernicus website – if it was after July 2021, it most probably is the product 

based on Xi et al. 2021 which includes the SST as variable to constrain the algorithm. 

We apologize for the confusion, we indeed used the newest version of Xi et al (Xi et al., 

2021). 

Therefore, we rectified the description of this product. 

3. Material & Method sections: 

a)     a flow chart (Fig. 4) is provided for the SOM DRCA & DChlF data sets – however, 

everything else connected to methods applied in study is lacking. Since you did many 

different other parts (DPA three coefficients averaging for HPLC data global and Tara, 

uncertainty assessment, satellite product intercomparison, cross validation, etc.) – it 

would be good to have an overview.   

To enhance the transparency and comprehensibility of the methodology, we have 

updated the flowcharts according to the referee’s suggestion, providing a detailed 

overview of each step in the algorithm. 

To manage the complexity of the process, we have introduced three sub-flowcharts: one 

outlining the general training procedure, another focusing on the parametrization of the 

Self-Organizing Map (SOM) and the selection of variables within the training procedure, 

and a third delineating the operational phase. These figures have been included in the 

supplementary materials, and in the main text, a statement has been added referring to 

these flowcharts. 

These flowcharts are intended to provide an accessible and comprehensive 

understanding of the algorithm, ensuring that readers can navigate and comprehend the 

various stages of our approach. 

b)  Chapter 2.1.1- line 75 ff.: It is not clear why stations are discarded when not all 5 

size fractions were contained in a station sample – for me it does not make sense from 

an ecological standpoint. In addition, you do not mention how many stations were then 

excluded. 



 

 

We apologize for this error, we indeed verified and there were no stations among the 145 

stations that have been discarded. All stations have been utilized and size fractions were 

aggregated into an average value of relative psbO read per group. We have described 

the source data in a supplementary figure S1. 

Added: Among the 210 Tara Oceans stations, 145 stations sampled psbO reads in 

different ocean regimes from oligotrophic to eutrophic waters (Chla from 0.01 to 10 mg.m-

3, median at 0.3 mg.m-3, from 2009 to 2013. Seawater samples were filtered in order to 

differentiate five planktonic size fractions (0.22-3um, 0.8-5um, 5-20um, 20-180 um, 180-

2000 um). For the purpose of this study, we pooled the five size fractions into a single 

aggregated sample. 

Also add the information what exact values for the weights were taken for each size 

fraction to obtain their chl-a fraction.  

First, as mentioned in the text, all phytoplankton groups in each size class were weighted 

equally by the mid-value of the size range, i.e., x0.9 for the first size class [0.6-1.2], x2.9 

for the [0.8-5] size class, x12.5 for the [5-20] size class, and last x100 for the [20-180] 

size class. Applying equation 1 pools all size fractions per group while considering the 

psbO read values and the size factors mentioned above. 

Why do these weight values make sense for the conversion? 

The psbO measurements are proxies of relative cell abundance since this protein-

encoding gene is generally present as a single-copy and is found in all phytoplankton 

groups. For example, if we take a huge diatom compared to a tiny Synechococcus, both 

have 1 psbO gene and therefore are counted as 1 within the psbO quantification. 

However, we know that a diatom’s Chla content is way greater than that of 

Synechococcus (Agustí, 1991; Fujiki and Taguchi, 2002; Dairiki et al., 2020; Bock et al., 

2022). This is where the conversion via size-dependent weights is essential in the case 

of Chla content estimation. 

In Line 82 it is not clear what 5% here means – relative to the total abundance in each 

size class or for each size class?  

5% of the total cell relative abundance among all size classes. 

In response to the questions of the referee, we decided that it is essential to add 

further clarification on this aspect to the manuscript (see section 2.1.1) 



c)     Chapter 2.1.2, line 205: Add more information by providing exactly the 11 bands used 

from 412 to 670 nm from the RRS data set. 

The 11 Rrs bands were: 412, 443, 469, 490, 510, 531, 547, 555, 620, 645, and 670 nm. 

Added accordingly in the text. 

d)     Chapter 2.2: Overall, I wonder why not much more HPLC data have been used for 

your algorithm validation. E.g., you cite Xi et al. 2020 – then you should be aware of the 

much bigger pigment data set used in this work (taking advantage of the compilation in 

Losa et al. 2017).  Further check also identification on the error in LTER Palmer HPLC 

data in Xi et al. (2021) – it may also affect already your compiled data set. 

Thank you for pointing out the existence of a more extensive dataset in Losa et al., 2017. 

It is important to clarify that the HPLC dataset was not solely employed for validation 

purposes, but rather for comparing the estimations of phytoplankton groups using two 

different methodologies: the DPA and the psbO-derived satellite algorithm. These 

methods are based on distinct assumptions and resolutions of phytoplankton groups. 

Using the DPA as a direct validation for the psbO data presents challenges. The 

estimation of phytoplankton groups using pigments is inherently imperfect and relies on 

assumptions that introduce considerable variability and bias in determining the 

contribution of specific pigments to the assessment of phytoplankton groups. 

During the first phase of the review process, referee #2 raised concerns regarding 

labeling this comparison as an independent validation and suggested a thorough review 

of the validation scheme of our algorithm. Consequently, in the revised version of the 

paper we have re-evaluated the validation process of our algorithm as recommended by 

referee #2 while introducing a test set validation as explained in the paper. 

Therefore, the HPLC dataset was primarily utilized to compare different levels of 

information and demonstrate the agreement between HPLC and psbO data. The 

database we employed is deemed sufficient to address the questions posed. 

NB: Both Losa et al., 2017 and our compiled HPLC database share many common 

sources, particularly the compiled database of MAREDAT, which constitutes a major part 

of both datasets. 

Finally, before your paper becomes accepted, the compiled HPLC data set with the 

diagnostic pigments, total chl, and retrieved PFT chl-a conc. should be made available to 

the readers (e.g., by storage in a public repository). 



All psbO, HPLC, and satellite matchups datasets will be made available to the community 

in a public repository, alongside the SOMChlF and SOMRCA algorithms with their 

operational functions. A statement will be added in the acknowledgment. 

e)     Chapter 2.2: Why did you choose to apply for the dpa method using the 3 sets of 

coefficients proposed by Uitz, Brewin, Soppa and that then taking from these calculations 

the average fraction. You should at least somewhere discuss why you followed this 

method, instead of just using the coefficient proposed by one of author (I would rather 

recommend then the newest citation – actually newer ones have been published since 

then). 

The selection of the three sets of coefficients was based on their estimation using global 

HPLC datasets. While there are newer data sets available, such as those derived by 

Brewin et al. (2017) and Chase et al. (2020), it is important to note that these are primarily 

developed using HPLC data at regional or basin scales, as demonstrated in the case of 

the northern Atlantic Ocean in the examples mentioned. 

We are grateful to the referee for bringing the study of Losa et al., 2017 to our attention. 

In this revised version, we have utilized the coefficients tuned on a global HPLC dataset 

by Losa et al. (2017). 

A thorough examination of the values assigned to the coefficients by these four studies 

reveals disparities that do not consistently align across all pigments. Notably, while the 

coefficients for diatoms exhibit similarity across the four sets, differences arise, for 

instance, in the case of prokaryotes, only Brewin et al. (2015) and Uitz et al. (2006) show 

close coefficients associated with Zea, while in the case of haptophytes, where only 

Brewin et al. (2015) and Soppa et al. (2014) estimates similar coefficients attributed to 

19HF. The discrepancies can be attributed to variations in the datasets utilized for 

coefficient estimation and differences in the methodologies employed. 

To ensure the robustness of the results and to account for the diverse outputs stemming 

from the utilization of these coefficients, we opted to compute the average of the outputs 

from the three sets of coefficients in the previous version, now from four sets of 

coefficients while adding Losa et al., 2017. 

Added: An examination of the values assigned to the coefficients by these four studies 

reveals disparities that do not consistently align across all pigments. Notably, while the 

coefficients for diatoms exhibit similarity across the four sets, differences arise, for 

instance, in the case of dinoflagellates, only Brewin et al. (2015) and Uitz et al. (2006) 

show close coefficients associated to Perid, while in the case of haptophytes, where 

Brewin et al. (2015), Soppa et al. (2014) and Losa et al., (2017) estimates close 

coefficients attributed to 19HF. The discrepancies can be attributed to variations in the 



datasets utilized for coefficient estimation and differences in the methodologies 

employed. We chose to do an average of the output of the four sets of coefficients to 

increase the robustness of the results while considering the different outputs of the 

utilization of these coefficients. 

f)      Chapter 2.3.1: mind to check if the basis of the CMEMS global PFT product is really 

Xi et al. 2020 (see comment 2e)– add also the version number of the product in the 

description. In any case the product is not provided from 1997, but only from 2002 onward. 

In any case you description that this algorithm uses 15 bands is not correct at all. Please 

carefully check and provide a correct description. 

We apologize for the confusion, we indeed used the newest version of Xi et al. 

Therefore, we rectified the description of this product. 

Added: This Globcolour product contains the concentration of each phytoplankton 

functional type (expressed in terms of Chla concentration fraction) based on the Xi et al., 

2021 algorithm, processed from 2002 to the present. This algorithm estimates the Chla 

concentration of diatoms, dinoflagellates, haptophytes, green algae, and prokaryotes. 

The algorithm was implemented using HPLC-based phytoplankton groups using the DPA 

approach (Losa et al., 2017, Soppa et al., 2014) merged to OC Rrs products (412, 443, 

490, 510, 531, 547, 555, 670, and 678 nm) and accounting for the influence of SST on 

the derived PFT quantities (product number: 

OCEANCOLOUR\_GLO\_BGC\_L3\_MY\_009\_103). 

 

g)     Chapter 2.3.2: it is unclear if also the PFT-chla derived from SOM predicted pigments 

using Hourany et al. 2019a have been produced by using the average value from applying 

in the DPA the 3 sets of coefficients proposed by Uitz, Brewin, Soppa. Please clarify. 

Indeed, the SOM-Pigment outputs from El Hourany et al., 2019 were derived using these 

3 sets of coefficients proposed by Uitz et al., 2006, Soppa et al., 2014, and Brewin et al., 

2015. 

We have added this in the manuscript in section 2.3.2. 

h)     Chapter 3.1 – line 162: it seems except for matching the data based on 3x3 pixel box 

+/-1 day no further criteria to select “valid” matchups has been used. Protocols 

recommend that at least 50% of the pixels are valid (unflagged) and the coefficient of 

variation is within 20% (e.g., see EUMETSAT protocol: 

https://www.eumetsat.int/media/44087 ). Can you provide more details or comment why 

no further quality control had been applied. 



Indeed, to extract the match-up for a given observation, a 3x3 pixel box was employed, 

centered around the observation's coordinates on the same day. The average of the non-

outlier pixels was computed. If this approach was unproductive due to a low number of 

pixels within the 3x3 box or the absence of any pixel, a 3x3 pixel extraction was performed 

for the adjacent days (+1 and -1). However, we did not enforce any additional strict 

protocols as per the EUMETSAT protocol, as only a small number of valid matchups were 

anticipated. 

To our knowledge, the psbO gene database is a valuable source that provides complete 

information about the relative phytoplankton cell abundance across 7 taxonomic groups. 

Thus, the intrinsic value of this database is significant. While recognizing the importance 

of the EUMETSAT protocol in ensuring data quality and homogeneity in match-up 

exercises, it is important to highlight that our methodology, based on Self-Organizing 

Maps (SOM), has proven to be effective in reducing noise through vector quantization. 

Added to that, given the operational nature of the method and the coherence of results 

from cross-validation and tests, we believe that the evidence showing that this protocol is 

convincing. 

It is imperative to emphasize that any future generation of psbO datasets should adhere 

to the EUMETSAT protocol or other masking protocols adopted by the OC community in 

the future. 

Following these match-up exercises, we performed a baseline comparison between in-

situ Chlorophyll-a (Chla) and satellite-derived Chla. This comparison is deemed 

satisfactory, with an error rate of 33%. 

 

Added: To extract the match-up for a given observation, a 3x3 pixel box was employed, 

centered around the observation's coordinates on the same day. The average of the non-

outlier pixels was computed. If this approach was unproductive due to a low number of 

pixels within the 3x3 box or the absence of any pixel, a 3x3 pixel extraction was performed 

for the adjacent days (+1 and -1). Following these match-up exercises, we performed a 

baseline comparison between in-situ Chlorophyll-a (Chla) and satellite-derived Chla. This 

comparison is deemed satisfactory, with an error rate of 33%. 

  

i)       Chapter 3.2.2 – line 227 ff: Since you noticed that using 670nm in the algorithm did 

not improve it, why did you keep it? Further, in Line 230 the reference of Xi et al. (2015) 

is not suited since the paper is focusing on simulated data sets across many (all) water 

types – probably much better to cite here Torecilla et al. (2011) or Taylor et al. (2011) 



where the HCA method (or Alvain et al. 2005 with Physat) has been applied to RRS data 

from the open ocean in order to derive information on phytoplankton community structure. 

As previously mentioned in the manuscript, the 670 nm band was excluded from the 

algorithm. However, during the initial round of the review process, one of the referees 

emphasized the importance of utilizing the remote sensing reflectance spectrum, 

extending up to the near-infrared range. In response to this suggestion, we referenced 

the work of Xi et al. (2015), as recommended by this referee. 

We simplified the explanation regarding the final selected bands in our algorithm to 

address potential queries that readers might have on this matter while omitting the 

discussion about the RRS at 670 nm that was not included in the algorithm. 

Added: The choice of Rrs bands aligns with previous work conducted on the PHYSAT 

method by Alvain et al. (2005) and Ben Mustapha et al. (2013). The PHYSAT method 

utilizes reflectance anomalies in the same four selected bands to identify dominant 

phytoplankton functional types. In the clear open ocean, the information contained in the 

remote sensing reflectance (Rrs) bands beyond 555 nm is limited due to the strong 

absorption by water (Torrecilla et al., 2011; Taylor et al., 2011). It should be noted that 

the Rrs bands selected are commonly measured by all sensors used to build the Rrs 

product of Globcolour. This overlapping of different sensors enhances data availability 

and coverage, thus increasing the importance of these Rrs bands within the initial dataset. 

j)       Chapter 3.2.4: I missed a discussion about the input data uncertainty influencing the 

uncertainty of the retrieved PFT products (should be put in chapter 4). 

Currently, no comprehensive uncertainties encompass all the associated steps in the 

quantification of psbO, including filtration, extraction, and the accuracy of psbO-based 

analyses. To address these uncertainties, a statement has been included in section 3.2.4 

to provide further elaboration on the complexities and potential variations in the 

quantification process of psbO. 

Added: However, we should acknowledge the importance of addressing the uncertainties 

in the psbO measurements and their potential impacts on the algorithm's outputs, that are 

not taken into account in this study. This exclusion is primarily due to the absence of a 

comprehensive framework that accounts for all the associated steps in the quantification 

of psbO, including aspects such as filtration, extraction, and the accuracy of psbO 

analysis. Pierella Karlusich et al. (2022) conducted a thorough comparative study, 

evaluating psbO quantities against data obtained from confocal and optical microscopy, 

as well as cytometry, revealing an agreement of 70% (Spearman's Rho =0.64–0.71, p-

value <.001). 



However, it is essential to recognize that, like psbO, every quantification method is subject 

to uncertainties stemming from the various steps of the quantification process, 

emphasizing the necessity of comprehensive assessments within every in-situ 

measurement protocol. 

k)     Chapter 3.4: The cross-validation results should also provide information of the mean 

or median relative deviation (MRD) in order to be comparable to other approaches (e.g., 

Xi et al. 2020, 2021, Lange et al. 2020) – it would be good to have here more statistical 

measured. 

MRD has been incorporated across the study. 

All the metrics, old and newly added, were further discussed in text section 4.1. Section 

4.1 was modified according to the newly added information. 

Direct comparisons with other approaches based on error values remain challenging. It 

is essential to recognize that this algorithm is rooted in a genomic dataset, delineating 

taxonomic groups differently from the HPLC DPA method, as exemplified in studies such 

as Xi et al. (2020, 2021) and Lange et al. (2020). A notable bias between HPLC DPA-

derived PFT and psbO-derived PFT groups arises from the contrasting definitions of 

these PFT groups. As well as the differences in PFT group definition, the quantified errors 

also show the sensitivity specific to each algorithm and methodology followed and can be 

associated to the coherence of the dataset used in the study. 

The comparability of these methods lies within the patterns observed at a global scale 

and the seasonal variations, enabling to highlight the convergence and divergence 

between the DPA and psbO methods.  

Added: The cross-validation and test exercises demonstrated an average R2 of 0.68 for 

SOMRCA and 0.74 for SOMChlF across all phytoplankton groups (Fig. 5, table 3). 

Aggregating all Chla fractions showcased a satisfactory agreement between estimated 

total Chla and in-situ values (R2= 0.83), indicating the preservation of the initial 

phytoplankton quantity expressed in total Chla. For SOMRCA, the RMSE ranged between 

2% and 23% in the test set and between 2% and 19% in cross-validation. The highest 

errors were observed for Prokaryotes, reaching 24% due to their high relative cell 

abundance in the initial dataset. In the case of SOMChlF, the RMSE ranged between 

0.02 and 0.24 mg m-3 in cross-validation and 0.02 and 0.31 in the test set, with the highest 

error associated with the estimation of Chla, stemming from the cumulative Chla fractions 

of phytoplankton groups. Notably, the largest RMSE among phytoplankton groups was 

observed for the Diatom Chla fraction, attributed to their substantial Chla content and its 

exponential relationship with total Chla. The MRD highlighted a distinct contrast between 

SOMRCA and SOMChlF performance. Notably, SOMRCA exhibited a significantly higher 



median relative deviation, approximately three times that of SOMChlF's MRD. The MRD 

for SOMRCA fluctuated between 0.36 and 0.81 for cross-validation and between 0.28 

and 0.92 for the test set, with Dinoflagellates exhibiting the highest MRD. In contrast, 

SOMChlF's MRD per group ranged between 0.13 and 0.24 for phytoplankton Chla 

fraction and 0.33 for Chla in the test set. This discrepancy emphasizes the complexity of 

determining the phytoplankton community structure in terms of relative cell abundance, 

indicating the likelihood of diverse community structures responding to the same satellite-

derived environmental context. 

  

Added: Uncertainty values reached 30% relative cell abundance for SOMRCA and 0.15 

mg m-3 of Chla for SOMChlF, revealing distinct regional patterns in both cases. Notably, 

the observed uncertainties generally aligned with the concentration gradient in Chla 

fraction and cell abundance per group. The uncertainty associated with SOMRCA's 

outputs corresponded to the high relative deviation noted in the test and cross-validation, 

suggesting the potential acceptance of multiple community structures represented by the 

neurons of SOMRCA for a single satellite pixel, thus contributing to increased uncertainty 

levels. Regions at high latitudes exhibited the highest uncertainties for diatoms, green 

algae, and haptophyte relative cell abundances, while the Southern Ocean displayed 

heightened uncertainties specifically for prokaryotic cell abundance.  

The increased uncertainty within the Southern Ocean, particularly for prokaryotes, could 

be attributed to the limited sampling conducted in this geographical region. This limitation 

resulted in a notable dissimilarity between satellite data collected in this area and the data 

sampled in the initial dataset, aligning with the findings of the reliability index. This finding 

is consistent with the documented very low abundance of cyanobacteria in the Southern 

Ocean (Flombaum et al., 2013), which may contribute to heightened model uncertainty 

for this particular region. 

 

4. Section Results and Discussion 

a)     Figure 7 caption: provide n (number of observations) for both data sets, the cross-val 

set and the test set. As stated above also show (and discuss) results for RMSD and MRD 

since R^2 is not a very robust measure of accuracy of a product. For the PG-Chla 

comparisons it should be clearly stated in chapter 3 that R^2 results from calculations 

based on log-transformed data, while MRD and RMSD are based on non-log-transformed 

data. 



MRD values are provided in Table 3. In the related Figure 7 (Figure 5 in this new version) 

we added in the caption to refer to Table 3 for further metrics. We added the n values in 

the caption of Figure 5 and Table 3. 

It is clearly stated in section 3.2.1, Figure 5 and Table 3 that R2 and MRD result from 

calculations based on log-transformed data, and RMSE is based on non-log-transformed 

data. 

We did not put the RMSE nor the MRD results in Figure 5 due to the overcrowding of the 

image. 

b)     Line 320ff: I think it is difficult to understand what is presented in Figure 8 and 

discussed here and no values specific for each group and separately for chla-fraction and 

abundance are provided. 

The results in fFgure 8 (now Figure 6 in this version) present a pixel-by-pixel indicator of 

the applicability of the method. As described in section 3.2.4, this indicator is acquired 

upon comparing the values for each parameter in a pixel to the initial data set used to 

train both SOM algorithms. It shows the flaws that are brought by the low coverage of the 

initial data set in certain regions of the global ocean. It is not in any way an uncertainty 

estimate, but a potential confidence/validity mask that can be associated to the outputs.  

This has been explained and discussed in the text in section 4.1. 

Your pixel-by-pixel uncertainty assessment in terms of values and what it actually 

considered should be compared to other PFT/PSC algorithms results (e.g. see Brewin et 

al. 2017, Xi et al. 2021, Lange et al. 2021) - probably in chapter 4.3. 

A comparison of uncertainties has been added in section 4.4. However, one may note 

that, as mentioned in the previous answers, this algorithm is based on a genomic dataset, 

with a different definition of the taxonomic groups than seen in the HPLC DPA method 

and using different algorithms. 

Added: Upon comparing the uncertainty patterns with those observed in Xi et al. (2021), 

similar trends were identified for the Chla fraction of eukaryotic phytoplankton, displaying 

consistency in following the Chla concentration gradient as seen in our study. Notably, 

regions such as the gyres exhibited lower uncertainties, whereas higher uncertainties 

were evident in high-latitude regions and marginal seas. Conversely, when examining the 

uncertainty in the retrieval of prokaryote Chla by Xi et al. (2021), lower uncertainties were 

noted in polar regions, contrasting with higher uncertainties observed in low-latitude 

regions. Similarly, in Brewin et al. (2017), the uncertainty maps for diatoms and 

dinoflagellates depicted distribution patterns akin to our uncertainty estimates in the North 

Atlantic Ocean. 



The noted coherence in uncertainty patterns between HPLC-based products and our 

psbO-based product can be attributed to the direct relationship between DPA pigment 

concentration and total Chla, as well as between psbO-derived Chla fractions and total 

Chla. Consequently, similar patterns in predictions, as well as in the uncertainties, 

emerge. 

However, addressing the similarities and differences between the outputs of the above-

cited methods referring to the same phytoplankton group is not a straightforward task. 

These methods are based on distinct assumptions and resolutions of phytoplankton 

groups; The estimation of phytoplankton groups using pigments is inherently imperfect 

and relies on assumptions that introduce considerable variability and bias in determining 

the contribution of specific pigments to the assessment of phytoplankton groups. For 

instance, several studies showed that the DPA approach tends to overestimate diatoms 

(Brewin et al., 2014, Chase et al., 2020). This approach may compromise the relevance 

of satellite images when used. However, the added value of such an approach resides in 

the availability of the large HPLC dataset, which allows the development of robust 

algorithms. On the other hand, the method described in this paper and the generated 

outputs are based for the first time on a complete and harmonized database of 

phytoplankton taxonomic community structure on a global scale; an approach that 

provides an unbiased picture of phytoplankton cell abundances. At this time the major 

limitation of this approach is the low number of observations from which the metric has 

been derived. 

c)     In addition, in chapter 4.1 and 4.2 a discussion of your two gene-SOM algorithms 

performance in respect to cross-validation (e.g. as done in Brewin et al. 2015, Xi et al. 

2020, 2021) and independent validation to other PFT /PSC algorithms presented in 

literature (see Mouw et al. 2017 and search newer literature on PSC algorithms) should 

be added. 

All performance metrics, old and newly added, have been further discussed in text section 

4.1. Section 4.1 was modified according to the newly added information. 

d)     Figure 9, also add the number of matchups (at least in the figure caption), add also 

the MRD! 

The number of matchups has been added (N=2671) in the caption of Figure 9 and in the 

text (Figure 7 in this version) and the MRD values have been added to the figure. 

e)     Fig. 11 color scale for Chl-a should contain more colors, as in Fig.11 abundance 

presentation and in Fig. 13, so differences in Chl-a are more visible.  

Fixed accordingly. 



f)      Typos: in line 358 and 370 – this should cite the correct subfigures of Fig. 11. 

Corrected 

Response to referee #2 

  

Review of revised manuscript 

The work of El Hourany and co-authors presents a machine learning approach 

(specifically, Self- Organizing Maps) to estimate the relative Chla contribution and cell 

abundances of seven major taxonomic phytoplankton groups. The results of the trained 

model are applied to global satellite data, and in turn compared to both a previous SOM 

model developed using pigment rather than omics-based biomarker data, and a separate 

DPA-based approach. The study is novel in its use of phytoplankton gene information to 

train an ML model for assessing phytoplankton community structure from space, and the 

authors have clearly put thought into comparison with other approaches, and to how 

uncertainties also play a role in the results. After reviewing the manuscript (and in the 

context of previous reviewer comments and subsequent revisions), I believe the 

manuscript is publishable following some minor revisions and corrections. Thanks to the 

authors for their work on this topic. 

General comments 

I appreciate the background and description of functional types, the DPA and pigment-

based groups in the Introduction text. However, the phrase “phytoplankton functional 

types” is used several times in the document, when in fact what is meant is phytoplankton 

taxonomic groups. Although “functional types” has been used rather loosely in the 

literature, the term “functional” indicates biogeochemical function (e.g. calcifiers, 

silicifiers), whereas phytoplankton of different sizes or even different taxonomic groups 

may serve the same ecosystem function. Therefore, I strongly encourage the authors to 

instead use the phrase ‘phytoplankton taxonomic groups’ when that is actually what is 

meant, or when referring more broadly to the variety of phytoplankton, ‘phytoplankton 

community composition/structure’. This attention to phrasing will benefit the community 

of research working on the topic of phytoplankton community composition from space in 

the context of interactions with any potential stakeholders and end-users. 

We fully agree with the referee regarding the importance of defining the phytoplankton 

groups as taxonomic groups rather than functional types. 



In response to the referee’s suggestion, we revised the manuscript replacing instances 

of "phytoplankton functional types" with "phytoplankton groups" referring to taxonomic 

groups. 

For this matter, we found it important to clarify this difference in the introduction: 

“Recently, ocean color data have also been used to gain information about phytoplankton 

communities, such as their size structure, and their taxonomic or functional composition. 

This interest has facilitated the integration of the concept of phytoplankton functional 

types (PFT) and taxonomic groups (PG) into studies exploring various ecological and 

biogeochemical aspects (Le Quéré et al., 2005; Hood et al., 2006). Functional types refer 

to distinct categories associated with biogeochemical processes (e.g., silicifiers, 

calcifiers) and physiological adaptations to environmental factors (e.g., light, nutrients, 

turbulence), or to more practical categories identified through specific analytical 

techniques (e.g., pigment types) (IOCCG report N 14). On the other hand, phytoplankton 

groups correspond to taxonomic classes (e.g., diatoms, haptophytes, cyanobacteria). It 

is important to note that phytoplankton from different taxonomic groups can perform the 

same ecosystem function, e.g., both diatoms and silicoflagellates can biosilicify but 

represent different taxonomic groups. Specialized algorithms applied to ocean color data 

have consequently been developed to detect specific taxa with distinctive optical 

characteristics, e.g., (Brown (1995); Iglesias-Rodríguez et al. (2002)), or the dominance 

of phytoplankton functional types (e.g., Alvain et al. (2005)) or the relative abundance of 

phytoplankton groups and size classes in term of their contribution to the Chla  e.g., Hirata 

et al., (2011), Xi et al. (2020, 2021), and lately, plankton assemblages and communities 

e.g., Kaneko et al., 2023, (Sathyendranath et al., 2014; Bracher et al., 2017; Mouw et al., 

2017)” 

Could you comment on the fact that the psbO is a proxy of individual cells, but the chain-

forming phytoplankton types (e.g., Chaetoceros) will contain several, or many, individual 

cells, and will likely be found in the larger size fractions? For example, if the abundance 

of diatoms is high in the 20-180 fraction, but the psbO represents individual cells (vs. 

chains), the diatom contribution to Chla could be dramatically overestimated. 

The inspection of microscopy images from the same size-fractionated samples showed 

that long chains (such as those from Chaetoceros) are frequently found as shorter 

fragmented chains and individual cells that pass through small mesh sizes (e.g., Pierella 

Karlusich et al 2021 Nat Comm 12: 4160).  

  

In my opinion, the text of section 3.4 needs to be revised for clarity. Is it not fully clear 

what the inputs and targets of the random forest regression algorithm are. The following 



sentence is not clear: “In the internal node, the selected feature (i.e., pigment in this case) 

was used to make a decision on how to divide the dataset into separate sets with similar 

responses in terms of a given phytoplankton group.” Suggest revision to help the reader 

understand the application of the random forest regression method. 

We admit that the statement the referee pointed out and the paragraph dealing with the 

random forest was lacking clarity. We have added further information to the text and 

reformulated our ideas as follows: 

Each phytoplankton group’s psbO abundance was associated with its corresponding 

HPLC pigment measurements performed on the same Tara Oceans station. The ability 

of pigments to predict a specific phytoplankton group was evaluated using a bagged 

random forest algorithm (number of learners set to 200), following the permutation-based 

importance method. 

Using this method, a pigment composition of the seven major phytoplankton pigments 

cited in Table 1 was tested to predict the abundance of each of the seven psbO-derived 

phytoplankton groups and estimate their importance relative to each group. The 

concentration of each pigment was converted in terms of pigment ratios, a ratio relative 

to the sum of all pigment concentrations, and in parallel, the psbO-derived relative 

abundance was used. 

The bagged random forest algorithm is a set of decision trees, each constituted of internal 

nodes and leaves. Within the internal nodes, the algorithm uses pigment data as the 

predictor variable to partition the dataset into subsets based on pigment characteristics. 

These subsets are then utilized to predict the abundance of specific phytoplankton 

groups, enabling effective analysis of the importance of pigments to describe the 

variability of a phytoplankton group. Since this algorithm is used in a case of regression, 

the training is done while minimizing the error between the psbO-derived phytoplankton 

group abundance and the predicted one. The permutation-based importance method will 

randomly shuffle each pigment and compute the change in the model’s performance to 

predict the abundance of a phytoplankton group. 

Line 351: as I’m sure the authors are aware, the CHEMTAX approach was developed 

decades ago to address just this. Although it does have its own caveats, it can be a useful 

tool to compare against, and recent work to improve it and make it more broadly 

applicable is worth looking into (see Hayward, Pinkerton, and Gutierrez-Rodriguez. 2023. 

“Phytoclass: A Pigment- Based Chemotaxonomic Method to Determine the Biomass of 

Phytoplankton Classes.” Limnology and Oceanography: Methods 21 (4): 220–41. 

https://doi.org/10.1002/lom3.10541.) Perhaps this additional analysis is not warranted for 

this study, but it is worth keeping in mind for future work related to comparison of different 

approaches used to estimate phytoplankton community structure. 

https://doi.org/10.1002/lom3.10541
https://doi.org/10.1002/lom3.10541
https://doi.org/10.1002/lom3.10541


Thank you for your insightful comment regarding the CHEMTAX approach. We have 

noted your point and acknowledge the significance of evaluating various methodologies 

in this domain. In future work, it is indeed our intention to make further attempts to define 

a consensus from different phytoplankton group identification methods, but we consider 

that this goes beyond the scope of the current manuscript. 

 Specific comments 

While I’m not aware of the specific journal requirements, numbering the equations would 

make it easier for the reader to reference the equations within the text for future analyses, 

etc. 

We added numbering for each equation as suggested. 

L79: start the sentence with “The” to avoid leading with the gene name.  

Added accordingly. 

Line 100: should be GlobColour (with a capital “C”), throughout.  

Modified accordingly throughout the manuscript. 

Fig. 1 caption: please define ‘DRCA’ and ‘DChlF’ for the reader here  

Added in the caption.  

Fig. 2 – it would be valuable to also know the absolute psbO values as well – for example, 

it is true that the Prokaryotes are over-represented in the largest size fraction, but are the 

absolute quantities of psbO very low in that size fraction? I guess more generally – what 

is the range in absolute quantities of the psbO gene across the size fractions? 

The psbO can be used to estimate absolute cell abundances with careful normalization 

and quantitative DNA extraction methods. In the current study, we did not attempt to do 

it because the metagenomic sampling from Tara Oceans was not specifically designed 

to quantify metagenomic signals per seawater volume due to the lack of “spike-ins” (e.g., 

DNA internal standards). It’s well established that there is an inverse logarithmic 

relationship between plankton size and abundance (Belgrano et al., 2002; Pesant et al., 

2015), so small size fractions represent the numerically dominant organisms in terms of 

cell abundance (albeit not necessarily in terms of total biovolume or biomass).  

We can still express psbO abundance in rpkm (reads per kilobase covered per million of 

mapped reads) to normalize the psbO signal by the sequencing depth. There is a 

decrease in rpkm values towards the larger size fractions, probably explained by the 



increase in genome size and complexity in larger size fractions. In addition, prokaryotes 

are dominant in the smaller size fractions while the larger fractions are characterized by 

the higher prevalence of eukaryotic phytoplankton.  

 

 

This figure was added in the supplementary material figure while citing it in the caption of 

Figure 2. 

L116: please define ‘CCI’  

Defined as a Climate Change Initiative (CCI) 

L130: sentence is awkward as written and ending in “them”; suggest revising to something 

like “we used two previously published algorithms:”  

It was changed as suggested by the referee. 

L149: First sentence does not add anything for the reader.  

Removed 

L 169: is ‘variables’ here referring to the phytoplankton groups, the satellite-derived 

parameters, or both? 

We chose to normalize every variable, Phytoplankton, and satellite, to reinitialize the 

weights before using SOM, and to make their values comparable. This has been clarified 

at the end of the paragraph. 

L 174: what is meant by ‘the SOM algorithm that can deal with missing values’? can you 

give a sentence or two to describe mathematically what is done to account for missing 



values? Could you add reference(s) here to back up this widespread use of SOM to 

complete missing data?  

We have formulated and briefly described how SOM can deal with missing values while 

adding some references. this formulation was added to section 3.2.1 

Added: SOMs have been widely employed to complete missing data, utilizing the 

truncated distance (Folguera et al., 2015; Charantonis et al., 2015; Saitoh, 2016; Rejeb 

et al., 2022). The truncated distance is defined as a modification of the standard Euclidean 

distance between two observations that accounts only for the existing components of the 

vectors. This modification of the distance measure allows for the comparison of 

observations with incomplete information by considering only the existing components 

and effectively handling missing data. The SOM algorithm can then use this truncated 

distance measure in its learning process to complete missing data and integrate 

incomplete information, enabling more robust analysis and visualization of the data. 

L 195: increased from 10 to 1000 neurons at what interval? 

The interval is 10. We have added this information to the text. 

Line 313: Curious how you decided on the threshold of 40%? 

We are sorry for this mistake, but due to the change of this figure across the review 

process, we meant to say 60% instead of 40. The 60% threshold was an arbitrary choice, 

looking at the shape of the value distributions of this index and their spatial patterns. 

In terms of calculation, 60% means that almost 3 out of 8 satellite parameters at a certain 

pixel are considered as an outlier, and therefore the estimated phytoplankton composition 

might be biased. 

An explanation was added in section 4.1: Threshold arbitrarily chosen while evaluating 

the frequency histogram of this index's values in Fig.6. A value of 60% roughly translates 

to the exclusion of 3 out of 8 satellite parameters' values considered outliers at a certain 

pixel. 

L 357: typo ‘Glocolour’ (missing ‘b’) 

Corrected 

L 358: typo ‘Fig. 101’ 

Corrected 

L 371: typo ‘Fig. 112’ 



Corrected 

Figure 9. – suggest including a colorbar to show the number of points per pixel based on 

the color of the dots on the graph 

We have added a density color bar. 

Figure 12. caption – not clear what is meant by ‘original Rrs spectra’ 

We meant to refer to denormalized Rrs spectra, as in the original values. We have 

modified the caption as follows: 

Relative cell abundances per phytoplankton group and normalized and denormalized 

Rrs spectra were also derived. 

Figure 13. Capitalize the first word of the caption. Could the x-axis of the latitude line 

graph be revised to label more than just the 10^0 ? 

The figure was modified according to the referee’s suggestion. 

L 448: suggest revision to ‘launch of NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem 

(PACE) mission’ 

Revised according to the referee’s suggestions  

 

L 451: suggest revision to ‘the perspective of the PACE mission,’ 

Revised according to the referee’s suggestions  

 

 


