
General answer 

Dear Editors and Referees, 

We would like to express our gratitude for the valuable comments and suggestions provided for 
improving our manuscript. We acknowledge the referee's observations regarding 
communication ambiguities and technical issues in the initial version, and we have prepared this 
revised manuscript to address these concerns and clarify the highlighted aspects. 

This response aims to address the common major issues raised by both referees. We 
acknowledge that the development steps of the omic-based satellite algorithm in the paper were 
unclear, and the inclusion of a pigment-based approach for validation was misleading. 

To clarify, our method is based on the link between omic and satellite data. The pigment 
approach only played a role in the post-training process to compare the outputs of both 
approaches. We incorporated the pigment HPLC data in this study due to its widespread use in 
ocean color remote sensing techniques for estimating phytoplankton groups, primarily because 
of its high data availability. However, it is important to note that numerous studies have 
demonstrated significant uncertainties between the pigment approach and phytoplankton 
abundance observed through other methods (Chase et al., 2020). These uncertainties arise from 
factors such as the overlapping presence of pigments across phytoplankton classes, 
photoacclimation, and physiological processes. Therefore, it is crucial to recognize that our study 
addresses two types and levels of information: Omics and Pigments. The use of pigments in this 
work is more for comparison purposes rather than validation, and we acknowledge that our 
previous message regarding this matter was misleading. 

Additionally, the referees found it unconvincing to introduce physiological uncertainties when 
transforming omics data into Chla fraction per phytoplankton class. We introduced this aspect to 
compare the omic and pigment-based approaches. 

Based on the comments from both referees, we have chosen to thoroughly revise the 
methodology section. We have added flowcharts to simplify the process and enhance its 
applicability for readers. The entire methodology has been revised in light of the suggestions 
provided by the referees. To address the concerns regarding chlorophyll-a fractionation and 
enable the emergence of different levels of information as outputs, we trained two algorithms 
using the same satellite data and SOM methodology. One algorithm provides the relative cell 
abundance of phytoplankton; SOMRCA (including the estimation of direct psbO relative 
abundance values), while the other algorithm estimates the phytoplankton Chla fraction per 
group; SOMChlF. Importantly, this revised methodology now considers the psbO occurrence per 
size fraction, which was not taken into account in the initial version of the manuscript. In both 
algorithms, uncertainties on the outputs were evaluated and therefore are presented with the 
outputs. 



The outputs from both algorithms will 
allow us to address questions regarding 
phytoplankton diversity from an 
ecological perspective (through relative 
cell abundance) and a biogeochemical 
perspective (through Chla fraction per 
group), while considering physiological 
uncertainties. 

We sincerely hope that this response is 
convincing and meets your 
expectations. We appreciate the 
thorough review process and are 
confident that the revisions have 
significantly improved the manuscript. 

 

Figure 1: Different levels of information 
on phytoplankton groups. Noting that 
cell relative abundance (SOMRCA) and 
Chla fraction per group (SOMChlF) are 
two outputs of two different algorithms 
based on the same SOM methodology 
 

  



Comments Referee #1 

The work by El Hourany et al. describes machine learning techniques for application to (blue) 
ocean color data to determine the global distribution of phytoplankton functional types. A special 
focus is on the description of ML techniques with the identification of crucial features based on 
parameters of the merged GlobColour dataset. The details of the methods used are often 
cryptically written and difficult to follow, and reproduction of the methods and results is not 
possible. The methods section should be revised accordingly. Besides the application of ML 
methods in the context, the advantage of the method remains unclear and is not further 
specified; it could well be higher accuracy or computing speed. I recommend a thorough revision 
of the paper to describe the methods in a more understandable way and to prove the added 
value (also of future ML methods). 

We thank the referee for the valuable comments and suggestions provided for improving our 
manuscript. We acknowledge the referee's observations regarding communication ambiguities 
and technical issues in the initial version, and we have prepared this revised manuscript to 
address these concerns and clarify the highlighted aspects. 

In this paper, we approach the estimation of phytoplankton groups as a unified community 
structure to preserve inter-group coherence. Our objective was to develop a method capable of 
estimating all seven groups using a single set of satellite predictors. The challenge we faced was 
twofold: the problem was multivariate in nature, and the dataset was relatively small, with 
missing values in the satellite matchups. 

To address these challenges and ensure that no valuable psbO measurements were lost, we 
turned to the technique of Self-Organizing Maps (SOM) and topology conservation. SOM is a 
powerful unsupervised learning algorithm that allows for the establishment and reproduction of 
relationships between variables. By utilizing SOM, we were able to fill in the gaps in the dataset 
and exploit the preserved topology to estimate the phytoplankton groups. 

The advantage of using SOM in this context is its ability to handle multivariate data and preserve 
the underlying structure of the variables. It enables us to capture the complex relationships 
between the predictors and the phytoplankton groups, even with missing values. By leveraging 
the topology conservation property of SOM, we ensure that the estimated relationships are 
consistent with the overall structure of the data. 

Specific comments: 

The title is a bit catchy and inaccurate. It is rather about pigments, which are typical for color 
groups, but which can be very different in type of phytoplankton and corresponding genes. 

Indeed, in this work, pigments were used, but not for training the method. We appreciate the 
referee's concerns regarding clarity, and we would like to address them. 



The method we introduce in this manuscript is based on a dataset of phytoplankton groups 
quantified using the psbO molecular method and expressed in terms of Chla fraction, in 
combination with satellite variables. As described in the text, psbO is a single-copy gene that is 
present across all phytoplankton groups. This gene encodes proteins that structure a 
compartment of the Chloroplast photosystems. 

It is important to note that pigments were not used for training the SOM method. Instead, they 
were employed solely for comparative purposes. The outputs of SOM-psbO (previous version of 
the algorithm) were compared to in-situ phytoplankton groups estimated using diagnostic 
pigment analysis (DPA), as described in studies such as Soppa et al. (2014). DPA methods have 
been widely used in remote sensing studies to estimate phytoplankton functional types (PFT) or 
size classes, and current operational methods such as Xi et al. (2020) and PHYSAT are based on 
them. However, it is crucial to acknowledge the high uncertainties associated with DPA methods, 
as highlighted by Chase et al. (2020). These uncertainties can lead to misleading interpretations 
of real PFT and phytoplankton size class relative abundance. 

Therefore, it is important to clarify that diagnostic pigment data were not utilized in the 
development of the SOM method in both versions of the algorithm (old and revised). Their 
inclusion was solely for comparison purposes, to highlight the differences and uncertainties 
associated with the pigment-based approach. 

We hope this clarification addresses the concerns regarding the use of pigments in our study. 

The figures should all be revised, e.g. Fig. 5. Axis labels with units are often missing. Partly 
chlorophyll concentrations are given in log10, this is better in Fig. 2. 

All figures were revised according to the referee’s suggestion. 

Line 87: Only as a comment that size fractioning often damages the cells, and such data should 
therefore be treated with caution. 

We are aware of the drawbacks of size fractionation. The filters may retain cells smaller than the 
nominal pore because of net clogging, or because they were trapped in fecal pellets. On the 
contrary, long needle-like species and broken cells and colonies can pass through small mesh 
sizes. The patterns that we described in the current work based on size-fractionated samples can 
be complemented in the future by exploring non-fractionated samples. However, there is still no 
equivalent standardized sampling covering the main ocean regions as the size-fractionated 
samples from Tara Oceans.  

For the discrimination of absorption features, rather the central visible region is necessary (e.g. 
Xi et al. 2015). In this respect, the use of the GlobColour data set with Rrs only up to 555 nm is 
unfavorable, as the correlation plots show. The OC-CCI dataset has more (MERIS) bands here and 
corresponding differences could be underlined. References to GlobColour and matchup 
procedure are missing. 



As the referee correctly pointed out, the SOM-psbO method was trained using a dataset that 
included 17 variables, including satellite reflectance at 412, 443, 490, and 555nm. We apologize 
for not clearly indicating in the initial version of the manuscript that this method is specifically 
developed for open ocean applications. 

In the clear open ocean, beyond 555nm, the information contained in the remote sensing 
reflectance (Rrs) bands is limited due to the strong absorption by water, as also mentioned in Xi 
et al. (2015). Our choice of the range and number of satellite reflectance bands was inspired by 
the work conducted in the PHYSAT method (Alvain 2005, Ben Mustapha et al., 2013), which is a 
classification method that utilizes reflectance anomalies in the four selected bands to identify 
dominant phytoplankton functional types. 

To further support our argument, we rebuilt and cross-validated our methodology using different 
combinations of 15 bands ranging from 412 to 709nm. However, we found that increasing the 
number of bands did not lead to a significant improvement in performance. It should be noted 
that the Rrs bands selected, including the additional 670 nm band, are commonly measured by 
all sensors used to build the Rrs product of Globcolour. This overlapping of different sensors 
enhances data availability and coverage, thus increasing the importance of these Rrs bands 
within the initial dataset. The inclusion of the Rrs at 670 nm did not significantly impact the 
performance of either SOMRCA or SOMChlF, primarily due to the open ocean nature of the 
dataset.  

It is important to note that one of the advantages of using machine learning methods such as 
SOM is to reduce the complexity of the problem while capturing non-linear relationships that are 
present in the environment. The correlations with the Rrs bands, which the referee mentioned 
as unfavorable in Figure 6, are indeed essential and statistically significant. It is crucial to consider 
that the problem we are addressing is multivariate. Preserving the inter-variable relationships, 
even those with lower correlations, is a major advantage of utilizing such a machine learning 
method. 

It is a Case-1 approach for a medium range of chlorophyll concentrations, which should be 
communicated in a better way. Maybe flagging and an uncertainty product would be useful. 
Indeed, as clarified in the previous comment, the method developed in this paper is specifically 
designed for open ocean (case 1) applications. This statement has been further clarified in the 
revised version of the manuscript.  

The approach proposed in this paper to estimate phytoplankton groups from satellite data is 
based on an unsupervised neural classification technique, specifically the Self-Organizing Map 
(SOM). The SOM summarizes the non-linear relationship between the satellite data and 
phytoplankton groups, effectively reducing noise and mitigating the influence of uncertainties 
within the dataset. 

The function that links the predictors (satellite data) to the predicted variables (phytoplankton 
groups) is represented by an allocation function based on a weighted Euclidean distance. In other 



words, this function searches for and associates the closest neuron in the SOM to a new or 
unfamiliar observation. 

The main source of uncertainties in the estimation process lies in the allocation function. Among 
hundreds of neurons in the SOM, one neuron is chosen as the assignment based on the minimum 
distance between the neurons and the pixel, regardless of whether the distance is strong or 
weak. Since one of the properties of SOM is the preservation of topology (where neighboring 
neurons are similar), a pixel can be assigned to several adjacent neurons, with a distance order, 
representing a neighborhood of close neurons. 

Now, how do uncertainties in the satellite variables influence the allocation function and, 
consequently, the results? 

If the distance between a pixel and a neuron is small, the influence of uncertainties is minimal 
and will not significantly affect the assignment of the pixel. However, if a large distance is 
observed between the observation and the assigned neuron, uncertainties in the variables can 
have a greater impact on the choice but remain within the bounds of the chosen neuron's 
neighborhood. 

To consider all the uncertainties associated with the allocation function, we have chosen to 
associate each pixel with a weighted standard deviation based on the first 10 closest neurons. 
The weights correspond to the distances between the first 10 matching neurons and the pixel. 
This allows us to incorporate uncertainties into the assignment process and provide a measure 
of confidence for each pixel's assignment. 

By considering the weighted standard deviation, we account for the influence of uncertainties in 
the satellite variables and provide a more comprehensive understanding of the allocation process 
within the SOM. 

 



 

Figure 2: Global uncertainties regarding 
phytoplankton groups’ cell relative 
abundance, Chla contribution (SOMRCA), and 
Chla fraction (SOMChlF). In this context, the 
following uncertainties on the outputs 
represent the interval (defined with a 
standard deviation calculated on the 
neighboring associated neurons per satellite 
pixel) of SOMRCA and SOMChlF to estimate 
the different phytoplankton groups. 

However, in such open ocean conditions, 
HPLC methods are often at the limit (if low 
volumes of water are filtered) – extreme 
uncertainties may exist in the fundamental 
training data. 

The very deep sequencing of the Tara Oceans 
metagenomes (between ~10^8 and ~10^9 
total reads per sample) allows high detection 
power (e.g., for rare species). In addition, filter 
volumes were high: 100 L for 0.22-3, 0.8-5 and 
5-20, 1-20 m3 for 20-180, and 10-100 m3 for 
180-2000. 

Besides SST is salinity actually a strong 
indicator for some PFTs. 

SSS is a strong indicator of some PFTs due to 
intervariable correlations, and their patterns 
are related to physical conditions, like the 
ones of SST. However, SSS satellite products 
are not as accurate as SST products and at a 
lower resolution (best resolution at 25kms vs. 4kms). The addition of Satellite SSS products might 
corrupt the output of the operational phase.  

Method part is unclear, especially lines 163-212. A part of the problem could be that less common 
naming conventions are used, e.g. do you refer to neural network architecture if you optimize 
the size map? How does the final map or architecture look like? 

We acknowledge the referee for highlighting these communication issues. We introduced a 
clearer definition of the SOM size; We refer to the number of neurons represented by n=p x 
q,  where p and q are the dimensions of the SOM 2D neuron grid. 



Line 269: The more parameters we utilize, the more we must trust the data quality. Nevertheless, 
seen over the global ocean, there are many uncertainties in all mentioned parameters and 
regions. Especially Rrs in blue bands and the retrieved chlorophyll concentration must be 
considered as critical, even more because reflectances are derived from multi-mission merged 
data with sensor-specific atmospheric correction. 

The question raised highlights the importance of considering data quality when utilizing 
parameters. In the context of the global ocean, there exist numerous uncertainties associated 
with the mentioned parameters and regions. As mentioned in the previous comment regarding 
uncertainties, the SOM process attunes uncertainties and enables the possibility to estimate 
uncertainties in the outputs. This has been implemented in the second version of our algorithm. 

The marine model of ocean color algorithms is for atmospheric correction and chlorophyll 
retrieval is mostly based on a diatom-like chlorophyll-specific absorption and scattering behavior 
(e.g. Bricaud et al., 1995). Thus, good that there is relatively high correlation of diatoms and 
chlorophyll concentration. But what is actually with features that are not captured, e.g. specific 
optical properties of Coccolithophores (e.g. Balch, 2018)? There is a high abundance, e.g. in The 
Great Calcite Belt, where Fig. 7 indicates high reliability of the model with a C2 distribution in Fig. 
10, that seems to be different. I see some question marks and would ask for more careful 
discussion about the model uncertainty. 

We admit that within the first version of the algorithm, since we didn't take into consideration 
the effect of size per group and per sample, the Chla fraction concentration per group was biased. 
The pos-training classification (Figure 12 in the revised manuscript, section 4.3) into dominant 
phytoplankton communities was revised accordingly after incorporating the phytoplankton size 
information as described in Sommeria-Klein et al 2021 Science: 

𝐶ℎ𝑙𝑎 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑃𝐹𝑇 = Chla𝑖𝑛−𝑠𝑖𝑡𝑢 ∗  

∑ (
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Therefore, when converting psbO reads to relative abundance, considering the size of the 
phytoplankton cell for each group, we highlight the contribution of each group's size to the total 
chlorophyll-a (Chla) concentration.  

Compared to the previous version, and due to the data conversion, five clusters turned out to be 
sufficient to describe the dominant patterns. In the Southern Ocean, the C3 group emerges and 
dominates, while there is also a higher relative abundance of Haptophytes and Diatoms. In the 
Arctic Ocean, the C4 group dominates. Although the phytoplankton communities of both C3 and 
C4 clusters were relatively similar, the optical signal was significantly different, allowing us to 
distinguish between the two clusters. 

It is unclear how the new method behaves compared to the mentioned operational model by Xi 
et al. (2020). What are the advantages of the presented method? 



Xi et al., (and the SOM-Pigments method) is based on the DPA pigment approach to identify 
phytoplankton groups (4 functional types). 

The method described in this paper is developed with a harmonized database on the 
phytoplankton taxonomic community structure based on the psbO gene 
quantification.  Molecular methods like this have a deep taxonomic resolution (including for 
cryptic species) as well as high detection power (e.g., for rare species). In addition, this particular 
gene is present in all phytoplankton groups, eukaryotes, and prokaryotes alike, with a single copy 
per cell. 

Quantifying it using satellite data provides an unbiased picture of phytoplankton cell relative 
abundances. 

 

  



Comments Referee #2 

The authors develop a machine learning approach to link ocean colour data and in situ omics to 
improve detection of phytoplankton functional types and groups from space. The topic they are 
dealing with is innovative. However, the methodology and algorithm development steps are hard 
to follow and need to be revised to make the workflow clearer to the reader. In this scope, a 
flowchart is essential. 

I am not fully convinced by the validation approach of the method. The training is done using the 
whole omics database and cross-validation statistics show the good prediction capabilities of the 
model. Then, the validation is made with an external database built on HPLC-based information. 
From my point of view, this cannot be considered a proper validation because one quantity is 
based on HPLC data, the estimated one on omics data. Such a comparison thus implies that the 
two approaches bring the same level of information on phytoplankton taxonomy. In this case, 
there would be no need to develop a new approach based on omics. However, as discussed at 
the end of the paper, HPLC- and omics-based phytoplankton information have some degree of 
correlation, which is good because this means that OMICS information can be found in optical 
properties to some extent and OMICS based approaches are welcome because they will bring 
new and complementary information on phytoplankton from space. 

I realize that the OMICS database used to develop the new ML approach is small, but probably 
the authors might think to train the model over 70% of the database and validate it with the 
remaining 30%. 

Results need to be discussed more and the text about retrieved global distribution of 
phytoplankton and biomes needs to be profoundly checked and revised. 

The work thus needs to be deeply revised to improve the methodology and make the validation 
stronger as well as the text more readable. 

We would like to express our gratitude for the valuable review. We acknowledge the referee's 
observations regarding technical issues in the initial version, and we have prepared this revised 
version while applying the referee’s suggestions. 

We would like to admit that the reasoning behind validating with a pigment-based approach was 
misleading. For that, we chose to follow the referee’s major comment and evaluate the algorithm 
using a two-step procedure: 

We split the Tara Oceans psbO dataset into 80% to train the SOM, and 20% as a test set. 

1-     During the SOM training based on 80% of the dataset, a different combination of satellite 
variables was used to determine the best set of variables to estimate the 7 phytoplankton groups 
in terms of relative cell abundance and Chla fraction. 

·    Per a combination of variables, we increase the number of neurons to 
determine the optimal size of the SOM from 10 neurons to 1000 neurons. 



o   For each number of neurons used, the quantization and topographic 
errors related to the SOM are calculated and a one leave-out cross-
validation procedure is performed to assign performance metrics (R2 and 
RMSE) to help choose the best SOM size and satellite variables 
combination. 

The best SOM configuration and variable combination are based on the lowest 
errors and highest R2 values. 

2-     The chosen SOM is tested using the 20% test set, providing an independent set of 
performance metrics. 

As a result, we present in the paper the performance metrics of the best SOM configuration 
based on the cross-validation procedure and the test set. 

The comparison with the HPLC DPA approach will be introduced for comparative purposes only. 

Specific comments: 

Figure 1 is misleading as the same color palette has been used for both columns though the % 
axis are different from left to right. A quick reader could interpret the yellow dots of (e.g.) 
Cryptophytes as abundant as Green Algae or Diatoms. 

Indeed, according to the referee’s comment, we homogenized the color scale. And since we 
derive two types of information from the psbO dataset i.e relative cell abundance and Chla 
fraction per group, a different color palette was used for each new dataset. 

Line 91: this statement means that we have phytoplankton also in the 180-2000 um size class, 
which is possible in case of diatoms chains. Could you provide a distribution of frequency of 
phytoplankton groups within each size class? This would help the reader to have a wider image 
of the type of phytoplankton in the database (and especially for those chain-forming species and 
classes spanning a wide size range). 

The distribution of taxonomic groups between size fractions in the psbO dataset is displayed in 
Fig 2a-b, Fig 7a, Fig 8 and Figure S16 in Pierella Karlusich et al 2023 Mol Ecol Res. 

We provide boxplots to illustrate the distribution of the phytoplankton groups per size filter. 

The filters may retain cells smaller than the nominal pore because of net clogging, or because 
they were trapped in fecal pellets. On the contrary, long needle-like species and broken cells and 
colonies can pass through small mesh sizes. The patterns that we described in the current work 
based on size-fractionated samples can be complemented in the future by exploring non-
fractionated samples. 



Line 115: why normalizing omics data on Chl? Because Chl varies according to the physiological 
status of phytoplankton, a photoacclimation component is re-introduced (which is a major 
problem in the DPA analysis). Why not using OMICS-based % of the whole population? 

Indeed, this type of normalization introduces physiological uncertainties in the data. However, it 
was judged important to achieve quantity relative to Chla which is often used as a proxy of 
biomass, and which is a relevant parameter for energy and matter fluxes (e.g., food webs, 
biogeochemical cycles). Adding to this, this Chla normalization allows to compare this quantity 
with what we can observe using DPA pigments approach and current satellite operational 
products. 

But, as mentioned in the general answer two types of algorithms are developed to address this 
issue: 

**To address the concerns regarding chlorophyll-a fractionation and enable the emergence of 
different levels of information as outputs, we trained two algorithms using the same satellite 
data and SOM methodology. One algorithm provides the relative cell abundance of 
phytoplankton (including the estimation of direct psbO relative abundance values), while the 
other algorithm estimates the phytoplankton Chla fraction per group. Importantly, this revised 
methodology now considers the psbO occurrence per size fraction, which was not taken into 
account in the initial version of the manuscript. In both algorithms, uncertainties on the outputs 
were evaluated and therefore are presented with the outputs. 

The outputs from both algorithms will allow us to address questions regarding phytoplankton 
diversity from an ecological perspective (through relative cell abundance) and a biogeochemical 
perspective (through Chla fraction per group), while considering physiological uncertainties. ** 

Lines 121-123: it is not clear which data are interpolated. In situ or satellites? 

In-situ and Satellite data are both interpolated within the initial data space during the training 
phase, since missing values can be present in both cased, and since the number of neurons that 
we are dealing with is greater than the amount of observation. This is monitored through the 
training process with both the quantization and topographic errors related to SOM. 

Table 2 contains mistakes on the coefficients. From Uitz et al. (2006), the coefficient for Chl-b is 
1.01 while 0.35 is for 19-BF. Fixed, we apologize for this mistake. 

In addition, 19-BF is here only attributed to the pelagophytes while is also a pigment within 
haptophytes (except coccolithophores). So, from the current coefficients all haptophytes only 
contain 19-Hex. 

Indeed, in the study by Chase et al. (2020), it was demonstrated that the presence of pigments 
overlaps within size classes and types of phytoplankton. Several ocean color studies, such as 
those by Hirata et al. (2011) and Xi et al. (2020), have attributed the 19Hf pigment to 
Haptophytes.  



Taking into account the reviewer's comments and the uncertainties associated with pigments, 
we decided to list the major phytoplankton groups and indicate the most representative pigment 
for each group. 

Line 155: which cross-validation procedure? Do these statistics refer to all pigments or is it a 
global indicator for the technique? 

We acknowledge that the sentence citing the statistics was unclear. The reported statistics, a 
regression coefficient of 0.75, and an average RMSE of 0.016 mg.m-3, represent a global indicator 
for the technique. They reflect the mean error and regression coefficient across the 10 estimated 
pigments and are given following a cross validation procedure conducted using a one-leave-out 
random pick from a global HPLC dataset constituted of 12 000 HPLC observations.  

Line 163: Please indicate and explain better which are the “several machine learning algorithms” 
you tested and why a SOM has been chosen. This will be very helpful for scientists approaching 
the same problem. 

We would like to clarify the sentence introducing the machine learning algorithms used in our 
study: SOM, hierarchical ascending clustering (HAC), and Random Forest. 

Developing an operational algorithm that estimates the abundance of phytoplankton groups 
from satellite information was achieved using these algorithms. Firstly, the SOM algorithm was 
utilized to train a model based on the psbO pigment dataset. This allowed us to identify global 
large-scale patterns and characterize phytoplankton biomes. Last, to explain the potential 
divergence between the DPA approach and psbO measurements, we employed a Random Forest 
approach. This analysis highlighted the cumulative importance of pigment composition in 
estimating the abundance of phytoplankton groups. 

We tested approaches based on Feed-Forward Neural Networks. However, due to the limited 
number of observations in the dataset, these approaches were not very conclusive. The choice 
of SOM was based on the previous work by El Hourany et al. (2019), which demonstrated 
improved performance with an increasing number of neurons, the number of neurons almost 
twice compared to the observations in the initial dataset, accounting for missing values. 

In the following section, each methodology and algorithm are explained in detail. Section 3.1 
need to be rewritten and a flowchart added. That’s strange to see 3.1.1 and 3.1.2 as two different 
sections when (if I had well understood) the work is done simultaneously. Figure 5: y- and x- axes 
should be the same and indicate the name of the solid and dashed lines in the caption. 

We apologize for the misleading sectioning. To better clarify the methodology, a flowchart was 
added and both above-mentioned sections were merged according to the methodology as the 
reviewer mentioned. Indeed sections 3.1.1 and 3.1.2 are done simultaneously, and iteratively as 
shown in the new flowchart #2. 



 

Flowchart 1: General scheme of the SOM methodology to estimate phytoplankton groups from 
satellite data. 

 



 

Flowchart 2: A focus on the training phase of the SOM which is based on an iterative procedure 
between different satellite variable combinations and SOM grid size. The choice of the best 
satellite variables combination and SOM size were based on consensus of low errors and high R2. 

Line 191: which several experiments? How many? Please explain better. 

The SOM grid size was sampled between 10 to 1000 neurons with a step of 10. Therefore, there 
were 100 SOM grids that were tested for each variable combination. 

Section 3.1.3 needs to be clearer.  

Line 269: what is the impact of interpolation on bbp and Kd? (i.e., Interpolation declared in the 
methods)  

Below is a comparison of SOM-psbO and the initial dataset’s values for each variable including 
bbp and Kd. For a SOM grid size of 242 neurons, the SOM was able to catch the values’ 
distribution for both parameters.  



 

Figure 3: Distribution of values for each variable in the initial dataset and SOMRCA and 
SOMChlF neurons. 

Line 275: from Table 3, pelagophytes instead of cryptophytes  

Indeed, we apologize for this error. 

Line 314: generally speaking, are you referring to the surface-to-volume ratio? 

We have corrected the term: 'biovolume-to-size' was replaced by 'surface-to-size.' 

Line 329 and Line 331: please check and discuss: C4, C5 and C6 are dominated by Prokaryotes, 
but these areas are generally known to be dominated by large phytoplankton. Same for C1, 
dominated by diatoms but in the subtropics. In addition, it would be nice to see these clusters 
plotted on map in Figure 10. 

We admit that within the first version of the algorithm, since we didn't take into consideration 
the effect of size per group and per sample, the Chla fraction concentration per group was biased. 

The pos-training classification into dominant phytoplankton communities was revised 
accordingly after incorporating the phytoplankton size information as described in Sommeria-
Klein et al 2021 Science: 

𝐶ℎ𝑙𝑎 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑃𝐹𝑇 = Chla𝑖𝑛−𝑠𝑖𝑡𝑢 ∗  
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∑ (𝑝𝑠𝑏𝑂𝑃𝐹𝑇 ∗ 𝑠𝑖𝑧𝑒𝑠)
7
𝑃𝐹𝑇=1

)4
𝑠=1

∑ ∑ (𝑝𝑠𝑏𝑂𝑃𝐹𝑇 ∗ 𝑠𝑖𝑧𝑒𝑠)
7
𝑃𝐹𝑇=1

4
𝑠=1

 

 

Therefore, upon converting psbO reads to relative abundance accounting for the size of the 
phytoplankton cell per group, we highlight the size contribution of each group to the total Chla.  



 
Compared to the previous version, and due to the data conversion, five clusters turned out to be 
sufficient to describe the dominant patterns (Figure 4). 

Figure 10: How the spectra have been normalized? By the minimum? The spectral shape should 
be discussed. 

Each wavelength was normalized by its values distribution variance within the dataset. We are 
providing a description and a discussion of both phytoplankton distribution and for the spectral 
signal in the section 4.3. of the revised manuscript. 

 

 


