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Abstract. Heavy precipitation can lead to floods and landslides, resulting in widespread damage and significant casualties.

Some of its impacts can be mitigated if reliable forecasts and warnings are available. Of particular interest is the subseasonal

::::::::::
sub-seasonal

:
to seasonal (S2S) prediction timescale. The S2S prediction timescale has received increasing attention in the

research community because of its importance for many sectors. However, very few forecast skill assessments of precipitation

extremes in S2S forecast data have been conducted. The goal of this article is to introduce a new methodology to assess5

the
:::::
assess

:::
the

:::::::
forecast

:
skill of rare events, here extreme precipitation, in S2S forecasts

:
,
:::::
using

:
a
::::::

metric
::::::::::
specifically

::::::::
designed

::
for

::::::::
extremes. We verify extreme precipitation events over Europe in the S2S forecast model from the European Centre for

Medium-Range Weather Forecasts. The verification is conducted against ERA5 reanalysis precipitation. Extreme precipitation

is defined as daily precipitation accumulations exceeding the seasonal 95th percentile. In addition to the classical Brier score,

we use a binary loss index to assess skill. The binary loss index is tailored to assess the skill of rare events. We analyse10

daily events locally and spatially aggregated, as well as 7-day extreme event counts. Results consistently show a higher skill

in winter compared to summer. The regions showing the highest skill are Norway, Portugal and the south of the Alps. Skill

increases when aggregating the extremes spatially or temporally. The verification methodology can be adapted and applied to

other variables, e.g. temperature extremes or river discharge.

1 Introduction15

Extreme precipitation is one of the most impactful weather-related hazards, in terms of loss of lives, economic impact and

number of disasters (see e.g. the impact of storms and flood quantified in WMO, 2021). Additionally, if several extreme precip-

itation events occur in close succession (temporal clustering), flooding becomes more likely Tuel et al. (2022)
:::::::::::::::
(Tuel et al., 2022)

. The successful mitigation of weather-related hazards depends on our ability to forecast them reliably. It is therefore crucial to

quantify the skill of precipitation forecasts and improve the predictability of precipitation extremes for a better preparedness20

Merz et al. (2020).
:::::::::::::::
(Merz et al., 2020)

:
.

Subseasonal-to-seasonal (S2S) prediction refers to forecasting on timescales from about two weeks to a season. S2S pre-

diction has a large range of applications White et al. (2017, 2021)
:::::::::::::::::::::
(White et al., 2017, 2021), including the humanitarian sector,
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public health, energy, water management and agriculture. Forecast skill at this time scale is key to better manage natural haz-

ards Merz et al. (2020)
:::::::::::::::
(Merz et al., 2020). S2S predictions aim to fill the gap between weather forecasts and seasonal outlooks25

White et al. (2017)
::::::::::::::::
(White et al., 2017). Providing skillful predictions on subseasonal or monthly timescales is challenging

Hudson et al. (2011)
:::::::::::::::::
(Hudson et al., 2011). Unlike short-range forecasts and seasonal outlooks that have been operational for

many years, the S2S timescale was until recently a “predictability desert" Vitart et al. (2012)
:::::::::::::::
(Vitart et al., 2012). The scientific

community working with S2S forecasts has been growing rapidly Mariotti et al. (2018); Merryfield et al. (2020); Domeisen et al. (2022)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Mariotti et al., 2018; Merryfield et al., 2020; Domeisen et al., 2022). Many research organisations actively contribute to im-30

proving S2S forecast skill, for example the Challenge to improve Sub-seasonal to Seasonal Predictions using Artificial Intelli-

gence S2S-challenge (2021)
:::::::::::::::::
(S2S-challenge, 2021).

Precipitation is a challenging variable to predict and, as a result, S2S forecasts of precipitation extremes have limited skill

compared to other types of hazards (see e.g. case studies in Domeisen et al. (2022); Tian et al. (2017); Endris et al. (2021)

)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see e.g. case studies in Domeisen et al., 2022; Tian et al., 2017; Endris et al., 2021). The analysis of S2S precipitation fore-35

cast skill could allow to identify regions and seasons with good or bad performance of the forecast. With this information,

forecast users can know where and when the forecast information is useful or if it would require further improvement (with for

example post processingSpecq and Batté (2020))
::::::::::::::::::::::::::::::::::::::::::::::::::::
(with for example post processing, as in Specq and Batté, 2020). Skill infor-

mation is also useful to identify potential sources of predictability and windows of opportunity (i.e. intermittent time periods

with higher skill Mariotti et al. (2020))
:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(i.e. intermittent time periods with higher skill, Mariotti et al., 2020). Most of the exist-40

ing research on S2S prediction of precipitation extremes focuses on North America Zhang et al. (2021); DeFlorio et al. (2019),

Africa de Andrade et al. (2021); Olaniyan et al. (2018) and Asia Yan et al. (2021); Li et al. (2019)
:::::::::::::::::::::::::::::::::
(Zhang et al., 2021; DeFlorio et al., 2019)

:
,
:::::
Africa

:::::::::::::::::::::::::::::::::::::::
(de Andrade et al., 2021; Olaniyan et al., 2018)

:::
and

:::::
Asia

:::::::::::::::::::::::::::
(Yan et al., 2021; Li et al., 2019). However little is known

about the skill of S2S extreme precipitation prediction over Europe Monhart et al. (2018); Domeisen et al. (2022)
:::::::::::::::::::::::::::::::::::::
(Monhart et al., 2018; Domeisen et al., 2022)

. The present article aims to fill this gap.45

S2S forecasts are ensemble forecasts that consist of several equally probable members, i.e. runs of the same numerical

model with slightly different initial conditions World-Climate-Service (2021)
:::::::::::::::::::::::::
(World-Climate-Service, 2021). Forecast skill is

typically assessed with hindcasts. Hindcasts are forecasts run for past dates over sufficiently long time periods (
::::
about

:
20

yearstypically) to assess the quality of the forecast and to identify and correct model biases (e.g.Huijnen et al. (2012); Manrique-Suñen et al. (2020)

)
::::::::::::::::::::::::::::::::::::::::::::
(e.g. Huijnen et al., 2012; Manrique-Suñen et al., 2020). The goal here is to quantify S2S forecast skill for extreme precipi-50

tation events over Europe using the forecast and hindcast data from the European Centre for Medium-Range Weather Fore-

casts (ECMWF Vitart (2020))
:::::::::::::::::::
(ECMWF Vitart, 2020), one of the most frequently used and most skillful S2S modeling systems

de Andrade et al. (2019); Li et al. (2019); Stan et al. (2022); Domeisen et al. (2022)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(de Andrade et al., 2019; Li et al., 2019; Stan et al., 2022; Domeisen et al., 2022)

.

Common metrics to evaluate the bias and the accuracy – and hence the skill – of ensemble forecasts include the mean55

absolute error, the probability integral transform, the interquartile range, the continuous ranked probability score (CRPS)

Hersbach (2000); Gneiting et al. (2007); Crochemore et al. (2016); Monhart et al. (2018); Pic et al. (2022)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(CRPS, Hersbach, 2000; Gneiting et al., 2007; Crochemore et al., 2016; Monhart et al., 2018; Pic et al., 2022)

, the Brier score Brier (1950)
::::::::::
(Brier, 1950), and the mean square skill score Specq and Batté (2020)

:::::::::::::::::::
(Specq and Batté, 2020).
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However, these metrics capture the mean behavior of a variable: most are not directly suited to verify extreme events. The CRPS

can be adapted to focus on extremes, using the threshold-weighted CRPS Gneiting and Ranjan (2011); Allen et al. (2021)60

::::::::::::::::::::::::::::::::::::::
(Gneiting and Ranjan, 2011; Allen et al., 2021) or using extreme value theory Taillardat et al. (2022)

::::::::::::::::::
(Taillardat et al., 2022).

Another option to verify extreme events is the relative operating characteristic (ROC): it can be used to measure the ability of the

ensemble forecast to identify above-normal precipitation events Domeisen et al. (2022); Monhart et al. (2018)
::::::::::::::::::::::::::::::::::::
(Domeisen et al., 2022; Monhart et al., 2018)

. In this study, we transform precipitation extremes into binary “threshold exceedance events"
:
”, where the threshold is the daily

precipitation 95th percentile. The Brier score is usually employed to verify the binary forecast. However, it has limitations65

because of the unbalanced categories in our case. The extreme events dataset is composed of 95% zeros and 5% ones. A large

part of the forecast and observation datasets are matching because of the large presence of “0s” (daily precipitation lower than

the 95th percentile) in both datasets. To address this issue, we also use a binary loss index focusing on extremes (“1s”). We

assess the extreme events by proposing and using a simple extension of the binary loss score as introduced by Legrand et al. ?

:::::::::::::::::
Legrand et al. (2022) to ensemble forecasts. This metric considers only the case of the occurrence of an extreme event in the70

forecast or in the observation or in both but not the non-events (see section 2.3.2). This has the advantage that the score is not

dominated by the correct prediction of non-events. We compare our novel skill score to the classical Brier score Brier (1950)

::::::::::
(Brier, 1950). To overcome the double penalty issue (i.e. when a location or timing error in the forecast is penalized by both

a false-alarm and a missed event), we allow for flexibility by aggregating the forecast information in spatial and temporal

windows Ebert et al. (2013)
:::::::::::::::
(Ebert et al., 2013).75

This article is structured as follows. Section 2 contains a description of the forecast and verification data and the methods, in-

cluding the Brier score Brier (1950)
:::::::::::
(Brier, 1950) and a binary loss index (adapted from Legrand et al. ?).

:::::::::::::::::::::::::::::
(adapted from Legrand et al., 2022)

:
. We present the results of the analysis in Section 3. We discuss these results, draw conclusions and give an outlook in Section

4.

2 Data and Methods80

2.1 Data

We use ECMWF’s S2S precipitation hindcast data (cycle 47r2, ECMWF (2021); Vitart (2020); ECMWF (2022a))
::::::::::::::::::::::::::::::::::::::::::::::::::
(cycle 47r2, , ECMWF, 2021; Vitart, 2020; ECMWF, 2022a)

from 2001 to 2020. It is composed of 11 ensemble members, initialized twice a week and run for 46 days. We focus on Europe,

in the spatial box [30◦N ; 72◦N] × [-15 ◦E; 49.5 ◦E]. The hindcast period covers 20 years with 2080 forecast initializations

between 2001-01-04 and 2020-12-30 (twice a week, on Monday and Thursday). The data were downloaded at the model spec-85

tral resolution O320 ECMWF (2022b, c)
:::::::::::::::::
(ECMWF, 2022b, c) and regridded for the analysis to a 0.5◦×0.5◦ regular grid using

a first-order conservative remapping Jones (1999); CDO (2018)
:::::::::::::::::::::
(Jones, 1999; CDO, 2018).

ERA5 precipitation Hersbach et al. (2019)
:::::::::::::::::::
(Hersbach et al., 2019) is used here as the verification dataset. The choice of a re-

analysis dataset is motivated by its continuous spatial and temporal availability and to avoid the uncertainties due to the inherent

spatial sparsity of weather station networks Hofstra et al. (2009); Rivoire et al. (2021)
:::::::::::::::::::::::::::::::::
(Hofstra et al., 2009; Rivoire et al., 2021)90
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. Daily precipitation are extracted over the same time period, from 2001-01-04 to 2020-12-30 plus 46 lead time days i.e. 2021-

02-14, with a spatial resolution of 0.5◦×0.5◦. For the sake of simplicity, “observation" refers to ERA5 in the remainder.

2.2 Definition of extreme events

We define precipitation extremes as binary exceedances of daily precipitation accumulation above its 95th seasonal all-day

percentile (i.e. over all days in March-April-May –MAM–, June-July-August –JJA–, September-October-November –SON–95

or December-January-February –DJF–). Figure A1 in the appendix shows the 95th percentile (Q95) in ERA5 in Europe, for

the period from 2001-01-04 to 2021-02-14. For the hindcast data, we also compute percentiles separately for each lead time:

for a given lead time day and a given season, Q95 is computed from daily precipitation of all the ensemble members pooled

together. Figure 1 shows the bias in this percentile between the forecast and ERA5 data for four different lead times. In this

figure and all the following ones, only values at grid points where Q95 in the observations is greater than 5mm per day are100

shown. For a lead time of one day, the forecast generally underestimates Q95. For lead times between 2 and 46 days, some

regions have a positive bias (central Europe in spring and summer) and some have a negative bias (the Alps in summer, autumn

and winter, Norway in spring, autumn and winter, see Figure 1). Generally over Europe, the bias depends on the lead time and

on the season. However, the bias over oceans often has the opposite sign of the bias over land.

2.3 Metrics105

We use the Brier score and a binary loss index to assess the forecast skill in extreme events. We compute the Brier score and the

binary loss index for the extended winter season (NDJFMA, i.e. November to April) and extended summer season (MJJASO,

i.e. March to October). When defining the extremes (see previous section) we used 3-month long seasons because of the strong

seasonal cycle in extreme precipitation (see figure A1). The choice of extended seasons for the skill analysis is a compromise

between having enough extreme events for a robust analysis and capturing the seasonality of the forecast. As consequence110

the probability of the extreme events is no longer exactly 0.05 if extreme events are not homogeneously distributed within the

MAM and SON seasons.

2.3.1 Brier Score

The Brier score B is defined as the mean square difference between forecast probability and binary observations Brier (1950)

::::::::::
(Brier, 1950):

B =
1

nD

nD∑
i=1

(fi −Yi)
2,

where nD is the total number of days (i.e. the number of initializations in the given extended season: about 1040 per lead time,

i.e. half the number of initializations per year); Yi the binary observation of extreme for day i (Yi=1 if the daily precipitation115

exceeds the 95th and Yi = 0 otherwise); fi is the forecast probability of extreme occurrence for day i, i.e. the mean of the

ensemble members: fi = 1
M

∑M
m=1F(i,m) , with M the number of ensemble members (here M = 11) and F(i,m) the binary

forecast for a given ensemble member m for day i.
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Figure 1. Forecast bias in the 95th percentile (Q95) compared to ERA5, for spring (MAM, (a)-(d)), summer (JJA, (e)-(h)), autumn (SON,

(i)-(l)) and winter (DJF, (m)-(p)) at a 2-day (first column), 8-day (second column), 15-day (third column) and 22-day (last column) lead time.

Grid points with Q95 ≤5mm per day are displayed in white.

B is negatively oriented (the lower the better). The climatological Brier score Bclim is used as a reference value for the skill

calculation:

Bclim =
1

nD

nD∑
i=1

(p−Yi)
2,

where p is the climatological extreme event probability. Note that the value of this probability is not exactly 0.05, as two of the

3-month seasons are split to form the extended seasons. p is therefore computed empirically.120

The forecast is skillful if its Brier score is lower than the climatological Brier score. These scores can be compared using the

Brier Skill Score (BSS):

BSS = 1− Bhind

Bclim
.

BSS varies between ]−∞;1] and is positively oriented (the closer to one, the better). For a given lead time day, a forecast

has skill if BSS > 0. From here on, the expression “the last skillful day" refers to the largest lead time day with skill.
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2.3.2 Binary loss index

Legrand et al. ? introduced
:::::::::::::::::
Legrand et al. (2022)

::::::
studied

::
in

:::::
detail

:
a risk function defined as the ratio between the empirical

probability of having an extreme event in either the observation dataset or the forecast dataset, and the empirical probability of

having an extreme event in the observations or the forecast (including having an event in both datasets). This risk function
::
In

:::
our

:::::::
context,

::
the

::::
risk

:::::::
function

:::
can

:::
be

:::::::
written:

R(u)(X) =
P(X(u) ̸= Y (u))

P(Y (u) = 1 or X(u) = 1)
::::::::::::::::::::::::::::::

:::::
where

::::
Y (u)

::
is
:::
the

::::::
binary

::::::::::
observation,

::::::::
Y (u) = 0

::::::
(resp.

::::::::
Y (u) = 1)

::
if

:::
the

::::::::
observed

::::
daily

:::::::::::
precipitation

::
is

:::::
lower

::::::::
(greater)

::::
than

:
a
::::::
certain

::::::::
threshold

::
u;

::::
and

:::::
X(u)

::
is

:::
the

:::::
binary

:::::::
forecast

::::::::
X(u) = 0

::::::
(resp.

::::::::
X(u) = 1)

::
if
:::
the

::::::::
predicted

:::::
daily

:::::::::::
precipitation

::
is

:::::
lower125

:::::::
(greater)

::::
than

::
u.

:::
The

::::
risk

:::::::
function

::::
R(u)

:::::::
focuses

:::
on

::::
how

::::
well

:::
the

:::
"1"

::::::
values

:::::::
(extreme

:::::
event

:::::
days)

::::::
match

:::::::
between

::::::::::
observation

:::
and

::::::::
forecast.

:
It
::::
does

:::
not

::::
take

::::
into

:::::::
account

::::
steps

:::::
when

::::::
neither

:::
the

:::::::
forecast

:::
nor

:::
the

::::::::::
observation

:::::::::
experience

:::
an

::::::
extreme

::::::
event.

:::::::
R(u)(X)

::::::
varies

:::::::
between

::::
[0;1]

:::
and

::
is

:::::::::
negatively

:::::::
oriented

:::
(the

:::::
closer

::
to
:::::
zero,

:::
the

:::::
better

:::
the

::::::
forecast

:::
is).

::::
The

:::::::
strength

::
of

:::::::
R(u)(X)

::
is
:::
its

:::::::::
asymptotic

::::::::
behavior:

::::
even

:::
for

::::
very

:::
rare

:::::::
events,

::::
both

:::
the

::::::::::::
over-optimistic

::::
and

:::::::::::::
over-pessimistic

::::::::
forecasts

::::
will

::
be

:::::::::
penalized.

::
In

:::::
other

::::::
words,130

::::
even

::
for

::::
very

:::::
large

::::::::
threshold

::
u,

:::
i.e.

:::::
Y = 1

:::
for

::::
very

::::
rare

::::::::
occasions

::::
(but

:
at
:::::
least

:::::
once),

::
if

:::
the

::::::
forecast

::
is
:::
too

:::::::::
optimistic

:::
and

::::::
X = 0

::
for

:::
all

::::
time

:::::
steps,

::::
then

::::::::::::
R(u)(X) = 1

:::::::::::::::::::::::::::::::::
(“naive” classifier, Legrand et al., 2022).

::
A
:::::

very
:::::::::
pessimistic

:::::::
forecast

::::
will

::
be

:::::::::
penalized

::
the

:::::
same

::::
way

:::::::::::::::::::::::::::::::::::::::::
(“crying-wolf” classifier, see Legrand et al., 2022)

:
.
:::
The

::::::::::::::
commonly-used

::::
Brier

:::::
score

:::::
rather

:::::::
assesses

:::
the

:::::::
average

:::::::
behavior,

:::::
with

:
a
:::::

very
:::::
weak

::::::
penalty

:::
for

::::::::::::::::
under-represented

::::::
classes.

::::::::
Because

:::
all

::::
days

:::
are

::::::::::
compared,

:::
the

:::::::::
assessment

:::
of

::::
rare

::::::
extreme

::::::
events

:::::::
(missed,

::::
false

:::::
alarm

:::
or

:::
hit)

::
by

:::
the

:::::
Brier

:::::
score

::
is

:::
lost

::::::
among

:::
the

::::
huge

:::::::
amount

::
of

:::::::
correctly

::::::::
predicted

:::
0s.

:
135

::::::::::
1−R(u)(X)

::::
can

:::
be

::::::::::
understood

::
as

::
a
::::::
critical

:::::::
success

:::::
index

::::
for

::::
rare

::::::
events

:::::::::::::::::::::::::::::::
(Schaefer, 1990; Legrand et al., 2022),

:::::
with

:::::::::
asymptotic

:::::::::
properties

::::::
proven

:::
by

:::::::::::::::::
Legrand et al. (2022)

:
,
::::
such

::
as

::::
the

::::
link

::
to

:::
the

::::::::
extremal

:::::
index

::::
(we

::::
refer

::
to
:::::

their
::::::
article

:::
for

::::
more

:::::::
details).

:::
The

::::
risk

:::::::
function

::::::::
R(u)(X)

:
is initially designed for deterministic forecasts. We extend it here to an index for ensemble

forecasts, by comparing the observed exceedances with the median member of the forecast exceedances Fmed. There are 11140

members in the ECMWF precipitation hindcast data: for a given location,
:
a
:::::
given

::::::::::
initialisation

::::
date

:::
and

::
a
::::
lead

::::
time,

:
Fmed = 1

if at least 6 ensemble members predict extreme precipitation and Fmed = 0 otherwise. We take here the median forecast across

members, but in practice Fmed = 1 could be set to 1 only if fewer or more than 6 members forecast extreme precipitation. The

choice depends on the risk aversion of the users
:::
and

:
is
:::::::::
discussed

::
in

::::::
Section

::
4.

This adapted index is later on called the binary loss index (BLI)and
::::::
BLIm,

::
m

:::::::::
indicating

:::
the

:::::::
median

::
of

:::
the

:::::::::
ensemble145

::::::::
members).

::
It
:
is defined by:

BLIm =
Nmed

1

Nmed
2

,

where Nmed
1 is the number of days when the observation and the ensemble median disagree, i.e. Nmed

1 =#{j | Fmed
j ̸= Yj},

and Nmed
2 is the number of days when an extreme event occurs in either or both the observation and the ensemble median, i.e.

6



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lead time (days)

B
in

ar
y 

lo
ss

 in
de

x

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Last day for which
the BLI of the median
is lower than climatology
(last skilful day)

BLI of the hindcast median
Bootstrap climatological BLI
5th percentile climatological BLI

Figure 2. Definition of the last skillful day for BLI: example for one grid point and one season.

Nmed
2 =#{j |

(
Fmed
j = 1 or Yj = 1

)
}. In other words, Nmed

1 is the number of false positives and false negatives and Nmed
2

is the number of true positives, false positives and false negatives.150

This metric focuses on how well the "1" values (extreme event days) match between the two datasets. It doesn’t take into

account steps when neither the forecast nor the observation experience an extreme event. 1-BLI can be understood as the

critical success index Schaefer (1990); ?. To measure the lead time dependence of the skill, BLI is computed for each lead

time day.

BLI varies between [0;1] and is negatively oriented (the closer to zero, the better). Note that if the forecast F and the155

observation Y are independent (i.e. the forecast has no skill) and if P[F = 1] = P[Y = 1] = α, then BLI = 2−2α
2−α (here, α=

0.05 for daily exceedances in a given season). In our case, P[F = 1] is not exactly equal to P[Y = 1] because the index is

computed on extended seasons and not on 3-month seasons.

The climatological value of BLI , referred to as BLIclim is used as reference value. We compute confidence intervals for

BLIclim with a bootstrap procedure to determine if the forecast is skillful, i.e. if BLI is significantly lower than BLIclim. For160

a given bootstrap step, a random time series is formed by drawing values in the observation time series. The BLI is computed

with this random time series as forecast. For a given lead time day, a forecast is deemed to be significantly skillful if the BLI

of the median member of the forecast (Fmed) is lower than the 5% percentile of the confidence interval on BLIclim. Like for

the Brier score, we compute the “last skillful day” for the BLI, with the same definition (largest lead time day with skill, see

figure 2 for an example).165
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Figure 3. Illustration of the weekly aggregation of extremes at one grid point. During week 1, the forecast predicts one extreme and one

extreme is observed. For both the forecast and the observation, the number of extreme events in the 7-day window is greater or equal to 1:

Et
1 = 1 for the two datasets. For both datasets, the number of events in the 7-day window is lower than n, for n≥ 2: Et

n = 0 for the two

datasets. During week 2, one extreme is observed but the forecast predicts two events. For both datasets, the number of extreme events in the

7day window is greater or equal to 1: Et
1 = 1 for the two dataset. For the observation, the number of events in the 7-day window is lower

than 2 (Et
2 = 0) and this number is greater or equal to 2 for the forecast (Et

2 = 1). For the configuration with n events, n≥ 3, Et
n = 0 for

both datasets.

2.3.3 Spatio-temporal extension of the metrics

Requiring an exact match of events in the forecast and the observations on the same day and at the same grid point is very strict.

Indeed, precipitation is a complex variable to forecast precisely in space and time. A forecast may contain useful information,

even if the forecast does not predict the event exactly on the same day or at the same location as in the observation, but in a

close neighborhood. Moreover, a temporal lag or a spatial shift between the observation and the forecast is penalized twice,170

by 1) a missed event at the observed time/location of the event and 2) a false alarm at the erroneously predicted time/location

of the event (double penalty issue, see e.g.Ebert et al. (2013))
:::::::::::::::::::::::::::::::::::::::
(double penalty issue, see e.g. Ebert et al., 2013). We therefore

also compute skill scores on data aggregated in space and time, which allows for some flexibility in the exact location or exact

timing of the events. The spatial and the temporal aggregations are conducted independently, to analyse the individual impact

of each aggregation. Both the spatial and temporal neighborhoods are non-overlapping to consider each extreme event only175

once. The spatio-temporal extensions are applied before computing the median member.

The temporal aggregation consists in counting the number of extreme events N t in a 7-day window. We then translate it into

a binary series Et
n: given a minimum number of events n in the window (n= {1, ...,7}) :

Et
n =

1 if N t ≥ n

0 otherwise.

Figure 3 provides an example for the definition of Et
n. To the various binary series (one for each n), we apply the Brier180

score and BLI to quantify forecast skill. We estimate climatological skill in a way that conserves the temporal structure of the

climatology. We randomly select the beginning of the 7-day time windows in the observation. The 6 following days are not

randomly selected, they are the 6 days actually following the beginning of time window in the time series of observations.

The spatial aggregation is performed by counting extreme precipitation events in neighborhoods. Like for the temporal

aggregation, we define two categories, depending on whether the count of events Ns in the spatial neighborhood exceeds or185
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Figure 4. Illustration of the spatial aggregation of extremes in one neighborhood. The forecast indicates two extremes in the spatial neigh-

borhood and three events are observed. For both datasets, the number of extreme events in the neighborhood is greater or equal to 1 (Es
1 = 1)

and greater or equal to 2 (Es
2 = 1). For 3 events or more, Es

3 = 0 for the forecast and Es
3 = 1 for the observation. For four events or more,

Es
n = 0 for both datasets for n≥4.

not some threshold n (see figure 4 for an example):

Es
n =

1 if Ns ≥ n

0 otherwise.

Precipitation includes some spatial structure, i.e. spatial dependence between points in a neighborhood. When computing the

climatology for both scores, the spatial structure is conserved: for one step of the bootstrap only the date is randomly chosen,

the spatial neighborhood is the observed neighborhood for that day. We define the neighborhoods as square boxes of about190

150km*150km, i.e. boxes with a latitudinal extent of 1.5◦N (3 gridboxes) and with a longitudinal grid extent that depends on

the latitude: from 1.5◦E at 30◦N (3 gridboxes) to 4.5◦E at 70◦N (9 gridboxes), see figure D1 in appendix for an illustration.
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3 Results

3.1 Daily and local comparison

We begin by discussing the forecast skill at the daily and grid-point scale. The BLI indicates more skill during the extended195

winter (skill for up to 11 days, and many regions with a last skillful day greater than 7 days) than during the extended summer

(last skillful day below 6 days for most grid points), see figure 5. Regions with high skill are Norway, the Alps and the western

half of the Iberian Peninsula in the extended winter and the Bay of Biscay, the South of France, Norway, Central Europe and the

South of the Alps in the extended summer. The
:::
BLI

::::
skill

::::
score

::
is
::::
less

::::::::::
conservative

::::
than

:::::
those

::
of

:::
the

:
Brier skill scoreconfirms

these patterns, see
:
,
:::::::
however

:::
the

::::::
spatial

:::::::
patterns

:::
are

::::::
similar

:::
for

:::
the

::::
two

::::::
metrics

::
(figure B1 in the appendix

::
).

::::
That

::
is,

:::
the

::::
last200

::::::
skillful

:::
day

:::
for

:::
the

::::
Brier

::::
skill

:::::
score

::
is

::::::
overall

::::::
smaller

::::
than

:::
the

:::
last

::::::
skillful

::::
day

::
for

:::
the

:::::
BLI,

:::
but

::::
both

::
the

:::::
Brier

:::::
score

:::
and

:::
the

::::
BLI

::::
show

:::
the

:::::
same

::::::
regions

::::
with

::::
high

::::
and

:::
low

::::
skill

::
of

:::
the

:::::::
forecast

:::
for

:::::::::::
precipitation

::::::::
extremes,

::
in

:::::::
summer

:::
and

::::::
winter. However, the

BLI skill estimates are more conservative than those of the Brier skill score .

Figure 5. Last skillful day for the BLI for a local and daily comparison, in extended summer (a) and extended winter (b).

3.2 Temporal aggregation

7-day extreme precipitation event counts are also better predicted during the extended winter than during the extended summer205

(figure 6). For the category “one event or more occurred during the 7 days", the forecasts at most grid points still have skill

for lead times into the second week, i.e. days 8 -14, in extended winter. The BLI decreases as the number of events per week

increases; however, the spatial patterns remain the same. The regions where temporal clustering is more skillfully forecasted

are the Iberian Peninsula, Norway and the northern Mediterranean coastline (especially in winter). The Brier score confirms

these results, with similar patterns (see figure C1 in appendix).210
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Figure 6. Last week of skill for the BLI in extended summer (a-c) and extended winter (d-e) for a minimum of 1 (a,d), 2 (b,e) and 3 (c,f)

events in a 7-day window. A last skilful
:::::
skillful week equal to 0 means that, for the count of extremes during the first week lead time, the

BLI of the forecast is not significantly lower than BLIclim.

3.3 Spatial aggregation

Extended winter forecasts for spatially aggregated extremes are also more skillfull
:::::
skillful

:
than summer ones (see figure 7).

:::
The

:::
last

:::::::
skillful

:::
day

::
is

::::::
greater

:::::
when

:::::::
spatially

::::::::::
aggregating

::::
that

:::
for

:::
the

::::
local

:::::::
analysis,

:::
but

:::
the

::::
two

::::::::::::
configurations

::::
have

::
a

::::::
similar

:::::
spatial

:::::::
pattern. In extended winter, for one event or more in the neighborhood, the last skillful lead time reaches up to 11 days

in many regions: the western Iberian Peninsula, the Norway coast, and the west-facing coasts in general. In extended summer,215

the last skillful lead time is between 8 and 11 days on the Atlantic coast of France, Italy, Western Europe and the coasts of the

Iberian Peninsula . The spatial skill pattern remains similar with increasing number of events per neighborhood but the skill

decreases.

Figure D2 in appendix shows maps of the last lead time day with a positive Brier skill score, for different numbers of events

aggregated spatially, in extended summer and extended winter. The regions with higher skill are the same for the Brier score220

and for the BLI. The spatial pattern of the skill also remains similar with increasing number of events per neighborhood.

4 Discussion and Conclusion

In this paper, we assess forecast skill of extreme precipitation occurrence over Europe in the ECMWF S2S model. Extremes are

defined as exceedances over the seasonal 95th percentile. We conduct a verification against ERA5 precipitation with the binary

loss index (BLI) and the Brier score. We introduce the BLI as an extension to ensemble forecasts of the
:::::
extend

:::
the

:
binary225

loss score of Legrand et al. ?
:::::
studied

:::
by

:::::::::::::::::
Legrand et al. (2022), which was designed for deterministic forecasts only

:
,
::
to

::::::::
ensemble

11



Figure 7. Last day of skill for the BLI in extended summer (a-c) and extended winter (d-f) for a minimum of 1 (first column), 2 (second

column) and 3 (last column) events in neighborhood
:::::::::::
neighborhoods of 150×150km.

:::::::
forecasts. We define the BLI as the binary loss score calculated for the ensemble median member of binary exceedances. The

choice of the median member was motivated by a trade-off between false alarms and missed events. The skill will be different

when one chooses a lower percentile of the ensemble members to compute the BLI (risk averse setting) or when one chooses

a very high percentile of the ensemble members (risk loving). The BLI has the advantage of focusing exclusively on extreme230

event occurrence (hit, false alarm or miss) and are
:
is not biased by the high counts of extreme event non-occurrence. The BLI

::::
BLI

:
is qualitatively compared with the Brier score; the skill scores of two metrics agree very well over Europe.

::::::
Despite

:::
the

::::
great

::::::::::
importance

::
of

:::::::::
accurately

:::::::::
forecasting

::::
rare

::::::::
extremes,

:::
the

:::::
Brier

:::::
score

::::
does

:::
not

::::
give

::
a
::::::
special

::::::
weight

::
to

:::::::::::::::
underrepresented

::::::
classes.

:::::::::
Therefore,

:::
by

::::::
design,

:::
the

:::::
BLI

::::::
should

::
be

::::::::
preferred

::
to

:::
the

:::::
Brier

:::::
score

:::::
when

::::::::
assessing

:::
the

:::::::
forecast

::::
skill

:::
for

::::
very

::::
rare

::::::
events. With further research, a probability score for ensemble forecasts could be developed from the BLF

::::
BLI .235

The S2S forecasts have overall higher skill in predicting extreme precipitation events in winter than in summer. A likely

explanation resides in the fact that precipitation over Europe mainly results from large scale processes during winter, but

from small scale, convective events in summer. Predicting small scale events is indeed more challenging than large scale ones

Haylock and Goodess (2004); Kenyon and Hegerl (2010)
:::::::::::::::::::::::::::::::::::::::::::::
(Haylock and Goodess, 2004; Kenyon and Hegerl, 2010). This result

is in agreement with the existing literature on S2S prediction in other regions Tian et al. (2017); Kolachian and Saghafian (2019)240

::::::::::::::::::::::::::::::::::::::::
(Tian et al., 2017; Kolachian and Saghafian, 2019). Norway, Portugal and the South of the Alps are regions with the most skill.

The orography seems to be a source of skill (like in Norway, the Pyrenees and the South of the Alps): the forecast seems to

better capture precipitation events where the complex topography acts as a forcing for precipitation. The Mediterranean region

exhibits relatively good skill in winter. Similarly, coastal regions in general have a higher skill compared to continental regions.

A potential explanation for this difference is that the water transported from the ocean first rains out next to the coast; it is245

more challenging to predict where the remaining water in the atmosphere will rain down on continental regions because land-
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atmosphere interactions introduce uncertainty.
::
A

::::::::
follow-up

:::::
study

:::::
could

::::::
further

:::::::::
investigate

:::::
these

::::::::::
hypotheses

::
on

:::
the

::::::::
physical

::::::
reasons

::::::
behind

:::
the

::::::
spatial

:::
and

:::::::
seasonal

::::::::::::
heterogeneity

::
of

:::
the

::::
skill.

:

Allowing for temporal or spatial flexibility in the evaluation of the forecast extremes confirms the skill patterns, bringing

robustness to the analysis. The
::::
skill

::
for

:::
the

::::::::
spatially

:::::::::
aggregated

:::::::::::
precipitation

:
is
:::::::

slightly
:::::
larger

::::
than

:::
for

:::
the

::::
local

::::::::
analysis,

::
as

::
it250

:
is
::::::
easier

:::
for

:::
the

:::::::
forecast

::
to

::::
have

::
a

::::::::
matching

::::
event

:::::
with

::::::::::
observation

::
on

::
a

:::::
larger

::::
grid.

::::
The

:
spatial aggregation conducted here

could be adapted for an impact-oriented analysis, by aggregating e.g. over catchments to evaluate the predictability of heavy

precipitation, that can potentially result in floods or by analysing multi-day heatwaves.

:::
We

::::::::::
additionally

::::::::::
investigated

:::
the

:::::
effect

::
of

::::::::
European

:::::::
weather

:::::::
regimes

::
on

:::
the

:::::::
forecast

::::
skill

:::::::::::::::::::::::::::
(as defined in Grams et al., 2017)

:
,

::
as

:::
the

:::::::
forecast

::::
skill

::
of

:::
the

:::::::
weather

::::::
regimes

::::::::::
themselves

:::
can

::::::
largely

:::::
differ

:::::::::::::::::
(Büeler et al., 2021).

:::
We

:::::::::
computed

:::
the

:::::::
forecast

::::
skill255

:::::::::::
independently

:::
for

:::::::
positive

::::::
phases

::::
and

:::::::
negative

::::::
phases

::
of

::::
the

:::::
NAO.

::::
The

:::::::
forecast

::::
skill

::::
does

:::
not

::::::
exhibit

::
a
::::::
strong

::::::::::
dependence

::
on

:::
the

:::::
NAO

::::::
phase,

::::::::
although

:::
the

::::
data

::::
was

::::
also

::::::::
spatially

:::::::::
aggregated

:::
to

:::::::
increase

:::::::::
robustness

:::::
(not

:::::::
shown).

::::
This

:::::::
absence

:::
of

:::::
signal

::::::
should

:::
be

:::::::::
confirmed

::::
with

::
a

::::::
deeper

::::::::
analysis,

::
by

:::::::::::
considering

:::::
some

::::
time

:::
lag

:::
or

:::::::::
seasonality

::::
for

:::
the

::::::::
influence

::
of

::::
the

::::::::::::
teleconnection

:::::::
patterns

:::::::::::::::::::::::
(Tabari and Willems, 2018)

:
or

:::
by

::::::::::
aggregating

::::
over

:::::
larger

:::::::::::::
spatio-temporal

:::::::::::::
neighborhoods,

:::
to

:::::::
increase

::
the

::::::::::
robustness.

:::::
Other

::::::::::::
teleconnection

:::::::
patterns

:::::
could

:::
be

::::::::::
investigated,

::::
such

:::
as

:::::::::::
Scandinavian

:::
and

::::
East

:::::::
Atlantic

::::::::
patterns,

::
El

:::::
Niño260

:::::::
southern

:::::::::
oscillation,

:::
the

:::::::
Atlantic

::::::::::
multidecadal

:::::::::
oscillation

::::::::::::::::::::
(Casanueva et al., 2014)

::
or

:::
the

::::
state

::
of

:::
the

::::::::::
stratosphere

:::::::::::::::::::
(Domeisen et al., 2019)

:
.

An assessment focused on the precipitation intensity could extend the verification; the precipitation forecast data would then

require to be calibrated Gneiting et al. (2007); Specq and Batté (2020); Crochemore et al. (2016); Monhart et al. (2018); Huang et al. (2022)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Gneiting et al., 2007; Specq and Batté, 2020; Crochemore et al., 2016; Monhart et al., 2018; Huang et al., 2022). An extension265

of the CRPS would be an option to measure the intensity forecast skill with a focus on heavy precipitation, like the threshold-

weighted CRPS (see e.g. Pantillon et al. (2018); Allen et al. (2021))
::::::::::::::::::::::::::::::::::::::::
(see e.g. Pantillon et al., 2018; Allen et al., 2021) or us-

ing extreme value theory Taillardat et al. (2022)
::::::::::::::::::
(Taillardat et al., 2022). Post-processing the hindcast data and analysing the

paradigm of “maximizing the sharpness of the predictive distributions subject to calibration” could also be an extension of this

work Gneiting et al. (2007)
::::::::::::::::::
(Gneiting et al., 2007); the usual evaluation metrics –the probability integral transform histogram,270

marginal calibration plots, the sharpness diagram– could be applied with a focus on extremes.

Note that for practical applications, one needs caution to interpret the skill in an absolute way:
:
,
::
for

::::
two

:::::::
reasons:

::
(i)

:
a skillful

forecast does not mean that the forecast is also useful forecast for practical applications .
:::
and

:::
(ii)

:::
the

:::::::
absolute

:::
last

::::::
skillful

::::
day

:::::::
depends

::
on

:::
the

::::::
choice

::
of

:::
the

:::::::
member

::
for

:::
the

:::::
daily

:::::::
predictor

::::::
(here,

::
the

:::::::
median

::::::::
member).

::
(i)

:
If the BLI is equal to 0.8 but is out-

side of
::
the

:
climatological confidence interval, the forecast is better than the climatology and therefore skillful. However, it also275

means that only 20
::
25% of the extremes are caught by the forecast . 80

:::
(by

::::::
simple

::::::::::::
transformation

::
of

:::::::::::::::::::::::
BLI = FN+FP

TP+FN+FP = 0.8,

:::::
where

:::
FN

:::
are

:::
the

::::
false

:::::::::
negatives,

::
FP

:::
are

:::
the

:::::
false

:::::::
positives

::::
and

:::
TP

::
are

:::
the

::::
true

:::::::::
positives).

::
75% of the time, either the forecast

predicted erroneously
::::::::::
erroneously

::::::::
predicted an extreme (false alarm,

:::
FP) or did not predict an extreme that occurred (miss

:
,

:::
FN). The definition of the last skillful day can be adapted depending on the usage of the forecast. The definition can be more

conservative, e.g. the last lead time day for which at least 75% of the extreme events are caught (rather than a comparison to280

the climatology), or using a smaller quantile
:::::::
percentile

:
of the members(,

:
rather than the median member).

:
.
:::
(ii)

:::
The

::::
last

::::::
skillful
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:::
day

::
is

:::::
larger

:::::
when

:::::::
choosing

:::
the

:::::::::
maximum

:::::::
member

::
as

:::
the

::::
daily

::::::::
predictor

:::
(i.e.

:::::::::
Fmed = 1

::
if

:
at
:::::
least

:
1
::::::::
ensemble

:::::::
member

:::::::
predicts

::::::
extreme

:::::::::::
precipitation

::::
and

::::::::
Fmed = 0

::::::::::
otherwise).

::::
This

::
is

:::
due

:::
to

:::
the

::::::
number

:::
of

:::
TP

:::
not

:::::::::
collapsing

::
to

::::
zero

::::
with

:::::::::
increasing

::::
lead

:::::
times:

:::
the

::::::::
condition

:::
“at

::::
least

:::
one

:::::::
member

:::::::
predicts

::::
daily

:::::::::::
precipitation

:
is
::::::
greater

::::
than

:::
the

::::
95th

:::::::::
percentile”

::
is
::::
very

:::::
easily

::::::::
satisfied.

::
By

:::::::::
“chance”,

:::
the

::::::::
maximum

:::::::
member

:::::::
predicts

:::::
many

:::
TP,

::::
still

::::::::::::
compensating

:
a
:::
bit

::
for

:::
the

:::
FP

:::
for

:::::
large

:::
lead

::::::
times.

:::
For

:::
the

::::::
choice285

::
of

:::
the

:::::::
member,

:::
we

::::::::::
recommend

:::::::::
considering

::
a
::::
good

:::::::
balance

:::::::
between

:::
FN

:::
and

:::
FP.

::::::::
However,

::
it

::
is

::::::::
important

::
to

::::
note

:::
that

:::
the

::::::
spatial

::::::
pattern

::
of

::::
skill

::::
does

:::
not

::::::
depend

:::
on

:::
the

:::::
choice

:::
of

:::
the

:::::::
member.

::::
The

::::::
regions

::::
with

:
a
::::::::
relatively

::::::
larger

::::
skill

::::
(e.g.

:::::::
Norway,

::::::::
Portugal,

::::
West

:::::
coasts

:::
in

::::::
winter)

::::::
remain

:::
the

:::::
same,

::::::::::::
independently

:::
of

:::
the

:::::
choice

:::
of

:::::::
predictor

::::::::::
(minimum,

::::::
median

:::
or

::::::::
maximum

:::::::::
member).

::::::::
Following

:::::
these

:::
two

::::::::
remarks,

:::
we

:::::::::
emphasize

:::
that

::::
our

:::
aim

::::
here

::::
was

::
to

:::::::
provide

:
a
::::::
robust

:::::::::
qualitative

::::::::::
assessment,

::
by

::::::::::
identifying

::::::
regions

::
of

::::
skill

:::
and

::::::::::
challenging

:::::::
regions

::
for

:::
the

:::::::
forecast

::::::
model

::
to

::::::
predict

::::::::::
precipitation

::::::::
extremes

:::
on

:::
the

:::
S2S

:::::::::
timescale.290

Checking if a value of the BLI is significant is a kind of hypothesis test that is repeated for a large number of grid points.

One could argue that some regional significance should be investigated. However, when displaying the local significance as

“largest lead time day with skillful forecast", the results are continuous rather than a strict “yes or no" response. Moreover, the

spatial coherence of the results confirms the robustness of the method.

Our method to assess extremes can also be applied to other variables, such as consecutive days of high temperature, river295

discharge, etc. Considering the other side of extremes, evaluating the skill of forecasts to predict droughts would also be of

crucial importance. For droughts, the persistence of dry periods matters, rather than the occurrence of precipitation. The method

could be adapted accordingly, e.g. adjusting the definition temporal aggregation introduced in this study.

Code and data availability. The codes used for the data analysis are available on github (https://github.com/PauRiv/S2S_verif_precip).

The ECMWF’s S2S hindcast data are available on the ECMWF platform300

(https://apps.ecmwf.int/datasets/data/s2s-reforecasts-instantaneous-accum-ecmf/levtype=sfc/type=cf/, cycle 47r2).

Appendix A: 95th percentile
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Figure A1. 95th percentile of daily precipitation in ERA5, 2001-2021.

Appendix B: Local and daily comparison of extremes

Figure B1. Last skillful day for the Brier skill score for local and daily comparison, in extended summer (a) and extended winter (b).
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Appendix C: Temporally accumulated extremes

Figure C1. Last week of skill for the Brier skill score in extended summer (a-c) and extended winter (d-f) for a minimum of 1 (first column),

2 (second column) and 3 (last column) events in a 7 days window.
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Appendix D: Spatially accumulated extremes305

Figure D1. Illustration of the width of the spatial neighborhood, in terms of grid points, depending on the latitude for a constant width in

kilometers (and for a constant area).
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Figure D2. Last day of skill for the Brier skill score in extended summer (a-c) and extended winter (d-f) for a minimum of 1 (first column),

2 (second column) and 3 (last column) events in neighborhood
::::::::::

neighborhoods
:
of 150×150km.
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